1
|
Chen X, Li S, Sun B. Downregulation of short-stature homeobox protein 2 suppresses gastric cancer cell growth and stemness in vitro and in vivo via inactivating wnt/β-catenin signaling. Drug Dev Res 2024; 85:e70006. [PMID: 39415634 DOI: 10.1002/ddr.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/20/2024] [Accepted: 09/29/2024] [Indexed: 10/19/2024]
Abstract
Gastric cancer (GC) a prevalent form of cancer globally. Previous research suggests that SHOX2 may have a role in promoting cancer progression. However, the role of SHOX2 in GC is not well understood. Based on data from TCGA_GC data set, SHXO2 levels were examined in normal and GC tissues. Patients in the TCGA_GC cohort were divided into high- and low-SHOX2 level groups for analysis of overall survival (OS), functional enrichment, and immune infiltration. Furthermore, experiments were conducted to investigate the impact of SHOX2 on GC cell function through gain- and loss-of-function experiments. Utilizing data from public databases, SHOX2 mRNA levels were found to be elevated in GC tissues compared to normal control, this finding was confirmed by RT-qPCR, western blot analysis, and immune-histochemical analyses. Elevated SHOX2 levels could serve as an independent indicator of poor prognosis in GC patients. Furthermore, SHOX2 levels had a negative correlation with CD8 T cells and CD4 memory activated T cells, and a positive correlation with of M0 macrophages in GC patients. Functional analyses revealed that SHOX2 deficiency notably suppressed GC cell proliferation, migration, and invasion. Additionally, SHOX2 deficiency was shown to suppress stemness in GC cells in vitro and in vivo via inactivating wnt/β-catenin signaling. Collectively, SHOX2 may serve as a prognostic marker for GC patients, and downregulation of SHOX2 could effectively impede GC cell growth and stemness by inactivating the wnt/β-catenin signaling pathway. These findings underscore the potential of SHOX2 as a promising therapeutic target for GC.
Collapse
Affiliation(s)
- Xiangyu Chen
- The Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuai Li
- The Department of Oncology, The Affiliated of Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Binghua Sun
- The Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
2
|
Sipos F, Műzes G. Interconnection of CD133 Stem Cell Marker with Autophagy and Apoptosis in Colorectal Cancer. Int J Mol Sci 2024; 25:11201. [PMID: 39456981 PMCID: PMC11508732 DOI: 10.3390/ijms252011201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/09/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
CD133 protein expression is observable in differentiated cells, stem cells, and progenitor cells within normal tissues, as well as in tumor tissues, including colorectal cancer cells. The CD133 protein is the predominant cell surface marker utilized to detect cancer cells exhibiting stem cell-like characteristics. CD133 alters common abnormal processes in colorectal cancer, such as the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) and Wnt/β-catenin pathways. Autophagy is a cellular self-digestion mechanism that preserves the intracellular milieu and plays a dual regulatory role in cancer. In cancer cells, apoptosis is a critical cell death mechanism that can impede cancer progression. CD133 can modulate autophagy and apoptosis in colorectal cancer cells via several signaling pathways; hence, it is involved in the regulation of these intricate processes. This can be an explanation for why CD133 expression is associated with enhanced cellular self-renewal, migration, invasion, and survival under stress conditions in colorectal cancer. The purpose of this review article is to explain the complex relationship between the CD133 protein, apoptosis, and autophagy. We also want to highlight the possible ways that CD133-mediated autophagy may affect the apoptosis of colorectal cancer cells. Targeting the aforementioned mechanisms may have a significant therapeutic role in eliminating CD133-positive stem cell-phenotype colorectal cancer cells, which can be responsible for tumor recurrence.
Collapse
Affiliation(s)
- Ferenc Sipos
- Immunology Division, Department of Internal Medicine and Hematology, Semmelweis University, 1088 Budapest, Hungary
| | - Györgyi Műzes
- Immunology Division, Department of Internal Medicine and Hematology, Semmelweis University, 1088 Budapest, Hungary
| |
Collapse
|
3
|
Bhattacharya R, Brown JS, Gatenby RA, Ibrahim-Hashim A. A gene for all seasons: The evolutionary consequences of HIF-1 in carcinogenesis, tumor growth and metastasis. Semin Cancer Biol 2024; 102-103:17-24. [PMID: 38969311 DOI: 10.1016/j.semcancer.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/23/2024] [Accepted: 06/06/2024] [Indexed: 07/07/2024]
Abstract
Oxygen played a pivotal role in the evolution of multicellularity during the Cambrian Explosion. Not surprisingly, responses to fluctuating oxygen concentrations are integral to the evolution of cancer-a disease characterized by the breakdown of multicellularity. Poorly organized tumor vasculature results in chaotic patterns of blood flow characterized by large spatial and temporal variations in intra-tumoral oxygen concentrations. Hypoxia-inducible growth factor (HIF-1) plays a pivotal role in enabling cells to adapt, metabolize, and proliferate in low oxygen conditions. HIF-1 is often constitutively activated in cancers, underscoring its importance in cancer progression. Here, we argue that the phenotypic changes mediated by HIF-1, in addition to adapting the cancer cells to their local environment, also "pre-adapt" them for proliferation at distant, metastatic sites. HIF-1-mediated adaptations include a metabolic shift towards anaerobic respiration or glycolysis, activation of cell survival mechanisms like phenotypic plasticity and epigenetic reprogramming, and formation of tumor vasculature through angiogenesis. Hypoxia induced epigenetic reprogramming can trigger epithelial to mesenchymal transition in cancer cells-the first step in the metastatic cascade. Highly glycolytic cells facilitate local invasion by acidifying the tumor microenvironment. New blood vessels, formed due to angiogenesis, provide cancer cells a conduit to the circulatory system. Moreover, survival mechanisms acquired by cancer cells in the primary site allow them to remodel tissue at the metastatic site generating tumor promoting microenvironment. Thus, hypoxia in the primary tumor promoted adaptations conducive to all stages of the metastatic cascade from the initial escape entry into a blood vessel, intravascular survival, extravasation into distant tissues, and establishment of secondary tumors.
Collapse
Affiliation(s)
- Ranjini Bhattacharya
- Department of Cancer Biology, University of South Florida, United States; Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center, United States
| | - Joel S Brown
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center, United States; Department of Evolutionary Biology, University of Illinois, at Chicago, United States
| | - Robert A Gatenby
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center, United States; Department of Radiology, H. Lee Moffitt Cancer Center, United States.
| | - Arig Ibrahim-Hashim
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center, United States.
| |
Collapse
|
4
|
H. Al-Zuaini H, Rafiq Zahid K, Xiao X, Raza U, Huang Q, Zeng T. Hypoxia-driven ncRNAs in breast cancer. Front Oncol 2023; 13:1207253. [PMID: 37583933 PMCID: PMC10424730 DOI: 10.3389/fonc.2023.1207253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/06/2023] [Indexed: 08/17/2023] Open
Abstract
Low oxygen tension, or hypoxia is the driving force behind tumor aggressiveness, leading to therapy resistance, metastasis, and stemness in solid cancers including breast cancer, which now stands as the leading cause of cancer-related mortality in women. With the great advancements in exploring the regulatory roles of the non-coding genome in recent years, the wide spectrum of hypoxia-responsive genome is not limited to just protein-coding genes but also includes multiple types of non-coding RNAs, such as micro RNAs, long non-coding RNAs, and circular RNAs. Over the years, these hypoxia-responsive non-coding molecules have been greatly implicated in breast cancer. Hypoxia drives the expression of these non-coding RNAs as upstream modulators and downstream effectors of hypoxia inducible factor signaling in the favor of breast cancer through a myriad of molecular mechanisms. These non-coding RNAs then contribute in orchestrating aggressive hypoxic tumor environment and regulate cancer associated cellular processes such as proliferation, evasion of apoptotic death, extracellular matrix remodeling, angiogenesis, migration, invasion, epithelial-to-mesenchymal transition, metastasis, therapy resistance, stemness, and evasion of the immune system in breast cancer. In addition, the interplay between hypoxia-driven non-coding RNAs as well as feedback and feedforward loops between these ncRNAs and HIFs further contribute to breast cancer progression. Although the current clinical implications of hypoxia-driven non-coding RNAs are limited to prognostics and diagnostics in breast cancer, extensive explorations have established some of these hypoxia-driven non-coding RNAs as promising targets to treat aggressive breast cancers, and future scientific endeavors hold great promise in targeting hypoxia-driven ncRNAs at clinics to treat breast cancer and limit global cancer burden.
Collapse
Affiliation(s)
| | - Kashif Rafiq Zahid
- Department of Medical Laboratory, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Department of Radiation Oncology, Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Xiangyan Xiao
- Department of Medical Laboratory, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Umar Raza
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan
| | - Qiyuan Huang
- Department of Clinical Biobank Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Tao Zeng
- Department of Medical Laboratory, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
5
|
Zohar Y, Mabjeesh NJ. Targeting HIF-1 for prostate cancer: a synthesis of preclinical evidence. Expert Opin Ther Targets 2023; 27:715-731. [PMID: 37596912 DOI: 10.1080/14728222.2023.2248381] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/20/2023] [Accepted: 08/10/2023] [Indexed: 08/21/2023]
Abstract
INTRODUCTION Hypoxia-inducible factor (HIF) mediates multiple intracellular processes that drive cellular metabolism and induce proliferation. Dysregulated HIF expression is associated with oncogenic cellular transformation. Moreover, high HIF levels correlate with tumor aggressiveness and chemoresistance, indicating the vital effect of HIF-1α on tumorigenicity. Currently, widespread in-vitro and in-vivo research is focusing on targeting HIF with drugs that have already been approved for use by the FDA, such as belzutifan, in renal cell carcinoma. HIF inhibition is mostly associated with tumor size reduction; however, drug toxicity remains a challenge. AREA COVERED In this review, we focus on the potential of targeting HIF in prostate cancer (PC) and summarize the scientific background of HIF activity in PC. This finding emphasizes the rationale for using HIF as a therapeutic target in this malignancy. We have listed known HIF inhibitors that are being investigated in preclinical studies and their potential as anticancer drugs for PC. EXPERT OPINION Although HIF-targeting agents have been investigated for over a decade, their use in therapy-resistant cancers remains relevant and should be explored further. In addition, the use of naturally occurring HIF inhibitors should be considered as an add-on therapy for the currently used regimens.
Collapse
Affiliation(s)
- Yarden Zohar
- Department of Urology, Health Sciences, Soroka University Medical Center, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
| | - Nicola J Mabjeesh
- Department of Urology, Health Sciences, Soroka University Medical Center, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
| |
Collapse
|
6
|
Castillo SP, Galvez-Cancino F, Liu J, Pollard SM, Quezada SA, Yuan Y. The tumour ecology of quiescence: Niches across scales of complexity. Semin Cancer Biol 2023; 92:139-149. [PMID: 37037400 DOI: 10.1016/j.semcancer.2023.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/06/2023] [Accepted: 04/08/2023] [Indexed: 04/12/2023]
Abstract
Quiescence is a state of cell cycle arrest, allowing cancer cells to evade anti-proliferative cancer therapies. Quiescent cancer stem cells are thought to be responsible for treatment resistance in glioblastoma, an aggressive brain cancer with poor patient outcomes. However, the regulation of quiescence in glioblastoma cells involves a myriad of intrinsic and extrinsic mechanisms that are not fully understood. In this review, we synthesise the literature on quiescence regulatory mechanisms in the context of glioblastoma and propose an ecological perspective to stemness-like phenotypes anchored to the contemporary concepts of niche theory. From this perspective, the cell cycle regulation is multiscale and multidimensional, where the niche dimensions extend to extrinsic variables in the tumour microenvironment that shape cell fate. Within this conceptual framework and powered by ecological niche modelling, the discovery of microenvironmental variables related to hypoxia and mechanosignalling that modulate proliferative plasticity and intratumor immune activity may open new avenues for therapeutic targeting of emerging biological vulnerabilities in glioblastoma.
