1
|
Baek K. The Dual Role of Survival Genes in Neurons and Cancer Cells: a Strategic Clinical Application of DX2 in Neurodegenerative Diseases and Cancer. Biomol Ther (Seoul) 2025; 33:75-85. [PMID: 39711064 PMCID: PMC11704411 DOI: 10.4062/biomolther.2024.138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/17/2024] [Accepted: 10/30/2024] [Indexed: 12/24/2024] Open
Abstract
In cancer cells, survival genes contribute to uncontrolled growth and the survival of malignant cells, leading to tumor progression. Neurons are post-mitotic cells, fully differentiated and non-dividing after neurogenesis and survival genes are essential for cellular longevity and proper functioning of the nervous system. This review explores recent research findings regarding the role of survival genes, particularly DX2, in degenerative neuronal tissue cells and cancer cells. Survival gene DX2, an exon 2-deleted splice variant of AIMP2 (aminoacyl-tRNA synthetase-interacting multi-functional protein 2), was found to be overexpressed in various cancer types. The potential of DX2 inhibitors as an anti-cancer drug arises from its unique ability to interact with various oncoproteins, such as KRAS and HSP70. Meanwhile, AIMP2 has been reported as a multifunctional cell death-inducing gene, and survival gene DX2 directly and indirectly inhibits AIMP2-induced cell death. DX2 plays multifaceted survival roles in degenerating neurons via various signaling pathways, including PARP 1, TRAF2, and p53 pathways. It is noteworthy that genes that were previously classified as oncogenes, such as AKT and XBP1, are now being considered as curative transgenes for targeting neurodegenerative diseases. A strategic direction for clinical application of survival genes in neurodegenerative disease and in cancer is justified.
Collapse
Affiliation(s)
- Kyunghwa Baek
- Department of Pharmacology, College of Dentistry and Research Institute of Oral Science, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
- Generoath Ltd, Seoul 04168, Republic of Korea
| |
Collapse
|
2
|
Cardoso S, Carvalho C, Correia SC, Moreira PI. Protective effects of 2,4-dinitrophenol in okadaic acid-induced cellular model of Alzheimer's disease. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167222. [PMID: 38729530 DOI: 10.1016/j.bbadis.2024.167222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/28/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
Alzheimer's disease (AD) research started several decades ago and despite the many efforts employed to develop new treatments or approaches to slow and/or revert disease progression, AD treatment remains an unsolved issue. Knowing that mitochondria loss of function is a central hub for many AD-associated pathophysiological processes, there has been renewed interest in exploring mitochondria as targets for intervention. In this perspective, the present study was aimed to investigate the possible beneficial effects of 2,4 dinitrophenol (DNP), a mitochondrial uncoupler agent, in an in vitro model of AD. Retinoic acid-induced differentiated SH-SY5Y cells were incubated with okadaic acid (OA), a neurotoxin often used as an AD experimental model, and/or with DNP. OA caused a decrease in neuronal cells viability, induced multiple mitochondrial anomalies including increased levels of reactive oxygen species, decreased bioenergetics and mitochondria content markers, and an altered mitochondria morphology. OA-treated cells also presented increased lipid peroxidation levels, and overactivation of tau related kinases (GSK3β, ERK1/2 and AMPK) alongside with a significant augment in tau protein phosphorylation levels. Interestingly, DNP co-treatment ameliorated and rescued OA-induced detrimental effects not only on mitochondria but also but also reinstated signaling pathways homeostasis and ameliorated tau pathology. Overall, our results show for the first time that DNP has the potential to preserve mitochondria homeostasis under a toxic insult, like OA exposure, as well as to reestablish cellular signaling homeostasis. These observations foster the idea that DNP, as a mitochondrial modulator, might represent a new avenue for treatment of AD.
Collapse
Affiliation(s)
- Susana Cardoso
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; IIIU - Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal.
| | - Cristina Carvalho
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; IIIU - Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Sónia C Correia
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; IIIU - Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Paula I Moreira
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; Institute of Physiology, Faculty of Medicine, University of Coimbra, 3000-370 Coimbra, Portugal
| |
Collapse
|
3
|
Nguyen-Thi PT, Vo TK, Pham THT, Nguyen TT, Van Vo G. Natural flavonoids as potential therapeutics in the management of Alzheimer's disease: a review. 3 Biotech 2024; 14:68. [PMID: 38357675 PMCID: PMC10861420 DOI: 10.1007/s13205-024-03925-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/05/2024] [Indexed: 02/16/2024] Open
Abstract
Alzheimer's disease (AD) is an age-dependent neurodegenerative disorder which is associated with the accumulation of proteotoxic Aβ peptides, and pathologically characterized by the deposition of Aβ-enriched plaques and neurofibrillary tangles. Given the social and economic burden caused by the rising frequency of AD, there is an urgent need for the development of appropriate therapeutics. Natural compounds are gaining popularity as alternatives to synthetic drugs due to their neuroprotective properties and higher biocompatibility. While natural compound's therapeutic effects for AD have been recently investigated in numerous in vitro and in vivo studies, only few have developed to clinical trials. The present review aims to provide a brief overview of the therapeutic effects, new insights, and upcoming perspectives of the preclinical and clinical trials of flavonoids for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
| | - Tuong Kha Vo
- Department of Sports Medicine, Faculty of Medicine, VNU University of Medicine and Pharmacy, Vietnam National University, Hanoi, 100000 Vietnam
| | - Thi Hong Trang Pham
- Institute for Global Health Innovations, Duy Tan University, Da Nang, 550000 Vietnam
- Faculty of Pharmacy, Duy Tan University, Da Nang, 550000 Vietnam
| | - Thuy Trang Nguyen
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City, 71420 Vietnam
| | - Giau Van Vo
- Department of Biomedical Engineering, School of Medicine, Vietnam National University – Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, 700000 Vietnam
- Research Center for Genetics and Reproductive Health (CGRH), School of Medicine, Vietnam National University, Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, 70000 Vietnam
- Vietnam National University – Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, 700000 Vietnam
| |
Collapse
|
4
|
Narasimhamurthy RK, Venkidesh BS, Nayak S, Reghunathan D, Mallya S, Sharan K, Rao BSS, Mumbrekar KD. Low-dose exposure to malathion and radiation results in the dysregulation of multiple neuronal processes, inducing neurotoxicity and neurodegeneration in mouse. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:1403-1418. [PMID: 38038914 PMCID: PMC10789675 DOI: 10.1007/s11356-023-31085-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/13/2023] [Indexed: 12/02/2023]
Abstract
Neurodegenerative disorders are a debilitating and persistent threat to the global elderly population, carrying grim outcomes. Their genesis is often multifactorial, with a history of prior exposure to xenobiotics such as pesticides, heavy metals, enviornmental pollutants, ionizing radiation etc,. A holistic molecular insight into their mechanistic induction upon single or combinatorial exposure to different toxicants is still unclear. In the present study, one-month-old C57BL/6 male mice were administered orally with malathion (50 mg/kg body wt. for 14 days) and single whole-body radiation (0.5 Gy) on the 8th day. Post-treatment, behavioural assays for exploratory behaviour, memory, and learning were performed. After sacrifice, brains were collected for histology, biochemical assays, and transcriptomic analysis. Transcriptomic analysis revealed several altered processes like synaptic transmission and plasticity, neuronal survival, proliferation, and death. Signalling pathways like MAPK, PI3K-Akt, Apelin, NF-κB, cAMP, Notch etc., and pathways related to neurodegenerative diseases were altered. Increased astrogliosis was observed in the radiation and coexposure groups, with significant neuronal cell death and a reduction in the expression of NeuN. Sholl analysis, dendritic arborization and spine density studies revealed decreased total apical neuronal path length and dendritic spine density. Reduced levels of the antioxidants GST and GSH and acetylcholinesterase enzyme activity were also detected. However, no changes were seen in exploratory behaviour or learning and memory post-treatment. Thus, explicating the molecular mechanisms behind malathion and radiation can provide novel insights into external factor-driven neurotoxicity and neurodegenerative pathogenesis.
Collapse
Affiliation(s)
- Rekha Koravadi Narasimhamurthy
- Department of Radiation Biology & Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Babu Santhi Venkidesh
- Department of Radiation Biology & Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Sangeetha Nayak
- Department of Radiation Biology & Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Dinesh Reghunathan
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Sandeep Mallya
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Krishna Sharan
- Department of Radiotherapy, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Bola Sadashiva Satish Rao
- Department of Radiation Biology & Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
- Directorate of Research, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Kamalesh Dattaram Mumbrekar
- Department of Radiation Biology & Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
5
|
Samanta S, Chakraborty S, Bagchi D. Pathogenesis of Neurodegenerative Diseases and the Protective Role of Natural Bioactive Components. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2024; 43:20-32. [PMID: 37186678 DOI: 10.1080/27697061.2023.2203235] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023]
Abstract
Neurodegenerative diseases are a serious problem throughout the world. There are several causes of neurodegenerative diseases; these include genetic predisposition, accumulation of misfolded proteins, oxidative stress, neuroinflammation, and excitotoxicity. Oxidative stress increases the production of reactive oxygen species (ROS) that advance lipid peroxidation, DNA damage, and neuroinflammation. The cellular antioxidant system (superoxide dismutase, catalase, peroxidase, and reduced glutathione) plays a crucial role in scavenging free radicals. An imbalance in the defensive actions of antioxidants and overproduction of ROS intensify neurodegeneration. The formation of misfolded proteins, glutamate toxicity, oxidative stress, and cytokine imbalance promote the pathogenesis of Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. Antioxidants are now attractive molecules to fight against neurodegeneration. Certain vitamins (A, E, C) and polyphenolic compounds (flavonoids) show excellent antioxidant properties. Diet is the major source of antioxidants. However, diet medicinal herbs are also rich sources of numerous flavonoids. Antioxidants prevent ROS-mediated neuronal degeneration in post-oxidative stress conditions. The present review is focused on the pathogenesis of neurodegenerative diseases and the protective role of antioxidants. KEY TEACHING POINTSThis review shows that multiple factors are directly or indirectly associated with the pathogenesis of neurodegenerative diseases.Failure to cellular antioxidant capacity increases oxidative stress that intensifies neuroinflammation and disease progression.Different vitamins, carotenoids, and flavonoids, having antioxidant capacity, can be considered protective agents.
