1
|
Alharithi YJ, Phillips EA, Wilson TD, Couvillion SP, Nicora CD, Darakjian P, Rakshe S, Fei SS, Counts B, Metz TO, Searles R, Kumar S, Maloyan A. Metabolomic and transcriptomic remodeling of bone marrow myeloid cells in response to maternal obesity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.20.608809. [PMID: 39229218 PMCID: PMC11370391 DOI: 10.1101/2024.08.20.608809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Maternal obesity puts the offspring at high risk of developing obesity and cardio-metabolic diseases in adulthood. Here, using a mouse model of maternal high-fat diet (HFD)-induced obesity, we show that whole body fat content of the offspring of HFD-fed mothers (Off-HFD) increases significantly from very early age when compared to the offspring regular diet-fed mothers (Off-RD). We have previously shown significant metabolic and immune perturbations in the bone marrow of newly-weaned offspring of obese mothers. Therefore, we hypothesized that lipid metabolism is altered in the bone marrow Off-HFD in newly-weaned offspring of obese mothers when compared to the Off-RD. To test this hypothesis, we investigated the lipidomic profile of bone marrow cells collected from three-week-old offspring of regular and high fat diet-fed mothers. Diacylgycerols (DAGs), triacylglycerols (TAGs), sphingolipids and phospholipids, including plasmalogen, and lysophospholipids were remarkably different between the groups, independent of fetal sex. Levels of cholesteryl esters were significantly decreased in offspring of obese mothers, suggesting reduced delivery of cholesterol to bone marrow cells. This was accompanied by age-dependent progression of mitochondrial dysfunction in bone marrow cells. We subsequently isolated CD11b+ myeloid cells from three-week-old mice and conducted metabolomics, lipidomics, and transcriptomics analyses. The lipidomic profiles of these bone marrow myeloid cells were largely similar to that seen in bone marrow cells and included increases in DAGs and phospholipids alongside decreased TAGs, except for long-chain TAGs, which were significantly increased. Our data also revealed significant sex-dependent changes in amino acids and metabolites related to energy metabolism. Transcriptomic analysis revealed altered expression of genes related to major immune pathways including macrophage alternative activation, B-cell receptor signaling, TGFβ signaling, and communication between the innate and adaptive immune systems. All told, this study revealed lipidomic, metabolomic, and gene expression abnormalities in bone marrow cells broadly, and in bone marrow myeloid cells particularly, in the newly-weaned offspring of obese mothers, which might at least partially explain the progression of metabolic and cardiovascular diseases in their adulthood.
Collapse
|
2
|
Zhang K, Wang H, Tappero R, Bhatnagar JM, Vilgalys R, Barry K, Keymanesh K, Tejomurthula S, Grigoriev IV, Kew WR, Eder EK, Nicora CD, Liao HL. Ectomycorrhizal fungi enhance pine growth by stimulating iron-dependent mechanisms with trade-offs in symbiotic performance. THE NEW PHYTOLOGIST 2024; 242:1645-1660. [PMID: 38062903 DOI: 10.1111/nph.19449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/13/2023] [Indexed: 04/26/2024]
Abstract
Iron (Fe) is crucial for metabolic functions of living organisms. Plants access occluded Fe through interactions with rhizosphere microorganisms and symbionts. Yet, the interplay between Fe addition and plant-mycorrhizal interactions, especially the molecular mechanisms underlying mycorrhiza-assisted Fe processing in plants, remains largely unexplored. We conducted mesocosms in Pinus plants inoculated with different ectomycorrhizal fungi (EMF) Suillus species under conditions with and without Fe coatings. Meta-transcriptomic, biogeochemical, and X-ray fluorescence imaging analyses were applied to investigate early-stage mycorrhizal roots. While Fe addition promoted Pinus growth, it concurrently reduced mycorrhiza formation rate, symbiosis-related metabolites in plant roots, and aboveground plant carbon and macronutrient content. This suggested potential trade-offs between Fe-enhanced plant growth and symbiotic performance. However, the extent of this trade-off may depend on interactions between host plants and EMF species. Interestingly, dual EMF species were more effective at facilitating plant Fe uptake by inducing diverse Fe-related functions than single-EMF species. This subsequently triggered various Fe-dependent physiological and biochemical processes in Pinus roots, significantly contributing to Pinus growth. However, this resulted in a greater carbon allocation to roots, relatively reducing the aboveground plant carbon content. Our study offers critical insights into how EMF communities rebalance benefits of Fe-induced effects on symbiotic partners.
