1
|
Zhu WM, Neuhaus A, Beard DJ, Sutherland BA, DeLuca GC. Neurovascular coupling mechanisms in health and neurovascular uncoupling in Alzheimer's disease. Brain 2022; 145:2276-2292. [PMID: 35551356 PMCID: PMC9337814 DOI: 10.1093/brain/awac174] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/05/2022] [Accepted: 05/07/2022] [Indexed: 11/25/2022] Open
Abstract
To match the metabolic demands of the brain, mechanisms have evolved to couple neuronal activity to vasodilation, thus increasing local cerebral blood flow and delivery of oxygen and glucose to active neurons. Rather than relying on metabolic feedback signals such as the consumption of oxygen or glucose, the main signalling pathways rely on the release of vasoactive molecules by neurons and astrocytes, which act on contractile cells. Vascular smooth muscle cells and pericytes are the contractile cells associated with arterioles and capillaries, respectively, which relax and induce vasodilation. Much progress has been made in understanding the complex signalling pathways of neurovascular coupling, but issues such as the contributions of capillary pericytes and astrocyte calcium signal remain contentious. Study of neurovascular coupling mechanisms is especially important as cerebral blood flow dysregulation is a prominent feature of Alzheimer’s disease. In this article we will discuss developments and controversies in the understanding of neurovascular coupling and finish by discussing current knowledge concerning neurovascular uncoupling in Alzheimer’s disease.
Collapse
Affiliation(s)
- Winston M Zhu
- Oxford Medical School, University of Oxford, Oxford, UK
| | - Ain Neuhaus
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Daniel J Beard
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.,School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
| | - Brad A Sutherland
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Australia
| | - Gabriele C DeLuca
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
2
|
Czapski GA, Strosznajder JB. Glutamate and GABA in Microglia-Neuron Cross-Talk in Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms222111677. [PMID: 34769106 PMCID: PMC8584169 DOI: 10.3390/ijms222111677] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 12/18/2022] Open
Abstract
The physiological balance between excitation and inhibition in the brain is significantly affected in Alzheimer’s disease (AD). Several neuroactive compounds and their signaling pathways through various types of receptors are crucial in brain homeostasis, among them glutamate and γ-aminobutyric acid (GABA). Activation of microglial receptors regulates the immunological response of these cells, which in AD could be neuroprotective or neurotoxic. The novel research approaches revealed the complexity of microglial function, including the interplay with other cells during neuroinflammation and in the AD brain. The purpose of this review is to describe the role of several proteins and multiple receptors on microglia and neurons, and their involvement in a communication network between cells that could lead to different metabolic loops and cell death/survival. Our review is focused on the role of glutamatergic, GABAergic signaling in microglia–neuronal cross-talk in AD and neuroinflammation. Moreover, the significance of AD-related neurotoxic proteins in glutamate/GABA-mediated dialogue between microglia and neurons was analyzed in search of novel targets in neuroprotection, and advanced pharmacological approaches.
Collapse
|
3
|
Engin A, Engin AB. N-Methyl-D-Aspartate Receptor Signaling-Protein Kinases Crosstalk in Cerebral Ischemia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1275:259-283. [PMID: 33539019 DOI: 10.1007/978-3-030-49844-3_10] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Although stroke is very often the cause of death worldwide, the burden of ischemic and hemorrhagic stroke varies between regions and over time regarding differences in prognosis, prevalence of risk factors, and treatment strategies. Excitotoxicity, oxidative stress, dysfunction of the blood-brain barrier, neuroinflammation, and lysosomal membrane permeabilization, sequentially lead to the progressive death of neurons. In this process, protein kinases-related checkpoints tightly regulate N-methyl-D-aspartate (NMDA) receptor signaling pathways. One of the major hallmarks of cerebral ischemia is excitotoxicity, characterized by overactivation of glutamate receptors leading to intracellular Ca2+ overload and ultimately neuronal death. Thus, reduced expression of postsynaptic density-95 protein and increased protein S-nitrosylation in neurons is responsible for neuronal vulnerability in cerebral ischemia. In this chapter death-associated protein kinases, cyclin-dependent kinase 5, endoplasmic reticulum stress-induced protein kinases, hyperhomocysteinemia-related NMDA receptor overactivation, ephrin-B-dependent amplification of NMDA-evoked neuronal excitotoxicity and lysosomocentric hypothesis have been discussed.Consequently, ample evidences have demonstrated that enhancing extrasynaptic NMDA receptor activity triggers cell death after stroke. In this context, considering the dual roles of NMDA receptors in both promoting neuronal survival and mediating neuronal damage, selective augmentation of NR2A-containing NMDA receptor activation in the presence of NR2B antagonist may constitute a promising therapy for stroke.
Collapse
Affiliation(s)
- Atilla Engin
- Department of General Surgery, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Ayse Basak Engin
- Department of Toxicology, Faculty of Pharmacy, Gazi University, Ankara, Turkey.
| |
Collapse
|
4
|
Santerre-Anderson JL, Werner DF. Ethanol Stimulation of Microglia Release Increases ERK1/2-Dependent Neuronal cPLA 2 Activity in Immature Cultured Cortical Preparations. Neurochem Res 2020; 45:1592-1601. [PMID: 32274627 DOI: 10.1007/s11064-020-03024-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/31/2020] [Accepted: 04/03/2020] [Indexed: 10/24/2022]
Abstract
Ethanol consumption typically begins during adolescence and is associated with age-dependent responses and maladaptive neuronal consequences. Our previous work established the role of a putative signaling cascade involving cytoplasmic phospholipase A2 (cPLA2), arachidonic acid (AA) and novel protein kinase C isoforms in adolescent hypnotic sensitivity. The current study aimed to further delineate this pathway by ascertaining the cellular specificity as well as the upstream activators of cPLA2 using an immature cultured cortical preparation. A threefold increase in cPLA2 was detected within 2 min of 100 mM ethanol exposure as measured by phosphorylation of serine 505 (Ser505). Increases in cPLA2 activity were further observed to be primarily confined to neuronal cells. Increases in the number of neurons co-expressing cPLA2 Ser505 phosphorylation were prevented by preincubation with an ERK1/2 inhibitor, but not P38 MAPK inhibition. Finally, conditioned media studies were used to determine whether glial cells were involved in the ethanol-induced neuronal cPLA2 activity. Rapid increases in neuronal cPLA2 activity appears to be initiated through ethanol stimulated microglial, but not astrocytic releasable factors. Taken together, these data extend the proposed signaling cascade involved in developmental ethanol responding.
Collapse
Affiliation(s)
- J L Santerre-Anderson
- Department of Psychology, Binghamton University, Binghamton, NY, USA. .,Center for Development and Behavioral Neuroscience, Binghamton University, Binghamton, NY, USA. .,Department of Psychology, King's College, Wilkes-Barre, PA, USA. .,Program in Neuroscience, King's College, Wilkes-Barre, PA, USA.
| | - D F Werner
- Department of Psychology, Binghamton University, Binghamton, NY, USA.,Center for Development and Behavioral Neuroscience, Binghamton University, Binghamton, NY, USA
| |
Collapse
|
5
|
Block J. M2-like cells from the macrophage lineage might play a central role in closure of the embryonic neural tube. Med Hypotheses 2019; 129:109264. [PMID: 31371090 DOI: 10.1016/j.mehy.2019.109264] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/02/2019] [Accepted: 06/08/2019] [Indexed: 11/25/2022]
Abstract
Herein it is hypothesized that M2-like macrophages or pre-macrophages of fetal origin might play a central role in development and closure of the neural tube. Early in embryonic development, pre-macrophages arise from the fetal yolk sac and track through the bloodstream to reach diverse embryonic tissues, where they mature. Most of these macrophages exhibit an M2-like phenotype. The critical period for neural tube closure is contained within the period of yolk sac-derived pre-macrophage tracking and distribution, which poses a question: might these pre-macrophages or macrophages exert an influence on the closing neural tube? Evidence suggests that perturbations in macrophage polarization or M2 macrophage function might contribute to the failure of neural tube closure associated with diabetes mellitus, one carbon metabolism (including folic acid deficit), inositol, arachidonic acid, and sphingosine-1-phosphate, as well as in the teratogenicity of nitric acid, valproic acid, and fumonisin. The influence of each of these factors is interpreted in light of potential interactions with M2-like macrophages or macrophage progenitors on the developing neural tube. By placing these anti inflammatory macrophages at the center of various epigenetic, neurochemical, and signaling processes suspected to be involved in neural tube closure, potential associations are revealed between macrophages and embryonic structural developmental processes such as collagen and actin dynamics. The choice of this model is also an attempt to explain why some etiologies for failure of neural tube closure are rescued by folic acid, whereas other etiologies are rescued only by formate, inositol, or not at all.