Collapse
Affiliation(s)
- Saptadip Samanta
- Department of Physiology, Midnapore College, Midnapore, West Bengal, India
| | - Sanjoy Chakraborty
- Department of Biological Sciences, New York City College of Technology/CUNY, Brooklyn, New York, USA
| | - Debasis Bagchi
- Department of Biology, College of Arts and Sciences, Adelphi University, Garden City, New York, USA
- Department of Psychology, Gordon F. Derner School of Psychology, Adelphi University, Garden City, New York, USA
| |
Collapse
|
6
|
Singh R, Zahra W, Singh SS, Birla H, Rathore AS, Keshri PK, Dilnashin H, Singh S, Singh SP. Oleuropein confers neuroprotection against rotenone-induced model of Parkinson's disease via BDNF/CREB/Akt pathway. Sci Rep 2023; 13:2452. [PMID: 36774383 PMCID: PMC9922328 DOI: 10.1038/s41598-023-29287-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 02/01/2023] [Indexed: 02/13/2023] Open
Abstract
Major pathological features of Parkinson's disease (PD) include increase in oxidative stress leading to the aggregation of α-synuclein, mitochondrial dysfunction and apoptosis of dopaminergic neurons. In addition, downregulation of the expression of neurotrophic factors like-Brain Derived Neurotrophic Factor (BDNF) is also involved in PD progression. There has been a lot of interest in trophic factor-based neuroprotective medicines over the past few decades to treat PD symptoms. Rotenone, an insecticide, inhibits the mitochondrial complex I causing overproduction of ROS, oxidative stress, and aggregation of α-synuclein. It has been shown that BDNF and Tropomyosin receptor kinase B (TrkB) interaction initiates the regulation of neuronal cell development and differentiation by the serine/threonine protein kinases like Akt and GSK-3β. Additionally, Transcription factor CREB (cAMP Response Element-binding protein) also determines the gene expression of BDNF. The homeostasis of these signalling cascades is compromised with the progression of PD. Therefore, maintaining the equilibrium of these signalling cascades will delay the onset of PD. Oleuropein (OLE), a polyphenolic compound present in olive leaves has been documented to cross blood brain barrier and shows potent antioxidative property. In the present study, the dose of 8, 16 and 32 mg/kg body weight (bwt) OLE was taken for dose standardisation. The optimised doses of 16 and 32 mg/kg bwt was found to be neuroprotective in Rotenone induced PD mouse model. OLE improves motor impairment and upregulate CREB regulation along with phosphorylation of Akt and GSK-3β in PD mouse. In addition, OLE also reduces the mitochondrial dysfunction by activation of enzyme complexes and downregulates the proapoptotic markers in Rotenone intoxicated mouse model. Overall, our study suggests that OLE may be used as a therapeutic agent for treatment of PD by regulating BDNF/CREB/Akt signalling pathway.
Collapse
Affiliation(s)
- Richa Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Walia Zahra
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Saumitra Sen Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Hareram Birla
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Aaina Singh Rathore
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Priyanka Kumari Keshri
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Hagera Dilnashin
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Shekhar Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Surya Pratap Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India.
| |
Collapse
|
7
|
Banaras S, Paracha RZ, Nisar M, Arif A, Ahmad J, Tariq Saeed M, Mustansar Z, Shuja MN, Paracha RN. System level modeling and analysis of TNF- α mediated sphingolipid signaling pathway in neurological disorders for the prediction of therapeutic targets. Front Physiol 2022; 13:872421. [PMID: 36060699 PMCID: PMC9437628 DOI: 10.3389/fphys.2022.872421] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 07/15/2022] [Indexed: 01/09/2023] Open
Abstract
Sphingomyelin (SM) belongs to a class of lipids termed sphingolipids. The disruption in the sphingomyelin signaling pathway is associated with various neurodegenerative disorders. TNF-α, a potent pro-inflammatory cytokine generated in response to various neurological disorders like Alzheimer's disease (AD), Parkinson's disease (PD), and Multiple Sclerosis (MS), is an eminent regulator of the sphingomyelin metabolic pathway. The immune-triggered regulation of the sphingomyelin metabolic pathway via TNF-α constitutes the sphingomyelin signaling pathway. In this pathway, sphingomyelin and its downstream sphingolipids activate various signaling cascades like PI3K/AKT and MAPK/ERK pathways, thus, controlling diverse processes coupled with neuronal viability, survival, and death. The holistic analysis of the immune-triggered sphingomyelin signaling pathway is imperative to make necessary predictions about its pivotal components and for the formulation of disease-related therapeutics. The current work offers a comprehensive in silico systems analysis of TNF-α mediated sphingomyelin and downstream signaling cascades via a model-based quantitative approach. We incorporated the intensity values of genes from the microarray data of control individuals from the AD study in the input entities of the pathway model. Computational modeling and simulation of the inflammatory pathway enabled the comprehensive study of the system dynamics. Network and sensitivity analysis of the model unveiled essential interaction parameters and entities during neuroinflammation. Scanning of the key entities and parameters allowed us to determine their ultimate impact on neuronal apoptosis and survival. Moreover, the efficacy and potency of the FDA-approved drugs, namely Etanercept, Nivocasan, and Scyphostatin allowed us to study the model's response towards inhibition of the respective proteins/enzymes. The network analysis revealed the pivotal model entities with high betweenness and closeness centrality values including recruit FADD, TNFR_TRADD, act CASP2, actCASP8, actCASP3 and 9, cytochrome C, and RIP_RAIDD which profoundly impacted the neuronal apoptosis. Whereas some of the entities with high betweenness and closeness centrality values like Gi-coupled receptor, actS1PR, Sphingosine, S1P, actAKT, and actERK produced a high influence on neuronal survival. However, the current study inferred the dual role of ceramide, both on neuronal survival and apoptosis. Moreover, the drug Nivocasan effectively reduces neuronal apoptosis via its inhibitory mechanism on the caspases.
Collapse
Affiliation(s)
- Sanam Banaras
- School of Interdisciplinary Engineering and Sciences (SINES), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Rehan Zafar Paracha
- School of Interdisciplinary Engineering and Sciences (SINES), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Maryum Nisar
- School of Interdisciplinary Engineering and Sciences (SINES), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Ayesha Arif
- School of Interdisciplinary Engineering and Sciences (SINES), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Jamil Ahmad
- Computer Science and Information Technology (CS&IT), University of Malakand, Chakdara, Pakistan
| | - Muhammad Tariq Saeed
- School of Interdisciplinary Engineering and Sciences (SINES), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Zartasha Mustansar
- School of Interdisciplinary Engineering and Sciences (SINES), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | | | - Rizwan Nasir Paracha
- Department of Chemistry, University of Sargodha, Sub Campus Bhakkar, Bhakkar, Pakistan
| |
Collapse
|
8
|
Liu YJ, Cui ZY, Yang AL, Jallow AW, Huang HL, Shan CL, Lee SD. Anti-apoptotic and pro-survival effect of exercise training on early aged hypertensive rat cerebral cortex. Aging (Albany NY) 2021; 13:20495-20510. [PMID: 34432648 PMCID: PMC8436911 DOI: 10.18632/aging.203431] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 07/23/2021] [Indexed: 01/09/2023]
Abstract
The anti-apoptotic and pro-survival effects of exercise training were evaluated on the early aged hypertensive rat cerebral cortex. The brain tissues were analysed from ten sedentary male Wistar Kyoto normotensive rats (WKY), ten sedentary spontaneously 12 month early aged hypertensive rats (SHR), and ten hypertensive rats undergoing treadmill exercise training (60 min/day, 5 days/week) for 12 weeks (SHR-EX). TUNEL-positive apoptotic cells, the expression levels of endonuclease G (EndoG) and apoptosis-inducing factor (AIF) (caspase-independent apoptotic pathway), Fas ligand, Fas death receptor, tumor necrosis factor (TNF)-α, TNF receptor 1, Fas-associated death domain, active caspase-8 and active caspase-3 (Fas-mediated apoptotic pathways) as well as t-Bid, Bax, Bak, Bad, cytochrome c, active caspase 9 and active caspase-3 (mitochondria-mediated apoptotic pathways) were reduced in SHR-EX compared with SHR. Pro-survival Bcl2, Bcl-xL, p-Bad, 14-3-3, insulin-like growth factor (IGF)-1, pPI3K/PI3K, and pAKT/AKT were significantly increased in SHR-EX compared to those in SHR. Exercise training suppressed neural EndoG/AIF-related caspase-independent, Fas/FasL-mediated caspase-dependent, mitochondria-mediated caspase-dependent apoptotic pathways as well as enhanced Bcl-2 family-related and IGF-1-related pro-survival pathways in the early aged hypertensive cerebral cortex. These findings indicated new therapeutic effects of exercise training on preventing early aged hypertension-induced neural apoptosis in cerebral cortex.
Collapse
Affiliation(s)
- Yi-Jie Liu
- School of Rehabilitation Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Rehabilitation Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhen-Yang Cui
- School of Rehabilitation Medicine, Weifang Medical University, Shandong, China
| | - Ai-Lun Yang
- Institute of Sports Sciences, University of Taipei, Taipei, Taiwan
| | - Amadou W Jallow
- Department of Medical Laboratory and Biotechnology, Asia University, Taichung, Taiwan
| | - Hai-Liang Huang
- College of Rehabilitation, Shandong University of Traditional Chinese Medicine, Shandong, China
| | - Chun-Lei Shan
- School of Rehabilitation Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Rehabilitation Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shin-Da Lee
- School of Rehabilitation Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,School of Rehabilitation Medicine, Weifang Medical University, Shandong, China.,Department of Medical Laboratory and Biotechnology, Asia University, Taichung, Taiwan.,Department of Physical Therapy, Graduate Institute of Rehabilitation Science, China Medical University, Taichung, Taiwan.,Department of Physical Therapy, Asia University, Taichung, Taiwan
| |
Collapse
|
9
|
Islam T, Madhubala D, Mukhopadhyay R, Mukherjee AK. Transcriptomic and functional proteomics analyses to unveil the common and unique pathway(s) of neuritogenesis induced by Russell's viper venom nerve growth factor in rat pheochromocytoma neuronal cells. Expert Rev Proteomics 2021; 18:463-481. [PMID: 34110968 DOI: 10.1080/14789450.2021.1941892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/09/2021] [Indexed: 10/21/2022]
Abstract
Background: The snake venom nerve growth factor (NGF)-induced signal transduction mechanism has never been explored.Research design and methods: Homology modeling and molecular dynamic studies of the interaction between Russell's viper venom NGF (RVV-NGFa) and mammalian tropomyosin-receptor kinase A (TrkA) was done by computational analysis. Transcriptomic and quantitative tandem mass spectrometry analyses determined the expression of intracellular genes and proteins, respectively, in RVV-NGFa-treated PC-12 neuronal cells. Small synthetic inhibitors of the signal transduction pathways were used to validate the major signaling cascades of neuritogenesis by RVV-NGFa.Results: A comparative computational analysis predicted the binding of RVV-NGFa, mouse 2.5S-NGF (conventional neurotrophin), and Nn-α-elapitoxin-1 (non-conventional neurotrophin) to different domains of the TrkA receptor in PC-12 cells. The transcriptomic and quantitative proteomic analyses in unison showed differential expressions of common and unique genes and intracellular proteins, respectively, in RVV-NGFa-treated cells compared to control (untreated) mouse 2.5S-NGF and Nn-α-elapitoxin-1-treated PC-12 cells. The RVV-NGFa primarily triggered the mitogen-activated protein kinase-1 (MAPK1) signaling pathway for inducing neuritogenesis; however, 36 pathways of neuritogenesis were uniquely expressed in RVV-NGFa-treated PC-12 cells compared to mouse 2.5S NGF or Nn-α-elapitoxin-1 treated cells.Conclusion: The common and unique intracellular signaling pathways of neuritogenesis by classical and non-classical neurotrophins were identified.