Collapse
Affiliation(s)
- Kaile Zhang
- North Florida Research and Education Center, University of Florida, 155 Research Road, Quincy, FL, 32351, USA
- Department of Soil, Water, and Ecosystem Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Haihua Wang
- North Florida Research and Education Center, University of Florida, 155 Research Road, Quincy, FL, 32351, USA
- Department of Soil, Water, and Ecosystem Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Ryan Tappero
- Brookhaven National Laboratory, NSLS-II, Upton, NY, 11973, USA
| | | | - Rytas Vilgalys
- Department of Biology, Duke University, 130 Science Drive, Durham, NC, 27708, USA
| | - Kerrie Barry
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Keykhosrow Keymanesh
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Sravanthi Tejomurthula
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Igor V Grigoriev
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - William R Kew
- Environmental Molecular Science Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Elizabeth K Eder
- Environmental Molecular Science Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Carrie D Nicora
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Hui-Ling Liao
- North Florida Research and Education Center, University of Florida, 155 Research Road, Quincy, FL, 32351, USA
- Department of Soil, Water, and Ecosystem Sciences, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
3
|
Eisfeld AJ, Anderson LN, Fan S, Walters KB, Halfmann PJ, Westhoff Smith D, Thackray LB, Tan Q, Sims AC, Menachery VD, Schäfer A, Sheahan TP, Cockrell AS, Stratton KG, Webb-Robertson BJM, Kyle JE, Burnum-Johnson KE, Kim YM, Nicora CD, Peralta Z, N'jai AU, Sahr F, van Bakel H, Diamond MS, Baric RS, Metz TO, Smith RD, Kawaoka Y, Waters KM. A compendium of multi-omics data illuminating host responses to lethal human virus infections. Sci Data 2024; 11:328. [PMID: 38565538 PMCID: PMC10987564 DOI: 10.1038/s41597-024-03124-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Human infections caused by viral pathogens trigger a complex gamut of host responses that limit disease, resolve infection, generate immunity, and contribute to severe disease or death. Here, we present experimental methods and multi-omics data capture approaches representing the global host response to infection generated from 45 individual experiments involving human viruses from the Orthomyxoviridae, Filoviridae, Flaviviridae, and Coronaviridae families. Analogous experimental designs were implemented across human or mouse host model systems, longitudinal samples were collected over defined time courses, and global multi-omics data (transcriptomics, proteomics, metabolomics, and lipidomics) were acquired by microarray, RNA sequencing, or mass spectrometry analyses. For comparison, we have included transcriptomics datasets from cells treated with type I and type II human interferon. Raw multi-omics data and metadata were deposited in public repositories, and we provide a central location linking the raw data with experimental metadata and ready-to-use, quality-controlled, statistically processed multi-omics datasets not previously available in any public repository. This compendium of infection-induced host response data for reuse will be useful for those endeavouring to understand viral disease pathophysiology and network biology.
Collapse
Affiliation(s)
- Amie J Eisfeld
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| | - Lindsey N Anderson
- Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Shufang Fan
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Coronavirus and Other Respiratory Viruses Laboratory Branch (CRVLB), Coronavirus and Other Respiratory Viruses Division (CORVD), National Center for Immunization and Respiratory Diseases (NCIRD), Centers for Disease Control and Prevention (CDC), Atlanta, GA, 30329, USA
| | - Kevin B Walters
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, 21702, USA
| | - Peter J Halfmann
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Danielle Westhoff Smith
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Surgery, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Larissa B Thackray
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Qing Tan
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Amy C Sims
- Department of Epidemiology, University of North Carolina at Chapel Hill, North Carolina, 27599, USA
- Nuclear, Chemistry, and Biosciences Division; National Security Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Vineet D Menachery
- Department of Epidemiology, University of North Carolina at Chapel Hill, North Carolina, 27599, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, North Carolina, 27599, USA
| | - Timothy P Sheahan
- Department of Epidemiology, University of North Carolina at Chapel Hill, North Carolina, 27599, USA
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Adam S Cockrell
- Department of Epidemiology, University of North Carolina at Chapel Hill, North Carolina, 27599, USA
- Solid Biosciences, Charlston, MA, 02139, USA
| | - Kelly G Stratton
- Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Bobbie-Jo M Webb-Robertson
- Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Jennifer E Kyle
- Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Kristin E Burnum-Johnson
- Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Young-Mo Kim
- Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Carrie D Nicora
- Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Zuleyma Peralta
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY, 10029, USA
- Partillion Bioscience, Los Angeles, CA, 90064, USA
| | - Alhaji U N'jai
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Biological Sciences, Fourah Bay College, Freetown, Sierra Leone
- Department of Microbiology, College of Medicine and Allied Health Sciences, University of Sierra Leone, Freetown, Sierra Leone
- Department of Medical Education, California University of Science and Medicine, Colton, CA, 92324, USA
| | - Foday Sahr
- Department of Microbiology, College of Medicine and Health Sciences, University of Sierra Leone, Freetown, Sierra Leone
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY, 10029, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, 10029, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York City, NY, 10029, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, North Carolina, 27599, USA
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Thomas O Metz
- Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Richard D Smith
- Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Yoshihiro Kawaoka
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, 108-8639, Tokyo, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, 108-8639, Japan
| | - Katrina M Waters
- Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| |
Collapse
|
4
|
Garbarino VR, Palavicini JP, Melendez J, Barthelemy N, He Y, Kautz TF, Lopez-Cruzan M, Mathews JJ, Xu P, Zhan B, Saliba A, Ragi N, Sharma K, Craft S, Petersen RC, Espindola-Netto JM, Xue A, Tchkonia T, Kirkland JL, Seshadri S, Salardini A, Musi N, Bateman RJ, Gonzales MM, Orr ME. Evaluation of Exploratory Fluid Biomarker Results from a Phase 1 Senolytic Trial in Mild Alzheimer's Disease. RESEARCH SQUARE 2024:rs.3.rs-3994894. [PMID: 38496619 PMCID: PMC10942554 DOI: 10.21203/rs.3.rs-3994894/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Senescent cell accumulation contributes to the progression of age-related disorders including Alzheimer's disease (AD). Clinical trials evaluating senolytics, drugs that clear senescent cells, are underway, but lack standardized outcome measures. Our team recently published data from the first open-label trial to evaluate senolytics (dasatinib plus quercetin) in AD. After 12-weeks of intermittent treatment, we reported brain exposure to dasatinib, favorable safety and tolerability, and modest post-treatment changes in cerebrospinal fluid (CSF) inflammatory and AD biomarkers using commercially available assays. Herein, we present more comprehensive exploratory analyses of senolytic associated changes in AD relevant proteins, metabolites, lipids, and transcripts measured across blood, CSF, and urine. These analyses included mass spectrometry for precise quantification of amyloid beta (Aß) and tau in CSF; immunoassays to assess senescence associated secretory factors in plasma, CSF, and urine; mass spectrometry analysis of urinary metabolites and lipids in blood and CSF; and transcriptomic analyses relevant to chronic stress measured in peripheral blood cells. Levels of Aß and tau species remained stable. Targeted cytokine and chemokine analyses revealed treatment-associated increases in inflammatory plasma fractalkine and MMP-7 and CSF IL-6. Urinary metabolites remained unchanged. Modest treatment-associated lipid profile changes suggestive of decreased inflammation were observed both peripherally and centrally. Blood transcriptomic analysis indicated downregulation of inflammatory genes including FOS, FOSB, IL1β, IL8, JUN, JUNB, PTGS2. These data provide a foundation for developing standardized outcome measures across senolytic studies and indicate distinct biofluid-specific signatures that will require validation in future studies. ClinicalTrials.gov: NCT04063124.
Collapse
Affiliation(s)
- Valentina R. Garbarino
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Juan Pablo Palavicini
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Justin Melendez
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Tracy Family SILQ Center for Neurodegenerative Biology, St. Louis, MO, USA
| | - Nicolas Barthelemy
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Tracy Family SILQ Center for Neurodegenerative Biology, St. Louis, MO, USA
| | - Yingxin He
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Tracy Family SILQ Center for Neurodegenerative Biology, St. Louis, MO, USA
| | - Tiffany F. Kautz
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Marisa Lopez-Cruzan
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, USA
- Department of Psychiatry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Julia J. Mathews
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Peng Xu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bin Zhan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Afaf Saliba
- Center for Precision Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Nagarjunachary Ragi
- Center for Precision Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Kumar Sharma
- Center for Precision Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Suzanne Craft
- Department of Internal Medicine Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | | | | - Ailing Xue
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Tamara Tchkonia
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | | | - Sudha Seshadri
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Neurology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Arash Salardini
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Neurology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Nicolas Musi
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Randall J. Bateman
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Tracy Family SILQ Center for Neurodegenerative Biology, St. Louis, MO, USA
| | - Mitzi M. Gonzales
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Neurology, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Miranda E. Orr
- Department of Internal Medicine Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Salisbury VA Medical Center, Salisbury, NC, 28144, USA
| |
Collapse
|
5
|
Bramer LM, Hontz RD, Eisfeld AJ, Sims AC, Kim YM, Stratton KG, Nicora CD, Gritsenko MA, Schepmoes AA, Akasaka O, Koga M, Tsutsumi T, Nakamura M, Nakachi I, Baba R, Tateno H, Suzuki S, Nakajima H, Kato H, Ishida K, Ishii M, Uwamino Y, Mitamura K, Paurus VL, Nakayasu ES, Attah IK, Letizia AG, Waters KM, Metz TO, Corson K, Kawaoka Y, Gerbasi VR, Yotsuyanagi H, Iwatsuki-Horimoto K. Multi-omics of NET formation and correlations with CNDP1, PSPB, and L-cystine levels in severe and mild COVID-19 infections. Heliyon 2023; 9:e13795. [PMID: 36915486 PMCID: PMC9988701 DOI: 10.1016/j.heliyon.2023.e13795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 03/09/2023] Open
Abstract
The detailed mechanisms of COVID-19 infection pathology remain poorly understood. To improve our understanding of SARS-CoV-2 pathology, we performed a multi-omics and correlative analysis of an immunologically naïve SARS-CoV-2 clinical cohort from blood plasma of uninfected controls, mild, and severe infections. Consistent with previous observations, severe patient populations showed an elevation of pulmonary surfactant levels. Intriguingly, mild patients showed a statistically significant elevation in the carnosine dipeptidase modifying enzyme (CNDP1). Mild and severe patient populations showed a strong elevation in the metabolite L-cystine (oxidized form of the amino acid cysteine) and enzymes with roles in glutathione metabolism. Neutrophil extracellular traps (NETs) were observed in both mild and severe populations, and NET formation was higher in severe vs. mild samples. Our correlative analysis suggests a potential protective role for CNDP1 in suppressing PSPB release from the pulmonary space whereas NET formation correlates with increased PSPB levels and disease severity. In our discussion we put forward a possible model where NET formation drives pulmonary occlusions and CNDP1 promotes antioxidation, pleiotropic immune responses, and vasodilation by accelerating histamine synthesis.