Collapse
Affiliation(s)
- Janice Block
- Mercaz HaBriut, Center for Integrative Medicine, Nahal Achziv 8/2, Ramat Beit Shemesh, Israel; Kupat Cholim Leumit, Sfat Emet 4, Beit Shemesh, Israel.
| |
Collapse
|
6
|
Hoque A, Williamson NA, Ameen SS, Ciccotosto GD, Hossain MI, Oakhill JS, Ng DCH, Ang CS, Cheng HC. Quantitative proteomic analyses of dynamic signalling events in cortical neurons undergoing excitotoxic cell death. Cell Death Dis 2019; 10:213. [PMID: 30824683 PMCID: PMC6397184 DOI: 10.1038/s41419-019-1445-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 01/20/2019] [Accepted: 02/01/2019] [Indexed: 12/23/2022]
Abstract
Excitotoxicity, caused by overstimulation or dysregulation of ionotropic glutamate receptors (iGluRs), is a pathological process directing neuronal death in many neurological disorders. The aberrantly stimulated iGluRs direct massive influx of calcium ions into the affected neurons, leading to changes in expression and phosphorylation of specific proteins to modulate their functions and direct their participation in the signalling pathways that induce excitotoxic neuronal death. To define these pathways, we used quantitative proteomic approaches to identify these neuronal proteins (referred to as the changed proteins) and determine how their expression and/or phosphorylation dynamically changed in association with excitotoxic cell death. Our data, available in ProteomeXchange with identifier PXD008353, identified over 100 changed proteins exhibiting significant alterations in abundance and/or phosphorylation levels at different time points (5–240 min) in neurons after glutamate overstimulation. Bioinformatic analyses predicted that many of them are components of signalling networks directing defective neuronal morphology and functions. Among them, the well-known neuronal survival regulators including mitogen-activated protein kinases Erk1/2, glycogen synthase kinase 3 (GSK3) and microtubule-associated protein (Tau), were selected for validation by biochemical approaches, which confirmed the findings of the proteomic analysis. Bioinformatic analysis predicted Protein Kinase B (Akt), c-Jun kinase (JNK), cyclin-dependent protein kinase 5 (Cdk5), MAP kinase kinase (MEK), Casein kinase 2 (CK2), Rho-activated protein kinase (Rock) and Serum/glucocorticoid-regulated kinase 1 (SGK1) as the potential upstream kinases phosphorylating some of the changed proteins. Further biochemical investigation confirmed the predictions of sustained changes of the activation states of neuronal Akt and CK2 in excitotoxicity. Thus, future investigation to define the signalling pathways directing the dynamic alterations in abundance and phosphorylation of the identified changed neuronal proteins will help elucidate the molecular mechanism of neuronal death in excitotoxicity.
Collapse
Affiliation(s)
- Ashfaqul Hoque
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, 3010, Australia.,Cell Signalling Research Laboratories, University of Melbourne, Parkville, VIC, 3010, Australia.,Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia.,Metabolic Signalling Laboratory, St. Vincent's Institute for Medical Research, University of Melbourne, Fitzroy, VIC, 3065, Australia
| | - Nicholas A Williamson
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - S Sadia Ameen
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, 3010, Australia.,Cell Signalling Research Laboratories, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Giuseppe D Ciccotosto
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, VIC, 3010, Australia
| | - M Iqbal Hossain
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, 3010, Australia.,Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Jonathan S Oakhill
- Metabolic Signalling Laboratory, St. Vincent's Institute for Medical Research, University of Melbourne, Fitzroy, VIC, 3065, Australia.,Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, 3000, Australia
| | - Dominic C H Ng
- School of Biomedical Sciences, University of Queensland, St. Lucia, QLD, Australia
| | - Ching-Seng Ang
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Heung-Chin Cheng
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, 3010, Australia. .,Cell Signalling Research Laboratories, University of Melbourne, Parkville, VIC, 3010, Australia. .,Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
7
|
Shakil H, Saleem S. Prostaglandin I2 IP Receptor Agonist, Beraprost, Prevents Transient Global Cerebral Ischemia Induced Hippocampal CA1 Injury in Aging Mice. ACTA ACUST UNITED AC 2015; 2. [PMID: 25584359 PMCID: PMC4288849 DOI: 10.4172/2329-6895.1000174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Beraprost sodium is a new stable, orally active Prostaglandin I2 analogue. The aim of this study was to determine the effect of beraprost on cognitive dysfunction and locomotor impairment induced by bilateral common carotid artery occlusion in mice. We investigated the ameliorating effect of beraprost through PGI2 IP receptor by studying neurologic deficit assessment and T-maze testing in young and old male C57Bl/6 wild-type (WT) and IP receptor knockout (IP KO) mice following a 12 min bilateral common carotid artery occlusion (BCCAo) and 7 days of reperfusion. Beraprost reversed BCCAo induced cognitive impairment and neurological deficit in a dose dependent manner. Immunohistochemical studies showed attenuation of neuronal cell death, astrogliosis, microglial invasion, and myeloperoxidase (MPO) activity in both young and old WT mice after post treatment with beraprost. Moreover, after BCCAo, phosphorylated cAMP response element binding protein positive cell numbers were increased with beraprost treatment over vehicle treated controls. These results show that beraprost treatment attenuated cognitive dysfunction and neurological deficits induced by BCCAo, and suggest that this effect may be mediated by the neuroprotective effects of treatment.
Collapse
Affiliation(s)
- Hania Shakil
- Hamdard College of Medicine and Dentistry, Hamdard University, Sharae Madinat Al-Hikmah, Karachi 74600, Pakistan
| | - Sofiyan Saleem
- Del E Webb Center for Neuroscience, Aging and Stem Cell Research, Sanford Burnham Medical Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
8
|
Challet E, Denis I, Rochet V, Aïoun J, Gourmelen S, Lacroix H, Goustard-Langelier B, Papillon C, Alessandri JM, Lavialle M. The role of PPARβ/δ in the regulation of glutamatergic signaling in the hamster suprachiasmatic nucleus. Cell Mol Life Sci 2013; 70:2003-14. [PMID: 23269438 PMCID: PMC11113465 DOI: 10.1007/s00018-012-1241-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 11/15/2012] [Accepted: 12/10/2012] [Indexed: 12/28/2022]
Abstract
Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear receptor superfamily and function as transcription factors that regulate gene expression in numerous biological processes. Although the PPARβ/δ subtype is highly expressed in the brain, its physiological roles in neuronal function remain to be elucidated. In this study, we examined the presence of PPARβ/δ in the master circadian clock of the Syrian hamster and investigated its putative functional role in this structure. In mammals, the central circadian clock, located in the suprachiasmatic nucleus (SCN), is entrained by the light-dark (LD) cycle via photic6 signals conveyed by a direct pathway whose terminals release glutamate. Using immunocytochemical and qRT-PCR analysis, we demonstrated that the rhythmic expression of PPAR β/δ within the SCN of hamsters raised under an LD cycle was detectable only at the transcriptional level when the hamsters were maintained under constant darkness (DD). The increase in the number of immunoreactive PPARβ/δ cells observed under DD after light stimulation during the early subjective night (CT14), but not during the subjective day (CT06), demonstrated that the expression of PPARβ/δ can be up-regulated according to the photosensitive phase of the circadian clock. All of the PPARβ/δ-positive cells in the SCN also expressed the glutamate receptor NMDAR1. Moreover, we demonstrated that at the photosensitive point (CT14), the administration of L-16504, a specific agonist of PPARβ/δ, amplified the phase delay of the locomotor response induced by a light pulse. Taken together, these data suggest that PPARβ/δ activation modulates glutamate release that mediates entrainment of the circadian clock by light.