Collapse
Affiliation(s)
- Taufikul Islam
- Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur, Assam, India
| | - Dev Madhubala
- Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur, Assam, India
| | - Rupak Mukhopadhyay
- Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur, Assam, India
| | - Ashis K Mukherjee
- Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur, Assam, India
- Division of Life Sciences, Institute of Advanced Study in Science and Technology, Guwahati, Assam, India
| |
Collapse
|
10
|
Yuan LJ, Zhang M, Chen S, Chen WF. Anti-inflammatory effect of IGF-1 is mediated by IGF-1R cross talk with GPER in MPTP/MPP +-induced astrocyte activation. Mol Cell Endocrinol 2021; 519:111053. [PMID: 33035625 DOI: 10.1016/j.mce.2020.111053] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 10/02/2020] [Accepted: 10/04/2020] [Indexed: 12/17/2022]
Abstract
Insulin-like growth factor-1 (IGF-1) is a potent neuroprotective polypeptide that exerts neuroprotective effects via the IGF-1 receptor (IGF-1R). Our previous study reported that G protein-coupled estrogen receptor (GPER) was involved in the anti-apoptotic effect of IGF-1. The present study was designed to investigate the anti-inflammatory effect of IGF-1 in association with astrocyte activation and the molecular details of the interaction between IGF-1R and GPER. We showed that IGF-1 could improve 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced motor deficits and attenuate the upregulation of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) both in vivo and in vitro. The IGF-1R antagonist JB-1 and the GPER antagonist G15 could antagonize the anti-inflammatory effect of IGF-1. Silencing GPER abrogated the inhibitory effect of IGF-1 on 1-methyl-4-phenylpyridinium (MPP+)-induced upregulation of COX-2 and iNOS in primary astrocytes. Moreover, the MPP + -induced inflammatory response was related to the activation of mitogen-activated protein kinases (MAPKs) and NF-κB signaling pathways. The inhibitory effects of IGF-1 on the phosphorylation of p38, JNK and IκB could be blocked by JB-1. G15 antagonized the inhibitory effects of IGF-1 on p-JNK and p-IκB, but not p-p38. Furthermore, IGF-1 treatment alone increased the expression of GPER, which was blocked by JB-1, the phosphatidylinositol 3-kinase (PI3-K) antagonist LY294002 and the MEK antagonist PD98059 in primary astrocytes. Overall, we show for the first time that GPER may contribute to the anti-inflammatory effect of IGF-1 against MPTP/MPP + -induced astrocyte activation. IGF-1 could regulate the expression of GPER via the IGF-1R/PI3-K/MAPK signaling pathway in primary astrocytes.
Collapse
MESH Headings
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine
- 1-Methyl-4-phenylpyridinium/toxicity
- Animals
- Anti-Inflammatory Agents/pharmacology
- Astrocytes/drug effects
- Astrocytes/metabolism
- Behavior, Animal
- Benzodioxoles/pharmacology
- Cells, Cultured
- Cyclooxygenase 2/genetics
- Cyclooxygenase 2/metabolism
- Humans
- Insulin-Like Growth Factor I/pharmacology
- MAP Kinase Signaling System/drug effects
- Male
- Mice, Inbred C57BL
- NF-kappa B/metabolism
- Nitric Oxide Synthase Type II/genetics
- Nitric Oxide Synthase Type II/metabolism
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphorylation/drug effects
- Quinolines/pharmacology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptor, IGF Type 1/metabolism
- Receptors, Estrogen/metabolism
- Receptors, G-Protein-Coupled/metabolism
- Substantia Nigra/metabolism
- Up-Regulation/drug effects
- Mice
Collapse
Affiliation(s)
- Liang-Jie Yuan
- Department of Physiology, Shandong Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China; School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, China
| | - Mei Zhang
- Department of Physiology, Shandong Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Su Chen
- Department of Physiology, Shandong Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Wen-Fang Chen
- Department of Physiology, Shandong Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
11
|
Briese M, Saal-Bauernschubert L, Lüningschrör P, Moradi M, Dombert B, Surrey V, Appenzeller S, Deng C, Jablonka S, Sendtner M. Loss of Tdp-43 disrupts the axonal transcriptome of motoneurons accompanied by impaired axonal translation and mitochondria function. Acta Neuropathol Commun 2020; 8:116. [PMID: 32709255 PMCID: PMC7379803 DOI: 10.1186/s40478-020-00987-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 07/04/2020] [Indexed: 01/02/2023] Open
Abstract
Protein inclusions containing the RNA-binding protein TDP-43 are a pathological hallmark of amyotrophic lateral sclerosis and other neurodegenerative disorders. The loss of TDP-43 function that is associated with these inclusions affects post-transcriptional processing of RNAs in multiple ways including pre-mRNA splicing, nucleocytoplasmic transport, modulation of mRNA stability and translation. In contrast, less is known about the role of TDP-43 in axonal RNA metabolism in motoneurons. Here we show that depletion of Tdp-43 in primary motoneurons affects axon growth. This defect is accompanied by subcellular transcriptome alterations in the axonal and somatodendritic compartment. The axonal localization of transcripts encoding components of the cytoskeleton, the translational machinery and transcripts involved in mitochondrial energy metabolism were particularly affected by loss of Tdp-43. Accordingly, we observed reduced protein synthesis and disturbed mitochondrial functions in axons of Tdp-43-depleted motoneurons. Treatment with nicotinamide rescued the axon growth defect associated with loss of Tdp-43. These results show that Tdp-43 depletion in motoneurons affects several pathways integral to axon health indicating that loss of TDP-43 function could thus make a major contribution to axonal pathomechanisms in ALS.
Collapse
|
12
|
Park DJ, Kang JB, Shah FA, Koh PO. Resveratrol modulates the Akt/GSK-3β signaling pathway in a middle cerebral artery occlusion animal model. Lab Anim Res 2019; 35:18. [PMID: 32257906 PMCID: PMC7081686 DOI: 10.1186/s42826-019-0019-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 09/25/2019] [Indexed: 12/22/2022] Open
Abstract
Cerebral ischemia is a major cause of neurodegenerative disease. It induces neuronal vulnerability and susceptibility, and leads to neuronal cell death. Resveratrol is a polyphenolic compound that acts as an anti-oxidant. It exerts a neuroprotective effect against focal cerebral ischemic injury. Akt signaling pathway is accepted as a representative cell survival pathway, including proliferation, growth, and glycogen synthesis. This study investigated whether resveratrol regulates Akt/glycogen synthase kinase-3β (GSK-3β) pathway in a middle cerebral artery occlusion (MCAO)-induced ischemic brain injury. Adult male rats were intraperitoneally injected with vehicle or resveratrol (30 mg/kg) and cerebral cortices were isolated 24 h after MCAO. Neurological behavior test, corner test, brain edema measurment, and 2,3,5-triphenyltetrazolium chloride staining were performed to elucidate the neuroprotective effects of resveratrol. Phospho-Akt and phospho-GSK-3β expression levels were measured using Western blot analysis. MCAO injury led to severe neurobehavioral deficit, infraction, and histopathological changes in cerebral cortex. However, resveratrol treatment alleviated these changes caused by MCAO injury. Moreover, MCAO injury induced decreases in phospho-Akt and phospho-GSK-3β protein levels, whereas resveratrol attenuated these decreases. Phosphorylations of Akt and GSK-3β act as a critical role for the suppression of apoptotic cell death. Thus, our finding suggests that resveratrol attenuates neuronal cell death in MCAO-induced cerebral ischemia and Akt/GSK-3β signaling pathway contributes to the neuroprotective effect of resveratrol.
Collapse
Affiliation(s)
- Dong-Ju Park
- Department of Anatomy, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828 South Korea
| | - Ju-Bin Kang
- Department of Anatomy, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828 South Korea
| | - Fawad-Ali Shah
- Department of Anatomy, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828 South Korea
| | - Phil-Ok Koh
- Department of Anatomy, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828 South Korea
| |
Collapse
|
13
|
Pardo E, Barake F, Godoy JA, Oyanadel C, Espinoza S, Metz C, Retamal C, Massardo L, Tapia-Rojas C, Inestrosa NC, Soza A, González A. GALECTIN-8 Is a Neuroprotective Factor in the Brain that Can Be Neutralized by Human Autoantibodies. Mol Neurobiol 2019; 56:7774-7788. [PMID: 31119556 DOI: 10.1007/s12035-019-1621-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 04/23/2019] [Indexed: 12/19/2022]
Abstract
Galectin-8 (Gal-8) is a glycan-binding protein that modulates a variety of cellular processes interacting with cell surface glycoproteins. Neutralizing anti-Gal-8 antibodies that block Gal-8 functions have been described in autoimmune and inflammatory disorders, likely playing pathogenic roles. In the brain, Gal-8 is highly expressed in the choroid plexus and accordingly has been detected in human cerebrospinal fluid. It protects against central nervous system autoimmune damage through its immune-suppressive potential. Whether Gal-8 plays a direct role upon neurons remains unknown. Here, we show that Gal-8 protects hippocampal neurons in primary culture against damaging conditions such as nutrient deprivation, glutamate-induced excitotoxicity, hydrogen peroxide (H2O2)-induced oxidative stress, and β-amyloid oligomers (Aβo). This protective action is manifested even after 2 h of exposure to the harmful condition. Pull-down assays demonstrate binding of Gal-8 to selected β1-integrins, including α3 and α5β1. Furthermore, Gal-8 activates β1-integrins, ERK1/2, and PI3K/AKT signaling pathways that mediate neuroprotection. Hippocampal neurons in primary culture produce and secrete Gal-8, and their survival decreases upon incubation with human function-blocking Gal-8 autoantibodies obtained from lupus patients. Despite the low levels of Gal-8 expression detected by real-time PCR in hippocampus, compared with other brain regions, the complete lack of Gal-8 in Gal-8 KO mice determines higher levels of apoptosis upon H2O2 stereotaxic injection in this region. Therefore, endogenous Gal-8 likely contributes to generate a neuroprotective environment in the brain, which might be eventually counteracted by human function-blocking autoantibodies.
Collapse
Affiliation(s)
- Evelyn Pardo
- Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Francisca Barake
- Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Juan A Godoy
- Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia Oyanadel
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Sofía Espinoza
- Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Claudia Metz
- Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Claudio Retamal
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Loreto Massardo
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Cheril Tapia-Rojas
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
- Fundación Ciencia y Vida, Santiago, Chile
| | - Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Center for Healthy Brain Ageing, University of New South Wales, Sydney, NSW, Australia
- Center of Excellence in Biomedicine of Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| | - Andrea Soza
- Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.
| | - Alfonso González
- Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.