Collapse
Affiliation(s)
- Lisa M Bramer
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Robert D Hontz
- U.S. Naval Medical Research Unit No. TWO (NAMRU-2), Singapore, Singapore
| | - Amie J Eisfeld
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Amy C Sims
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Young-Mo Kim
- Pacific Northwest National Laboratory, Richland, WA, USA
| | | | | | | | | | - Osamu Akasaka
- Emergency Medical Center, Fujisawa City Hospital 2-6-1 Fujisawa, Fujisawa, Japan
| | - Michiko Koga
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Takeya Tsutsumi
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Morio Nakamura
- Department of Pulmonary Medicine, Tokyo Saiseikai Central, Tokyo, Japan
| | - Ichiro Nakachi
- Pulmonary Division, Department of Internal Medicine, Utsunomiya Hospital, Utsunomiya, Japan
| | - Rie Baba
- Pulmonary Division, Department of Internal Medicine, Utsunomiya Hospital, Utsunomiya, Japan
| | - Hiroki Tateno
- Department of Pulmonary Medicine, Saitama City Hospital, Saitama, Japan
| | - Shoji Suzuki
- Department of Pulmonary Medicine, Saitama City Hospital, Saitama, Japan
| | - Hideaki Nakajima
- Department of Hematology and Clinical Immunology, University School of Medicine, Yokohama, Japan
| | - Hideaki Kato
- Department of Hematology and Clinical Immunology, University School of Medicine, Yokohama, Japan
| | | | - Makoto Ishii
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yoshifumi Uwamino
- Department of Laboratory Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Keiko Mitamura
- Division of Infection Control, Eiju General Hospital, Tokyo, Japan
| | | | | | - Isaac K Attah
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Andrew G Letizia
- U.S. Naval Medical Research Unit No. TWO (NAMRU-2), Singapore, Singapore
| | | | - Thomas O Metz
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Karen Corson
- U.S. Naval Medical Research Unit No. TWO (NAMRU-2), Singapore, Singapore
| | - Yoshihiro Kawaoka
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA.,Department of Microbiology and Immunology, Japan.,International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | | | - Hiroshi Yotsuyanagi
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo
| | | |
Collapse
|
6
|
Madaj ZB, Dahabieh MS, Kamalumpundi V, Muhire B, Pettinga J, Siwicki RA, Ellis AE, Isaguirre C, Escobar Galvis ML, DeCamp L, Jones RG, Givan SA, Adams M, Sheldon RD. Prior metabolite extraction fully preserves RNAseq quality and enables integrative multi-'omics analysis of the liver metabolic response to viral infection. RNA Biol 2023; 20:186-197. [PMID: 37095747 PMCID: PMC10132226 DOI: 10.1080/15476286.2023.2204586] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2023] [Indexed: 04/26/2023] Open
Abstract
Here, we provide an in-depth analysis of the usefulness of single-sample metabolite/RNA extraction for multi-'omics readout. Using pulverized frozen livers of mice injected with lymphocytic choriomeningitis virus (LCMV) or vehicle (Veh), we isolated RNA prior (RNA) or following metabolite extraction (MetRNA). RNA sequencing (RNAseq) data were evaluated for differential expression analysis and dispersion, and differential metabolite abundance was determined. Both RNA and MetRNA clustered together by principal component analysis, indicating that inter-individual differences were the largest source of variance. Over 85% of LCMV versus Veh differentially expressed genes were shared between extraction methods, with the remaining 15% evenly and randomly divided between groups. Differentially expressed genes unique to the extraction method were attributed to randomness around the 0.05 FDR cut-off and stochastic changes in variance and mean expression. In addition, analysis using the mean absolute difference showed no difference in the dispersion of transcripts between extraction methods. Altogether, our data show that prior metabolite extraction preserves RNAseq data quality, which enables us to confidently perform integrated pathway enrichment analysis on metabolomics and RNAseq data from a single sample. This analysis revealed pyrimidine metabolism as the most LCMV-impacted pathway. Combined analysis of genes and metabolites in the pathway exposed a pattern in the degradation of pyrimidine nucleotides leading to uracil generation. In support of this, uracil was among the most differentially abundant metabolites in serum upon LCMV infection. Our data suggest that hepatic uracil export is a novel phenotypic feature of acute infection and highlight the usefulness of our integrated single-sample multi-'omics approach.