Collapse
Affiliation(s)
- Simon P Castillo
- Centre for Evolution and Cancer & Division of Molecular Pathology, The Institute of Cancer Research, London SM2 5NG, UK
| | - Felipe Galvez-Cancino
- Immune Regulation and Tumor Immunotherapy Group, Cancer Immunology Unit, Research Department of Haematology, UCL Cancer Institute, London WC1E 6DD, UK
| | - Jiali Liu
- Immune Regulation and Tumor Immunotherapy Group, Cancer Immunology Unit, Research Department of Haematology, UCL Cancer Institute, London WC1E 6DD, UK
| | - Steven M Pollard
- Centre for Regenerative Medicine and Cancer Research UK Scotland Centre, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Sergio A Quezada
- Immune Regulation and Tumor Immunotherapy Group, Cancer Immunology Unit, Research Department of Haematology, UCL Cancer Institute, London WC1E 6DD, UK
| | - Yinyin Yuan
- Centre for Evolution and Cancer & Division of Molecular Pathology, The Institute of Cancer Research, London SM2 5NG, UK.
| |
Collapse
|
7
|
Durot C, Durot E, Mulé S, Morland D, Godard F, Quinquenel A, Delmer A, Soyer P, Hoeffel C. Pretreatment CT Texture Parameters as Predictive Biomarkers of Progression-Free Survival in Follicular Lymphoma Treated with Immunochemotherapy and Rituximab Maintenance. Diagnostics (Basel) 2023; 13:2237. [PMID: 37443630 DOI: 10.3390/diagnostics13132237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
The purpose of this study was to determine whether texture analysis features present on pretreatment unenhanced computed tomography (CT) images, derived from 18F-fluorodeoxyglucose positron emission/computed tomography (18-FDG PET/CT), can predict progression-free survival (PFS), progression-free survival at 24 months (PFS 24), time to next treatment (TTNT), and overall survival in patients with high-tumor-burden follicular lymphoma treated with immunochemotherapy and rituximab maintenance. Seventy-two patients with follicular lymphoma were retrospectively included. Texture analysis was performed on unenhanced CT images extracted from 18-FDG PET/CT examinations that were obtained within one month before treatment. Skewness at a fine texture scale (SSF = 2) was an independent predictor of PFS (hazard ratio = 3.72 (95% CI: 1.15, 12.11), p = 0.028), PFS 24 (hazard ratio = 13.38; 95% CI: 1.29, 138.13; p = 0.029), and TTNT (hazard ratio = 5.11; 95% CI: 1.18, 22.13; p = 0.029). Skewness values above -0.015 at SSF = 2 were significantly associated with lower PFS, PFS 24, and TTNT. Kurtosis without filtration was an independent predictor of PFS (SSF = 0; HR = 1.22 (95% CI: 1.04, 1.44), p = 0.013), and TTNT (SSF = 0; hazard ratio = 1.23; 95% CI: 1.04, 1.46; p = 0.013). This study shows that pretreatment unenhanced CT texture analysis-derived tumor skewness and kurtosis may be used as predictive biomarkers of PFS and TTNT in patients with high-tumor-burden follicular lymphoma treated with immunochemotherapy and rituximab maintenance.
Collapse
Affiliation(s)
- Carole Durot
- Department of Radiology, Reims University Hospital, 45 Rue Cognacq-Jay, 51092 Reims, France
| | - Eric Durot
- Department of Hematology, Reims University Hospital, 45 Rue Cognacq-Jay, 51092 Reims, France
| | - Sébastien Mulé
- Department of Radiology, Henri Mondor University Hospital, 51 Avenue du Maréchal de Lattre de Tassigny, 94010 Créteil, France
- Faculté de Médecine, Université Paris-Est Créteil, 61 Avenue du Général de Gaulle, 94000 Créteil, France
| | - David Morland
- Department of Nuclear Medicine, Godinot Institute, 1 Rue du Général Koenig, 51100 Reims, France
- CReSTIC, EA 3804, University of Reims Champagne-Ardenne, UFR Moulin de la Housse, 51867 Reims, France
| | - François Godard
- Department of Radiology, Henri Mondor University Hospital, 51 Avenue du Maréchal de Lattre de Tassigny, 94010 Créteil, France
| | - Anne Quinquenel
- Department of Hematology, Reims University Hospital, 45 Rue Cognacq-Jay, 51092 Reims, France
| | - Alain Delmer
- Department of Hematology, Reims University Hospital, 45 Rue Cognacq-Jay, 51092 Reims, France
| | - Philippe Soyer
- Department of Radiology, Hôpital Cochin, AP-HP, 27 Rue du Faubourg Saint-Jacques, 75014 Paris, France
- Faculté de Médecine, Université Paris Cité, 75006 Paris, France
| | - Christine Hoeffel
- Department of Radiology, Reims University Hospital, 45 Rue Cognacq-Jay, 51092 Reims, France
- CReSTIC, EA 3804, University of Reims Champagne-Ardenne, UFR Moulin de la Housse, 51867 Reims, France
| |
Collapse
|
8
|
Thomas JA, Gireesh Moly AG, Xavier H, Suboj P, Ladha A, Gupta G, Singh SK, Palit P, Babykutty S. Enhancement of immune surveillance in breast cancer by targeting hypoxic tumor endothelium: Can it be an immunological switch point? Front Oncol 2023; 13:1063051. [PMID: 37056346 PMCID: PMC10088512 DOI: 10.3389/fonc.2023.1063051] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 02/17/2023] [Indexed: 03/30/2023] Open
Abstract
Breast cancer ranks second among the causes of cancer-related deaths in women. In spite of the recent advances achieved in the diagnosis and treatment of breast cancer, further study is required to overcome the risk of cancer resistance to treatment and thereby improve the prognosis of individuals with advanced-stage breast cancer. The existence of a hypoxic microenvironment is a well-known event in the development of mutagenesis and rapid proliferation of cancer cells. Tumor cells, purposefully cause local hypoxia in order to induce angiogenesis and growth factors that promote tumor growth and metastatic characteristics, while healthy tissue surrounding the tumor suffers damage or mutate. It has been found that these settings with low oxygen levels cause immunosuppression and a lack of immune surveillance by reducing the activation and recruitment of tumor infiltrating leukocytes (TILs). The immune system is further suppressed by hypoxic tumor endothelium through a variety of ways, which creates an immunosuppressive milieu in the tumor microenvironment. Non responsiveness of tumor endothelium to inflammatory signals or endothelial anergy exclude effector T cells from the tumor milieu. Expression of endothelial specific antigens and immunoinhibitory molecules like Programmed death ligand 1,2 (PDL-1, 2) and T cell immunoglobulin and mucin-domain containing-3 (TIM-3) by tumor endothelium adds fuel to the fire by inhibiting T lymphocytes while promoting regulatory T cells. The hypoxic microenvironment in turn recruits Myeloid Derived Suppressor Cells (MDSCs), Tumor Associated Macrophages (TAMs) and T regulatory cells (Treg). The structure and function of newly generated blood vessels within tumors, on the other hand, are aberrant, lacking the specific organization of normal tissue vasculature. Vascular normalisation may work for a variety of tumour types and show to be an advantageous complement to immunotherapy for improving tumour access. By enhancing immune response in the hypoxic tumor microenvironment, via immune-herbal therapeutic and immune-nutraceuticals based approaches that leverage immunological evasion of tumor, will be briefly reviewed in this article. Whether these tactics may be the game changer for emerging immunological switch point to attenuate the breast cancer growth and prevent metastatic cell division, is the key concern of the current study.
Collapse
Affiliation(s)
- Juvin Ann Thomas
- Centre for Tumor Immunology and Microenvironment, Department of Zoology, Mar Ivanios College, Nalanchira, Thiruvananthapuram, Kerala, India
| | - Athira Gireesh Gireesh Moly
- Centre for Tumor Immunology and Microenvironment, Department of Zoology, Mar Ivanios College, Nalanchira, Thiruvananthapuram, Kerala, India
| | - Hima Xavier
- Centre for Tumor Immunology and Microenvironment, Department of Zoology, Mar Ivanios College, Nalanchira, Thiruvananthapuram, Kerala, India
| | - Priya Suboj
- Department of Botany and Biotechnology, St. Xaviers College, Thumba, Thiruvananthapuram, Kerala, India
| | - Amit Ladha
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, West-Midlands, United Kingdom
| | - Gaurav Gupta
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| | - Santosh Kumar Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Partha Palit
- Drug Discovery Research Laboratory, Assam University, Silchar, Department of Pharmaceutical Sciences, Assam, India
| | - Suboj Babykutty
- Centre for Tumor Immunology and Microenvironment, Department of Zoology, Mar Ivanios College, Nalanchira, Thiruvananthapuram, Kerala, India
| |
Collapse
|
9
|
Microbiota-Derived Natural Products Targeting Cancer Stem Cells: Inside the Gut Pharma Factory. Int J Mol Sci 2023; 24:ijms24054997. [PMID: 36902427 PMCID: PMC10003410 DOI: 10.3390/ijms24054997] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Cancer stem cells (CSCs) have drawn much attention as important tumour-initiating cells that may also be crucial for recurrence after chemotherapy. Although the activity of CSCs in various forms of cancer is complex and yet to be fully elucidated, opportunities for therapies targeting CSCs exist. CSCs are molecularly distinct from bulk tumour cells, so they can be targeted by exploiting their signature molecular pathways. Inhibiting stemness has the potential to reduce the risk posed by CSCs by limiting or eliminating their capacity for tumorigenesis, proliferation, metastasis, and recurrence. Here, we briefly described the role of CSCs in tumour biology, the mechanisms involved in CSC therapy resistance, and the role of the gut microbiota in cancer development and treatment, to then review and discuss the current advances in the discovery of microbiota-derived natural compounds targeting CSCs. Collectively, our overview suggests that dietary intervention, toward the production of those identified microbial metabolites capable of suppressing CSC properties, is a promising approach to support standard chemotherapy.
Collapse
|
10
|
Hamza S, Garanina EE, Alsaadi M, Khaiboullina SF, Tezcan G. Blocking the Hormone Receptors Modulates NLRP3 in LPS-Primed Breast Cancer Cells. Int J Mol Sci 2023; 24:ijms24054846. [PMID: 36902278 PMCID: PMC10002867 DOI: 10.3390/ijms24054846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/22/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
NOD-like receptor protein 3 (NLRP3) may contribute to the growth and propagation of breast cancer (BC). The effect of estrogen receptor-α (ER-α), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) on NLRP3 activation in BC remains unknown. Additionally, our knowledge of the effect of blocking these receptors on NLRP3 expression is limited. We used GEPIA, UALCAN, and the Human Protein Atlas for transcriptomic profiling of NLRP3 in BC. Lipopolysaccharide (LPS) and adenosine 5'-triphosphate (ATP) were used to activate NLRP3 in luminal A MCF-7 and in TNBC MDA-MB-231 and HCC1806 cells. Tamoxifen (Tx), mifepristone (mife), and trastuzumab (Tmab) were used to block ER-α, PR, and HER2, respectively, on inflammasome activation in LPS-primed MCF7 cells. The transcript level of NLRP3 was correlated with ER-ɑ encoding gene ESR1 in luminal A (ER-α+, PR+) and TNBC tumors. NLRP3 protein expression was higher in untreated and LPS/ATP-treated MDA-MB-231 cells than in MCF7 cells. LPS/ATP-mediated NLRP3 activation reduced cell proliferation and recovery of wound healing in both BC cell lines. LPS/ATP treatment prevented spheroid formation in MDA-MB-231 cells but did not affect MCF7. HGF, IL-3, IL-8, M-CSF, MCP-1, and SCGF-b cytokines were secreted in both MDA-MB-231 and MCF7 cells in response to LPS/ATP treatment. Tx (ER-α inhibition) promoted NLRP3 activation and increased migration and sphere formation after LPS treatment of MCF7 cells. Tx-mediated activation of NLRP3 was associated with increased secretion of IL-8 and SCGF-b compared to LPS-only-treated MCF7 cells. In contrast, Tmab (Her2 inhibition) had a limited effect on NLRP3 activation in LPS-treated MCF7 cells. Mife (PR inhibition) opposed NLRP3 activation in LPS-primed MCF7 cells. We have found that Tx increased the expression of NLRP3 in LPS-primed MCF7. These data suggest a link between blocking ER-α and activation of NLRP3, which was associated with increased aggressiveness of the ER-α+ BC cells.
Collapse
Affiliation(s)
- Shaimaa Hamza
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Ekaterina E. Garanina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Mohammad Alsaadi
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Svetlana F. Khaiboullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
- Correspondence: or (S.F.K.); (G.T.); Fax: +1-775682-8258 (S.F.K.); +90-224-294-00-78 (G.T.)
| | - Gulcin Tezcan
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
- Department of Fundamental Sciences, Faculty of Dentistry, Bursa Uludag University, Bursa 16059, Turkey
- Correspondence: or (S.F.K.); (G.T.); Fax: +1-775682-8258 (S.F.K.); +90-224-294-00-78 (G.T.)
| |
Collapse
|
11
|
Baranovsky A, Ivanov T, Granovskaya M, Papatsenko D, Pervouchine DD. Transcriptome analysis reveals high tumor heterogeneity with respect to re-activation of stemness and proliferation programs. PLoS One 2022; 17:e0268626. [PMID: 35587924 PMCID: PMC9119523 DOI: 10.1371/journal.pone.0268626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 05/03/2022] [Indexed: 12/01/2022] Open
Abstract
Significant alterations in signaling pathways and transcriptional regulatory programs together represent major hallmarks of many cancers. These, among all, include the reactivation of stemness, which is registered by the expression of pathways that are active in the embryonic stem cells (ESCs). Here, we assembled gene sets that reflect the stemness and proliferation signatures and used them to analyze a large panel of RNA-seq data from The Cancer Genome Atlas (TCGA) Consortium in order to specifically assess the expression of stemness-related and proliferation-related genes across a collection of different tumor types. We introduced a metric that captures the collective similarity of the expression profile of a tumor to that of ESCs, which showed that stemness and proliferation signatures vary greatly between different tumor types. We also observed a high degree of intertumoral heterogeneity in the expression of stemness- and proliferation-related genes, which was associated with increased hazard ratios in a fraction of tumors and mirrored by high intratumoral heterogeneity and a remarkable stemness capacity in metastatic lesions across cancer cells in single cell RNA-seq datasets. Taken together, these results indicate that the expression of stemness signatures is highly heterogeneous and cannot be used as a universal determinant of cancer. This calls into question the universal validity of diagnostic tests that are based on stem cell markers.