Collapse
Affiliation(s)
- Etienne Challet
- Department of Neurobiology of Rhythms, Institute of Cellular and Integrative Neurosciences, UPR 3212 CNRS, University of Strasbourg, 67084 Strasbourg cedex, France
| | - Isabelle Denis
- INRA, UR 909 Nutrition et Régulation Lipidique des Fonctions Cérébrales, 78352 Jouy-en-Josas, France
| | - Violaine Rochet
- INRA, UR 909 Nutrition et Régulation Lipidique des Fonctions Cérébrales, 78352 Jouy-en-Josas, France
| | - Josiane Aïoun
- INRA, UR 909 Nutrition et Régulation Lipidique des Fonctions Cérébrales, 78352 Jouy-en-Josas, France
| | - Sylviane Gourmelen
- Department of Neurobiology of Rhythms, Institute of Cellular and Integrative Neurosciences, UPR 3212 CNRS, University of Strasbourg, 67084 Strasbourg cedex, France
| | - Herminie Lacroix
- INRA, UR 909 Nutrition et Régulation Lipidique des Fonctions Cérébrales, 78352 Jouy-en-Josas, France
| | | | - Catherine Papillon
- INRA, UR 909 Nutrition et Régulation Lipidique des Fonctions Cérébrales, 78352 Jouy-en-Josas, France
| | - Jean-Marc Alessandri
- INRA, UR 909 Nutrition et Régulation Lipidique des Fonctions Cérébrales, 78352 Jouy-en-Josas, France
| | - Monique Lavialle
- INRA, UR 909 Nutrition et Régulation Lipidique des Fonctions Cérébrales, 78352 Jouy-en-Josas, France
| |
Collapse
|
9
|
Schaeffer EL, da Silva ER, Novaes BDA, Skaf HD, Gattaz WF. Differential roles of phospholipases A2 in neuronal death and neurogenesis: implications for Alzheimer disease. Prog Neuropsychopharmacol Biol Psychiatry 2010; 34:1381-9. [PMID: 20804810 DOI: 10.1016/j.pnpbp.2010.08.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 08/04/2010] [Accepted: 08/21/2010] [Indexed: 01/06/2023]
Abstract
The involvement of phospholipase A(2) (PLA(2)) in Alzheimer disease (AD) was first investigated nearly 15 years ago. Over the years, several PLA(2) isoforms have been detected in brain tissue: calcium-dependent secreted PLA(2) or sPLA(2) (IIA, IIC, IIE, V, X, and XII), calcium-dependent cytosolic PLA(2) or cPLA(2) (IVA, IVB, and IVC), and calcium-independent PLA(2) or iPLA(2) (VIA and VIB). Additionally, numerous in vivo and in vitro studies have suggested the role of different brain PLA(2) in both physiological and pathological events. This review aimed to summarize the findings in the literature relating the different brain PLA(2) isoforms with alterations found in AD, such as neuronal cell death and impaired neurogenesis process. The review showed that sPLA(2)-IIA, sPLA(2)-V and cPLA(2)-IVA are involved in neuronal death, whereas sPLA(2)-III and sPLA(2)-X are related to the process of neurogenesis, and that the cPLA(2) and iPLA(2) groups can be involved in both neuronal death and neurogenesis. In AD, there are reports of reduced activity of the cPLA(2) and iPLA(2) groups and increased expression of sPLA(2)-IIA and cPLA(2)-IVA. The findings suggest that the inhibition of cPLA(2) and iPLA(2) isoforms (yet to be determined) might contribute to impaired neurogenesis, whereas stimulation of sPLA(2)-IIA and cPLA(2)-IVA might contribute to neurodegeneration in AD.
Collapse
Affiliation(s)
- Evelin L Schaeffer
- Laboratory of Neuroscience (LIM-27), Department and Institute of Psychiatry, Faculty of Medicine, University of Sao Paulo, Rua Dr. Ovídio Pires de Campos 785, 05403-010, Sao Paulo, SP, Brazil.
| | | | | | | | | |
Collapse
|
10
|
Roberts-Crowley ML, Rittenhouse AR. Arachidonic acid inhibition of L-type calcium (CaV1.3b) channels varies with accessory CaVbeta subunits. ACTA ACUST UNITED AC 2010; 133:387-403. [PMID: 19332620 PMCID: PMC2699108 DOI: 10.1085/jgp.200810047] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Arachidonic acid (AA) inhibits the activity of several different voltage-gated Ca2+ channels by an unknown mechanism at an unknown site. The Ca2+ channel pore-forming subunit (CaVα1) is a candidate for the site of AA inhibition because T-type Ca2+ channels, which do not require accessory subunits for expression, are inhibited by AA. Here, we report the unanticipated role of accessory CaVβ subunits on the inhibition of CaV1.3b L-type (L-) current by AA. Whole cell Ba2+ currents were measured from recombinant channels expressed in human embryonic kidney 293 cells at a test potential of −10 mV from a holding potential of −90 mV. A one-minute exposure to 10 µM AA inhibited currents with β1b, β3, or β4 58, 51, or 44%, respectively, but with β2a only 31%. At a more depolarized holding potential of −60 mV, currents were inhibited to a lesser degree. These data are best explained by a simple model where AA stabilizes CaV1.3b in a deep closed-channel conformation, resulting in current inhibition. Consistent with this hypothesis, inhibition by AA occurred in the absence of test pulses, indicating that channels do not need to open to become inhibited. AA had no effect on the voltage dependence of holding potential–dependent inactivation or on recovery from inactivation regardless of CaVβ subunit. Unexpectedly, kinetic analysis revealed evidence for two populations of L-channels that exhibit willing and reluctant gating previously described for CaV2 channels. AA preferentially inhibited reluctant gating channels, revealing the accelerated kinetics of willing channels. Additionally, we discovered that the palmitoyl groups of β2a interfere with inhibition by AA. Our novel findings that the CaVβ subunit alters kinetic changes and magnitude of inhibition by AA suggest that CaVβ expression may regulate how AA modulates Ca2+-dependent processes that rely on L-channels, such as gene expression, enzyme activation, secretion, and membrane excitability.
Collapse
Affiliation(s)
- Mandy L Roberts-Crowley
- Department of Physiology and Program in Neuroscience, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | |
Collapse
|
11
|
Khanna S, Parinandi NL, Kotha SR, Roy S, Rink C, Bibus D, Sen CK. Nanomolar vitamin E alpha-tocotrienol inhibits glutamate-induced activation of phospholipase A2 and causes neuroprotection. J Neurochem 2009; 112:1249-60. [PMID: 20028458 DOI: 10.1111/j.1471-4159.2009.06550.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Our previous works have elucidated that the 12-lipoxygenase pathway is directly implicated in glutamate-induced neural cell death, and that such that toxicity is prevented by nM concentrations of the natural vitamin E alpha-tocotrienol (TCT). In the current study we tested the hypothesis that phospholipase A(2) (PLA(2)) activity is sensitive to glutamate and mobilizes arachidonic acid (AA), a substrate for 12-lipoxygenase. Furthermore, we examined whether TCT regulates glutamate-inducible PLA(2) activity in neural cells. Glutamate challenge induced the release of [(3)H]AA from HT4 neural cells. Such response was attenuated by calcium chelators (EGTA and BAPTA), cytosolic PLA(2) (cPLA(2))-specific inhibitor (AACOCF(3)) as well as TCT at 250 nM. Glutamate also caused the elevation of free polyunsaturated fatty acid (AA and docosahexaenoic acid) levels and disappearance of phospholipid-esterified AA in neural cells. Furthermore, glutamate induced a time-dependent translocation and enhanced serine phosphorylation of cPLA(2) in the cells. These effects of glutamate on fatty acid levels and on cPLA(2) were significantly attenuated by nM TCT. The observations that AACOCF(3), transient knock-down of cPLA(2) as well as TCT significantly protected against the glutamate-induced death of neural cells implicate cPLA(2) as a TCT-sensitive mediator of glutamate induced neural cell death. This work presents first evidence recognizing glutamate-induced changes in cPLA(2) as a novel mechanism responsible for neuroprotection observed in response to nanomolar concentrations of TCT.
Collapse
Affiliation(s)
- Savita Khanna
- Department of Surgery, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Medical Center, Columbus, OH 43210, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Rosa AO, Rapoport SI. Intracellular- and extracellular-derived Ca(2+) influence phospholipase A(2)-mediated fatty acid release from brain phospholipids. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1791:697-705. [PMID: 19327408 DOI: 10.1016/j.bbalip.2009.03.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Revised: 03/01/2009] [Accepted: 03/11/2009] [Indexed: 02/01/2023]
Abstract
Docosahexaenoic acid (DHA) and arachidonic acid (AA) are found in high concentrations in brain cell membranes and are important for brain function and structure. Studies suggest that AA and DHA are hydrolyzed selectively from the sn-2 position of synaptic membrane phospholipids by Ca(2+)-dependent cytosolic phospholipase A(2) (cPLA(2)) and Ca(2+)-independent phospholipase A(2) (iPLA(2)), respectively, resulting in increased levels of the unesterified fatty acids and lysophospholipids. Cell studies also suggest that AA and DHA release depend on increased concentrations of Ca(2+), even though iPLA(2) has been thought to be Ca(2+)-independent. The source of Ca(2+) for activation of cPLA(2) is largely extracellular, whereas Ca(2+) released from the endoplasmic reticulum can activate iPLA(2) by a number of mechanisms. This review focuses on the role of Ca(2+) in modulating cPLA(2) and iPLA(2) activities in different conditions. Furthermore, a model is suggested in which neurotransmitters regulate the activity of these enzymes and thus the balanced and localized release of AA and DHA from phospholipid in the brain, depending on the primary source of the Ca(2+) signal.