Collapse
Affiliation(s)
- Zachary B Madaj
- Bioinformatics and Biostatistics Core, Van Andel Institute, Grand Rapids, MI, USA
- Core Technologies and Services, Van Andel Institute, Grand Rapids, MI, USA
| | - Michael S. Dahabieh
- Department of Metabolic and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
| | - Vijayvardhan Kamalumpundi
- Core Technologies and Services, Van Andel Institute, Grand Rapids, MI, USA
- Mass Spectrometry Core, Van Andel Institute, Grand Rapids, MI, USA
| | - Brejnev Muhire
- Department of Metabolic and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
| | - J. Pettinga
- Bioinformatics and Biostatistics Core, Van Andel Institute, Grand Rapids, MI, USA
- Core Technologies and Services, Van Andel Institute, Grand Rapids, MI, USA
| | - Rebecca A. Siwicki
- Core Technologies and Services, Van Andel Institute, Grand Rapids, MI, USA
- Genomics Core, Van Andel Institute, Grand Rapids, MI, USA
| | - Abigail E. Ellis
- Core Technologies and Services, Van Andel Institute, Grand Rapids, MI, USA
- Mass Spectrometry Core, Van Andel Institute, Grand Rapids, MI, USA
| | - Christine Isaguirre
- Core Technologies and Services, Van Andel Institute, Grand Rapids, MI, USA
- Mass Spectrometry Core, Van Andel Institute, Grand Rapids, MI, USA
| | | | - Lisa DeCamp
- Department of Metabolic and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
| | - Russell G. Jones
- Department of Metabolic and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
| | - Scott A. Givan
- Bioinformatics and Biostatistics Core, Van Andel Institute, Grand Rapids, MI, USA
- Core Technologies and Services, Van Andel Institute, Grand Rapids, MI, USA
| | - Marie Adams
- Core Technologies and Services, Van Andel Institute, Grand Rapids, MI, USA
- Genomics Core, Van Andel Institute, Grand Rapids, MI, USA
| | - Ryan D. Sheldon
- Core Technologies and Services, Van Andel Institute, Grand Rapids, MI, USA
- Mass Spectrometry Core, Van Andel Institute, Grand Rapids, MI, USA
| |
Collapse
|
7
|
Lim SY, Ng BH, Vermulapalli D, Lau H, Carrasco Laserna AK, Yang X, Tan SH, Chan MY, Li SFY. Simultaneous Polar Metabolite and N-Glycan Extraction Workflow for Joint-Omics Analysis: A Synergistic Approach for Novel Insights into Diseases. J Proteome Res 2022; 21:643-653. [DOI: 10.1021/acs.jproteome.1c00676] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Si Ying Lim
- NUS Graduate School for Integrative Sciences & Engineering (NGS), National University of Singapore, University Hall, Tan Chin Tuan Wing, Singapore 119077
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | - Bao Hui Ng
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | - Dhruti Vermulapalli
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | - Hazel Lau
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), Fusionopolis Way, Innovis, #08-03, Singapore 138634
| | - Anna Karen Carrasco Laserna
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
- Central Instrumentation Facility (Laguna Campus), Office of the Vice Chancellor for Research and Innovation, De La Salle University, 2041 Taft Avenue, Manila 1004, Philippines
| | - Xiaoxun Yang
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599
| | - Sock Hwee Tan
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599
| | - Mark Y. Chan
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599
| | - Sam Fong Yau Li
- NUS Graduate School for Integrative Sciences & Engineering (NGS), National University of Singapore, University Hall, Tan Chin Tuan Wing, Singapore 119077
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| |
Collapse
|
8
|
Zandi M, Hosseini P, Soltani S, Rasooli A, Moghadami M, Nasimzadeh S, Behnezhad F. The role of lipids in the pathophysiology of coronavirus infections. Osong Public Health Res Perspect 2021; 12:278-285. [PMID: 34719219 PMCID: PMC8561023 DOI: 10.24171/j.phrp.2021.0153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/06/2021] [Indexed: 11/23/2022] Open
Abstract
Coronaviruses, which have been known to cause diseases in animals since the 1930s, utilize cellular components during their replication cycle. Lipids play important roles in viral infection, as coronaviruses target cellular lipids and lipid metabolism to modify their host cells to become an optimal environment for viral replication. Therefore, lipids can be considered as potential targets for the development of antiviral agents. This review provides an overview of the roles of cellular lipids in different stages of the life cycle of coronaviruses.