Collapse
Affiliation(s)
- Artem Baranovsky
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Timofei Ivanov
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
| | | | - Dmitri Papatsenko
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Dmitri D. Pervouchine
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
- * E-mail:
| |
Collapse
|
12
|
Cheng S, Jin Z, Xue H. Assessment of Response to Chemotherapy in Pancreatic Cancer with Liver Metastasis: CT Texture as a Predictive Biomarker. Diagnostics (Basel) 2021; 11:diagnostics11122252. [PMID: 34943489 PMCID: PMC8700536 DOI: 10.3390/diagnostics11122252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/21/2021] [Accepted: 11/26/2021] [Indexed: 11/16/2022] Open
Abstract
In this paper, we assess changes in CT texture of metastatic liver lesions after treatment with chemotherapy in patients with pancreatic cancer and determine if texture parameters correlate with measured time to progression (TTP). This retrospective study included 110 patients with pancreatic cancer with liver metastasis, and mean, entropy, kurtosis, skewness, mean of positive pixels, and standard deviation (SD) values were extracted during texture analysis. Response assessment was also obtained by using RECIST 1.1, Choi and modified Choi criteria, respectively. The correlation of texture parameters and existing assessment criteria with TTP were evaluated using Kaplan-Meier and Cox regression analyses in the training cohort. Kaplan-Meier curves of the proportion of patients without disease progression were significantly different for several texture parameters, and were better than those for RECIST 1.1-, Choi-, and modified Choi-defined response (p < 0.05 vs. p = 0.398, p = 0.142, and p = 0.536, respectively). Cox regression analysis showed that percentage change in SD was an independent predictor of TTP (p = 0.016) and confirmed in the validation cohort (p = 0.019). In conclusion, CT texture parameters have the potential to become predictive imaging biomarkers for response evaluation in pancreatic cancer with liver metastasis.
Collapse
|
13
|
Raufi AG, Liguori NR, Carlsen L, Parker C, Hernandez Borrero L, Zhang S, Tian X, Louie A, Zhou L, Seyhan AA, El-Deiry WS. Therapeutic Targeting of Autophagy in Pancreatic Ductal Adenocarcinoma. Front Pharmacol 2021; 12:751568. [PMID: 34916936 PMCID: PMC8670090 DOI: 10.3389/fphar.2021.751568] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/25/2021] [Indexed: 12/24/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease characterized by early metastasis, late detection, and poor prognosis. Progress towards effective therapy has been slow despite significant efforts. Novel treatment approaches are desperately needed and autophagy, an evolutionary conserved process through which proteins and organelles are recycled for use as alternative energy sources, may represent one such target. Although incompletely understood, there is growing evidence suggesting that autophagy may play a role in PDAC carcinogenesis, metastasis, and survival. Early clinical trials involving autophagy inhibiting agents, either alone or in combination with chemotherapy, have been disappointing. Recently, evidence has demonstrated synergy between the MAPK pathway and autophagy inhibitors in PDAC, suggesting a promising therapeutic intervention. In addition, novel agents, such as ONC212, have preclinical activity in pancreatic cancer, in part through autophagy inhibition. We discuss autophagy in PDAC tumorigenesis, metabolism, modulation of the immune response, and preclinical and clinical data with selected autophagy modulators as therapeutics.
Collapse
Affiliation(s)
- Alexander G. Raufi
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Hematology/Oncology Division, Department of Medicine, Lifespan Health System and Brown University, Providence, RI, United States
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI, United States
- Cancer Center at Brown University, Providence, RI, United States
- *Correspondence: Wafik S. El-Deiry, ; Alexander G. Raufi,
| | - Nicholas R. Liguori
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Temple University, Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Lindsey Carlsen
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI, United States
- Cancer Center at Brown University, Providence, RI, United States
- Pathobiology Graduate Program, Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Cassandra Parker
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Department of Surgery, Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Liz Hernandez Borrero
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Pathobiology Graduate Program, Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Shengliang Zhang
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI, United States
- Cancer Center at Brown University, Providence, RI, United States
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Xiaobing Tian
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI, United States
- Cancer Center at Brown University, Providence, RI, United States
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Anna Louie
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Department of Surgery, Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Lanlan Zhou
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI, United States
- Cancer Center at Brown University, Providence, RI, United States
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Attila A. Seyhan
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI, United States
- Cancer Center at Brown University, Providence, RI, United States
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Wafik S. El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Hematology/Oncology Division, Department of Medicine, Lifespan Health System and Brown University, Providence, RI, United States
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI, United States
- Cancer Center at Brown University, Providence, RI, United States
- Pathobiology Graduate Program, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, United States
- *Correspondence: Wafik S. El-Deiry, ; Alexander G. Raufi,
| |
Collapse
|
14
|
Ayob AZ, Ramasamy TS. Prolonged hypoxia switched on cancer stem cell-like plasticity in HepG2 tumourspheres cultured in serum-free media. In Vitro Cell Dev Biol Anim 2021; 57:896-911. [PMID: 34750738 DOI: 10.1007/s11626-021-00625-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/29/2021] [Indexed: 10/19/2022]
Abstract
Tumour hypoxia drives resistance and aggressiveness, and in large part, contributes to treatment failure thereby causing cancer-related deaths. The rapid and uncontrolled tumour growth develops not only a hypoxic niche but also a nutrient-deprived condition due to insufficient blood supply; together, these create a stressful tumour niche, further promoting higher aggressiveness and resistance features of cancer. However, how cellular responses in the prolonged stress is associated with cancer stem cells (CSCs), which is linked to these features, remains unclear. Here, we established HepG2 tumoursphere culture in a hypoxic and serum-free condition that recapitulated differential responses to prolonged tumour growth pressures, evident by their progressive changes in the morphology of tumoursphere formation over a course of 15-day culture. HepG2 tumourspheres formed larger sphere sizes of > 200 μm in hypoxic conditions, concomitant with higher cell yield and upregulation of PCNA marker at day 7, corresponding with higher self-renewal capacity when cultured in SFM compared to SM. Notably, prolonged growth of HepG2 tumourspheres for 15 days under hypoxic and SFM condition increased their sphere counts, yet significantly reduced their cell yield along with downregulation of PCNA expression. Gene expression analysis showed that HepG2 tumourspheres on day 15 exhibited enhanced expression of markers of quiescence, stemness, EMT, and chemoresistance. Interestingly, analysis of HIF1α and HIF2α and their target gene expression indicated complementary HIF expression with preferential upregulation of HIF2α was observed in HepG2 tumourspheres in prolonged hypoxic and serum-free conditions, suggesting HIF2α-dependency and plausibility of the HIF1α-HIF2α switch that govern their survival by promoting CSC-like programmes. Altogether, these findings suggest the implication of prolonged hypoxia and nutrient deprivation stress in promoting CSC-like programmes in cancer cells recapitulating their plasticity, hence having opened many research directions that enable development of effective targeting of CSCs and precision medicine for treating cancer.
Collapse
Affiliation(s)
- Ain Zubaidah Ayob
- Stem Cell Biology Laboratory, Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Thamil Selvee Ramasamy
- Stem Cell Biology Laboratory, Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
15
|
Zhao S, Zhou L, Dicker DT, Lev A, Zhang S, Ross E, El-Deiry WS. Anti-cancer efficacy including Rb-deficient tumors and VHL-independent HIF1α proteasomal destabilization by dual targeting of CDK1 or CDK4/6 and HSP90. Sci Rep 2021; 11:20871. [PMID: 34686682 PMCID: PMC8536770 DOI: 10.1038/s41598-021-00150-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 09/27/2021] [Indexed: 12/23/2022] Open
Abstract
A prevalent characteristic of solid tumors is intra-tumoral hypoxia. Hypoxia-inducible factor 1α (HIF1α) predominantly mediates the adaptive response to O2 oscillation and is linked to multiple malignant hallmarks. Here we describe a strategy to robustly target HIF1α by dual inhibition of CDK(s) and heat shock protein 90 (HSP90). We show that CDK1 may contribute to HSP90-mediated HIF1α stabilization. CDK1 knockdown enhances the decrease of HIF1α by HSP90 inhibition. Dual inhibition of CDK1 and HSP90 significantly increases apoptosis and synergistically inhibits cancer cell viability. Similarly, targeting CDK4/6 using FDA-approved inhibitors in combination with HSP90 inhibition shows a class effect on HIF1α inhibition and cancer cell viability suppression not only in colorectal but also in various other cancer types, including Rb-deficient cancer cells. Dual inhibition of CDK4/6 and HSP90 suppresses tumor growth in vivo. In summary, combined targeting of CDK(s) (CDK1 or CDK4/6) and HSP90 remarkably inhibits the expression level of HIF1α and shows promising anti-cancer efficacy with therapeutic potential.
Collapse
Affiliation(s)
- Shuai Zhao
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, USA.,Pathobiology Graduate Program, Brown University, Providence, RI, USA.,Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA.,Joint Program in Cancer Biology, Brown University and Lifespan Cancer Institute, Providence, RI, USA
| | - Lanlan Zhou
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, USA.,Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA.,Joint Program in Cancer Biology, Brown University and Lifespan Cancer Institute, Providence, RI, USA.,Cancer Center at Brown University, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - David T Dicker
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, USA.,Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA.,Joint Program in Cancer Biology, Brown University and Lifespan Cancer Institute, Providence, RI, USA
| | - Avital Lev
- Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Shengliang Zhang
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, USA.,Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA.,Joint Program in Cancer Biology, Brown University and Lifespan Cancer Institute, Providence, RI, USA.,Cancer Center at Brown University, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Eric Ross
- Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Wafik S El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, USA. .,Pathobiology Graduate Program, Brown University, Providence, RI, USA. .,Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA. .,Joint Program in Cancer Biology, Brown University and Lifespan Cancer Institute, Providence, RI, USA. .,Cancer Center at Brown University, Warren Alpert Medical School, Brown University, Providence, RI, USA. .,Fox Chase Cancer Center, Philadelphia, PA, USA. .,Hematology/Oncology Division, Lifespan Cancer Institute, Providence, RI, USA.
| |
Collapse
|
16
|
Bonnin A, Durot C, Barat M, Djelouah M, Grange F, Mulé S, Soyer P, Hoeffel C. CT texture analysis as a predictor of favorable response to anti-PD1 monoclonal antibodies in metastatic skin melanoma. Diagn Interv Imaging 2021; 103:97-102. [PMID: 34666945 DOI: 10.1016/j.diii.2021.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 12/13/2022]
Abstract
PURPOSE The purpose of this study was to determine whether texture analysis features on pretreatment contrast-enhanced computed tomography (CT) images and their evolution can predict treatment response of metastatic skin melanoma (SM) treated with anti-PD1 monoclonal antibodies. MATERIALS AND METHODS Sixty patients (29 men, 31 women; median age, 56 years; age range: 27-91 years) with metastatic SM treated with pembrolizumab (43/60; 72%) or nivolumab (17/60; 28%) were included. Texture analysis of SM metastases was performed on baseline and first post-treatment evaluation CT examinations. Mean gray-level, entropy, kurtosis, skewness, and standard deviation values were derived from the pixel distribution histogram before and after spatial filtration at different anatomic scales, ranging from fine to coarse. Lasso penalized Cox regression analyses were performed to identify independent variables associated with favorable response to treatment. RESULTS A total of 127 metastases were analyzed, with a median of two metastases per patient. Skewness at fine texture scale (spatial scale filtration [SSF] = 2; Hazard ratio [HR]: 3.51; 95% CI: 2.08-8.57; P = 0.010), skewness at medium texture scale (SSF = 3; HR: 0.56; 95% CI: 0.11-1.59; P = 0.014), variation of entropy at fine texture scale (SSF = 2; HR: 37.76; 95% CI: 3.48-496.22; P = 0.008) and LDH above the threshold of 248 UI/L (HR: 3.56; 95% CI: 1.78-21.35; P = 0.032] were independent predictors of response to treatment. CONCLUSION Pretreatment CT texture analysis-derived tumor skewness and variation of entropy between baseline and first control CT examination may be used as predictors of favorable response to anti-PD1 monoclonal antibodies in patients with metastatic SM.