- Fundación Ciencia y Vida, Santiago, Chile.
| |
Collapse
|
14
|
Fluorescent Light Incites a Conserved Immune and Inflammatory Genetic Response within Vertebrate Organs ( Danio Rerio, Oryzias Latipes and Mus Musculus). Genes (Basel) 2019; 10:genes10040271. [PMID: 30987199 PMCID: PMC6523474 DOI: 10.3390/genes10040271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 03/27/2019] [Accepted: 03/29/2019] [Indexed: 12/29/2022] Open
Abstract
Fluorescent light (FL) has been utilized for ≈60 years and has become a common artificial light source under which animals, including humans, spend increasing amounts of time. Although the solar spectrum is quite dissimilar in both wavelengths and intensities, the genetic consequences of FL exposure have not been investigated. Herein, we present comparative RNA-Seq results that establish expression patterns within skin, brain, and liver for Danio rerio, Oryzias latipes, and the hairless mouse (Mus musculus) after exposure to FL. These animals represent diurnal and nocturnal lifestyles, and ≈450 million years of evolutionary divergence. In all three organisms, FL induced transcriptional changes of the acute phase response signaling pathway and modulated inflammation and innate immune responses. Our pathway and gene clustering analyses suggest cellular perception of oxidative stress is promoting induction of primary up-stream regulators IL1B and TNF. The skin and brain of the three animals as well as the liver of both fish models all exhibit increased inflammation and immune responses; however, the mouse liver suppressed the same pathways. Overall, the conserved nature of the genetic responses observed after FL exposure, among fishes and a mammal, suggest the presence of light responsive genetic circuitry deeply embedded in the vertebrate genome.
Collapse
|
15
|
Hicks SD, Miller MW. Ethanol-induced DNA repair in neural stem cells is transforming growth factor β1-dependent. Exp Neurol 2019; 317:214-225. [PMID: 30853389 DOI: 10.1016/j.expneurol.2019.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/13/2018] [Accepted: 02/07/2019] [Indexed: 12/18/2022]
Abstract
Following neurotoxic damage, cells repair their DNA, and survive or undergo apoptosis. This study tests the hypothesis that ethanol induces a DNA damage response (DDR) in neural stem cells (NSCs) that promotes excision repair (ER) and this repair is influenced by the growth factor environment. Non-immortalized NSCs treated with fibroblast growth factor 2 or transforming growth factor (TGF) β1 were exposed to ethanol. Ethanol increased total DNA damage, reactive oxygen species, and oxidized DNA bases. TGFβ1 potentiated these toxic effects. Transcriptional analyses of cultured NSCs revealed ethanol-induced increases in transcripts related to the DDR (e.g., Hus1 and p53), base ER (e.g., Mutyh and Nthl1), and nucleotide ER (e.g., Xpc), particularly in the presence of TGFβ1. Expression and activity of ER proteins were affected by ethanol. Similar changes occurred in proliferating cells of ethanol-treated mouse fetuses. Ethanol-induced DNA repair in NSCs depends on the ambient growth factors. Gene products for DNA repair in stem cells are among the first biomarkers identifying fetal alcohol-induced damage.
Collapse
Affiliation(s)
- Steven D Hicks
- Department of Neuroscience and Physiology, State University of New York - Upstate Medical University, Syracuse, NY 13210, USA; Developmental Exposure Alcohol Research Center, Binghamton NY 13902, Cortland NY 13045, and Syracuse, NY 13210, USA
| | - Michael W Miller
- Department of Neuroscience and Physiology, State University of New York - Upstate Medical University, Syracuse, NY 13210, USA; Developmental Exposure Alcohol Research Center, Binghamton NY 13902, Cortland NY 13045, and Syracuse, NY 13210, USA; Department of Anatomy, Touro College of Osteopathic Medicine, Middletown, NY 10940, USA; Research Service, Veterans Affairs Medical Center, Syracuse, NY 13210, USA.
| |
Collapse
|
16
|
Alvarez-Flores MP, Hébert A, Gouelle C, Geller S, Chudzinski-Tavassi AM, Pellerin L. Neuroprotective effect of rLosac on supplement-deprived mouse cultured cortical neurons involves maintenance of monocarboxylate transporter MCT2 protein levels. J Neurochem 2018; 148:80-96. [PMID: 30347438 DOI: 10.1111/jnc.14617] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 09/02/2018] [Accepted: 10/17/2018] [Indexed: 01/08/2023]
Abstract
The recombinant Lonomia obliqua Stuart-factor activator (rLosac) is a recombinant hemolin which belongs to the immunoglobulin superfamily of cell adhesion molecules. It is capable of inducing pro-survival activity in serum-deprived human umbilical vein endothelial cells (HUVECs) and fibroblasts by increasing mitochondrial metabolism. We hypothesize that it could promote neuronal survival by acting on neuroenergetics. Our study reveals that treatment of primary mouse cortical neurons cultured in neurobasal medium lacking B27 supplement with rLosac led to an enhancement of cell viability in a time- and concentration-dependent manner. In parallel, preserved or enhanced phosphorylation of Akt, p44, and p42 MAPK, as well as mTOR was observed following treatment with rLosac. During deprivation, as assessed by western blot and qRT-PCR, protein and mRNA expression of MCT2 (the predominant neuronal monocarboxylate transporter allowing lactate use as an alternative energy substrate) decreased significantly in B27 supplement-deprived cortical neurons and was hardly detected after 24 h of deprivation. Interestingly, rLosac maintained MCT2 protein expression after 24 h of deprivation including at the cell surface without preventing mRNA loss. MCT2 knockdown reduced rLosac-enhanced cell viability, confirming its involvement in rLosac effect. Enhanced uptake of lactate was detected following rLosac treatment and might contribute to rLosac-enhanced viability during deprivation. In the presence of both lactate and rLosac, cell viability was higher than in the presence of lactate alone. Our observations suggest that rLosac promotes cell viability in stressed (B27 supplement-deprived) neurons by facilitating the use of lactate as energy substrate via the preservation of MCT2 protein expression. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.
Collapse
Affiliation(s)
- Miryam P Alvarez-Flores
- Department of Physiology, University of Lausanne, Lausanne, Switzerland.,Laboratory of Molecular Biology - Centre of Excellence in New Target Discover CENTD, Butantan Institute, São Paulo, Brazil
| | - Audrey Hébert
- Department of Physiology, University of Lausanne, Lausanne, Switzerland
| | - Cathy Gouelle
- Department of Physiology, University of Lausanne, Lausanne, Switzerland
| | - Sarah Geller
- Department of Physiology, University of Lausanne, Lausanne, Switzerland
| | - Ana M Chudzinski-Tavassi
- Laboratory of Molecular Biology - Centre of Excellence in New Target Discover CENTD, Butantan Institute, São Paulo, Brazil
| | - Luc Pellerin
- Department of Physiology, University of Lausanne, Lausanne, Switzerland.,Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536 CNRS, LabEx TRAIL-IBIO, Université de Bordeaux, Bordeaux Cedex, France
| |
Collapse
|
17
|
Manu MS, Rachana KS, Advirao GM. Insulin inhibits the JNK mediated cell death via upregulation of AKT expression in Schwann cells grown in hyperglycemia. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/s11515-018-1492-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
18
|
Xu D, Robinson AP, Ishii T, Duncan DS, Alden TD, Goings GE, Ifergan I, Podojil JR, Penaloza-MacMaster P, Kearney JA, Swanson GT, Miller SD, Koh S. Peripherally derived T regulatory and γδ T cells have opposing roles in the pathogenesis of intractable pediatric epilepsy. J Exp Med 2018; 215:1169-1186. [PMID: 29487082 PMCID: PMC5881465 DOI: 10.1084/jem.20171285] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 11/08/2017] [Accepted: 01/26/2018] [Indexed: 12/14/2022] Open
Abstract
The pathophysiology of drug-resistant pediatric epilepsy is unknown. Flow cytometric analysis of inflammatory leukocytes in resected brain tissues from 29 pediatric patients with genetic (focal cortical dysplasia) or acquired (encephalomalacia) epilepsy demonstrated significant brain infiltration of blood-borne inflammatory myeloid cells and memory CD4+ and CD8+ T cells. Significantly, proinflammatory (IL-17- and GM-CSF-producing) γδ T cells were concentrated in epileptogenic lesions, and their numbers positively correlated with disease severity. Conversely, numbers of regulatory T (T reg) cells inversely correlated with disease severity. Correspondingly, using the kainic acid model of status epilepticus, we show ameliorated seizure activity in both γδ T cell- and IL-17RA-deficient mice and in recipients of T reg cells, whereas T reg cell depletion heightened seizure severity. Moreover, both IL-17 and GM-CSF induced neuronal hyperexcitability in brain slice cultures. These studies support a major pathological role for peripherally derived innate and adaptive proinflammatory immune responses in the pathogenesis of intractable epilepsy and suggest testing of immunomodulatory therapies.
Collapse
Affiliation(s)
- Dan Xu
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Department of Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Andrew P Robinson
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Department of Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Toshiyuki Ishii
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Department of Physiology, Nippon Medical School, Tokyo, Japan
| | - D'Anne S Duncan
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Department of Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Tord D Alden
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Gwendolyn E Goings
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Department of Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Igal Ifergan
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Department of Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Joseph R Podojil
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Department of Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Pablo Penaloza-MacMaster
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Department of Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Jennifer A Kearney
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Geoffrey T Swanson
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Stephen D Miller
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Department of Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Sookyong Koh
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL
| |
Collapse
|
19
|
Gomes ED, Mendes SS, Assunção-Silva RC, Teixeira FG, Pires AO, Anjo SI, Manadas B, Leite-Almeida H, Gimble JM, Sousa N, Lepore AC, Silva NA, Salgado AJ. Co-Transplantation of Adipose Tissue-Derived Stromal Cells and Olfactory Ensheathing Cells for Spinal Cord Injury Repair. Stem Cells 2018; 36:696-708. [PMID: 29352743 DOI: 10.1002/stem.2785] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 12/18/2017] [Accepted: 12/31/2017] [Indexed: 12/16/2022]
Abstract
Patients suffering from spinal cord injury (SCI) still have a dismal prognosis. Despite all the efforts developed in this area, currently there are no effective treatments. Therefore, cell therapies have been proposed as a viable alternative to the current treatments used. Adipose tissue-derived stromal cells (ASCs) and olfactory ensheathing cells (OECs) have been used with promising results in different models of SCI, namely due to the regenerative properties of the secretome of the first, and the guidance capability of the second. Using an in vitro model of axonal growth, the dorsal root ganglia explants, we demonstrated that OECs induce neurite outgrowth mainly through cell-cell interactions, while ASCs' effects are strongly mediated by the release of paracrine factors. A proteomic analysis of ASCs' secretome revealed the presence of proteins involved in VEGF, PI3K, and Cadherin signaling pathways, which may be responsible for the effects observed. Then, the cotransplantation of ASCs and OECs showed to improve motor deficits of SCI-rats. Particular parameters of movement such as stepping, coordination, and toe clearance were improved in rats that received the transplant of cells, in comparison to nontreated rats. A histological analysis of the spinal cord tissues revealed that transplantation of ASCs and OECs had a major effect on the reduction of inflammatory cells close the lesion site. A slight reduction of astrogliosis was also evident. Overall, the results obtained with the present work indicate that the cotransplantation of ASCs and OECs brings important functional benefits to the injured spinal cord. Stem Cells 2018;36:696-708.