Collapse
Affiliation(s)
- Milad Zandi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Parastoo Hosseini
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Saber Soltani
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Azadeh Rasooli
- Department of Biochemistry, Faculty of Sciences, Payame Noor University, Tehran, Iran
| | - Mona Moghadami
- Department of Medical Biotechnology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Sepideh Nasimzadeh
- Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Farzane Behnezhad
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Zhong L, Zhu L, Cai ZW. Mass Spectrometry-based Proteomics and Glycoproteomics in COVID-19 Biomarkers Identification: A Mini-review. JOURNAL OF ANALYSIS AND TESTING 2021; 5:298-313. [PMID: 34513131 PMCID: PMC8423835 DOI: 10.1007/s41664-021-00197-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/27/2021] [Indexed: 12/11/2022]
Abstract
The first corona-pandemic, coronavirus disease 2019 (COVID-19) caused a huge health crisis and incalculable damage worldwide. Knowledge of how to cure the disease is urgently needed. Emerging immune escaping mutants of the virus suggested that it may be potentially persistent in human society as a regular health threat as the flu virus. Therefore, it is imperative to identify appropriate biomarkers to indicate pathological and physiological states, and more importantly, clinic outcomes. Proteins are the performers of life functions, and their abundance and modification status can directly reflect the immune status. Protein glycosylation serves a great impact in modulating protein function. The use of both unmodified and glycosylated proteins as biomarkers has also been proved feasible in the studies of SARS, Zika virus, influenza, etc. In recent years, mass spectrometry-based glycoproteomics, as well as proteomics approaches, advanced significantly due to the evolution of mass spectrometry. We focus on the current development of the mass spectrometry-based strategy for COVID-19 biomarkers' investigation. Potential application of glycoproteomics approaches and challenges in biomarkers identification are also discussed.
Collapse
Affiliation(s)
- Li Zhong
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, Hong Kong SAR, China
| | - Lin Zhu
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, Hong Kong SAR, China
| | - Zong-Wei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, Hong Kong SAR, China
| |
Collapse
|
10
|
Aggarwal S, Acharjee A, Mukherjee A, Baker MS, Srivastava S. Role of Multiomics Data to Understand Host-Pathogen Interactions in COVID-19 Pathogenesis. J Proteome Res 2021; 20:1107-1132. [PMID: 33426872 PMCID: PMC7805606 DOI: 10.1021/acs.jproteome.0c00771] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Indexed: 12/15/2022]
Abstract
Human infectious diseases are contributed equally by the host immune system's efficiency and any pathogens' infectivity. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the coronavirus strain causing the respiratory pandemic coronavirus disease 2019 (COVID-19). To understand the pathobiology of SARS-CoV-2, one needs to unravel the intricacies of host immune response to the virus, the viral pathogen's mode of transmission, and alterations in specific biological pathways in the host allowing viral survival. This review critically analyzes recent research using high-throughput "omics" technologies (including proteomics and metabolomics) on various biospecimens that allow an increased understanding of the pathobiology of SARS-CoV-2 in humans. The altered biomolecule profile facilitates an understanding of altered biological pathways. Further, we have performed a meta-analysis of significantly altered biomolecular profiles in COVID-19 patients using bioinformatics tools. Our analysis deciphered alterations in the immune response, fatty acid, and amino acid metabolism and other pathways that cumulatively result in COVID-19 disease, including symptoms such as hyperglycemic and hypoxic sequelae.
Collapse
Affiliation(s)
- Shalini Aggarwal
- Department of Biosciences and
Bioengineering, Indian Institute of Technology
Bombay, Mumbai 400076,
India
| | - Arup Acharjee
- Department of Biosciences and
Bioengineering, Indian Institute of Technology
Bombay, Mumbai 400076,
India
| | - Amrita Mukherjee
- Department of Biosciences and
Bioengineering, Indian Institute of Technology
Bombay, Mumbai 400076,
India
| | - Mark S. Baker
- Department of Biomedical Science,
Faculty of Medicine, Health and Human Sciences, Macquarie
University, Sydney 2109,
Australia
| | - Sanjeeva Srivastava
- Department of Biosciences and
Bioengineering, Indian Institute of Technology
Bombay, Mumbai 400076,
India
| |
Collapse
|
11
|
Koriem KMM. Lipidome is lipids regulator in gastrointestinal tract and it is a life collar in COVID-19: A review. World J Gastroenterol 2021; 27:37-54. [PMID: 33505149 PMCID: PMC7789067 DOI: 10.3748/wjg.v27.i1.37] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/02/2020] [Accepted: 12/16/2020] [Indexed: 02/06/2023] Open
Abstract
The term lipidome is mentioned to the total amount of the lipids inside the biological cells. The lipid enters the human gastrointestinal tract through external source and internal source. The absorption pathway of lipids in the gastrointestinal tract has many ways; the 1st way, the lipid molecules are digested in the lumen before go through the enterocytes, digested products are re-esterified into complex lipid molecules. The 2nd way, the intracellular lipids are accumulated into lipoproteins (chylomicrons) which transport lipids throughout the whole body. The lipids are re-synthesis again inside the human body where the gastrointestinal lipids are: (1) Transferred into the endoplasmic reticulum; (2) Collected as lipoproteins such as chylomicrons; or (3) Stored as lipid droplets in the cytosol. The lipids play an important role in many stages of the viral replication cycle. The specific lipid change occurs during viral infection in advanced viral replication cycle. There are 47 lipids within 11 lipid classes were significantly disturbed after viral infection. The virus connects with blood-borne lipoproteins and apolipoprotein E to change viral infectivity. The viral interest is cholesterol- and lipid raft-dependent molecules. In conclusion, lipidome is important in gastrointestinal fat absorption and coronavirus disease 2019 (COVID-19) infection so lipidome is basic in gut metabolism and in COVID-19 infection success.