Collapse
Affiliation(s)
- Angèle Bonnin
- Department of Abdominal Radiology, Reims University Hospital, 51092 Reims, France; Department of Radiology, Cochin Hospital, AP-HP, 75014 Paris, France; Université de Paris, Faculté de Médecine, 75006 Paris, France
| | - Carole Durot
- Department of Abdominal Radiology, Reims University Hospital, 51092 Reims, France
| | - Maxime Barat
- Department of Radiology, Cochin Hospital, AP-HP, 75014 Paris, France; Université de Paris, Faculté de Médecine, 75006 Paris, France
| | - Manel Djelouah
- Department of Abdominal Radiology, Reims University Hospital, 51092 Reims, France
| | - Florent Grange
- Department of Dermatology, Valence Hospital, 26000 Valence, France
| | - Sébastien Mulé
- Department of Radiology, Henri Mondor University Hospital, APH-HP, 94000 Créteil, France
| | - Philippe Soyer
- Department of Radiology, Cochin Hospital, AP-HP, 75014 Paris, France; Université de Paris, Faculté de Médecine, 75006 Paris, France
| | - Christine Hoeffel
- Department of Abdominal Radiology, Reims University Hospital, 51092 Reims, France; CRESTIC, Reims Champagne-Ardenne University, 51000 Reims, France.
| |
Collapse
|
17
|
Kim JH, Verwilst P, Won M, Lee J, Sessler JL, Han J, Kim JS. A Small Molecule Strategy for Targeting Cancer Stem Cells in Hypoxic Microenvironments and Preventing Tumorigenesis. J Am Chem Soc 2021; 143:14115-14124. [PMID: 34374290 DOI: 10.1021/jacs.1c03875] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Breast cancer consists of heterogenic subpopulations, which determine the prognosis and response to chemotherapy. Among these subpopulations, a very limited number of cancer cells are particularly problematic. These cells, known as breast cancer stem cells (BCSCs), are thought responsible for metastasis and recurrence. They are thus major contributor to the unfavorable outcomes seen for many breast cancer patients. BCSCs are more prevalent in the hypoxic niche. This is an oxygen-deprived environment that is considered crucial to their proliferation, stemness, and self-renewal but also one that makes BCSCs highly refractory to traditional chemotherapeutic regimens. Here we report a small molecule construct, AzCDF, that allows the therapeutic targeting of BCSCs and which is effective in normally refractory hypoxic tumor environments. A related system, AzNap, has been developed that permits CSC imaging. Several design elements are incorporated into AzCDF, including the CAIX inhibitor acetazolamide (Az) to promote localization in MDA-MB-231 CSCs, a dimethylnitrothiophene subunit as a hypoxia trigger, and a 3,4-difluorobenzylidene curcumin (CDF) as a readily released therapeutic payload. This allows AzCDF to serve as a hypoxia-liable molecular platform that targets BCSCs selectively which decreases CSC migration, retards tumor growth, and lowers tumorigenesis rates as evidenced by a combination of in vitro and in vivo studies. To the best of our knowledge, this is the first time a CSC-targeting small molecule has been shown to prevent tumorigenesis in an animal model.
Collapse
Affiliation(s)
- Ji Hyeon Kim
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Peter Verwilst
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Miae Won
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Junhyoung Lee
- Department of Biological Sciences, Hyupsung University, Hwasung-si 18330, Korea
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jiyou Han
- Department of Biological Sciences, Hyupsung University, Hwasung-si 18330, Korea
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, Korea
| |
Collapse
|
18
|
Balaji S, Kim U, Muthukkaruppan V, Vanniarajan A. Emerging role of tumor microenvironment derived exosomes in therapeutic resistance and metastasis through epithelial-to-mesenchymal transition. Life Sci 2021; 280:119750. [PMID: 34171378 DOI: 10.1016/j.lfs.2021.119750] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/09/2021] [Accepted: 06/16/2021] [Indexed: 12/18/2022]
Abstract
The tumor microenvironment (TME) constitutes multiple cell types including cancerous and non-cancerous cells. The intercellular communication between these cells through TME derived exosomes may either enhance or suppress the tumorigenic processes. The tumor-derived exosomes could convert an anti-tumor environment into a pro-tumor environment by inducing the differentiation of stromal cells into tumor-associated cells. The exosomes from tumor-associated stromal cells reciprocally trigger epithelial-to-mesenchymal transition (EMT) in tumor cells, which impose therapeutic resistance and metastasis. It is well known that these exosomes contain the signals of EMT, but how these signals execute chemoresistance and metastasis in tumors remains elusive. Understanding the significance and molecular signatures of exosomes transmitting EMT signals would aid in developing appropriate methods of inhibiting them. In this review, we focus on molecular signatures of exosomes that shuttle between cancer cells and their stromal populations in TME to explicate their impact on therapeutic resistance and metastasis through EMT. Especially Wnt signaling is found to be involved in multiple ways of exosomal transport and hence we decipher the biomolecules of Wnt signaling trafficked through exosomes and their potential in serving as therapeutic targets.
Collapse
Affiliation(s)
- Sekaran Balaji
- Department of Molecular Genetics, Aravind Medical Research Foundation, Madurai, Tamil Nadu 625 020, India
| | - Usha Kim
- Department of Orbit, Oculoplasty and Ocular Oncology, Aravind Eye Hospital, Madurai, Tamil Nadu 625 020, India
| | - Veerappan Muthukkaruppan
- Department of Immunology and Stem Cell Biology, Aravind Medical Research Foundation, Madurai, Tamil Nadu 625 020, India
| | - Ayyasamy Vanniarajan
- Department of Molecular Genetics, Aravind Medical Research Foundation, Madurai, Tamil Nadu 625 020, India.
| |
Collapse
|
19
|
Hettie KS, Klockow JL, Moon EJ, Giaccia AJ, Chin FT. A NIR fluorescent smart probe for imaging tumor hypoxia. Cancer Rep (Hoboken) 2021; 4:e1384. [PMID: 33811473 PMCID: PMC8551997 DOI: 10.1002/cnr2.1384] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Tumor hypoxia is a characteristic of paramount importance due to low oxygenation levels in tissue negatively correlating with resistance to traditional therapies. The ability to noninvasively identify such could provide for personalized treatment(s) and enhance survival rates. Accordingly, we recently developed an NIR fluorescent hypoxia-sensitive smart probe (NO2 -Rosol) for identifying hypoxia via selectively imaging nitroreductase (NTR) activity, which could correlate to oxygen deprivation levels in cells, thereby serving as a proxy. We demonstrated proof of concept by subjecting a glioblastoma (GBM) cell line to extreme stress by evaluating such under radiobiological hypoxic (pO2 ≤ ~0.5%) conditions, which is a far cry from representative levels for hypoxia for brain glioma (pO2 = ~1.7%) which fluctuate little from physiological hypoxic (pO2 = 1.0-3.0%) conditions. AIM We aimed to evaluate the robustness, suitability, and feasibility of NO2 -Rosol for imaging hypoxia in vitro and in vivo via assessing NTR activity in diverse GBM models under relevant oxygenation levels (pO2 = 2.0%) within physiological hypoxic conditions that mimic oxygenation levels in GBM tumor tissue in the brain. METHODS We evaluated multiple GBM cell lines to determine their relative sensitivity to oxygenation levels via measuring carbonic anhydrase IX (CAIX) levels, which is a surrogate marker for indirectly identifying hypoxia by reporting on oxygen deprivation levels and upregulated NTR activity. We evaluated for hypoxia via measuring NTR activity when employing NO2 -Rosol in in vitro and tumor hypoxia imaging studies in vivo. RESULTS The GBM39 cell line demonstrated the highest CAIX expression under hypoxic conditions representing that of GBM in the brain. NO2 -Rosol displayed an 8-fold fluorescence enhancement when evaluated in GBM39 cells (pO2 = 2.0%), thereby establishing its robustness and suitability for imaging hypoxia under relevant physiological conditions. We demonstrated the feasibility of NO2 -Rosol to afford tumor hypoxia imaging in vivo via it demonstrating a tumor-to-background of 5 upon (i) diffusion throughout, (ii) bioreductive activation by NTR activity in, and (iii) retention within, GBM39 tumor tissue. CONCLUSION We established the robustness, suitability, and feasibility of NO2 -Rosol for imaging hypoxia under relevant oxygenation levels in vitro and in vivo via assessing NTR activity in GBM39 models.
Collapse
Affiliation(s)
- Kenneth S Hettie
- Department of Radiology, Stanford University School of Medicine, Stanford, California, USA.,Department of Otolaryngology - Head & Neck Surgery, Stanford University, Stanford, California, USA
| | - Jessica L Klockow
- Department of Radiology, Stanford University School of Medicine, Stanford, California, USA
| | - Eui Jung Moon
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California, USA
| | - Amato J Giaccia
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California, USA
| | - Frederick T Chin
- Department of Radiology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
20
|
Zhang Y, Zhang H, Wang M, Schmid T, Xin Z, Kozhuharova L, Yu WK, Huang Y, Cai F, Biskup E. Hypoxia in Breast Cancer-Scientific Translation to Therapeutic and Diagnostic Clinical Applications. Front Oncol 2021; 11:652266. [PMID: 33777815 PMCID: PMC7991906 DOI: 10.3389/fonc.2021.652266] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/12/2021] [Indexed: 12/13/2022] Open
Abstract
Breast cancer has been the leading cause of female cancer deaths for decades. Intratumoral hypoxia, mainly caused by structural and functional abnormalities in microvasculature, is often associated with a more aggressive phenotype, increased risk of metastasis and resistance to anti-malignancy treatments. The response of cancer cells to hypoxia is ascribed to hypoxia-inducible factors (HIFs) that activate the transcription of a large battery of genes encoding proteins promoting primary tumor vascularization and growth, stromal cell recruitment, extracellular matrix remodeling, cell motility, local tissue invasion, metastasis, and maintenance of the cancer stem cell properties. In this review, we summarized the role of hypoxia specifically in breast cancer, discuss the prognostic and predictive value of hypoxia factors, potential links of hypoxia and endocrine resistance, cancer hypoxia measurements, further involved mechanisms, clinical application of hypoxia-related treatments and open questions.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hongyi Zhang
- Department of Breast Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Minghong Wang
- Department of Health Management, Shanghai Public Health Clinical Center, Shanghai, China
| | - Thomas Schmid
- Department of Medical Oncology, St. Claraspital, Basel, Switzerland
| | - Zhaochen Xin
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | | | - Wai-Kin Yu
- Cellomics International Limited, Hong Kong, China
| | - Yuan Huang
- Cellomics International Limited, Hong Kong, China
| | - Fengfeng Cai
- Department of Breast Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ewelina Biskup
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Division of Internal Medicine, University Hospital of Basel, University of Basel, Basel, Switzerland.,Department of Advanced Biomedical Sciences, Federico II University of Naples, Naples, Italy
| |
Collapse
|
21
|
A multiwell plate-based system for toxicity screening under multiple static or cycling oxygen environments. Sci Rep 2021; 11:4020. [PMID: 33597640 PMCID: PMC7890056 DOI: 10.1038/s41598-021-83579-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 01/18/2021] [Indexed: 12/24/2022] Open
Abstract
Tumor tissue contains a continuous distribution of static and dynamically changing oxygen environments with levels ranging from physiologically normal oxygen down to anoxia. However, in vitro studies are often performed under oxygen levels that are far higher than those found in vivo. A number of devices are available to alter the oxygen environment in cell culture, including designs from our laboratory. However, in our devices and most other designs, changing the media in order to feed or dose cells remains a disruptive factor in maintaining a consistent hypoxic environment. This report presents a novel 96-well plate design that recirculates the local oxygen environment to shield cells during media changes and facilitates toxicity studies of cells cultured under varying oxygen levels. The principle behind the design is presented and the response of human pancreatic cancer PANC-1 cells treated with tirapazamine and doxorubicin under eight different static or cycling oxygen levels was measured. As expected, tirapazamine is progressively more toxic as oxygen levels decrease but retains some toxicity as oxygen is cycled between hypoxic and normoxic levels. Doxorubicin sensitivity is largely unaffected by changing oxygen levels. This technology is ideal for assessing the effects of oxygen as a variable in toxicity screens.
Collapse
|
22
|
The acidic tumor microenvironment drives a stem-like phenotype in melanoma cells. J Mol Med (Berl) 2020; 98:1431-1446. [PMID: 32803272 PMCID: PMC7525286 DOI: 10.1007/s00109-020-01959-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 07/14/2020] [Accepted: 08/05/2020] [Indexed: 01/12/2023]
Abstract
Abstract Acidosis characterizes the microenvironment of most solid tumors and is considered a new hallmark of cancer. It is mainly caused by both “aerobic” and “anaerobic” glycolysis of differently adapted cancer cells, with the final product lactic acid being responsible of the extracellular acidification. Many evidences underline the role of extracellular acidosis in tumor progression. Among the different findings, we demonstrated that acidosis-exposed cancer cells are characterized by an epithelial-to-mesenchymal transition phenotype with high invasive ability, high resistance to apoptosis, anchorage-independent growth, and drug therapy. Acidic melanoma cells over-express SOX2, which is crucial for the maintenance of their oxidative metabolism, and carbonic anhydrase IX, that correlates with poor prognosis of cancer patients. Considering these evidences, we realized that the profile outlined for acid cancer cells inevitably remind us the stemness profile. Therefore, we wondered whether extracellular acidosis might induce in cancer cells the acquisition of stem-like properties and contribute to the expansion of the cancer stem cell sub-population. We found that a chronic adaptation to acidosis stimulates in cancer cells the expression of stem-related markers, also providing a high in vitro/in vivo clonogenic and trans-differentiating ability. Moreover, we observed that the acidosis-induced stem-like phenotype of melanoma cells was reversible and related to the EMT induction. These findings help to characterize a further aspect of stem cell niche, contributing to the sustainment and expansion of cancer stem cell subpopulation. Thus, the usage of agents controlling tumor extracellular acidosis might acquire great importance in the clinic for the treatment of aggressive solid tumor. Key messages • Extracellular acidosis up-regulates EMT and stem-related markers in melanoma cells • Acidic medium up-regulates in vitro self-renewal capacity of melanoma cells • Chronic acidosis adaptation induces trans-differentiation ability in melanoma cells • Melanoma cells adapted to acidosis show higher tumor-initiating potential than control cells • Extracellular acidosis promotes a stem-like phenotype in prostate and colorectal carcinoma cells
Collapse
|
23
|
Lai PL, Chen TC, Feng CY, Lin H, Ng CH, Chen Y, Hsiao M, Lu J, Huang HC. Selection of a malignant subpopulation from a colorectal cancer cell line. Oncol Lett 2020; 20:2937-2945. [PMID: 32782610 PMCID: PMC7399770 DOI: 10.3892/ol.2020.11829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 06/16/2020] [Indexed: 01/05/2023] Open
Abstract
Colorectal cancer (CRC) is a leading cause of cancer-associated mortality worldwide; therefore, there is an emerging need for novel experimental models that allow for the identification and validation of biomarkers for CRC-specific progression. In the present study, a repeated sphere-forming assay was used as a strategy to select a malignant subpopulation from a CRC cell line, namely HCT116. The assay was validated by confirming that canonical stemness markers were upregulated in the sphere state at every generation of the selection assay. The resulting subpopulation, after eight rounds of selection, exhibited increased sphere-forming capacity in vitro and increased tumorigenicity in vivo. Furthermore, dipeptidase 1 (DPEP1) was identified as the major differentially expressed gene in the selected clone, and its depletion suppressed the elevated sphere-forming capacity in vitro and tumorigenicity in vivo. Overall, the present study established an experimental strategy to isolate a malignant subpopulation from a CRC cell line. Additionally, results from the present model revealed that DPEP1 may serve as a promising prognostic biomarker for CRC.