Collapse
Affiliation(s)
- Eduardo D Gomes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Sofia S Mendes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rita C Assunção-Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Fábio G Teixeira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana O Pires
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Sandra I Anjo
- Faculty of Sciences and Technology, Department of Life Sciences.,CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Bruno Manadas
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Hugo Leite-Almeida
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Jeffrey M Gimble
- Center for Stem Cell Research and Regenerative Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Angelo C Lepore
- Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Nuno A Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - António J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
20
|
Zhao L, Feng Y, Shi A, Zhang L, Guo S, Wan M. Neuroprotective Effect of Low-Intensity Pulsed Ultrasound Against MPP +-Induced Neurotoxicity in PC12 Cells: Involvement of K2P Channels and Stretch-Activated Ion Channels. ULTRASOUND IN MEDICINE & BIOLOGY 2017; 43:1986-1999. [PMID: 28583325 DOI: 10.1016/j.ultrasmedbio.2017.04.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 04/18/2017] [Accepted: 04/20/2017] [Indexed: 06/07/2023]
Abstract
Parkinson's disease is the second most common neurodegenerative disease. It is characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta. 1-Methyl-4-phenylpyridinium (MPP+) is a dopaminergic neuronal toxin that is widely used in constructing Parkinson's disease models in vitro. Low-intensity pulsed ultrasound (LIPUS) is a non-invasive therapeutic approach that has neuromodulation and neuroprotective effects in the central neural system; however, whether LIPUS can provide protection for dopaminergic neurons against MPP+-induced neurocytotoxicity remains unknown. In this study, we found that pre-treatment with LIPUS (1 MHz, 50 mW/cm2, 20% duty cycle and 100-Hz pulse repetition frequency, 10 min) inhibited MPP+-induced neurotoxicity and mitochondrial dysfunction in PC12 cells. LIPUS decreased MPP+-induced oxidative stress by modulating antioxidant proteins, including thioredoxin-1 and heme oxygenase-1, and prevented neurocytotoxicity via the phosphoinositide 3-kinase (PI3K)-Akt and ERK1/2 pathways. Furthermore, these beneficial effects were attributed to the activation of K2P channels and stretch-activated ion channels by LIPUS. These data indicate that LIPUS protects neuronal cells from MPP+-induced cell death through the K2P channel- and stretch-activated ion channel-mediated downstream pathways. The data also suggest that LIPUS could be a promising therapeutic method in halting or retarding the degeneration of dopaminergic neurons in Parkinson's disease in a non-invasive manner.
Collapse
Affiliation(s)
- Lu Zhao
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Yi Feng
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.
| | - Aiwei Shi
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Lei Zhang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Shifang Guo
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Mingxi Wan
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
21
|
Gameiro I, Michalska P, Tenti G, Cores Á, Buendia I, Rojo AI, Georgakopoulos ND, Hernández-Guijo JM, Teresa Ramos M, Wells G, López MG, Cuadrado A, Menéndez JC, León R. Discovery of the first dual GSK3β inhibitor/Nrf2 inducer. A new multitarget therapeutic strategy for Alzheimer's disease. Sci Rep 2017; 7:45701. [PMID: 28361919 PMCID: PMC5374710 DOI: 10.1038/srep45701] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 03/03/2017] [Indexed: 12/31/2022] Open
Abstract
The formation of neurofibrillary tangles (NFTs), oxidative stress and neuroinflammation have emerged as key targets for the treatment of Alzheimer’s disease (AD), the most prevalent neurodegenerative disorder. These pathological hallmarks are closely related to the over-activity of the enzyme GSK3β and the downregulation of the defense pathway Nrf2-EpRE observed in AD patients. Herein, we report the synthesis and pharmacological evaluation of a new family of multitarget 2,4-dihydropyrano[2,3-c]pyrazoles as dual GSK3β inhibitors and Nrf2 inducers. These compounds are able to inhibit GSK3β and induce the Nrf2 phase II antioxidant and anti-inflammatory pathway at micromolar concentrations, showing interesting structure-activity relationships. The association of both activities has resulted in a remarkable anti-inflammatory ability with an interesting neuroprotective profile on in vitro models of neuronal death induced by oxidative stress and energy depletion and AD. Furthermore, none of the compounds exhibited in vitro neurotoxicity or hepatotoxicity and hence they had improved safety profiles compared to the known electrophilic Nrf2 inducers. In conclusion, the combination of both activities in this family of multitarget compounds confers them a notable interest for the development of lead compounds for the treatment of AD.
Collapse
Affiliation(s)
- Isabel Gameiro
- Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina. Universidad Autónoma de Madrid, 28029 Madrid, Spain.,Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, 28006 Madrid, Spain
| | - Patrycja Michalska
- Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina. Universidad Autónoma de Madrid, 28029 Madrid, Spain.,Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, 28006 Madrid, Spain
| | - Giammarco Tenti
- Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, 28006 Madrid, Spain
| | - Ángel Cores
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain
| | - Izaskun Buendia
- Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina. Universidad Autónoma de Madrid, 28029 Madrid, Spain.,Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, 28006 Madrid, Spain
| | - Ana I Rojo
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria La Paz (IdiPaz), Instituto de Investigaciones Biomédicas Alberto Sols UAM-CSIC y Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Jesús M Hernández-Guijo
- Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina. Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - María Teresa Ramos
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain
| | - Geoffrey Wells
- UCL School of Pharmacy, University College London, 29/39 Brunswick Square, London WC1N 1AX UK
| | - Manuela G López
- Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina. Universidad Autónoma de Madrid, 28029 Madrid, Spain.,Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, 28006 Madrid, Spain
| | - Antonio Cuadrado
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria La Paz (IdiPaz), Instituto de Investigaciones Biomédicas Alberto Sols UAM-CSIC y Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - J Carlos Menéndez
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain
| | - Rafael León
- Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina. Universidad Autónoma de Madrid, 28029 Madrid, Spain.,Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, 28006 Madrid, Spain
| |
Collapse
|
22
|
Tran AHV, Han SH, Kim J, Grasso F, Kim IS, Han YS. MutY DNA Glycosylase Protects Cells From Tumor Necrosis Factor Alpha-Induced Necroptosis. J Cell Biochem 2017; 118:1827-1838. [PMID: 28059467 DOI: 10.1002/jcb.25866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 01/04/2017] [Indexed: 12/27/2022]
Abstract
Numerous studies have implied that mutY DNA glycosylase (MYH) is involved in the repair of post-replicative mispairs and plays a critical role in the base excision repair pathway. Recent in vitro studies have shown that MYH interacts with tumor necrosis factor receptor type 1-associated death domain (TRADD), a key effector protein of tumor necrosis factor receptor-1 (TNFR1) signaling. The association between MYH and TRADD is reversed during tumor necrosis factor alpha (TNF-α)- and camptothecin (CPT)-induced apoptosis, and enhanced during TNF-α-induced survival. After investigating the role of MYH interacts with various proteins following TNF-α stimulation, here, we focus on MYH and TRADD interaction functions in necroptosis and its effects to related proteins. We report that the level of the MYH and TRADD complex was also reduced during necroptosis induced by TNF-α and zVAD-fmk. In particular, we also found that MYH is a biologically important necrosis suppressor. Under combined TNF-α and zVAD-fmk treatment, MYH-deficient cells were induced to enter the necroptosis pathway but primary mouse embryonic fibroblasts (MEFs) were not. Necroptosis in the absence of MYH proceeds via the inactivation of caspase-8, followed by an increase in the formation of the kinase receptor- interacting protein 1 (RIP1)-RIP3 complex. Our results suggested that MYH, which interacts with TRADD, inhibits TNF-α necroptotic signaling. Therefore, MYH inactivation is essential for necroptosis via the downregulation of caspase-8. J. Cell. Biochem. 118: 1827-1838, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- An Hue Vy Tran
- Department of Advanced Technology Fusion, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea.,Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, Korea.,KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Korea
| | - Se Hee Han
- Department of Advanced Technology Fusion, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea
| | - Joon Kim
- Laboratory of Biochemistry, School of Life Sciences and Biotechnology and BioInstitute, Korea University, Seoul, Korea
| | - Francesca Grasso
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Rome, Lazio, Italy
| | - In San Kim
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, Korea.,KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Korea
| | - Ye Sun Han
- Department of Advanced Technology Fusion, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea
| |
Collapse
|
23
|
Ambrosone A, Roopin M, Pelaz B, Abdelmonem AM, Ackermann LM, Mattera L, Allocca M, Tino A, Klapper M, Parak WJ, Levy O, Tortiglione C. Dissecting common and divergent molecular pathways elicited by CdSe/ZnS quantum dots in freshwater and marine sentinel invertebrates. Nanotoxicology 2017; 11:289-303. [DOI: 10.1080/17435390.2017.1295111] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Alfredo Ambrosone
- Istituto di Scienze Applicate e Sistemi Intelligenti “E. Caianiello”, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy
| | - Modi Roopin
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel
| | - Beatriz Pelaz
- Fachbereich Physik, Philipps Universität Marburg, Marburg, Germany
| | | | | | - Lucia Mattera
- Istituto di Scienze Applicate e Sistemi Intelligenti “E. Caianiello”, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy
| | - Mariateresa Allocca
- Istituto di Scienze Applicate e Sistemi Intelligenti “E. Caianiello”, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy
| | - Angela Tino
- Istituto di Scienze Applicate e Sistemi Intelligenti “E. Caianiello”, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy
| | - Markus Klapper
- Max Planck Institute for Polymer Research, Mainz, Germany
| | - Wolfgang J. Parak
- Fachbereich Physik, Philipps Universität Marburg, Marburg, Germany
- CIC biomaGUNE, Donostia-San Sebastián, Spain
| | - Oren Levy
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel
| | - Claudia Tortiglione
- Istituto di Scienze Applicate e Sistemi Intelligenti “E. Caianiello”, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy
| |
Collapse
|
24
|
Abou-El-Hassan H, Sukhon F, Assaf EJ, Bahmad H, Abou-Abbass H, Jourdi H, Kobeissy FH. Degradomics in Neurotrauma: Profiling Traumatic Brain Injury. Methods Mol Biol 2017; 1598:65-99. [PMID: 28508358 DOI: 10.1007/978-1-4939-6952-4_4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Degradomics has recently emerged as a subdiscipline in the omics era with a focus on characterizing signature breakdown products implicated in various disease processes. Driven by promising experimental findings in cancer, neuroscience, and metabolomic disorders, degradomics has significantly promoted the notion of disease-specific "degradome." A degradome arises from the activation of several proteases that target specific substrates and generate signature protein fragments. Several proteases such as calpains, caspases, cathepsins, and matrix metalloproteinases (MMPs) are involved in the pathogenesis of numerous diseases that disturb the physiologic balance between protein synthesis and protein degradation. While regulated proteolytic activities are needed for development, growth, and regeneration, uncontrolled proteolysis initiated under pathological conditions ultimately culminates into apoptotic and necrotic processes. In this chapter, we aim to review the protease-substrate repertoires in neural injury concentrating on traumatic brain injury. A striking diversity of protease substrates, essential for neuronal and brain structural and functional integrity, namely, encryptic biomarker neoproteins, have been characterized in brain injury. These include cytoskeletal proteins, transcription factors, cell cycle regulatory proteins, synaptic proteins, and cell junction proteins. As these substrates are subject to proteolytic fragmentation, they are ceaselessly exposed to activated proteases. Characterization of these molecules allows for a surge of "possible" therapeutic approaches of intervention at various levels of the proteolytic cascade.