Collapse
Affiliation(s)
- Angelo O Rosa
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
13
|
Schaeffer EL, Forlenza OV, Gattaz WF. Phospholipase A2 activation as a therapeutic approach for cognitive enhancement in early-stage Alzheimer disease. Psychopharmacology (Berl) 2009; 202:37-51. [PMID: 18853146 DOI: 10.1007/s00213-008-1351-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Accepted: 09/10/2008] [Indexed: 11/29/2022]
Abstract
RATIONALE Alzheimer disease (AD) is the leading cause of dementia in the elderly and has no known cure. Evidence suggests that reduced activity of specific subtypes of intracellular phospholipases A2 (cPLA2 and iPLA2) is an early event in AD and may contribute to memory impairment and neuropathology in the disease. OBJECTIVE The objective of this study was to review the literature focusing on the therapeutic role of PLA2 stimulation by cognitive training and positive modulators, or of supplementation with arachidonic acid (PLA2 product) in facilitating memory function and synaptic transmission and plasticity in either research animals or human subjects. METHODS MEDLINE database was searched (no date restrictions) for published articles using the keywords Alzheimer disease (mild, moderate, severe), mild cognitive impairment, healthy elderly, rats, mice, phospholipase A(2), phospholipid metabolism, phosphatidylcholine, arachidonic acid, cognitive training, learning, memory, long-term potentiation, protein kinases, dietary lipid compounds, cell proliferation, neurogenesis, and neuritogenesis. Reference lists of the identified articles were checked to select additional studies of interest. RESULTS Overall, the data suggest that PLA2 activation is induced in the healthy brain during learning and memory. Furthermore, learning seems to regulate endogenous neurogenesis, which has been observed in AD brains. Finally, PLA2 appears to be implicated in homeostatic processes related to neurite outgrowth and differentiation in both neurodevelopmental processes and response to neuronal injury. CONCLUSION The use of positive modulators of PLA2 (especially of cPLA2 and iPLA2) or supplementation with dietary lipid compounds (e.g., arachidonic acid) in combination with cognitive training could be a valuable therapeutic strategy for cognitive enhancement in early-stage AD.
Collapse
Affiliation(s)
- Evelin L Schaeffer
- Laboratory of Neuroscience (LIM-27), Department and Institute of Psychiatry, Faculty of Medicine, University of São Paulo, Rua Dr. Ovídio Pires de Campos 785, 05403-010 São Paulo, SP, Brazil.
| | | | | |
Collapse
|
14
|
Schaeffer EL, Zorrón Pu L, Gagliotti DAM, Gattaz WF. Conditioning training and retrieval increase phospholipase A(2) activity in the cerebral cortex of rats. J Neural Transm (Vienna) 2008; 116:41-50. [PMID: 18982240 DOI: 10.1007/s00702-008-0133-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Accepted: 10/04/2008] [Indexed: 12/25/2022]
Abstract
In rats, phospholipase A(2) (PLA(2)) activity was found to be increased in the hippocampus immediately after training and retrieval of a contextual fear conditioning paradigm (step-down inhibitory avoidance [IA] task). In the present study we investigated whether PLA(2) is also activated in the cerebral cortex of rats in association with contextual fear learning and retrieval. We observed that IA training induces a rapid (immediately after training) and long-lasting (3 h after training) activation of PLA(2) in both frontal and parietal cortices. However, immediately after retrieval (measured 24 h after training), PLA(2) activity was increased just in the parietal cortex. These findings suggest that PLA(2) activity is differentially required in the frontal and parietal cortices for the mechanisms of contextual learning and retrieval. Because reduced brain PLA(2) activity has been reported in Alzheimer disease, our results suggest that stimulation of PLA(2) activity may offer new treatment strategies for this disease.
Collapse
Affiliation(s)
- E L Schaeffer
- Department and Institute of Psychiatry, University of São Paulo, Rua Doutor Ovídio Pires de Campos, São Paulo, SP, Brazil.
| | | | | | | |
Collapse
|
15
|
Windelborn JA, Lipton P. Lysosomal release of cathepsins causes ischemic damage in the rat hippocampal slice and depends on NMDA-mediated calcium influx, arachidonic acid metabolism, and free radical production. J Neurochem 2008; 106:56-69. [PMID: 18363826 DOI: 10.1111/j.1471-4159.2008.05349.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
NMDA-mediated calcium entry and reactive oxygen species (ROS) production are well-recognized perpetrators of ischemic neuronal damage. The current studies show that these events lead to the release of the protein hydrolase, cathepsin B, from lysosomes 2 h following 5-min oxygen-glucose deprivation in the rat hippocampal slice. This release reflects a lysosomal membrane permeabilization (LMP) and was measured as the appearance of diffuse immunolabeled cathepsin B in the cytosol of CA1 pyramidal neurons. Necrotic neuronal damage begins after the release of cathepsins and is prevented by inhibitors of either cathepsin B or D indicating that the release of cathepsins is an important mediator of severe damage. There was an increase in superoxide levels, measured by dihydroethidium fluorescence, at the same time as LMP and reducing ROS levels with antioxidants, Trolox or N-tert-butyl-alpha-phenyl nitrone, blocked LMP. Both LMP and ROS production were blocked by an NMDA channel blocker (MK-801) and by inhibitors of mitogen-activated protein kinase kinase (U0126), calcium-dependent/independent phospholipases A2 (methyl arachidonyl fluorophosphonate) but not calcium-independent phospholipases A2 (bromoenol lactone) and cyclooxygenase-2 (NS398). A cell-permeant specific inhibitor of calpain (PD150606) prevented LMP, but not ROS production. It is concluded that LMP results in part from calcium-initiated and extracellular signal-regulated kinase-initiated arachidonic acid metabolism, which produces free radicals; it also requires the action of calpain.
Collapse
Affiliation(s)
- James A Windelborn
- Neuroscience Training Program, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
16
|
Taylor AL, Bonventre JV, Uliasz TF, Hewett JA, Hewett SJ. Cytosolic phospholipase A2 alpha inhibition prevents neuronal NMDA receptor-stimulated arachidonic acid mobilization and prostaglandin production but not subsequent cell death. J Neurochem 2008; 106:1828-40. [PMID: 18564366 DOI: 10.1111/j.1471-4159.2008.05527.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phospholipase A(2) (PLA(2)) enzymes encompass a superfamily of at least 13 extracellular and intracellular esterases that hydrolyze the sn-2 fatty acyl bonds of phospholipids to yield fatty acids and lysophospholipids. The purpose of this study was to characterize which phospholipase paralog regulates NMDA receptor-mediated arachidonic acid (AA) release. Using mixed cortical cell cultures containing both neurons and astrocytes, we found that [(3)H]-AA released into the extracellular medium following NMDA receptor stimulation (100 microM) increased with time and was completely prevented by the addition of the NMDA receptor antagonist MK-801 (10 microM) or by removal of extracellular Ca(2+). Neither diacylglycerol lipase inhibition (RHC-80267; 10 microM) nor selective inhibition of Ca(2+)-independent PLA(2) [bromoenol lactone (BEL); 10 microM] alone had an effect on NMDA receptor-stimulated release of [(3)H]-AA. Release was prevented by methyl arachidonyl fluorophosphonate (MAFP) (5 microM) and AACOCF(3) (1 microM), inhibitors of both cytosolic PLA(2) (cPLA(2)) and Ca(2+)-independent PLA(2) isozymes. This inhibition effectively translated to block of NMDA-induced prostaglandin (PG) production. An inhibitor of p38MAPK, SB 203580 (7.5 microM), also significantly reduced NMDA-induced PG production providing suggestive evidence for the role of cPLA(2)alpha. Its involvement in release was confirmed using cultures derived from mice deficient in cPLA(2)alpha, which failed to produce PGs in response to NMDA receptor stimulation. Interestingly, neither MAFP, AACOCF(3) nor cultures derived from cPLA(2)alpha null mutant animals showed any protection against NMDA-mediated neurotoxicity, indicating that inhibition of this enzyme may not be a viable protective strategy in disorders of the cortex involving over-activation of the NMDA receptor.
Collapse
Affiliation(s)
- Ava L Taylor
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | | | | | | | | |
Collapse
|
17
|
Cholinergic and glutamatergic alterations beginning at the early stages of Alzheimer disease: participation of the phospholipase A2 enzyme. Psychopharmacology (Berl) 2008; 198:1-27. [PMID: 18392810 DOI: 10.1007/s00213-008-1092-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2007] [Accepted: 01/28/2008] [Indexed: 12/14/2022]
Abstract
RATIONALE Alzheimer disease (AD), a progressive neurodegenerative disorder, is the leading cause of dementia in the elderly. A combination of cholinergic and glutamatergic dysfunction appears to underlie the symptomatology of AD, and thus, treatment strategies should address impairments in both systems. Evidence suggests the involvement of phospholipase A(2) (PLA(2)) enzyme in memory impairment and neurodegeneration in AD via actions on both cholinergic and glutamatergic systems. OBJECTIVES To review cholinergic and glutamatergic alterations underlying cognitive impairment and neuropathology in AD and attempt to link PLA(2) with such alterations. METHODS Medline databases were searched (no date restrictions) for published articles with links among the terms Alzheimer disease (mild, moderate, severe), mild cognitive impairment, choline acetyltransferase, acetylcholinesterase, NGF, NGF receptor, muscarinic receptor, nicotinic receptor, NMDA, AMPA, metabotropic glutamate receptor, atrophy, glucose metabolism, phospholipid metabolism, sphingolipid, membrane fluidity, phospholipase A(2), arachidonic acid, attention, memory, long-term potentiation, beta-amyloid, tau, inflammation, and reactive species. Reference lists of the identified articles were checked to identify additional studies of interest. RESULTS Overall, results suggest the hypothesis that persistent inhibition of cPLA(2) and iPLA(2) isoforms at early stages of AD may play a central role in memory deficits and beta-amyloid production through down-regulation of cholinergic and glutamate receptors. As the disease progresses, beta-amyloid induced up-regulation of cPLA(2) and sPLA(2) isoforms may play critical roles in inflammation and oxidative stress, thus participating in the neurodegenerative process. CONCLUSION Activation and inhibition of specific PLA(2) isoforms at different stages of AD could be of therapeutic importance and delay cognitive dysfunction and neurodegeneration.