Collapse
Affiliation(s)
- Pei-Lun Lai
- Institute of Molecular and Cellular Biology, College of Life Science, National Taiwan University, Taipei 10617, Taiwan, R.O.C.,Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan, R.O.C
| | - Ting-Chun Chen
- Institute of Molecular and Cellular Biology, College of Life Science, National Taiwan University, Taipei 10617, Taiwan, R.O.C
| | - Chun-Yen Feng
- Institute of Molecular and Cellular Biology, College of Life Science, National Taiwan University, Taipei 10617, Taiwan, R.O.C
| | - Hsuan Lin
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan, R.O.C
| | - Chi-Hou Ng
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan, R.O.C.,Genome and Systems Biology Degree Program, College of Life Science, National Taiwan University, Taipei 10617, Taiwan, R.O.C
| | - Yun Chen
- Institute of Molecular and Cellular Biology, College of Life Science, National Taiwan University, Taipei 10617, Taiwan, R.O.C
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan, R.O.C
| | - Jean Lu
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan, R.O.C.,Genome and Systems Biology Degree Program, College of Life Science, National Taiwan University, Taipei 10617, Taiwan, R.O.C.,National RNAi Platform/National Core Facility Program for Biotechnology, Taipei 11529, Taiwan, R.O.C.,Department of Life Science, Tzu Chi University, Hualien 970, Taiwan, R.O.C.,Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan, R.O.C
| | - Hsiao-Chun Huang
- Institute of Molecular and Cellular Biology, College of Life Science, National Taiwan University, Taipei 10617, Taiwan, R.O.C.,Genome and Systems Biology Degree Program, College of Life Science, National Taiwan University, Taipei 10617, Taiwan, R.O.C.,Department of Life Science, College of Life Science, National Taiwan University, Taipei 10617, Taiwan, R.O.C.,Graduate Institute of Electronics Engineering, College of Electrical Engineering and Computer Science, National Taiwan University, Taipei 10617, Taiwan, R.O.C
| |
Collapse
|
24
|
Klockow JL, Hettie KS, LaGory EL, Moon EJ, Giaccia AJ, Graves EE, Chin FT. An Activatable NIR Fluorescent Rosol for Selectively Imaging Nitroreductase Activity. SENSORS AND ACTUATORS. B, CHEMICAL 2020; 306:127446. [PMID: 32265579 PMCID: PMC7138224 DOI: 10.1016/j.snb.2019.127446] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Hypoxia (pO2 ≤ ~1.5%) is an important characteristic of tumor microenvironments that directly correlates with resistance against first-line therapies and tumor proliferation/infiltration. The ability to accurately identify hypoxic tumor cells/tissue could afford tailored therapeutic regimens for personalized treatment, development of more-effective therapies, and discerning the mechanisms underlying disease progression. Fluorogenic constructs identifying aforesaid cells/tissue operate by targeting the bioreductive activity of primarily nitroreductases (NTRs), but collectively present photophysical and/or physicochemical shortcomings that could limit effectiveness. To overcome these limitations, we present the rational design, development, and evaluation of the first activatable ultracompact xanthene core-based molecular probe (NO 2 -Rosol) for selectively imaging NTR activity that affords an "OFF-ON" near-infrared (NIR) fluorescence response (> 700 nm) alongside a remarkable Stokes shift (> 150 nm) via NTR activity-facilitated modulation to its energetics whose resultant interplay discontinues an intramolecular d-PET fluorescence-quenching mechanism transpiring between directly-linked electronically-uncoupled π-systems comprising its components. DFT calculations guided selection of a suitable fluorogenic scaffold and nitroaromatic moiety candidate that when adjoined could (i) afford such photophysical response upon bioreduction by upregulated NTR activity in hypoxic tumor cells/tissue and (ii) employ a retention mechanism strategy that capitalizes on an inherent physical property of the NIR fluorogenic scaffold for achieving signal amplification. NO 2 -Rosol demonstrated 705 nm NIR fluorescence emission and 157 nm Stokes shift, selectivity for NTR over relevant bioanalytes, and a 28-/12-fold fluorescence enhancement in solution and between cells cultured under different oxic conditions, respectively. In establishing feasibility for NO 2 -Rosol to provide favorable contrast levels in solutio/vitro, we anticipate NO 2 -Rosol doing so in preclinical studies.
Collapse
Affiliation(s)
| | - Kenneth S. Hettie
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
- Corresponding author: Kenneth S. Hettie, Ph.D., 3165 Porter Drive, Palo Alto, CA 94304, , Frederick T. Chin, Ph.D., 3165 Porter Drive, Room 2129, Palo Alto, CA 94304,
| | - Edward L. LaGory
- Department of Radiation Oncology, Stanford University, Stanford, CA, 94305, USA
| | - Eui Jung Moon
- Department of Radiation Oncology, Stanford University, Stanford, CA, 94305, USA
| | - Amato J. Giaccia
- Department of Radiation Oncology, Stanford University, Stanford, CA, 94305, USA
| | - Edward E. Graves
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
- Department of Radiation Oncology, Stanford University, Stanford, CA, 94305, USA
| | - Frederick T. Chin
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
- Corresponding author: Kenneth S. Hettie, Ph.D., 3165 Porter Drive, Palo Alto, CA 94304, , Frederick T. Chin, Ph.D., 3165 Porter Drive, Room 2129, Palo Alto, CA 94304,
| |
Collapse
|
25
|
Konings K, Vandevoorde C, Baselet B, Baatout S, Moreels M. Combination Therapy With Charged Particles and Molecular Targeting: A Promising Avenue to Overcome Radioresistance. Front Oncol 2020; 10:128. [PMID: 32117774 PMCID: PMC7033551 DOI: 10.3389/fonc.2020.00128] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/24/2020] [Indexed: 12/13/2022] Open
Abstract
Radiotherapy plays a central role in the treatment of cancer patients. Over the past decades, remarkable technological progress has been made in the field of conventional radiotherapy. In addition, the use of charged particles (e.g., protons and carbon ions) makes it possible to further improve dose deposition to the tumor, while sparing the surrounding healthy tissues. Despite these improvements, radioresistance and tumor recurrence are still observed. Although the mechanisms underlying resistance to conventional radiotherapy are well-studied, scientific evidence on the impact of charged particle therapy on cancer cell radioresistance is restricted. The purpose of this review is to discuss the potential role that charged particles could play to overcome radioresistance. This review will focus on hypoxia, cancer stem cells, and specific signaling pathways of EGFR, NFκB, and Hedgehog as well as DNA damage signaling involving PARP, as mechanisms of radioresistance for which pharmacological targets have been identified. Finally, new lines of future research will be proposed, with a focus on novel molecular inhibitors that could be used in combination with charged particle therapy as a novel treatment option for radioresistant tumors.
Collapse
Affiliation(s)
- Katrien Konings
- Radiobiology Unit, Belgian Nuclear Research Center (SCK•CEN), Mol, Belgium
| | - Charlot Vandevoorde
- Radiobiology, Radiation Biophysics Division, Department of Nuclear Medicine, iThemba LABS, Cape Town, South Africa
| | - Bjorn Baselet
- Radiobiology Unit, Belgian Nuclear Research Center (SCK•CEN), Mol, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Belgian Nuclear Research Center (SCK•CEN), Mol, Belgium.,Department of Molecular Biotechnology, Ghent University, Ghent, Belgium
| | - Marjan Moreels
- Radiobiology Unit, Belgian Nuclear Research Center (SCK•CEN), Mol, Belgium
| |
Collapse
|
26
|
Zhang D, Yang L, Liu X, Gao J, Liu T, Yan Q, Yang X. Hypoxia modulates stem cell properties and induces EMT through N-glycosylation of EpCAM in breast cancer cells. J Cell Physiol 2019; 235:3626-3633. [PMID: 31584203 DOI: 10.1002/jcp.29252] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 08/26/2019] [Indexed: 12/11/2022]
Abstract
Epithelial cell adhesion molecule (EpCAM), which is a transmembrane glycoprotein, is related to tumor progression. We demonstrated that EpCAM plays important roles in proliferation, apoptosis, and metastasis during breast cancer (BC) progression. But the role of N-glycosylation in EpCAM in tumor aggressiveness is not clear. Here, we evaluated the role of N-glycosylation of EpCAM in stemness and epithelial-mesenchymal transition (EMT) characteristics. EpCAM overexpression increases the expression of stemness markers (NANOG,SOX2, and OCT4) and EMT markers (N-cadherin and vimentin) under the condition of hypoxia in BC. Knockdown of EpCAM and mutation of N-glycosylation of EpCAM maintained in severe hypoxia lead to a significant reduction of stemness/EMT markers. In addition, we found that N-glycosylation of EpCAM is a crucial factor during this process. This demonstrates that EpCAM has a novel regulatory role in stemness/EMT dependence of hypoxia-inducible factor 1-alpha via regulating nuclear factor kappa B in BC cells. Hence, our study reveals EpCAM glycosylation modification as a new regulator of stemness/EMT under hypoxic in BC and points out EpCAM as a potential therapeutic target.
Collapse
Affiliation(s)
- Dandan Zhang
- Department of Biochemistry and Molecular Biology, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian Medical University, Dalian, China
| | - Liu Yang
- Department of Biochemistry and Molecular Biology, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian Medical University, Dalian, China
| | - Xue Liu
- Department of Biochemistry and Molecular Biology, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian Medical University, Dalian, China
| | - Jiujiao Gao
- Department of Molecular Medicine, School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - Tingjiao Liu
- Section of Oral Pathology, College of Stomatology, Dalian Medical University, Dalian, China
| | - Qiu Yan
- Department of Biochemistry and Molecular Biology, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian Medical University, Dalian, China
| | - Xuesong Yang
- Department of Biochemistry and Molecular Biology, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian Medical University, Dalian, China
| |
Collapse
|
27
|
Role of the Microenvironment in Regulating Normal and Cancer Stem Cell Activity: Implications for Breast Cancer Progression and Therapy Response. Cancers (Basel) 2019; 11:cancers11091240. [PMID: 31450577 PMCID: PMC6770706 DOI: 10.3390/cancers11091240] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/16/2019] [Accepted: 08/19/2019] [Indexed: 12/12/2022] Open
Abstract
The epithelial cells in an adult woman’s breast tissue are continuously replaced throughout their reproductive life during pregnancy and estrus cycles. Such extensive epithelial cell turnover is governed by the primitive mammary stem cells (MaSCs) that proliferate and differentiate into bipotential and lineage-restricted progenitors that ultimately generate the mature breast epithelial cells. These cellular processes are orchestrated by tightly-regulated paracrine signals and crosstalk between breast epithelial cells and their tissue microenvironment. However, current evidence suggests that alterations to the communication between MaSCs, epithelial progenitors and their microenvironment plays an important role in breast carcinogenesis. In this article, we review the current knowledge regarding the role of the breast tissue microenvironment in regulating the special functions of normal and cancer stem cells. Understanding the crosstalk between MaSCs and their microenvironment will provide new insights into how an altered breast tissue microenvironment could contribute to breast cancer development, progression and therapy response and the implications of this for the development of novel therapeutic strategies to target cancer stem cells.
Collapse
|
28
|
BRCA1 regulates the cancer stem cell fate of breast cancer cells in the context of hypoxia and histone deacetylase inhibitors. Sci Rep 2019; 9:9702. [PMID: 31273285 PMCID: PMC6609720 DOI: 10.1038/s41598-019-46210-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 06/21/2019] [Indexed: 12/15/2022] Open
Abstract
Cancer cell stemness is essential for enabling malignant progression and clonal evolution. Cancer cell fate is likely determined by complex mechanisms involving both cell-intrinsic pathways and stress signals from tumor microenvironment. In this study, we examined the role of the tumor suppressor BRCA1 and hypoxia in the regulation of cancer cell stemness using genetically matched breast cancer cell lines. We have found that BRCA1, a multifunctional protein involved in DNA repair and epigenetic regulation, plays a critical role in the regulation of cancer stem cell (CSC)-like characteristics. Reconstitution of BRCA1 resulted in significant decrease of the CSC-like populations in breast cancer cells whereas down-regulation of BRCA1 resulted in significant increase of the CSC-like populations. Furthermore, the BRCA1-reconstituted tumor cells are more sensitive to the histone deacetylase (HDAC) inhibitor-induced loss of stemness than the BRCA1-deficient cells are. Surprisingly, hypoxia preferentially blocks HDAC inhibitor-induced differentiation of the BRCA1-reconstituted breast cancer cells. In light of the increasing numbers of clinical trials involving HDAC inhibitors in human cancers, our observations strongly suggest that the BRCA1 status and tumor hypoxia should be considered as potentially important clinical parameters that may affect the therapeutic efficacy of HDAC inhibitors.