Collapse
|
12
|
Suskind DL, Lee D, Kim YM, Wahbeh G, Singh N, Braly K, Nuding M, Nicora CD, Purvine SO, Lipton MS, Jansson JK, Nelson WC. The Specific Carbohydrate Diet and Diet Modification as Induction Therapy for Pediatric Crohn's Disease: A Randomized Diet Controlled Trial. Nutrients 2020; 12:nu12123749. [PMID: 33291229 PMCID: PMC7762109 DOI: 10.3390/nu12123749] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022] Open
Abstract
Background: Crohn’s disease (CD) is a chronic inflammatory intestinal disorder associated with intestinal dysbiosis. Diet modulates the intestinal microbiome and therefore has a therapeutic potential. The aim of this study is to determine the potential efficacy of three versions of the specific carbohydrate diet (SCD) in active Crohn’s Disease. Methods: 18 patients with mild/moderate CD (PCDAI 15–45) aged 7 to 18 years were enrolled. Patients were randomized to either SCD, modified SCD(MSCD) or whole foods (WF) diet. Patients were evaluated at baseline, 2, 4, 8 and 12 weeks. PCDAI, inflammatory labs and multi-omics evaluations were assessed. Results: Mean age was 14.3 ± 2.9 years. At week 12, all participants (n = 10) who completed the study achieved clinical remission. The C-reactive protein decreased from 1.3 ± 0.7 at enrollment to 0.9 ± 0.5 at 12 weeks in the SCD group. In the MSCD group, the CRP decreased from 1.6 ± 1.1 at enrollment to 0.7 ± 0.1 at 12 weeks. In the WF group, the CRP decreased from 3.9 ± 4.3 at enrollment to 1.6 ± 1.3 at 12 weeks. In addition, the microbiome composition shifted in all patients across the study period. While the nature of the changes was largely patient specific, the predicted metabolic mode of the organisms increasing and decreasing in activity was consistent across patients. Conclusions: This study emphasizes the impact of diet in CD. Each diet had a positive effect on symptoms and inflammatory burden; the more exclusionary diets were associated with a better resolution of inflammation.
Collapse
Affiliation(s)
- David L. Suskind
- Department of Pediatrics, Division of Gastroenterology, Seattle Children’s Hospital and University of Washington, Seattle, WA 98105, USA; (D.L.); (G.W.); (N.S.); (K.B.); (M.N.)
- Correspondence: ; Tel.: +1-206-987-2521; Fax: +1-206-987-2721
| | - Dale Lee
- Department of Pediatrics, Division of Gastroenterology, Seattle Children’s Hospital and University of Washington, Seattle, WA 98105, USA; (D.L.); (G.W.); (N.S.); (K.B.); (M.N.)
| | - Young-Mo Kim
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA; (Y.-M.K.); (C.D.N.); (J.K.J.); (W.C.N.)
| | - Ghassan Wahbeh
- Department of Pediatrics, Division of Gastroenterology, Seattle Children’s Hospital and University of Washington, Seattle, WA 98105, USA; (D.L.); (G.W.); (N.S.); (K.B.); (M.N.)
| | - Namita Singh
- Department of Pediatrics, Division of Gastroenterology, Seattle Children’s Hospital and University of Washington, Seattle, WA 98105, USA; (D.L.); (G.W.); (N.S.); (K.B.); (M.N.)
| | - Kimberly Braly
- Department of Pediatrics, Division of Gastroenterology, Seattle Children’s Hospital and University of Washington, Seattle, WA 98105, USA; (D.L.); (G.W.); (N.S.); (K.B.); (M.N.)
| | - Mason Nuding
- Department of Pediatrics, Division of Gastroenterology, Seattle Children’s Hospital and University of Washington, Seattle, WA 98105, USA; (D.L.); (G.W.); (N.S.); (K.B.); (M.N.)
| | - Carrie D. Nicora
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA; (Y.-M.K.); (C.D.N.); (J.K.J.); (W.C.N.)
| | - Samuel O. Purvine
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA; (S.O.P.); (M.S.L.)
| | - Mary S. Lipton
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA; (S.O.P.); (M.S.L.)
| | - Janet K. Jansson
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA; (Y.-M.K.); (C.D.N.); (J.K.J.); (W.C.N.)
| | - William C. Nelson
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA; (Y.-M.K.); (C.D.N.); (J.K.J.); (W.C.N.)