Collapse
|
18
|
Surin AM, Bolshakov AP, Mikhailova MM, Sorokina EG, Senilova YE, Pinelis VG, Khodorov BI. Arachidonic acid enhances intracellular [Ca2+]i increase and mitochondrial depolarization induced by glutamate in cerebellar granule cells. BIOCHEMISTRY (MOSCOW) 2007; 71:864-70. [PMID: 16978149 DOI: 10.1134/s0006297906080074] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Maturation of primary neuronal cultures is accompanied by an increase in the proportion of cells that exhibit biphasic increase in free cytoplasmic Ca2+ ([Ca2+]i) followed by synchronic decrease in electrical potential difference across the inner mitochondrial membrane (DeltaPsim) in response to stimulation of glutamate receptors. In the present study we have examined whether the appearance of the second phase of [Ca2+]i change can be attributed to arachidonic acid (AA) release in response to the effect of glutamate (Glu) on neurons. Using primary culture of rat cerebellar granule cells we have investigated the effect of AA (1-20 microM) on [Ca2+]i, DeltaPsim, and [ATP] and changes in these parameters induced by neurotoxic concentrations of Glu (100 microM, 10-40 min). At =10 microM, AA caused insignificant decrease in DeltaPsim without any influence on [Ca2+]i. The mitochondrial ATPase inhibitor oligomycin enhanced AA-induced decrease in DeltaPsim; this suggests that AA may inhibit mitochondrial respiration. Addition of AA during the treatment with Glu resulted in more pronounced augmentation of [Ca2+]i and the decrease in DeltaPsim than the changes in these parameters observed during independent action of AA; removal of Glu did not abolish these changes. An inhibitor of the cyclooxygenase and lipoxygenase pathways of AA metabolism, 5,8,11,14-eicosatetraynoic acid, increased the proportion of neurons characterized by Glu-induced biphasic increase in [Ca2+]i and the decrease in DeltaPsim. Palmitic acid (30 microM) did not increase the percentage of neurons exhibiting biphasic response to Glu. Co-administration of AA and Glu caused 2-3 times more pronounced decrease in ATP concentrations than that observed during the independent effect of AA and Glu. The data suggest that AA may influence the functional state of mitochondria, and these changes may promote biphasic [Ca2+]i and DeltaPsim responses of neurons to the neurotoxic effect of Glu.
Collapse
Affiliation(s)
- A M Surin
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow, 125315, Russia.
| | | | | | | | | | | | | |
Collapse
|
19
|
Ge QF, Wei EQ, Zhang WP, Hu X, Huang XJ, Zhang L, Song Y, Ma ZQ, Chen Z, Luo JH. Activation of 5-lipoxygenase after oxygen-glucose deprivation is partly mediated via NMDA receptor in rat cortical neurons. J Neurochem 2006; 97:992-1004. [PMID: 16606359 DOI: 10.1111/j.1471-4159.2006.03828.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
5-Lipoxygenase (5-LOX) is the enzyme metabolizing arachidonic acid to produce pro-inflammatory leukotrienes. We have reported that 5-LOX is translocated to the nuclear envelope after ischemic-like injury in PC12 cells. In the present study, we determined whether 5-LOX is activated (translocation and production of leukotrienes) after oxygen-glucose deprivation (OGD) in primary rat cortical neurons; if so, whether this activation is mediated by NMDA receptor. After OGD, 5-LOX was translocated to the nuclear envelope as detected by immunoblotting, immunostaining and green fluorescent protein-5-LOX transfection. 5-LOX metabolites, cysteinyl-leukotrienes (CysLTs) but not leukotriene B4, in the culture media were increased 0.5-1.5 h after recovery. Similarly, NMDA (100 microm) also induced 5-LOX translocation, and increased the production of CysLTs during 0.5-1 h NMDA exposure. Both OGD and NMDA reduced neuron viability. NMDA receptor antagonist MK-801 inhibited almost all the responses to OGD and NMDA; whereas 5-LOX activating protein inhibitor MK-886 and 5-LOX inhibitor caffeic acid inhibited the reduction of neuron viability and the production of CysLTs, but did not affect 5-LOX translocation. From these results, we conclude that OGD can activate 5-LOX in primary rat cortical neurons, and that this activation may be partly mediated via activating NMDA receptor.
Collapse
Affiliation(s)
- Qiu-Fu Ge
- Department of Pharmacology, Zheijang University School of Medicine, Hangzhou, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Song Y, Wei EQ, Zhang WP, Ge QF, Liu JR, Wang ML, Huang XJ, Hu X, Chen Z. Minocycline protects PC12 cells against NMDA-induced injury via inhibiting 5-lipoxygenase activation. Brain Res 2006; 1085:57-67. [PMID: 16574083 DOI: 10.1016/j.brainres.2006.02.042] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2005] [Revised: 02/02/2006] [Accepted: 02/07/2006] [Indexed: 11/24/2022]
Abstract
Recently, we have reported that minocycline, a semi-synthetic tetracycline with neuroprotective effects, inhibits the in vitro ischemic-like injury and 5-lipoxygenase (5-LOX) activation in PC12 cells. In the present study, we further determined whether minocycline protects PC12 cells from excitotoxicity via inhibiting 5-LOX activation. We used N-methyl-d-aspartate (NMDA, 200 microM) to induce early (exposure for 6 h) and delayed (exposure for 6 h followed by 24 h recovery) injuries. We found that NMDA receptor antagonist ketamine, 5-LOX inhibitor caffeic acid and minocycline concentration dependently attenuated NMDA-induced early and delayed cell injuries (viability reduction and cell death). However, only ketamine (1 microM) inhibited NMDA-evoked elevation of intracellular calcium. In addition, immunohistochemical analysis showed that NMDA induced 5-LOX translocation to the nuclear membrane after 1- to 6-h exposure which was confirmed by Western blotting, indicating that 5-LOX was activated. Ketamine, caffeic acid and minocycline (each at 1 microM) inhibited 5-LOX translocation after early injury. After delayed injury, PC12 cells were shrunk, and 5-LOX was translocated to the nuclei and nuclear membrane; ketamine, caffeic acid and minocycline inhibited both cell shrinking and 5-LOX translocation. As a control, 12-LOX inhibitor baicalein showed a weak effect on cell viability and death, but no effect on 5-LOX translocation. Therefore, we conclude that the protective effect of minocycline on NMDA-induced injury is partly mediated by inhibiting 5-LOX activation.
Collapse
Affiliation(s)
- Ying Song
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou 310031, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Di X, Alves OL, Bullock R. Cytotoxic edema is independent of NMDA ion channel activation following middle cerebral artery occlusion (MCAO). An in vivo autoradiographic and MRI study. Neurol Res 2003; 25:329-34. [PMID: 12870257 DOI: 10.1179/016164103101201643] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Massive glutamate release is an important factor leading to ionic imbalance after occlusive stroke, which in turn contributes to cytotoxic edema formation. Currently, measurements of cytotoxic edema using 'diffusion weighted' MRI, is being used in human stroke studies, as a 'surrogate' end point for neuroprotective drug trials, including studies with glutamate antagonists. However, it is not fully understood to what extent glutamate-mediated N-methyl-D-aspartate (NMDA) receptor activation is related to 'cytotoxic' edema formation, and thus, to what degree apparent diffusion coefficient (ADC) changes, assessed by magnetic resonance imaging with 'ACD mapping', represent NMDA receptor activation. To study this relationship, four cats underwent permanent middle cerebral artery occlusion (MCAO). Edema formation was investigated using MRI with 'ACD mapping', while NMDA receptor activation was simultaneously detected in the same animals, using radio labeled 125IodoMK-801, which binds only in activated and open NMDA channels. At 5 h post-occlusion, a large area of edema could be found with significantly lower ADC values in the core and penumbral area of the ischemic lesion when compared to contralateral values. On corresponding sections of the feline brains, increased 125I-MK-801 binding was found in the infarct penumbra. However, there was no significant topographical correlation between ADC values and measured radioactivity. The results indicate that there is not a significant linkage between NMDA receptor activation and 'cytotoxic' edema following permanent MCAO. The detection of a large area of NMDA channel activation within regions of low ADC does however indicate an area of 'penumbral' ischemia susceptible to treatment with NMDA channel blockers.