Collapse
|
29
|
Goodarzi P, Alavi-Moghadam S, Payab M, Larijani B, Rahim F, Gilany K, Bana N, Tayanloo-Beik A, Foroughi Heravani N, Hadavandkhani M, Arjmand B. Metabolomics Analysis of Mesenchymal Stem Cells. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2019; 8:30-40. [PMID: 32351907 PMCID: PMC7175611 DOI: 10.22088/ijmcm.bums.8.2.30] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 05/20/2019] [Indexed: 12/12/2022]
Abstract
Various mesenchymal stem cells as easily accessible and multipotent cells can share different essential signaling pathways related to their stemness ability. Understanding the mechanism of stemness ability can be useful for controlling the stem cells for regenerative medicine targets. In this context, OMICs studies can analyze the mechanism of different stem cell properties or stemness ability via a broad range of current high-throughput techniques. This field is fundamentally directed toward the analysis of whole genome (genomics), mRNAs (transcriptomics), proteins (proteomics) and metabolites (metabolomics) in biological samples. According to several studies, metabolomics is more effective than other OMICs ّfor various system biology concerns. Metabolomics can elucidate the biological mechanisms of various mesenchymal stem cell function by measuring their metabolites such as their secretome components. Analyzing the metabolic alteration of mesenchymal stem cells can be useful to promote their regenerative medicine application.
Collapse
Affiliation(s)
- Parisa Goodarzi
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Alavi-Moghadam
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Moloud Payab
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical sciences, Tehran, Iran
| | - Fakher Rahim
- Health Research Institute, Thalassemia and Hemoglobinopathies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Kambiz Gilany
- Integrative Oncology Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran .,Department of Biomedical Sciences, University of Antwerp, Belgium
| | - Nikoo Bana
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular- Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Akram Tayanloo-Beik
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Najmeh Foroughi Heravani
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdieh Hadavandkhani
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran .,Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular- Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
30
|
A Soft Matrix Enhances the Cancer Stem Cell Phenotype of HCC Cells. Int J Mol Sci 2019; 20:ijms20112831. [PMID: 31185668 PMCID: PMC6600428 DOI: 10.3390/ijms20112831] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/18/2019] [Accepted: 06/08/2019] [Indexed: 12/16/2022] Open
Abstract
Cancer stem cells (CSCs) comprise a small portion of cancer cells, have greater self-renewal ability and metastatic potential than non-CSCs and are resistant to drugs and radiotherapy. CSCs and non-CSCs, which can reversibly change their stemness states, typically play roles in plasticity and cancer cell heterogeneity. Furthermore, the component that plays a key role in affecting CSC plasticity remains unknown. In this study, we utilized mechanically tunable polyacrylamide (PA) hydrogels to simulate different stiffnesses of the liver tissue matrix in various stages. Our results showed that hepatocellular carcinoma (HCC) cells were small and round in a soft matrix. The soft matrix increased the expression levels of liver cancer cells with stemness properties (LCSC) surface markers in HCC cells and the number of side population (SP) cells. Moreover, the soft matrix elicited early cell cycle arrest in the G1 phase and increased the cell sphere-forming ability. In addition, cells grown on the soft matrix showed enhanced chemoresistance and tumorigenicity potential. In summary, our study demonstrated that a soft matrix increases the stemness of HCC cells.
Collapse
|
31
|
Durot C, Mulé S, Soyer P, Marchal A, Grange F, Hoeffel C. Metastatic melanoma: pretreatment contrast-enhanced CT texture parameters as predictive biomarkers of survival in patients treated with pembrolizumab. Eur Radiol 2019; 29:3183-3191. [PMID: 30645669 DOI: 10.1007/s00330-018-5933-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/11/2018] [Accepted: 11/29/2018] [Indexed: 12/15/2022]
Abstract
PURPOSE To determine whether texture analysis features on pretreatment contrast-enhanced computed tomography (CT) images can predict overall survival (OS) and progression-free survival (PFS) in patients with metastatic malignant melanoma (MM) treated with an anti-PD-1 monoclonal antibody, pembrolizumab. MATERIALS AND METHODS This institutional-approved retrospective study included 31 patients with metastatic MM treated with pembrolizumab. Texture analysis of 74 metastatic lesions was performed on CT scanners obtained within 1 month before treatment. Mean gray-level, entropy, kurtosis, skewness, and standard deviation values were derived from the pixel distribution histogram before and after spatial filtration at different anatomic scales, ranging from fine to coarse. Lasso penalized Cox regression analyses were performed to identify independent predictors of OS and PFS. RESULTS Median OS and PFS were 357 days (range 42-1355) and 99 days (range 35-1185), respectively. Skewness at coarse texture scale (SSF = 6; HR (CI 95%) = 6.017 (1.39, 26.056), p = 0.016), Response evaluation criteria in solid tumors (RECIST) conclusion (HR (CI 95%) = 3.41 (1.17, 9.89), p = 0.024), and body weight (HR (CI 95%) = 0.96 (0.92, 0.995), p = 0.026) were independent predictors of OS. Skewness at coarse texture scale (SSF = 6; HR (CI 95%) = 4.55 (1.46, 14.13), p = 0.0089) and RECIST conclusion (HR (CI 95%) = 10.63 (3.11, 36.29), p = 0.00016) were independent predictors of PFS. Skewness values above - 0.55 at coarse texture scale were significantly associated with both lower OS and lower PFS after administration of pembrolizumab. CONCLUSION Pretreatment CT texture analysis-derived tumor skewness may act as predictive biomarker of OS and PFS in patients with metastatic MM treated with pembrolizumab. KEY POINTS • Pretreatment skewness at coarse texture scale in metastases from malignant melanoma was an independent predictor of overall survival and progression-free survival. • Skewness values above -0.55 at coarse texture scale were significantly associated with both lower OS and lower PFS after administration of pembrolizumab. • In patients with metastatic MM, texture analysis performed on pretreatment CT may act as a useful tool to select the best candidates for pembrolizumab therapy.
Collapse
Affiliation(s)
- Carole Durot
- Department of Radiology, Reims University Hospital, 45 rue Cognacq-jay, 51092, Reims, France.
| | - Sébastien Mulé
- Department of Radiology, Henri Mondor University Hospital, Créteil, France
| | - Philippe Soyer
- Department of Radiology, Cochin University Hospital, Paris, France
| | - Aude Marchal
- Department of Biopathology, Reims University Hospital, Reims, France
| | - Florent Grange
- Department of Dermatology, Reims University Hospital, Reims, France
| | - Christine Hoeffel
- Department of Radiology, Reims University Hospital, 45 rue Cognacq-jay, 51092, Reims, France
- CRESTIC, University of Reims Champagne-Ardenne, Reims, France
| |
Collapse
|
32
|
Functional Interaction of Hypoxia-Inducible Factor 2-Alpha and Autophagy Mediates Drug Resistance in Colon Cancer Cells. Cancers (Basel) 2019; 11:cancers11060755. [PMID: 31151160 PMCID: PMC6627604 DOI: 10.3390/cancers11060755] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/17/2019] [Accepted: 05/20/2019] [Indexed: 02/07/2023] Open
Abstract
Hypoxia and the accumulation of hypoxia-inducible factors (HIFs) in tumors have been associated with therapeutic resistance and with autophagy establishment. We examined the effects of stable knockdown of HIF-1α or HIF-2α expression on autophagy and drug resistance in colon cancer cells. We found that under normoxic conditions, malignant cells exhibit increased basal levels of autophagy, compared with non-malignant cells, in addition to the previously reported coexpression of HIF-1α and HIF-2α. Knockdown of HIF-1α or HIF-2α expression resulted in increased autophagic and apoptotic cell death, indicating that the survival of cells is HIF-dependent. Cytotoxic-induced cell death was significantly increased by knockdown of HIFs but not by autophagy inhibition. Strikingly, although malignancy-resistant cells were sensitized to death by nutrient stress, the combination with HIF-2α depletion, but not with HIF-1α depletion, induced severe cell death. Oxidative stress levels were significantly increased as a result of HIF-2α specific inhibition or silencing suggesting that this may contribute to sensitize cells to death. The in vitro results were confirmed in vivo using a xenograft mouse model. We found that coordinated autophagy and mTOR inhibition enhanced cell death and induced tumor remission only in HIF-2α-silenced cells. Finally, using a specific HIF-2α inhibitor alone or in combination with drugs in patient-derived primary colon cancer cells, overcame their resistance to 5-FU or CCI-779, thus emphasizing the crucial role played by HIF-2α in promoting resistance and cell survival.
Collapse
|
33
|
Wu H, Li Y, Hou Q, Zhou R, Li Z, Wu S, Yu J, Jiang M. Single‑cell intratumoral stemness analysis reveals the involvement of cell cycle and DNA damage repair in two different types of esophageal cancer. Oncol Rep 2019; 41:3201-3208. [PMID: 31002369 PMCID: PMC6489016 DOI: 10.3892/or.2019.7117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 04/05/2019] [Indexed: 12/14/2022] Open
Abstract
Intratumoral heterogeneity, particularly the potential cancer stemness of single cancer cells, has not yet been fully elucidated in human esophageal cancer. Single‑cell transcriptome sequencing of two types of esophageal adenocarcinoma (EAC) and two types of esophageal squamous cell carcinoma (ESCC) tissues was performed, and the intratumoral cancer stemness of the types of esophageal cancer were characterized at the single‑cell level in the present study. By comparing the transcriptomic profiles of single cancer cells with high and low stemness in individual patients, it was revealed that the overexpression of cell cycle‑associated genes in EAC cells was highly correlated with stemness, whereas overexpression of genes involved in the signaling pathways of DNA replication and DNA damage repair was significantly correlated with stemness in ESCC. High expression of these stemness‑associated genes was correlated with poor prognosis of patients. Additionally, poly [ADP‑ribose] polymerase(PARP)4 was identified as a novel cancer stemness‑associated gene in ESCC and its association with survival was validated in a cohort of 121 patients with ESCC. These findings have profound potential implications for the use of cell cycle inhibitors in EAC and PARP inhibitors in ESCC, which may provide novel mechanistic insights into the plasticity of esophageal cancer.
Collapse
Affiliation(s)
- Hongjin Wu
- Cancer Research Institute, Hangzhou Cancer Hospital, Hangzhou, Zhejiang 320000, P.R. China
| | - Ying Li
- Cancer Research Institute, Hangzhou Cancer Hospital, Hangzhou, Zhejiang 320000, P.R. China
| | - Qiang Hou
- Cancer Research Institute, Hangzhou Cancer Hospital, Hangzhou, Zhejiang 320000, P.R. China
| | - Rongjin Zhou
- Cancer Research Institute, Hangzhou Cancer Hospital, Hangzhou, Zhejiang 320000, P.R. China
| | - Ziwei Li
- Cancer Research Institute, Hangzhou Cancer Hospital, Hangzhou, Zhejiang 320000, P.R. China
| | - Shixiu Wu
- Cancer Research Institute, Hangzhou Cancer Hospital, Hangzhou, Zhejiang 320000, P.R. China
| | - Juehua Yu
- Yunnan Institute of Digestive Disease, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Mingfeng Jiang
- Cancer Research Institute, Hangzhou Cancer Hospital, Hangzhou, Zhejiang 320000, P.R. China
| |
Collapse
|
34
|
Kim YS, Gong X, Rubin LP, Choi SW, Kim Y. β-Carotene 15,15'-oxygenase inhibits cancer cell stemness and metastasis by regulating differentiation-related miRNAs in human neuroblastoma. J Nutr Biochem 2019; 69:31-43. [PMID: 31048207 DOI: 10.1016/j.jnutbio.2019.03.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 02/17/2019] [Accepted: 03/14/2019] [Indexed: 10/27/2022]
Abstract
Neuroblastoma (NB) is the most common pediatric malignancy and is considered to possess cancer stem cells (CSCs) properties which can drive tumor initiation and metastasis. β-carotene 15,15'-oxygenase (BCO1) is the main enzyme that catalyzes the first step in vitamin A biosynthesis from pro-vitamin A carotenoids. Retinoids (vitamin A) play a critical role in NB differentiation. However, the biological functions of BCO1 in NB remained to be elucidated. Here, we investigated the effects of BCO1 on NB CSCs with stably expressing BCO1 in NB cells. We show that BCO1 significantly suppressed self-renewal and markers of NB CSCs. Moreover, BCO1 inhibited the metastatic potential of NB cells and suppressed the enzymatic activity and expression of MMPs, as well as expression of HIF-1α and its downstream targets. In vivo, BCO1 reduced the metastatic incidence and volumes of metastatic tumors and downregulated the expression of CSCs markers, MMPs, and HIF-1α in tumor tissues of a mouse xenograft model. A possible mechanism underlying the anti-cancer activities of BCO1 is proposed based on miRNAs sequencing array data which suggests a role for BCO1 in regulating miRNAs associated with neuronal differentiation, cell-cell adhesion, and the Wnt signaling pathway. Thus, our results demonstrate new chemotherapeutic roles for BCO1 in malignant NB that mediate suppression of cancer stemness and metastasis.