Collapse
Affiliation(s)
- Hadi Abou-El-Hassan
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon.
| | - Fares Sukhon
- Faculty of Medicine, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Edwyn Jeremy Assaf
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Hisham Bahmad
- Faculty of Medical, Neuroscience Research Center, Beirut Arab University, Beirut, Lebanon
- Faculty of Medicine, Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut, Lebanon
| | - Hussein Abou-Abbass
- Faculty of Medical Sciences, Neuroscience Research Center, Lebanese University, Beirut, Lebanon
- Faculty of Medicine, Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Hussam Jourdi
- Faculty of Science¸ Department of Biology, University of Balamand, Souk-el-Gharb Campus, Aley, Lebanon
| | - Firas H Kobeissy
- Faculty of Medicine, Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon.
- Department of Psychiatry, Center for Neuroproteomics and Biomarkers Research, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
25
|
Salidroside protects cortical neurons against glutamate-induced cytotoxicity by inhibiting autophagy. Mol Cell Biochem 2016; 419:53-64. [PMID: 27357827 DOI: 10.1007/s11010-016-2749-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 06/18/2016] [Indexed: 12/20/2022]
Abstract
Recent evidence suggests that glutamate-induced cytotoxicity contributes to autophagic neuron death and is partially mediated by increased oxidative stress. Salidroside has been demonstrated to have neuroprotective effects in glutamate-induced neuronal damage. The precise mechanism of its regulatory role in neuronal autophagy is, however, poorly understood. This study aimed to probe the effects and mechanisms of salidroside in glutamate-induced autophagy activation in cultured rat cortical neurons. Cell viability assay, Western blotting, coimmunoprecipitation, and small interfering RNA were performed to analyze autophagy activities during glutamate-evoked oxidative injury. We found that salidroside protected neonatal neurons from glutamate-induced apoptotic cell death. Salidroside significantly attenuated the LC3-II/LC3-I ratio and expression of Beclin-1, but increased (SQSTM1)/p62 expression under glutamate exposure. Pretreatment with 3-methyladenine (3-MA), an autophagy inhibitor, decreased LC3-II/LC3-I ratio, attenuated glutamate-induced cell injury, and mimicked some of the protective effects of salidroside against glutamate-induced cell injury. Molecular analysis demonstrated that salidroside inhibited cortical neuron autophagy in response to glutamate exposure through p53 signaling by increasing the accumulation of cytoplasmic p53. Salidroside inhibited the glutamate-induced dissociation of the Bcl-2-Beclin-1 complex with minor affects on the PI3K/Akt/mTOR signaling pathways. These data demonstrate that the inhibition of autophagy could be responsible for the neuroprotective effects of salidroside on glutamate-induced neuronal injury.
Collapse
|
26
|
Demir IE, Tieftrunk E, Schorn S, Friess H, Ceyhan GO. Nerve growth factor & TrkA as novel therapeutic targets in cancer. Biochim Biophys Acta Rev Cancer 2016; 1866:37-50. [PMID: 27264679 DOI: 10.1016/j.bbcan.2016.05.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/24/2016] [Accepted: 05/28/2016] [Indexed: 12/11/2022]
Abstract
In the past 20years, nerve growth factor (NGF) and its receptors TrkA & p75NTR were recognized to be overexpressed in the overwhelming majority of human solid cancers. Recent studies discovered the presence of overactive TrkA signaling due to TrkA rearrangements or TrkA fusion products in frequent cancers like colorectal cancer, thyroid cancer, or acute myeloid leukemia. Thus, targeting TrkA/NGF via selective small-molecule-inhibitors or antibodies has gained enormous attention in the drug discovery sector. Clinical studies on the anti-cancer impact of NGF-blocking antibodies are likely to be accelerated after the recent removal of clinical holds on these agents by regulatory authorities. Based on these current developments, the present review provides not only a broad overview of the biological effects of NGF-TrkA-p75NTR on cancer cells and their microenvironment, but also explains why NGF and its receptors are going to evoke major interest as promising therapeutic anti-cancer targets in the coming decade.
Collapse
Affiliation(s)
- Ihsan Ekin Demir
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany.
| | - Elke Tieftrunk
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Stephan Schorn
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Helmut Friess
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Güralp O Ceyhan
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| |
Collapse
|
27
|
Jayakumar AR, Bak LK, Rama Rao KV, Waagepetersen HS, Schousboe A, Norenberg MD. Neuronal Cell Death Induced by Mechanical Percussion Trauma in Cultured Neurons is not Preceded by Alterations in Glucose, Lactate and Glutamine Metabolism. Neurochem Res 2016; 41:307-15. [PMID: 26729365 DOI: 10.1007/s11064-015-1801-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/07/2015] [Accepted: 12/09/2015] [Indexed: 11/24/2022]
Abstract
Traumatic brain injury (TBI) is a devastating neurological disorder that usually presents in acute and chronic forms. Brain edema and associated increased intracranial pressure in the early phase following TBI are major consequences of acute trauma. On the other hand, neuronal injury, leading to neurobehavioral and cognitive impairments, that usually develop months to years after single or repetitive episodes of head trauma, are major consequences of chronic TBI. The molecular mechanisms responsible for TBI-induced injury, however, are unclear. Recent studies have suggested that early mitochondrial dysfunction and subsequent energy failure play a role in the pathogenesis of TBI. We therefore examined whether oxidative metabolism of (13)C-labeled glucose, lactate or glutamine is altered early following in vitro mechanical percussion-induced trauma (5 atm) to neurons (4-24 h), and whether such events contribute to the development of neuronal injury. Cell viability was assayed using the release of the cytoplasmic enzyme lactate dehydrogenase (LDH), together with fluorescence-based cell staining (calcein and ethidium homodimer-1 for live and dead cells, respectively). Trauma had no effect on the LDH release in neurons from 1 to 18 h. However, a significant increase in LDH release was detected at 24 h after trauma. Similar findings were identified when traumatized neurons were stained with fluorescent markers. Additionally (13)C-labeling of glutamate showed a small, but statistically significant decrease at 14 h after trauma. However, trauma had no effect on the cycling ratio of the TCA cycle at any time-period examined. These findings indicate that trauma does not cause a disturbance in oxidative metabolism of any of the substrates used for neurons. Accordingly, such metabolic disturbance does not appear to contribute to the neuronal death in the early stages following trauma.
Collapse
Affiliation(s)
- A R Jayakumar
- Laboratory of Neuropathology, Veterans Affairs Medical Center, Miami, FL, USA
| | - L K Bak
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen, Denmark
| | - K V Rama Rao
- Laboratory of Neuropathology, Veterans Affairs Medical Center, Miami, FL, USA
| | - H S Waagepetersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen, Denmark
| | - A Schousboe
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen, Denmark
| | - M D Norenberg
- Laboratory of Neuropathology, Veterans Affairs Medical Center, Miami, FL, USA. .,Department of Pathology (D-33), University of Miami School of Medicine, P.O. Box 016960, Miami, FL, 33101, USA. .,Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, Miami, FL, USA.
| |
Collapse
|
28
|
Martins IJ. Anti-Aging Genes Improve Appetite Regulation and Reverse Cell Senescence and Apoptosis in Global Populations. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/aar.2016.51002] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
29
|
Voshavar C, Shah M, Xu L, Dutta AK. Assessment of Protective Role of Multifunctional Dopamine Agonist D-512 Against Oxidative Stress Produced by Depletion of Glutathione in PC12 Cells: Implication in Neuroprotective Therapy for Parkinson's Disease. Neurotox Res 2015; 28:302-18. [PMID: 26201265 PMCID: PMC6158776 DOI: 10.1007/s12640-015-9548-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 07/05/2015] [Accepted: 07/13/2015] [Indexed: 12/22/2022]
Abstract
Oxidative stress has been strongly implicated in the progression of Parkinson's disease (PD). Depletion of cytoplasmic glutathione levels is one of the indications of oxidative stress, which occur in the substantia nigra of PD patients at an early stage of the disease process. It has been shown that glutathione depletion causes the inhibition of mitochondrial complex I, thus affecting mitochondrial function leading to oxidative stress via production of reactive oxygen species. Studies were carried out to investigate the role of D-512, a potent multifunctional neuroprotective D2/D3 receptor agonist, in protecting dopaminergic PC12 cells treated with buthionine sulfoximine (BSO), an inhibitor of key enzyme in glutathione synthesis and 6-hydroxydopamine (6-OHDA), a widely used neurotoxin. D-512 was able to restore level of glutathione against BSO/6-OHDA-mediated glutathione depletion. D-512 also showed significant neuroprotection in PC12 cells against toxicity induced by combined treatment of BSO and 6-OHDA. Furthermore, D-512 was able to restore both phospho-extracellular signal-regulated kinase and phospho-Jun N-terminal kinase levels upon treatment with 6-OHDA providing an evidence on the possible mechanism of action for neuroprotection by modulating mitogen-activated protein kinases. We have further demonstrated the neuroprotective effects of D-512 against oxidative insult produced by BSO and 6-OHDA in PC12 cells.
Collapse
Affiliation(s)
| | - Mrudang Shah
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Liping Xu
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Aloke K Dutta
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, 48202, USA.
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy & Health Sciences, Rm# 3128, Detroit, MI, 48202, USA.
| |
Collapse
|
30
|
Kelly KM, Lalwani AK. On the Distant Horizon--Medical Therapy for Sensorineural Hearing Loss. Otolaryngol Clin North Am 2015; 48:1149-65. [PMID: 26409822 DOI: 10.1016/j.otc.2015.07.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hearing loss is the most common sensory deficit in developed societies. Hearing impairment in children, particularly of prelingual onset, has been shown to negatively affect educational achievement, future employment and earnings, and even life expectancy. Sensorineural hearing loss (SNHL), which refers to defects within the cochlea or auditory nerve itself, far outweighs conductive causes for permanent hearing loss in both children and adults. The causes of SNHL in children are heterogeneous, including both congenital and acquired causes. This article identifies potential mechanisms of intervention both at the level of the hair cell and the spiral ganglion neurons.