Collapse
Affiliation(s)
- Xiao Di
- Division of Neurosurgery, Medical College of Virginia, Virginia Commonwealth University, PO Box 980631, 1200 E. Broad Street, Richmond, VA 23298-0631, USA
| | | | | |
Collapse
|
22
|
Wallin C, Abbas AK, Tranberg M, Weber SG, Wigström H, Sandberg M. Searching for mechanisms of N-methyl-D-aspartate-induced glutathione efflux in organotypic hippocampal cultures. Neurochem Res 2003; 28:281-91. [PMID: 12608701 PMCID: PMC1475825 DOI: 10.1023/a:1022381318126] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
N-Methyl-D-aspartate (NMDA)-receptor stimulation evoked a selective and partly delayed elevated efflux of glutathione, phosphoethanolamine, and taurine from organotypic rat hippocampus slice cultures. The protein kinase inhibitors H9 and staurosporine had no effect on the efflux. The phospholipase A2 inhibitors quinacrine and 4-bromophenacyl bromide, as well as arachidonic acid, a product of phospholipase A2 activity, did not affect the stimulated efflux. Polymyxin B, an antimicrobal agent that inhibits protein kinase C, and quinacrine in high concentration (500 microM), blocked efflux completely. The stimulated efflux after but not during NMDA incubation was attenuated by a calmodulin antagonist (W7) and an anion transport inhibitor (DNDS). Omission of calcium increased the spontaneous efflux with no or small additional effects by NMDA. In conclusion, NMDA receptor stimulation cause an increased selective efflux of glutathione, phosphoethanolamine and taurine in organotypic cultures of rat hippocampus. The efflux may partly be regulated by calmodulin and DNDS sensitive channels.
Collapse
Affiliation(s)
- Camilla Wallin
- Department of Medical Biophysics, University of Göteborg, Medicinaregatan 11, S-405 30 Göteborg, Sweden
| | - Abdul-Karim Abbas
- Department of Medical Biophysics, University of Göteborg, Medicinaregatan 11, S-405 30 Göteborg, Sweden
| | - Mattias Tranberg
- Department of Medical Biophysics, University of Göteborg, Medicinaregatan 11, S-405 30 Göteborg, Sweden
| | - Stephen G. Weber
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - Holger Wigström
- Department of Medical Biophysics, University of Göteborg, Medicinaregatan 11, S-405 30 Göteborg, Sweden
| | - Mats Sandberg
- Department of Medical Biophysics, University of Göteborg, Medicinaregatan 11, S-405 30 Göteborg, Sweden
- Address reprint requests to: Mats Sandberg, Tel: (46)-31-7733395; Fax: (46)-31-7733558; E-mail:
| |
Collapse
|
23
|
Avrova NF, Zakharova IO, Tyurin VA, Tyurina YY, Gamaley IA, Schepetkin IA. Different metabolic effects of ganglioside GM1 in brain synaptosomes and phagocytic cells. Neurochem Res 2002; 27:751-9. [PMID: 12374210 DOI: 10.1023/a:1020296605444] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The metabolic effects of ganglioside GM1 were found to be quite different in brain synaptosomes and phagocytic cells. Incubation of rat brain cortex synaptosomes with GM1 was shown to decrease the production of reactive oxygen species induced by Fe2+-H2O2 system and measured by chemiluminometric method in the presence of luminol. Gangliosides GM1, GD1a, and GT1b significantly diminished the induced accumulation of lipid peroxidation product in brain synaptosomes, but protein kinase inhibitor (polymyxin B) abolished this effect. Incubation with antioxidants or GM1 significantly diminished the increase of 45Ca2+ influx and oxidative inactivation of Na+,K+-ATPase in brain synaptosomes exposed to glutamate, the effect of GM1 was concentration-dependent in the range 10(-11)-10(-8) M. But the incubation of human neutrophils and mouse peritoneal macrophages with 10(-11)-10(-10) M GM1, on the contrary, increased several times the luminol-dependent chemiluminescence response of these cells to activation by low concentrations of 12-myristate-13-acetate phorbol ester. The opposite effects of GM1 in the nerve endings and phagocytic cells seem to be protective in both cases as the inhibition of reactive oxygen species production in the nerve cells may enhance their viability in damaged brain, while the intensification of their production in phagocytic cells may promote the resistance of organism to infection.
Collapse
Affiliation(s)
- N F Avrova
- Department of Comparative Neurochemistry, I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of Russian Ac. Sci., Saint-Petersburg, Russian Federation.
| | | | | | | | | | | |
Collapse
|
24
|
Horrobin DF. A new category of psychotropic drugs: neuroactive lipids as exemplified by ethyl eicosapentaenoate (E-E). PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2002; 59:171-99. [PMID: 12458967 DOI: 10.1007/978-3-0348-8171-5_6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Abstract
New treatments for psychiatric disorders are urgently required. Recent reviews show that there have been no improvements in efficacy of drugs for either affective disorders or schizophrenia since the first compounds were introduced over 40 years ago. Neuroactive lipids represent an entirely novel class of psychotropic compounds. Ethyl eicosapentaenoate is the first example of this group. Placebo-controlled studies have found it to be effective in depression, in treatment-unresponsive schizophrenia and in tardive dyskinesia. It is extremely well tolerated with none of the usual side-effects of either antidepressants or neuroleptics. It probably works by modulating postreceptor signal transduction processes.
Collapse
Affiliation(s)
- David F Horrobin
- Laxdale Ltd., Kings Park House, Laurelhill Business Park, Stirling, FK7 9JQ Scotland.
| |
Collapse
|
25
|
Nakane M, Kubota M, Nakagomi T, Tamura A, Hisaki H, Ueta N. Rewarming eliminates the protective effect of cooling against delayed neuronal death. Neuroreport 2001; 12:2439-42. [PMID: 11496125 DOI: 10.1097/00001756-200108080-00030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Mild intra-ischemic hypothermia provides neuroprotection against delayed neuronal death in the hippocampal CA1. It has recently been reported that reduction in the metabolic rate of arachidonic acid (AA) liberated during ischemia might contribute to this neuroprotection. To examine whether rewarming during the early period of recirculation accelerates AA consumption and eliminates the neuroprotection, we measured the levels of AA in the hippocampus after various recirculation times under normothermia and hypothermia with or without rewarming. The tendency for AA to disappear was significantly different between each pair of groups. Histological examination 7 days after ischemia revealed no protection in the rewarmed group. These results suggest that neuronal injury during rewarming after hypothermia may be attributed to the rate of AA metabolism.
Collapse
Affiliation(s)
- M Nakane
- Department of Neurosurgery, Teikyo University School of Medicine, 11-1 Kaga 2-chome, Itabashi-ku, Tokyo 173-8605, Japan
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
Short-echo gradient-enhanced nuclear magnetic resonance (NMR) spectroscopy was utilized to identify mobile lipids in perfused neonate and juvenile rat brain slices. Lipid signals were present at low levels within 1 hr of tissue preparation and increased with time under standard perfusion conditions and in the presence of high phosphocreatine and low lactate levels. Both one- and two-dimensional NMR spectra demonstrate peaks consistent with the generation of free fatty acids or neutral lipids following tissue trauma. The present work demonstrates that injury-induced mobile lipids may make appreciable contributions to regions of brain tissue spectra that have recently been assigned to lactate or polypeptides alone.
Collapse
Affiliation(s)
- C Gasparovic
- Department of Neurosciences and Center for Non-Invasive Diagnosis, University of New Mexico School of Medicine, Albuquerque, USA.
| | | |
Collapse
|
27
|
Abstract
NMDA receptor-induced excitotoxicity has been hypothesized to mediate abnormal choline (Cho) metabolism that is involved in alterations in membrane permeability and cell death in certain neurodegenerative disorders. To determine whether NMDA receptor overactivation modulates choline metabolism in vivo, we investigated the effects of NMDA on interstitial choline concentrations using microdialysis. Perfusion of NMDA by retrodialysis increased dialysate choline (approximately 400%) and reduced dialysate acetylcholine (Ach) (approximately 40%). Choline levels remained increased for at least 2.5 hr, but acetylcholine returned to pretreatment values 75 min after NMDA perfusion. The NMDA-evoked increase in dialysate choline was calcium and concentration dependent and was prevented with 1 mM AP-5, a competitive NMDA antagonist, but was not altered by mepacrine, a phospholipase A2 inhibitor. NMDA increased extracellular choline levels four- to fivefold in prefrontal cortex and hippocampus, produced a slight increase in neostriatum, and did not modify dialysate choline in cerebellum. Perfusion with NMDA for 2 hr produced a delayed, but not acute, reduction in choline acetyltransferase activity in the area surrounding the dialysis probe. Consistent with a lack of acute cholinergic neurotoxicity evoked by this treatment, basal acetylcholine levels were unaltered by 2 hr of continuous NMDA perfusion. Prolonged NMDA perfusion produced a 34% decrease in phosphatidylcholine content in the lipid fraction of the tissue surrounding the dialysis probe. These results show that NMDA modulates choline metabolism, eliciting a receptor-mediated, calcium-dependent, and region-specific increase in extracellular choline from membrane phospholipids that is not mediated by phospholipase A2 and precedes delayed excitotoxic neuronal cell death.