Collapse
Affiliation(s)
- Yoo Sun Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, South Korea
| | - Xiaoming Gong
- Department of Pediatrics, Texas Tech University Health Sciences Center, Paul L. Foster School of Medicine, El Paso, TX, USA
| | - Lewis P Rubin
- Georgetown University Medical Center, Washington, DC, USA
| | - Sang-Woon Choi
- Chaum Life Center CHA University, Seoul 06062, South Korea
| | - Yuri Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, South Korea.
| |
Collapse
|
35
|
Primitive Cancer Cell States: A Target for Drug Screening? Trends Pharmacol Sci 2019; 40:161-171. [DOI: 10.1016/j.tips.2019.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 12/05/2018] [Accepted: 01/07/2019] [Indexed: 12/26/2022]
|
36
|
Waker CA, Lober RM. Brain Tumors of Glial Origin. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1190:281-297. [PMID: 31760651 DOI: 10.1007/978-981-32-9636-7_18] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Gliomas are a heterogeneous group of tumors with evolving classification based on genotype. Isocitrate dehydrogenase (IDH) mutation is an early event in the formation of some diffuse gliomas, and is the best understood mechanism of their epigenetic dysregulation. Glioblastoma may evolve from lower-grade lesions with IDH mutations, or arise independently from copy number changes in platelet-derived growth factor receptor alpha (PDGFRA) and phosphatase and tensin homolog (PTEN). Several molecular subtypes of glioblastoma arise from a common proneural precursor with a tendency toward transition to a mesenchymal subtype. Following oncogenic transformation, gliomas escape growth arrest through a distinct step of aberrant telomere reverse transcriptase (TERT) expression, or mutations in either alpha thalassemia/mental retardation syndrome (ATRX) or death-domain associated protein (DAXX) genes. Metabolic reprogramming allows gliomas to thrive in harsh microenvironments such as hypoxia, acidity, and nutrient depletion, which contribute to tumor initiation, maintenance, and treatment resistance.
Collapse
Affiliation(s)
- Christopher A Waker
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH, USA.,Department of Neurosurgery, Dayton Children's Hospital, One Children's Plaza, Dayton, OH, USA
| | - Robert M Lober
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH, USA. .,Department of Neurosurgery, Dayton Children's Hospital, One Children's Plaza, Dayton, OH, USA. .,Department of Pediatrics, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA.
| |
Collapse
|
37
|
Yu LY, Shen YA, Chen MH, Wen YH, Hsieh PI, Lo CL. The feasibility of ROS- and GSH-responsive micelles for treating tumor-initiating and metastatic cancer stem cells. J Mater Chem B 2019. [DOI: 10.1039/c8tb02958j] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In this study, stimuli-responsive micelles were prepared to evaluate the effect of micellar composition on cancer stem cells.
Collapse
Affiliation(s)
- Lu-Yi Yu
- Department of Biomedical Engineering
- National Yang-Ming University
- Taipei 112
- Republic of China
| | - Yao-An Shen
- Department of Pathology and Sidney Kimmel Comprehensive Cancer Center
- Johns Hopkins Medical Institutions
- Baltimore
- USA
| | - Ming-Hung Chen
- Department of Biomedical Engineering
- National Yang-Ming University
- Taipei 112
- Republic of China
| | - Yu-Han Wen
- Department of Biomedical Engineering
- National Yang-Ming University
- Taipei 112
- Republic of China
| | - Po-I Hsieh
- Department of Biomedical Engineering
- National Yang-Ming University
- Taipei 112
- Republic of China
| | - Chun-Liang Lo
- Department of Biomedical Engineering
- National Yang-Ming University
- Taipei 112
- Republic of China
- Center for Advanced Pharmaceutics and Drug Delivery Research
| |
Collapse
|
38
|
The Crosstalk between Cancer Stem Cells and Microenvironment Is Critical for Solid Tumor Progression: The Significant Contribution of Extracellular Vesicles. Stem Cells Int 2018; 2018:6392198. [PMID: 30532788 PMCID: PMC6247433 DOI: 10.1155/2018/6392198] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/02/2018] [Accepted: 10/11/2018] [Indexed: 12/12/2022] Open
Abstract
Several evidences nowadays demonstrated the critical role of the microenvironment in regulating cancer stem cells and their involvement in tumor progression. Extracellular vesicles (EVs) are considered as one of the most effective vehicles of information among cells. Accordingly, a number of studies led to the recognition of stem cell-associated EVs as new complexes able to contribute to cell fate determination of either normal or tumor cells. In this review, we aim to highlight an existing bidirectional role of EV-mediated communication—from cancer stem cells to microenvironment and also from microenvironment to cancer stem cells—in the most widespread solid cancers as prostate, breast, lung, and colon tumors.
Collapse
|
39
|
A Novel Mutation in Brain Tumor Causes Both Neural Over-Proliferation and Neurodegeneration in Adult Drosophila. G3-GENES GENOMES GENETICS 2018; 8:3331-3346. [PMID: 30126833 PMCID: PMC6169379 DOI: 10.1534/g3.118.200627] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A screen for neuroprotective genes in Drosophila melanogaster led to the identification of a mutation that causes extreme, progressive loss of adult brain neuropil in conjunction with massive brain overgrowth. We mapped the mutation to the brain tumor (brat) locus, which encodes a tripartite motif-NCL-1, HT2A, and LIN-41 (TRIM-NHL) RNA-binding protein with established roles limiting stem cell proliferation in developing brain and ovary. However, a neuroprotective role for brat in the adult Drosophila brain has not been described previously. The new allele, bratcheesehead (bratchs), carries a mutation in the coiled-coil domain of the TRIM motif, and is temperature-sensitive. We demonstrate that mRNA and protein levels of neural stem cell genes are increased in heads of adult bratchs mutants and that the over-proliferation phenotype initiates prior to adult eclosion. We also report that disruption of an uncharacterized gene coding for a presumptive prolyl-4-hydroxylase strongly enhances the over-proliferation and neurodegeneration phenotypes. Together, our results reveal an unexpected role for brat that could be relevant to human cancer and neurodegenerative diseases.
Collapse
|
40
|
Hypoxia Induces the Acquisition of Cancer Stem-like Phenotype Via Upregulation and Activation of Signal Transducer and Activator of Transcription-3 (STAT3) in MDA-MB-231, a Triple Negative Breast Cancer Cell Line. CANCER MICROENVIRONMENT 2018; 11:141-152. [PMID: 30255421 DOI: 10.1007/s12307-018-0218-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 09/13/2018] [Indexed: 01/01/2023]
Abstract
The finding that hypoxia can induce cancer stemness in various experimental models is in agreement with the conceptual basis of cancer cell plasticity. Here, we aimed to gain insights into the molecular basis of hypoxia-induced cancer cell plasticity in triple negative breast cancer (TNBC). To achieve this goal, we employed our previously published in-vitro model of TNBC, in which a small subset of stem-like cells can be distinguished from the bulk cell population based on their responsiveness to a Sox2 reporter. In MDA-MB-231, a TNBC cell line, we observed that hypoxia significantly increased the expression of luciferase and green fluorescence protein (GFP), the readouts of the Sox2 reporter. Upon hypoxic challenge, the bulk, reporter unresponsive (RU) cells acquired stem-like features, as evidenced by the significant increases in the proportion of CD44high/CD24low cells, colony formation and resistance to cisplatin. Correlating with these phenotypic changes, RU cells exposed to hypoxia exhibited a substantial upregulation of the active/phosphorylated form of STAT3 (pSTAT3). This hypoxia-induced activation of STAT3 correlated with increased STAT3 transcriptional activity, as evidenced by increased STAT3-DNA binding and an altered gene expression profile. This hypoxia-induced STAT3 activation is biologically significant, since siRNA knockdown of STAT3 in RU cells significantly attenuated the hypoxia-induced acquisition of Sox2 activity and stem-like phenotypic features. In conclusion, our data have provided the proof-of-concept that STAT3 is a critical mediator in promoting the hypoxia-induced acquisition of cancer stemness in TNBC. Targeting STAT3 in TNBC may be useful in overcoming chemoresistance and decreasing the risk of disease relapse.
Collapse
|
41
|
Mehrabi M, Amini F, Mehrabi S. Active Role of the Necrotic Zone in Desensitization of Hypoxic Macrophages and Regulation of CSC-Fate: A hypothesis. Front Oncol 2018; 8:235. [PMID: 29988496 PMCID: PMC6026632 DOI: 10.3389/fonc.2018.00235] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 06/11/2018] [Indexed: 01/30/2023] Open
Abstract
Fast-proliferating cancer cells in the hypoxic region face a shortage of oxygen and nutrients, undergo necrotic cell death, and release numerous signaling components. Hypoxia-induced chemo-attractants signal for macrophages/monocytes to clear debris and return the system to steady state. Accordingly, macrophages arrange into pre-necrotic positions, where they are continuously exposed to stress signals. It can thus be hypothesized that gradual alteration of gene expression in macrophages eventually turns off their phagocytic machinery. Uncleared cell corpses within the hypoxic region potentially provide a rich source of building blocks for anaerobic metabolism of cancer stem cells via macropinocytosis, and are conceivably implicated in tumor progression and invasion.
Collapse
Affiliation(s)
| | - Fatemeh Amini
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom
| | - Shima Mehrabi
- Internal Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
42
|
Kim H, Lin Q, Glazer PM, Yun Z. The hypoxic tumor microenvironment in vivo selects the cancer stem cell fate of breast cancer cells. Breast Cancer Res 2018; 20:16. [PMID: 29510720 PMCID: PMC5840770 DOI: 10.1186/s13058-018-0944-8] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 02/19/2018] [Indexed: 12/23/2022] Open
Abstract
Background Tumor hypoxia is an independent prognostic factor associated with poor patient survival. Emerging evidence suggests that hypoxia can potentially maintain or enhance the stem cell phenotype of both normal stem cells and cancer cells. However, it remains to be determined whether cell fate is regulated in vivo by the hypoxic tumor microenvironment (TME). Methods We established a hypoxia-sensing xenograft model to identify hypoxic tumor cell in vivo primarily using human breast cancer cell lines MDA-MB-231 and MCF7. Hypoxic tumor cells were identified in situ by fluorescence of green fluorescence protein. They were further isolated from xenografts, purified and sorted by flow cytometry for detailed analysis of their stem cell characteristics. Results We have found that hypoxic tumor cells freshly isolated from xenografts contain increased subpopulations of tumor cells with cancer stem cell (CSC)-like characteristics. The CSC characteristics of the hypoxic tumor cells are further enhanced upon re-implantation in vivo, whereas secondary xenografts derived from the non-hypoxic tumor cells remain similar to the primary xenografts. Interestingly, the phenotypes exhibited by the hypoxic tumor cells are stable and remain distinctively different from those of the non-hypoxic tumor cells isolated from the same tumor mass even when they are maintained under the same ambient culture conditions. Mechanistically, the PI3K/AKT pathway is strongly potentiated in the hypoxic tumor cells and is required to maintain the CSC-like phenotype. Importantly, the differential cell fates between hypoxic and non-hypoxic tumor cells are only found in tumor cells isolated from the hypoxic TME in vivo and are not seen in tumor cells treated by hypoxia in vitro alone. Conclusions These previously unknown observations suggest that the hypoxic TME may promote malignant progression and therapy resistance by coordinating induction, selection and/or preferential maintenance of the CSC-like phenotype in tumor cells. Electronic supplementary material The online version of this article (10.1186/s13058-018-0944-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hoon Kim
- Department of Therapeutic Radiology, Yale University School of Medicine, P. O. Box 208040, New Haven, CT, 06520-8040, USA
| | - Qun Lin
- Department of Therapeutic Radiology, Yale University School of Medicine, P. O. Box 208040, New Haven, CT, 06520-8040, USA
| | - Peter M Glazer
- Department of Therapeutic Radiology, Yale University School of Medicine, P. O. Box 208040, New Haven, CT, 06520-8040, USA
| | - Zhong Yun
- Department of Therapeutic Radiology, Yale University School of Medicine, P. O. Box 208040, New Haven, CT, 06520-8040, USA.
| |
Collapse
|
43
|
Almiron Bonnin DA, Havrda MC, Lee MC, Liu H, Zhang Z, Nguyen LN, Harrington LX, Hassanpour S, Cheng C, Israel MA. Secretion-mediated STAT3 activation promotes self-renewal of glioma stem-like cells during hypoxia. Oncogene 2018; 37:1107-1118. [PMID: 29155422 PMCID: PMC5851110 DOI: 10.1038/onc.2017.404] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/25/2017] [Accepted: 09/19/2017] [Indexed: 02/08/2023]
Abstract
High-grade gliomas (HGGs) include the most common and the most aggressive primary brain tumor of adults and children. Despite multimodality treatment, most high-grade gliomas eventually recur and are ultimately incurable. Several studies suggest that the initiation, progression, and recurrence of gliomas are driven, at least partly, by cancer stem-like cells. A defining characteristic of these cancer stem-like cells is their capacity to self-renew. We have identified a hypoxia-induced pathway that utilizes the Hypoxia Inducible Factor 1α (HIF-1α) transcription factor and the JAK1/2-STAT3 (Janus Kinase 1/2 - Signal Transducer and Activator of Transcription 3) axis to enhance the self-renewal of glioma stem-like cells. Hypoxia is a commonly found pathologic feature of HGGs. Under hypoxic conditions, HIF-1α levels are greatly increased in glioma stem-like cells. Increased HIF-1α activates the JAK1/2-STAT3 axis and enhances tumor stem-like cell self-renewal. Our data further demonstrate the importance of Vascular Endothelial Growth Factor (VEGF) secretion for this pathway of hypoxia-mediated self-renewal. Brefeldin A and EHT-1864, agents that significantly inhibit VEGF secretion, decreased stem cell self-renewal, inhibited tumor growth, and increased the survival of mice allografted with S100β-v-erbB/p53-/- glioma stem-like cells. These agents also inhibit the expression of a hypoxia gene expression signature that is associated with decreased survival of HGG patients. These findings suggest that targeting the secretion of extracellular, autocrine/paracrine mediators of glioma stem-like cell self-renewal could potentially contribute to the treatment of HGGs.