| |
Collapse
|
13
|
Mahmud I, Garrett TJ. Mass Spectrometry Techniques in Emerging Pathogens Studies: COVID-19 Perspectives. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:2013-2024. [PMID: 32880453 PMCID: PMC7496948 DOI: 10.1021/jasms.0c00238] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 05/04/2023]
Abstract
As corona virus disease 2019 (COVID-19) is a rapidly growing public health crisis across the world, our knowledge of meaningful diagnostic tests and treatment for severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) is still evolving. This novel coronavirus disease COVID-19 can be diagnosed using RT-PCR, but inadequate access to reagents, equipment, and a nonspecific target has slowed disease detection and management. Precision medicine, individualized patient care, requires suitable diagnostics approaches to tackle the challenging aspects of viral outbreaks where many tests are needed in a rapid and deployable approach. Mass spectrometry (MS)-based technologies such as proteomics, glycomics, lipidomics, and metabolomics have been applied in disease outbreaks for identification of infectious disease agents such as virus and bacteria and the molecular phenomena associated with pathogenesis. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF/MS) is widely used in clinical diagnostics in the United States and Europe for bacterial pathogen identification. Paper spray ionization mass spectrometry (PSI-MS), a rapid ambient MS technique, has recently open a new opportunity for future clinical investigation to diagnose pathogens. Ultra-high-pressure liquid chromatography coupled high-resolution mass spectrometry (UHPLC-HRMS)-based metabolomics and lipidomics have been employed in large-scale biomedical research to discriminate infectious pathogens and uncover biomarkers associated with pathogenesis. PCR-MS has emerged as a new technology with the capability to directly identify known pathogens from the clinical specimens and the potential to identify genetic evidence of undiscovered pathogens. Moreover, miniaturized MS offers possible applications with relatively fast, highly sensitive, and potentially portable ways to analyze for viral compounds. However, beneficial aspects of these rapidly growing MS technologies in pandemics like COVID-19 outbreaks has been limited. Hence, this perspective gives a brief of the existing knowledge, current challenges, and opportunities for MS-based techniques as a promising avenue in studying emerging pathogen outbreaks such as COVID-19.
Collapse
Affiliation(s)
- Iqbal Mahmud
- Department of Pathology, Immunology,
and Laboratory Medicine, University of
Florida, College of Medicine, Gainesville, Florida
32610, United States
- Southeast Center for Integrated
Metabolomics (SECIM), Clinical and Translational Science Institute,
University of Florida, Gainesville,
Florida 32610, United States
- University of Florida Health,
University of Florida, Gainesville,
Florida 32610, United States
| | - Timothy J. Garrett
- Department of Pathology, Immunology,
and Laboratory Medicine, University of
Florida, College of Medicine, Gainesville, Florida
32610, United States
- Southeast Center for Integrated
Metabolomics (SECIM), Clinical and Translational Science Institute,
University of Florida, Gainesville,
Florida 32610, United States
- University of Florida Health,
University of Florida, Gainesville,
Florida 32610, United States
| |
Collapse
|
14
|
Cleare LG, Zamith D, Heyman HM, Couvillion SP, Nimrichter L, Rodrigues ML, Nakayasu ES, Nosanchuk JD. Media matters! Alterations in the loading and release of Histoplasma capsulatum extracellular vesicles in response to different nutritional milieus. Cell Microbiol 2020; 22:e13217. [PMID: 32406582 DOI: 10.1111/cmi.13217] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 12/15/2022]
Abstract
Histoplasma capsulatum is a dimorphic fungus that most frequently causes pneumonia, but can also disseminate and proliferate in diverse tissues. Histoplasma capsulatum has a complex secretion system that mediates the release of macromolecule-degrading enzymes and virulence factors. The formation and release of extracellular vesicles (EVs) are an important mechanism for non-conventional secretion in both ascomycetes and basidiomycetes. Histoplasma capsulatum EVs contain diverse proteins associated with virulence and are immunologically active. Despite the growing knowledge of EVs from H. capsulatum and other pathogenic fungi, the extent that changes in the environment impact the sorting of organic molecules in EVs has not been investigated. In this study, we cultivated H. capsulatum with distinct culture media to investigate the potential plasticity in EV loading in response to differences in nutrition. Our findings reveal that nutrition plays an important role in EV loading and formation, which may translate into differences in biological activities of these fungi in various fluids and tissues.
Collapse
Affiliation(s)
- Levi G Cleare
- Department of Medicine (Division of Infectious Diseases) and Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Daniel Zamith
- Department of Medicine (Division of Infectious Diseases) and Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Heino M Heyman
- Department of Medicine (Division of Infectious Diseases) and Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA.,Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Sneha P Couvillion
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Leonardo Nimrichter
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Marcio L Rodrigues
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.,Fundação Oswaldo Cruz (Fiocruz), Instituto Carlos Chagas, Curitiba, Brazil
| | - Ernesto S Nakayasu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Joshua D Nosanchuk
- Department of Medicine (Division of Infectious Diseases) and Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
15
|
Yang QX, Zhao TH, Sun CZ, Wu LM, Dai Q, Wang SD, Tian H. New thinking in the treatment of 2019 novel coronavirus pneumonia. Complement Ther Clin Pract 2020. [PMCID: PMC7128574 DOI: 10.1016/j.ctcp.2020.101131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|