Collapse
|
28
|
Cudd TA. Thromboxane A2 acts on the brain to mediate hemodynamic, adrenocorticotropin, and cortisol responses. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:R1353-60. [PMID: 9612402 DOI: 10.1152/ajpregu.1998.274.5.r1353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Conditions that increase the formation of thromboxane A2 (TxA2) also result in activation of hemodynamic and adrenocortical responses. The purpose of this study was to test the hypothesis that TxA2 acts directly on the brain to mediate these responses. Adult sheep were chronically instrumented with vascular and intracerebroventricular catheters. The TxA2 analog U-46619 (0, 100, or 1,000 ng.kg-1.min-1) and artificial cerebrospinal fluid (CSF) were infused intracerebroventricularly for 30 min. Heart rate increased in response to 100 ng.kg-1.min-1 U-46619 infusions. Heart rate did not change over preinfusion values in response to the highest infusion rate, but values were elevated compared with the postinfusion period. Mean arterial pressure, ACTH, cortisol, hematocrit, and arterial pH (pHa) increased, and arterial partial CO2 pressure (PaCO2) fell in response to 1,000 ng.kg-1.min-1 infusions of U-46619. Plasma vasopressin concentrations and arterial partial O2 pressure did not change. In a second study, U-46619 or artificial CSF was infused intracerebroventricularly during prostaglandin synthase blockade. Blockade reduced but did not prevent blood pressure responses to U-46619 infusion, suggesting that the U-46619 infusions increased prostaglandin synthase metabolism to contribute de novo TxA2 or a second metabolite to augment the blood pressure response. Heart rate, pHa, PaCO2, ACTH, and cortisol responses to U-46619 were not different with blockade. We conclude that TxA2 acts on the brain to mediate blood pressure, heart rate, pHa, PaCO2, hematocrit, ACTH, and cortisol responses. These findings support the hypothesis that TxA2 acts directly on the brain to promote cardiovascular and hormonal responses that may serve a protective function during conditions when TxA2 formation is increased.
Collapse
Affiliation(s)
- T A Cudd
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station 77843-4466, USA
| |
Collapse
|
29
|
Abstract
Extracellular stimuli such as neurotransmitters, neurotrophins, and growth factors in the brain regulate critical cellular events, including synaptic transmission, neuronal plasticity, morphological differentiation and survival. Although many such stimuli trigger Ser/Thr-kinase and tyrosine-kinase cascades, the extracellular signal-regulated kinases, ERK1 and ERK2, prototypic members of the mitogen-activated protein (MAP) kinase family, are most attractive candidates among protein kinases that mediate morphological differentiation and promote survival in neurons. ERK1 and ERK2 are abundant in the central nervous system (CNS) and are activated during various physiological and pathological events such as brain ischemia and epilepsy. In cultured hippocampal neurons, simulation of glutamate receptors can activate ERK signaling, for which elevation of intracellular Ca2+ is required. In addition, brain-derived neurotrophic factor and growth factors also induce the ERK signaling and here, receptor-coupled tyrosine kinase activation has an association. We describe herein intracellular cascades of ERK signaling through neurotransmitters and neurotrophic factors. Putative functional implications of ERK and other MAP-kinase family members in the central nervous system are give attention.
Collapse
Affiliation(s)
- K Fukunaga
- Department of Pharmacology, Kumamoto University School of Medicine, Japan
| | | |
Collapse
|
30
|
Roseth S, Fykse EM, Fonnum F. The effect of arachidonic acid and free fatty acids on vesicular uptake of glutamate and gamma-aminobutyric acid. Eur J Pharmacol 1998; 341:281-8. [PMID: 9543250 DOI: 10.1016/s0014-2999(97)01449-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The manner in which arachidonic acid and other free fatty acids influence the vesicular uptake of glutamate and gamma-aminobutyric acid (GABA) has been investigated. The cis-polyunsaturated fatty acid arachidonic acid (20:4), eicosapentanoic acid (20:5) and linolenic acid (18:3) at 150 nmol/mg protein (50 microM) inhibited the vesicular uptake of glutamate and GABA more than 70%. Reduced inhibition of vesicular uptake was seen with the cis-monounsaturated fatty acid oleic acid (18:1) and the trans-mono-unsaturated fatty acid elaidic acid (18:1). The saturated fatty acids stearic acid (16:0) and arachidic acid (20:0) had no significant effect on the uptake. The inhibition of vesicular uptake by arachidonic acid was prevented by the addition of fatty acid free bovine serum albumin. Arachidonic acid inhibited in a dose-dependent manner the generation of the transmembrane pH gradient of the synaptic vesicles. This inhibition was proportional to the inhibition of the vesicular uptake of glutamate and GABA. The saturated fatty acid arachidic acid showed no inhibition of delta pH generation. Arachidonic acid at 200 nmol/mg of protein did not increase the uptake-independent leakage of glutamate and GABA from the vesicles, showing that the effect of arachidonic acid is not caused by an unspecific detergent effect. These results suggest that arachidonic acid and other polyunsaturated fatty acids are acting like proton-ionophores on the vesicular uptake of these neurotransmitters. This finding may have implications for the increased fatty acid concentration during pathological conditions like ischemia and in long term potentiation.
Collapse
Affiliation(s)
- S Roseth
- Division for Environmental Toxicology, Norwegian Defence Research Establishment, Kjeller
| | | | | |
Collapse
|
31
|
Talk AC, Muzzio IA, Matzel LD. Phospholipases and arachidonic acid contribute independently to sensory transduction and associative neuronal facilitation in Hermissenda type B photoreceptors. Brain Res 1997; 751:196-205. [PMID: 9099806 DOI: 10.1016/s0006-8993(96)01397-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
During contiguous pairings of light and rotation, B photoreceptors in the Hermissenda eye undergo an increase in excitability that contributes to a modification of several light-elicited behaviors. This excitability increase requires a light-induced rise in intracellular Ca2+ in the photoreceptor concomitant with transmitter binding to G protein-coupled receptors as a result of presynaptic vestibular hair cell stimulation. Phospholipases and arachidonic acid (ArA) are here reported to be involved in independent signal transduction pathways that underlie both receptor function and activity-dependent facilitation of the B photoreceptor. 4-Bromophenacyl bromide (BPB), an inhibitor of phospholipases A2 (PLA2) and C (PLC), blocked the generation of light-induced depolarizing generator potentials, but had no affect on the inhibitory postsynaptic potential (IPSP) in the B cell that results from hair cell stimulation. Quinacrine, which predominantly blocks the activity of PLA2 in neurons, had no affect on either the light response or the IPSP, but did block increases in excitability (i.e. increased input resistance and elicited spike rate) of the B cell that results from pairings of light and presynaptic vestibular stimulation (i.e., in vitro associative conditioning). Neither nordihydroquararetic acid (NDGA), which inhibits metabolism of ArA by cyclooxygenase, nor indomethacin, which inhibits lipoxygenase metabolism of ArA, affected the light response or IPSP, but both blocked the increases in excitability in the B cell that accompanied in vitro conditioning. In combination with earlier results, these data suggest that ArA activates PKC in a synergistic fashion with Ca2+ and diacylglycerol in the B cell, and suggest that PLA2-induced ArA release, though not necessary for transduction of light or the hair cell-induced IPSP in the B cell, is a critical component of the convergence of signals that precipitates associative facilitation in this system.
Collapse
Affiliation(s)
- A C Talk
- Department of Psychology, Rutgers University, New Brunswick, NJ 08903, USA
| | | | | |
Collapse
|
32
|
Abstract
In the brain, astrocytes are associated intimately with neurons and surround synapses. Due to their close proximity to synaptic clefts, astrocytes are in a prime location for receiving synaptic information from released neurotransmitters. Cultured astrocytes express a wide range of neurotransmitter receptors, but do astrocytes in vivo also express neurotransmitter receptors and, if so, are the receptors activated by synaptically released neurotransmitters? In recent years, considerable efforts has gone into addressing these issues. The experimental results of this effort have been compiled and are presented in this review. Although there are many different receptors which have not been identified on astrocytes in situ, it is clear that astrocytes in situ express a number of different receptors. There is evidence of glutamatergic, GABAergic, adrenergic, purinergic, serotonergic, muscarinic, and peptidergic receptors on protoplasmic, fibrous, or specialized (Bergmann glia, pituicytes, Müller glia) astrocytes in situ and in vivo. These receptors are functionally coupled to changes in membrane potential or to intracellular signaling pathways such as activation of phospholipase C or adenylate cyclase. The expression of neurotransmitter receptors by astrocytes in situ exhibits regional and intraregional heterogeneity and changes during development and in response to injury. There is also evidence that receptors on astrocytes in situ can be activated by neurotransmitter(s) released from synaptic terminals. Given the evidence of extra-synaptic signaling and the expression of neurotransmitter receptors by astrocytes in situ, direct communication between neurons and astrocytes via neurotransmitters could be a widespread form of communication in the brain which may affect many different aspects of brain function, such as glutamate uptake and the modulation of extracellular space.