Collapse
Affiliation(s)
- D A Almiron Bonnin
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - M C Havrda
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - M C Lee
- Department of Biology, Dartmouth College, Hanover, NH, USA
| | - H Liu
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Z Zhang
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - L N Nguyen
- Department of Pathology and Laboratory Medicine, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - L X Harrington
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - S Hassanpour
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - C Cheng
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - M A Israel
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
- Departments of Medicine and Pediatrics, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| |
Collapse
|
44
|
Leung CON, Mak WN, Kai AKL, Chan KS, Lee TKW, Ng IOL, Lo RCL. Sox9 confers stemness properties in hepatocellular carcinoma through Frizzled-7 mediated Wnt/β-catenin signaling. Oncotarget 2017; 7:29371-86. [PMID: 27105493 PMCID: PMC5045402 DOI: 10.18632/oncotarget.8835] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 03/29/2016] [Indexed: 01/01/2023] Open
Abstract
Sox9, an SRY-related HMG box transcription factor, is a progenitor/precursor cell marker of the liver expressed during embryogenesis and following liver injury. In this study, we investigated the role of Sox9 and its molecular mechanism with reference to stemness properties in hepatocellular carcinoma (HCC). Here, we observed upregulation of Sox9 in human HCC tissues compared with the non-tumorous liver counterparts (p < 0.001). Upregulation of Sox9 transcript level was associated with poorer tumor cell differentiation (p = 0.003), venous invasion (p = 0.026), advanced tumor stage (p = 0.044) and shorter overall survival (p = 0.042). Transcript levels of Sox9 and CD24 were positively correlated. Silencing of Sox9 in HCC cells inhibited in vitro cell proliferation and tumorsphere formation, sensitized HCC cells to chemotherapeutic agents, and suppressed in vivo tumorigenicity. In addition, knockdown of Sox9 suppressed HCC cell migration, invasion, and in vivo lung metastasis. Further studies showed that Sox9 endowed stemness features through activation of Wnt/β-catenin signaling, which was confirmed by the partial rescue effect on tumorigenicity and self-renewal upon transfection of active β-catenin in Sox9 knockdown cells. By ChIP and luciferase promoter assays, Frizzled-7 was identified to be the direct transcriptional target of Sox9. In conclusion, Sox9 confers stemness properties of HCC through Frizzled-7 mediated Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Carmen Oi-Ning Leung
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Wing-Nga Mak
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Alan Ka-Lun Kai
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Kwan-Shuen Chan
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Terence Kin-Wah Lee
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong.,State Key Laboratory for Liver Research, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Irene Oi-Lin Ng
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong.,State Key Laboratory for Liver Research, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Regina Cheuk-Lam Lo
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong.,State Key Laboratory for Liver Research, The University of Hong Kong, Pok Fu Lam, Hong Kong
| |
Collapse
|
45
|
O'Callaghan C, Vassilopoulos A. Sirtuins at the crossroads of stemness, aging, and cancer. Aging Cell 2017; 16:1208-1218. [PMID: 28994177 PMCID: PMC5676072 DOI: 10.1111/acel.12685] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2017] [Indexed: 12/27/2022] Open
Abstract
Sirtuins are stress‐responsive proteins that direct various post‐translational modifications (PTMs) and as a result, are considered to be master regulators of several cellular processes. They are known to both extend lifespan and regulate spontaneous tumor development. As both aging and cancer are associated with altered stem cell function, the possibility that the involvement of sirtuins in these events is mediated by their roles in stem cells is worthy of investigation. Research to date suggests that the individual sirtuin family members can differentially regulate embryonic, hematopoietic as well as other adult stem cells in a tissue‐ and cell type‐specific context. Sirtuin‐driven regulation of both cell differentiation and signaling pathways previously involved in stem cell maintenance has been described where downstream effectors involved determine the biological outcome. Similarly, diverse roles have been reported in cancer stem cells (CSCs), depending on the tissue of origin. This review highlights the current knowledge which places sirtuins at the intersection of stem cells, aging, and cancer. By outlining the plethora of stem cell‐related roles for individual sirtuins in various contexts, our purpose was to provide an indication of their significance in relation to cancer and aging, as well as to generate a clearer picture of their therapeutic potential. Finally, we propose future directions which will contribute to the better understanding of sirtuins, thereby further unraveling the full repertoire of sirtuin functions in both normal stem cells and CSCs.
Collapse
Affiliation(s)
- Carol O'Callaghan
- Laboratory for Molecular Cancer Biology Department of Radiation Oncology Feinberg School of Medicine Northwestern University Chicago IL USA
| | - Athanassios Vassilopoulos
- Laboratory for Molecular Cancer Biology Department of Radiation Oncology Feinberg School of Medicine Northwestern University Chicago IL USA
- Robert H. Lurie Comprehensive Cancer Center Northwestern University Chicago IL USA
| |
Collapse
|
46
|
Pal B, Das B. In vitro Culture of Naïve Human Bone Marrow Mesenchymal Stem Cells: A Stemness Based Approach. Front Cell Dev Biol 2017; 5:69. [PMID: 28884113 PMCID: PMC5572382 DOI: 10.3389/fcell.2017.00069] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 07/28/2017] [Indexed: 12/11/2022] Open
Abstract
Human bone marrow derived mesenchymal stem cells (BM-MSCs) resides in their niches in close proximity to hematopoietic stem cells (HSCs). These naïve MSCs have tremendous potential in regenerative therapeutics, and may also be exploited by cancer and infectious disease agents. Hence, it is important to study the physiological and pathological roles of naïve MSC. However, our knowledge of naïve MSCs is limited by lack of appropriate isolation and in vitro culture methods. Established culture methods use serum rich media, and serial passaging for retrospective isolation of MSCs. These primed MSCs may not reflect the true physiological and pathological roles of naive MSCs (Figure 1). Therefore, there is a strong need for direct isolation and in vitro culture of naïve MSCs to study their stemness (self-renewal and undifferentiated state) and developmental ontogeny. We have taken a niche-based approach on stemness to better maintain naïve MSCs in vitro. In this approach, stemness is broadly divided as niche dependent (extrinsic), niche independent (intrinsic) and niche modulatory (altruistic or competitive). Using this approach, we were able to maintain naïve CD271+/CD133+ BM-MSCs for 2 weeks. Furthermore, this in vitro culture system helped us to identify naïve MSCs as a protective niche site for Mycobacterium tuberculosis, the causative organism of pulmonary tuberculosis. In this review, we discuss the in vitro culture of primed vs. naïve human BM derived MSCs with a special focus on how a stemness based approach could facilitate the study of naïve BM-MSCs.
Collapse
Affiliation(s)
- Bidisha Pal
- Department of Immunology and Infectious Diseases, The Forsyth InstituteCambridge, MA, United States
- Department of Stem Cell Biology, KaviKrishna Laboratory, Guwahati Biotech Park, Indian Institute of TechnologyGuwahati, India
| | - Bikul Das
- Department of Immunology and Infectious Diseases, The Forsyth InstituteCambridge, MA, United States
- Department of Stem Cell Biology, KaviKrishna Laboratory, Guwahati Biotech Park, Indian Institute of TechnologyGuwahati, India
| |
Collapse
|
47
|
Arun RP, Sivanesan D, Vidyasekar P, Verma RS. PTEN/FOXO3/AKT pathway regulates cell death and mediates morphogenetic differentiation of Colorectal Cancer Cells under Simulated Microgravity. Sci Rep 2017; 7:5952. [PMID: 28729699 PMCID: PMC5519599 DOI: 10.1038/s41598-017-06416-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 06/13/2017] [Indexed: 02/08/2023] Open
Abstract
Gravity is a major physical factor determining the stress and strain around cells. Both in space experiments and ground simulation, change in gravity impacts the viability and function of various types of cells as well as in vivo conditions. Cancer cells have been shown to die under microgravity. This can be exploited for better understanding of the biology and identification of novel avenues for therapeutic intervention. Here, we described the effect of microgravity simulated using Rotational Cell Culture System-High Aspect Ratio Vessel (RCCS-HARV) on the viability and morphological changes of colorectal cancer cells. We observed DLD1, HCT116 and SW620 cells die through apoptosis under simulated microgravity (SM). Gene expression analysis on DLD1 cells showed upregulation of tumor suppressors PTEN and FOXO3; leading to AKT downregulation and further induction of apoptosis, through upregulation of CDK inhibitors CDKN2B, CDKN2D. SM induced cell clumps had elevated hypoxia and mitochondrial membrane potential that led to adaptive responses like morphogenetic changes, migration and deregulated autophagy, when shifted to normal culture conditions. This can be exploited to understand the three-dimensional (3D) biology of cancer in the aspect of stress response. This study highlights the regulation of cell function and viability under microgravity through PTEN/FOXO3/AKT pathway.
Collapse
Affiliation(s)
- Raj Pranap Arun
- Stem Cell and Molecular Biology Laboratory, Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Divya Sivanesan
- Stem Cell and Molecular Biology Laboratory, Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, 600036, India
| | | | - Rama Shanker Verma
- Stem Cell and Molecular Biology Laboratory, Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, 600036, India.
| |
Collapse
|
48
|
Yang MY, Chang CJ, Chen LY. Blue light induced reactive oxygen species from flavin mononucleotide and flavin adenine dinucleotide on lethality of HeLa cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017. [PMID: 28633062 DOI: 10.1016/j.jphotobiol.2017.06.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Photodynamic therapy (PDT) is a safe and non-invasive treatment for cancers and microbial infections. Various photosensitizers and light sources have been developed for clinical cancer therapies. Flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) are the cofactor of enzymes and are used as photosensitizers in this study. Targeting hypoxia and light-triggering reactive oxygen species (ROS) are experimental strategies for poisoning tumor cells in vitro. HeLa cells are committed to apoptosis when treated with FMN or FAD and exposed to visible blue light (the maximum emitted wavelength of blue light is 462nm). Under blue light irradiation at 3.744J/cm2 (=0.52mW/cm2 irradiated for 2h), the minimal lethal dose is 3.125μM and the median lethal doses (LD50) for FMN and FAD are 6.5μM and 7.2μM, respectively. Individual exposure to visible blue light irradiation or riboflavin photosensitizers does not produce cytotoxicity and no side effects are observed in this study. The western blotting results also show that an intrinsic apoptosis pathway is activated by the ROS during photolysis of riboflavin analogues. Blue light triggers the cytotoxicity of riboflavins on HeLa cells in vitro. Based on these results, this is a feasible and efficient of PDT with an intrinsic photosensitizer for cancer research.
Collapse
Affiliation(s)
- Ming-Yeh Yang
- Institute of Medical Sciences, Tzu-Chi University, Hualien 970, Taiwan; Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien 970, Taiwan
| | - Chih-Jui Chang
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien 970, Taiwan
| | - Liang-Yü Chen
- Department of Biotechnology, Ming-Chuan University, Gui-Shan 333, Taiwan.
| |
Collapse
|
49
|
Vadde R, Vemula S, Jinka R, Merchant N, Bramhachari PV, Nagaraju GP. Role of hypoxia-inducible factors (HIF) in the maintenance of stemness and malignancy of colorectal cancer. Crit Rev Oncol Hematol 2017; 113:22-27. [DOI: 10.1016/j.critrevonc.2017.02.025] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Indexed: 01/09/2023] Open
|
50
|
Ebelt ND, Manuel ER. Utilizing Salmonella to treat solid malignancies. J Surg Oncol 2017; 116:75-82. [PMID: 28420039 DOI: 10.1002/jso.24644] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 03/22/2017] [Indexed: 12/18/2022]
Abstract
Despite intensive research into novel treatment strategies for cancer, it remains the second most common cause of death in industrialized populations. Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive disease with dismal prognosis. Currently, surgical resection offers the best chance for extended survival, yet recurrence remains high and is associated with poor outcome. Systemic treatment has evolved from non-specific, cytotoxic chemotherapy to the use of cancer-targeting agents, profoundly changing treatment approaches in the metastatic and adjuvant settings. One promising approach, highlighted in this review, uses the inherent capacity of Salmonella to colonize and eliminate solid tumors.
Collapse
Affiliation(s)
- Nancy D Ebelt
- Department of Experimental Therapeutics, Beckman Research Institute of City of Hope, Duarte, California
| | - Edwin R Manuel
- Department of Experimental Therapeutics, Beckman Research Institute of City of Hope, Duarte, California
| |
Collapse
|