Collapse
Affiliation(s)
- Kathleen M Kelly
- Department of Otolaryngology - Head and Neck Surgery, University of Texas Southwestern Medical Center, 5323 Harry Hinds Blvd, Dallas, TX 75390, USA
| | - Anil K Lalwani
- Department of Otolaryngology - Head and Neck Surgery, Columbia University Medical Center, Harkness Pavilion, 180 Fort Washington Avenue, Floor 7, New York, NY 10032, USA.
| |
Collapse
|
31
|
Wei XE, Zhang FY, Wang K, Zhang QX, Rong LQ. Assembly of the FKBP51-PHLPP2-AKT signaling complex in cerebral ischemia/reperfusion injury in rats. Brain Res 2014; 1566:60-8. [PMID: 24746496 DOI: 10.1016/j.brainres.2014.04.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 04/03/2014] [Accepted: 04/08/2014] [Indexed: 11/20/2022]
Abstract
The imbalance of cell pro-death and pro-survival signaling pathways determines the neuronal fate during cerebral ischemia/reperfusion (I/R) injury. However, the biological mechanisms regulating the balance between activation of the pro-death or the pro-survival signaling pathways remain unclear. In this study, a rat model of I/R injury was established using four-vessel occlusion followed by different times of reperfusion. I/R injury did not affect the level of FK506 binding protein 51 (FKBP51), PH domain and leucine rich repeat protein phosphatases (PHLPP)-2, and AKT, but induced assembly of the FKBP51-PHLPP2-AKT signaling complex, as indicated by the enhancement of interactions among these compounds following reperfusion. Using an antisense oligonucleotide, PHLPP2 expression was effectively inhibited. Critically, the inhibition of PHLPP2 prohibited the interactions of FKBP51, PHLPP2 and AKT, reversed the decrease of p-AKT expression and increased the expression of p-JNKs and p-c-Jun elicited by I/R injury. In addition, PHLPP2 inhibition reversed I/R-injury-induced Caspase-3 cleavage and loss of pyramid neurons in the CA1 region of hippocampus. The results of the current study indicate that the assembly of the FKBP51-PHLPP2-AKT signaling complex plays a critical role in mediating cell death in I/R injury. The inhibition of PHLPP2 via antisense oligonucleotide treatment may be an effective method to prohibit the assembly of the FKBP51-PHLPP-AKT signaling complex, thus balancing the cell pro-survival and pro-death signaling pathways ultimately mitigating cell death in I/R injury.
Collapse
Affiliation(s)
- Xiu-E Wei
- The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, China.
| | | | - Kai Wang
- The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, China
| | - Qing-Xiu Zhang
- The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, China
| | - Liang-Qun Rong
- The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, China
| |
Collapse
|
32
|
Abstract
Therapies aimed at the protection and/or regeneration of inner ear hair cells are of great interest, given the significant monetary and quality of life impact of balance disorders. Different viral vectors have been shown to transfect various cell types in the inner ear. The past decade has provided tremendous advances in the use of adenoviral vectors to achieve targeted treatment delivery. Several routes of delivery have been identified to introduce vectors into the inner ear while minimizing injury to surrounding structures. Recently, the transcription factor Atoh1 was determined to play a critical role in hair cell differentiation. Adenoviral-mediated overexpression of Atoh1 in culture and in vivo has demonstrated the ability to regenerate vestibular hair cells by causing transdifferentiation of neighbouring epithelial-supporting cells. Functional recovery of the vestibular system has also been documented following adenoviral-induced Atoh1 overexpression. Experiments demonstrating gene transfer in human vestibular epithelial cells reveal that the human inner ear is a suitable target for gene therapy.
Collapse
Affiliation(s)
- Silviu Albu
- Second Department of Otolaryngology, University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania.
| | | |
Collapse
|
33
|
Hu W, Feng Z, Levine AJ. The Regulation of Multiple p53 Stress Responses is Mediated through MDM2. Genes Cancer 2012; 3:199-208. [PMID: 23150753 DOI: 10.1177/1947601912454734] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The MDM2 oncogene is a key negative regulator of the p53 tumor suppressor protein. MDM2 and p53 form an autoregulatory feedback loop to tightly control the proper cellular responses to various stress signals in order to prevent mutations and tumor formation. The levels and function of the MDM2 protein, an E3 ubiquitin ligase, are regulated by a wide variety of extracellular and intracellular stress signals through distinct signaling pathways and mechanisms. These signals regulate the E3 ubiquitin ligase activity of MDM2, the ability of MDM2 to interact with p53 and a number of other proteins, and the cellular localization of MDM2, which in turn impact significantly upon p53 function. This review provides an overview of the regulation of MDM2 activities by the signals and factors that regulate the MDM2 protein, including genotoxic stress signals, oncogenic activation, cell cycle transition, ribosomal stress, chronic stress, neurohormones, and microRNAs. Disruption of the proper regulation of the MDM2-p53 negative feedback loop impacts significantly upon the frequency of tumorigenesis in a host. A better understanding of the complex regulation of MDM2 and its impact upon p53 function in cells under different conditions will help to develop novel and more effective strategies for cancer therapy and prevention.
Collapse
Affiliation(s)
- Wenwei Hu
- Cancer Institute of New Jersey, University of Medicine and Dentistry of New Jersey, New Brunswick, NJ, USA
| | | | | |
Collapse
|
34
|
Palomo V, Perez DI, Perez C, Morales-Garcia JA, Soteras I, Alonso-Gil S, Encinas A, Castro A, Campillo NE, Perez-Castillo A, Gil C, Martinez A. 5-Imino-1,2,4-Thiadiazoles: First Small Molecules As Substrate Competitive Inhibitors of Glycogen Synthase Kinase 3. J Med Chem 2012; 55:1645-61. [DOI: 10.1021/jm201463v] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Valle Palomo
- Instituto de Química
Médica-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| | - Daniel I. Perez
- Instituto de Química
Médica-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| | - Concepcion Perez
- Instituto de Química
Médica-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| | - Jose A. Morales-Garcia
- Instituto de Investigaciones
Biomédicas (CSIC-UAM) and Centro de Investigación Biomédica
en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Arturo Duperier
4, 28029 Madrid, Spain
| | - Ignacio Soteras
- Instituto de Química
Médica-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| | - Sandra Alonso-Gil
- Instituto de Investigaciones
Biomédicas (CSIC-UAM) and Centro de Investigación Biomédica
en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Arturo Duperier
4, 28029 Madrid, Spain
| | - Arantxa Encinas
- Instituto de Química
Médica-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| | - Ana Castro
- Instituto de Química
Médica-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| | - Nuria E. Campillo
- Instituto de Química
Médica-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| | - Ana Perez-Castillo
- Instituto de Investigaciones
Biomédicas (CSIC-UAM) and Centro de Investigación Biomédica
en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Arturo Duperier
4, 28029 Madrid, Spain
| | - Carmen Gil
- Instituto de Química
Médica-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| | - Ana Martinez
- Instituto de Química
Médica-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| |
Collapse
|
35
|
Yu D, Ding D, Jiang H, Stolzberg D, Salvi R. Mefloquine damage vestibular hair cells in organotypic cultures. Neurotox Res 2010; 20:51-8. [PMID: 20859773 DOI: 10.1007/s12640-010-9221-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 09/07/2010] [Accepted: 09/09/2010] [Indexed: 10/19/2022]
Abstract
Mefloquine is an effective and widely used anti-malarial drug; however, some clinical reports suggest that it can cause dizziness, balance, and vestibular disturbances. To determine if mefloquine might be toxic to the vestibular system, we applied mefloquine to organotypic cultures of the macula of the utricle from postnatal day 3 rats. The macula of the utricle was micro-dissected out as a flat surface preparation and cultured with 10, 50, 100, or 200 μM mefloquine for 24 h. Specimens were stained with TRITC-conjugated phalloidin to label the actin in hair cell stereocilia and TO-PRO-3 to visualize cell nuclei. Some utricles were also labeled with fluorogenic caspase-3, -8, or -9 indicators to evaluate the mechanism of programmed cell death. Mefloquine treatment caused a dose-dependent loss of utricular hair cells. Treatment with 10 μM caused a slight reduction, 50 μM caused a significant reduction, and 200 μM destroyed nearly all the hair cells. Hair cell nuclei in mefloquine-treated utricles were condensed and fragmented, morphological features of apoptosis. Mefloquine-treated utricles were positive for the extrinsic initiator caspase-8 and intrinsic initiator caspase-9 and downstream executioner caspase-3. These results indicate that mefloquine can induce significant hair cell degeneration in the postnatal rat utricle and that mefloquine-induced hair cell death is initiated by both caspase-8 and caspase-9.
Collapse
Affiliation(s)
- Dongzhen Yu
- Center for Hearing and Deafness, State University of New York at Buffalo, 137 Cary Hall, Buffalo, NY 14214, USA
| | | | | | | | | |
Collapse
|
36
|
Abstract
Hexokinase isoforms I and II bind to mitochondrial outer membranes in large part by interacting with the outer membrane voltage-dependent anion channel (VDAC). This interaction results in a shift in the susceptibility of mitochondria to pro-apoptotic signals that are mediated through Bcl2-family proteins. The upregulation of hexokinase II expression in tumor cells is thought to provide both a metabolic benefit and an apoptosis suppressive capacity that gives the cell a growth advantage and increases its resistance to chemotherapy. However, the mechanisms responsible for the anti-apoptotic effect of hexokinase binding and its regulation remain poorly understood. We hypothesize that hexokinase competes with Bcl2 family proteins for binding to VDAC to influence the balance of pro-and anti-apoptotic proteins that control outer membrane permeabilization. Hexokinase binding to VDAC is regulated by protein kinases, notably glycogen synthase kinase (GSK)-3beta and protein kinase C (PKC)-epsilon. In addition, there is evidence that the cholesterol content of the mitochondrial membranes may contribute to the regulation of hexokinase binding. At the same time, VDAC associated proteins are critically involved in the regulation of cholesterol uptake. A better characterization of these regulatory processes is required to elucidate the role of hexokinases in normal tissue function and to apply these insights for optimizing cancer treatment.
Collapse
|
37
|
Small molecule protein-protein interaction inhibitors as CNS therapeutic agents: current progress and future hurdles. Neuropsychopharmacology 2009; 34:126-41. [PMID: 18800065 DOI: 10.1038/npp.2008.151] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Protein-protein interactions are a crucial element in cellular function. The wealth of information currently available on intracellular-signaling pathways has led many to appreciate the untapped pool of potential drug targets that reside downstream of the commonly targeted receptors. Over the last two decades, there has been significant interest in developing therapeutics and chemical probes that inhibit specific protein-protein interactions. Although it has been a challenge to develop small molecules that are capable of occluding the large, often relatively featureless protein-protein interaction interface, there are increasing numbers of examples of small molecules that function in this manner with reasonable potency. This article will highlight the current progress in the development of small molecule protein-protein interaction inhibitors that have applications in the treatment or study of central nervous system function and disease. In particular, we will focus upon recent work towards developing small molecule inhibitors of amyloid-beta and alpha-synuclein aggregation, inhibitors of critical components of G-protein-signaling pathways, and PDZ domain inhibitors.
Collapse
|
38
|
Abstract
Transfer of exogenous genetic material into the mammalian inner ear using viral vectors has been characterized over the last decade. A number of different viral vectors have been shown to transfect the varying cell types of the nonprimate mammalian inner ear. Several routes of delivery have been identified for introduction of vectors into the inner ear while minimizing injury to existing structures and at the same time ensuring widespread distribution of the agent throughout the cochlea and the rest of the inner ear. These studies raise the possibility that gene transfer may be developed as a potential strategy for treating inner ear dysfunction in humans. Furthermore, a recent report showing successful transfection of excised human vestibular epithelia offers proof of principle that viral gene transfer is a viable strategy for introduction and expression of exogenous genetic material to restore function to the inner ear. Human vestibular epithelia were harvested from patients undergoing labyrinthectomy, either for intractable Ménière's disease or vestibular schwannoma resection, and cultured for as long as 5 days. In those experiments, recombinant, multiply-deleted, replication-deficient adenoviral vectors were used to transfect and express a reporter gene as well as the functionally relevant gene, wild-type KCNQ4, a potassium channel gene that when mutated causes the autosomal dominant HL DFNA2.Here, we review the current state of viral-mediated gene transfer in the inner ear and discuss different viral vectors, routes of delivery, and potential applications of gene therapy. Emphasis is placed on experiments demonstrating viral transfection of human inner ear tissue and implications of these findings and for the future of gene therapy in the human inner ear.
Collapse
|
39
|
Wyttenbach A, Tolkovsky AM. The BH3-only protein Puma is both necessary and sufficient for neuronal apoptosis induced by DNA damage in sympathetic neurons. J Neurochem 2006; 96:1213-26. [PMID: 16478523 DOI: 10.1111/j.1471-4159.2005.03676.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
DNA damage activates apoptosis in several neuronal populations and is an important component of neuropathological conditions. While it is well established that neuronal apoptosis, induced by DNA damage, is dependent on the key cell death regulators p53 and Bax, it is unknown which proteins link the p53 signal to Bax. Using rat sympathetic neurons as an in vitro model of neuronal apoptosis, we show that cytosine arabinoside is a DNA damaging drug that induces the expression of the BH3-only pro-apoptotic genes Noxa, Puma and Bim. Increased expression occurred after p53 activation, measured by its phosphorylation at serine 15, but prior to the conformational change of Bax at the mitochondria, cytochrome c (cyt c) release and apoptosis. Hence Noxa, Puma and Bim could potentially link p53 to Bax. We directly tested this hypothesis by the use of nullizygous mice. We show that Puma, but not Bim or Noxa, is a crucial mediator of DNA damage-induced neuronal apoptosis. Despite the powerful pro-apoptotic effects of overexpressed Puma in Bax-expressing neurons, Bax nullizygous neurons were resistant to Puma-induced death. Therefore, Puma provides the critical link between p53 and Bax, and is both necessary and sufficient to mediate DNA damage-induced apoptosis of sympathetic neurons.
Collapse
Affiliation(s)
- Andreas Wyttenbach
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| | | |
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW Sensory hair cells are mechanotransducers of the inner ear that are essential for hearing and balance. Hair cell death commonly occurs following acoustic trauma or exposure to ototoxins, such as the aminoglycoside antibiotics and the antineoplastic agent cisplatin. Loss of these inner ear sensory cells can lead to permanent sensorineural hearing loss, balance disturbance, or both. Currently, the only effective clinical intervention is prevention from exposure to known ototoxic insults. To help improve therapeutic strategies, a better understanding of the molecular mechanisms underlying hair cell degeneration is required. Current knowledge of these cell death mechanisms and potential therapeutic targets are discussed in this review. RECENT FINDINGS Studies have shown that caspase-9 and caspase-3 are key mediators of hair cell death induced by noise, aminoglycosides, and cisplatin. The Bcl-2 family consists of a group of proapoptotic and antiapoptotic molecules that act upstream of and regulate caspase activation. Recent studies have shed light on the roles of molecules acting more upstream, including mitogen-activated protein kinases and p53. SUMMARY The mechanisms of sensory hair cell degeneration in response to different ototoxic stimuli share a final common pathway: caspase activation. Inhibition of caspases prevents or delays hair cell death and may preserve hearing/balance function. Inhibition of mitogen-activated protein kinases protects against noise-induced and aminoglycoside-induced but not cisplatin-induced hair cell death, which suggests divergent upstream regulatory mechanisms.
Collapse
Affiliation(s)
- Alan G Cheng
- Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology-Head and Neck Surgery, University of Washington Medical Center, 1959 NE Pacific Street, Seattle, WA 98195, USA.
| | | | | |
Collapse
|
41
|
Pastorino JG, Hoek JB, Shulga N. Activation of glycogen synthase kinase 3beta disrupts the binding of hexokinase II to mitochondria by phosphorylating voltage-dependent anion channel and potentiates chemotherapy-induced cytotoxicity. Cancer Res 2005; 65:10545-54. [PMID: 16288047 DOI: 10.1158/0008-5472.can-05-1925] [Citation(s) in RCA: 312] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Transformed cells are highly glycolytic and overexpress hexokinase II (HXK II). HXK II is capable of binding to the mitochondria through an interaction with the voltage-dependent anion channel (VDAC), an abundant outer mitochondrial membrane protein. The binding of HXK II to mitochondria has been shown to protect against loss of cell viability. Akt activation inhibits apoptosis partly by promoting the binding of HXK II to the mitochondria, but the mechanism through which Akt accomplishes this has not been characterized. The present report shows that Akt mediates the binding of HXK II to the mitochondria by negatively regulating the activity of glycogen synthase kinase 3beta (GSK3beta). On inhibition of Akt, GSK3beta is activated and phosphorylates VDAC. HXK II is unable to bind VDAC phosphorylated by GSK3beta and dissociates from the mitochondria. Inhibition of Akt potentiates chemotherapy-induced cytotoxicity, an effect that is dependent on GSK3beta activation and its attendant ability to disrupt the binding of HXK II to the mitochondria. Moreover, agents that can force the detachment of HXK II from mitochondria in the absence of Akt inhibition or GSK3beta activation promoted a synergistic increase in cell killing when used in conjunction with chemotherapeutic drugs. Such findings indicate that interference with the binding of HXK II to mitochondria may be a practicable modality by which to potentiate the efficacy of conventional chemotherapeutic agents.
Collapse
Affiliation(s)
- John G Pastorino
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.
| | | | | |
Collapse
|
42
|
Staecker H, Brough DE, Praetorius M, Baker K. Drug delivery to the inner ear using gene therapy. Otolaryngol Clin North Am 2005; 37:1091-108. [PMID: 15474113 DOI: 10.1016/j.otc.2004.05.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The last 10 years have seen the development of numerous strategies for the delivery of genes to the inner ear. Besides being a useful research tool,gene therapy has significant promise as a potential clinical treatment. The human inner ear is easily accessible through either the round window or the stapes footplate. It is now possible to choose a variety of vectors to target a variety of different tissues. Modification of promoters yields different expression patterns as well as differences in degree of expression. Several animal studies have also demonstrated that expression of exogenous genes in the cochlea does not result in loss of hearing function. A variety of potential clinical applications are already evident from these early studies. Protective strategies such as prevention of neuronal degeneration and protection of auditory hair cells from oxidative stress are potential examples where gene therapy may be useful. As the understanding of gene therapy improves, investigators will be able to move toward targeted single-gene replacement to treat disorders such as connexin mutations and applying gene therapy to sensory cell replacement.
Collapse
Affiliation(s)
- Hinrich Staecker
- Division of Otolaryngology, University of Maryland School of Medicine, 16 S. Eutaw Street, Suite 500, Baltimore, MD 21201, USA.
| | | | | | | |
Collapse
|
43
|
Otsuka Y, Tanaka T, Uchida D, Noguchi Y, Saeki N, Saito Y, Tatsuno I. Roles of cyclin-dependent kinase 4 and p53 in neuronal cell death induced by doxorubicin on cerebellar granule neurons in mouse. Neurosci Lett 2004; 365:180-5. [PMID: 15246544 DOI: 10.1016/j.neulet.2004.04.083] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2004] [Revised: 04/26/2004] [Accepted: 04/28/2004] [Indexed: 11/26/2022]
Abstract
Cell cycle regulators such as cyclin-dependent kinases (Cdks) and their inhibitors (Ckis) have been reported to be involved in neuronal cell death (NCD) induced by a variety of insults such as ischemia, UV-irradiation, nerve growth factor (NGF)-withdrawal, and anticancer therapeutics. But their precise interactive regulation has still to be unveiled. In the present study, we focused on cell cycle regulators such as Cdk4, p21(WAF1) and p53 to clarify their regulatory mechanisms, using NCD induced by doxorubicin (D-NCD) in mouse cerebellar granule neurons as a model. Doxorubicin induced NCD in a dose-dependent manner, a typical feature of apoptosis as determined by TUNEL assay. Doxorubicin increased the protein expression of p53 in time- and dose-dependent manners. The protein expression of p21(WAF1), a Cki of Cdk4, was stimulated by doxorubicin at low concentrations, but it disappeared at high concentrations. Doxorubicin activated the kinase activity of Cdk4 without the enhancement of Cdk4 protein. 3-Amino-9-thio(10H)-acridone (3-ATA), the specific inhibitor of Cdk4, prevented D-NCD in a dose-dependent manner. Wortmannin, an inhibitor of ATM (ataxia telangiectasia, mutated) that has high homology with the phosphatidyl-inositol-3-kinase (PI3K) family and has protein kinase activity for the induction of p53 with specificity for serine and threonine residues, inhibited the activation of Cdk4 without the induction of p53 in D-NCD. These data suggest that (1) Cdk4 is one of the essential components for inducing NCD, that (2) p53 may prevent D-NCD through the induction of p21(WAF1) at low concentrations of doxorubicin, and that (3) Cdk4 might be activated by the same signal-molecules, like ATM, that are necessary for the activation of p53 in D-NCD.
Collapse
Affiliation(s)
- Yuko Otsuka
- Department of Clinical Cell Biology, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | | | | | | | | | | | | |
Collapse
|