Collapse
Affiliation(s)
- J T Porter
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill 27599, USA
| | | |
Collapse
|
33
|
Kolko M, DeCoster MA, de Turco EB, Bazan NG. Synergy by secretory phospholipase A2 and glutamate on inducing cell death and sustained arachidonic acid metabolic changes in primary cortical neuronal cultures. J Biol Chem 1996; 271:32722-8. [PMID: 8955105 DOI: 10.1074/jbc.271.51.32722] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Secretory and cytosolic phospholipases A2 (sPLA2 and cPLA2) may contribute to the release of arachidonic acid and other bioactive lipids, which are modulators of synaptic function. In primary cortical neuron cultures, neurotoxic cell death and [3H]arachidonate metabolism was studied after adding glutamate and sPLA2 from bee venom. sPLA2, at concentrations eliciting low neurotoxicity (</=100 ng/ml), induced a decrease of [3H]arachidonate-phospholipids and preferential reesterification of the fatty acid into triacylglycerols. Free [3H]arachidonic acid accumulated at higher enzyme concentrations, below those exerting highest toxicity. Synergy in neurotoxicity and [3H]arachidonate release was observed when low, nontoxic (10 ng/ml, 0.71 nM), or mildly toxic (25 ng/ml, 1. 78 nM) concentrations of sPLA2 were added together with glutamate (80 microM). A similar synergy was observed with the sPLA2 OS2, from Taipan snake venom. The NMDA receptor antagonist MK-801 blocked glutamate effects and partially inhibited sPLA2 OS2 but not sPLA2 from bee venom-induced arachidonic acid release. Thus, the synergy with glutamate and very low concentrations of exogenously added sPLA2 suggests a potential role for this enzyme in the modulation of glutamatergic synaptic function and of excitotoxicity.
Collapse
Affiliation(s)
- M Kolko
- LSU Neuroscience Center and Department of Ophthalmology, Louisiana State University Medical Center, School of Medicine, New Orleans, Louisiana 70112, USA.
| | | | | | | |
Collapse
|
34
|
Di X, Bullock R. Effect of the novel high-affinity glycine-site N-methyl-D-aspartate antagonist ACEA-1021 on 125I-MK-801 binding after subdural hematoma in the rat: an in vivo autoradiographic study. J Neurosurg 1996; 85:655-61. [PMID: 8814170 DOI: 10.3171/jns.1996.85.4.0655] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Acute subdural hematoma (SDH) complicates 20% of severe human head injuries and causes death or severe disability in 60% of these cases, due to brain swelling and high intracranial pressure. Although the mechanisms for these phenomena are unknown, previous studies have implicated excitatory amino acid-mediated mechanisms in both humans and animal models. The authors therefore performed in vivo autoradiography using 125I-MK-801, a high-affinity noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist, as a tracer to evaluate NMDA ion channel activation spatially and temporally as a factor causing cytotoxic swelling. Acute SDH was induced in 16 anesthetized rats using 0.4 ml autologous venous blood. Fifty microcuries of 125I-MK-801 was injected via an aortic arch cannula 30 minutes after onset of SDH. The effect of a new putatively neuroprotective drug, ACEA-1021, a glycine-specific binding site NMDA antagonist, on 125I-MK-801 binding was tested on five animals "Nonspecific" 125I-MK-801 binding in the rat brain was assessed by pretreatment with "cold" (nonradiolabeled) MK-801 in five more animals. Four hours later the animals were sacrificed and brain sections were apposed to radiation-detecting high-sensitivity photographic film with precalibrated plastic standards for 4 weeks. A striking and highly significant 1.7- to 4.8-fold increase in 125I-MK-801 binding was seen in the penumbra of viable tissue surrounding the ischemic zone beneath the acute SDH, when compared to contralateral hemisphere binding (p < 0.001). The MK-801 pretreatment markedly reduced 125I-MK-801 uptake in this penumbral zone (4.73 +/- 0.36 nCi/mg control vs. 2.85 +/- 0.08 nCi/mg cold MK-801; p < 0.0001), indicating that the increased binding in the penumbra of the lesion was due to NMDA ion channel activation. Pretreatment with ACEA-1021 reduced 125I-MK-801 uptake by 28% (3.41 +/- 0.26 nCi/mg vs. 4.73 +/- 0.36 nCi/mg; p < 0.05), indicating that this agent prevents opening of the NMDA ion channel and, thus, exposure of its receptor for MK-801 binding. These studies show intense foci of penumbral NMDA receptor-mediated ion channel activation after onset of SDH, which is markedly reduced by an NMDA antagonist. Such agents are thus likely to reduce cell swelling after SDH occurs.
Collapse
Affiliation(s)
- X Di
- Division of Neurosurgery, Medical College of Virginia, Virginia Commonwealth University, Richmond, USA
| | | |
Collapse
|
35
|
Williams RJ, Maus M, Stella N, Glowinski J, Premont J. Reduced glucose metabolism enhances the glutamate-evoked release of arachidonic acid from striatal neurons. Neuroscience 1996; 74:461-8. [PMID: 8865197 DOI: 10.1016/0306-4522(96)00195-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Glucose deprivation potentiates the glutamate receptor-evoked release of arachidonic acid from cultured mouse striatal neurons. In this study we investigated whether this potentiation would be modified by the end-products of glycolysis. These enhanced responses were completely reversed by the addition of increasing concentrations of either lactate or pyruvate. This reversal was not due to increased osmolarity as substituting sucrose for lactate or pyruvate did not mimic their effects. In contrast, in the presence of glucose, neither lactate nor pyruvate was effective. Furthermore, these monocarboxylic acids rescued neuronal respiration in the absence of glucose. Inhibiting glycolysis with iodoacetate in the presence of glucose reproduced the potentiated glutamate-evoked release of arachidonic acid observed following glucose deprivation and reduced neuronal respiration to the same extent as that observed in the absence of glucose. All of these effects were overcome by the addition of either lactate or pyruvate. The reversal of the potentiated glutamate-evoked release of arachidonic acid by lactate or pyruvate was inhibited by a specific inhibitor of monocarboxylic acid transport, alpha-cyano-4-hydroxycinnamic acid, suggesting that lactate and pyruvate act intracellularly. Therefore, we propose that the enhanced release of arachidonic acid evoked by glutamate during glucose deprivation results from reduced glycolysis and hence from a depletion of lactate or pyruvate.
Collapse
Affiliation(s)
- R J Williams
- Chaire de Neuropharmacologie, INSERM U.114, Collège de France, Paris, France
| | | | | | | | | |
Collapse
|
36
|
Riepe MW, Schmalzigaug K, Fink F, Oexle K, Ludolph AC. NADH in the pyramidal cell layer of hippocampal regions CA1 and CA3 upon selective inhibition and uncoupling of oxidative phosphorylation. Brain Res 1996; 710:21-7. [PMID: 8963661 DOI: 10.1016/0006-8993(95)01253-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
N2-laser-induced fluorescence in combination with the time and spectral resolution of fluorescent NADH molecules allows on-line measurement of relative NADH concentration with high spatial resolution (diameter of optical fibre 200 microns, lambda(exc) = 337 nm, lambda(det) = 460 nm). Energy metabolism was impaired in submerged rat hippocampal slices using the inhibitors amytal, 3-nitropropionate (3-np), sodium cyanide (1 mM each) and the uncoupling agent 2,4-DNP (200 microM). A microprocessor-controlled repeated positioning of the optical fibre in CA1 and CA3 pyramidal cell layers, and CA1 stratum radiatum (CA1SR). Time-dependently, NADH fluorescence increased reversibly upon perfusion with amytal and cyanide. It was unchanged by perfusion with 3-np for 40 min and rapidly decreased upon perfusion with 2,4-DNP. The CA1/CA3 ratio of NADH fluorescence mildly decreased to 0.92 +/- 0.04 (mean +/- S.D.) at 10 min (P < 0.05) and 0.89 +/- 0.05 at 20 min (P < 0.01) upon perfusion with amytal. The CA1/CA3 ratio increased to 1.56 +/- 0.28 at 10 min (P < 0.01) and 1.29 +/- 0.35 at 20 min (P < 0.05) upon application of 2,4-DNP. Fluorescence in CA1SR was similar to fluorescence in CA1 upon perfusion with 2,4-DNP and similar to CA3 upon perfusion with amytal. We conclude that NADH fluorescence can be measured with high regional selectivity and specificity in hippocampal slices. Selective inhibition of mitochondrial complex I and uncoupling of energy metabolism differentially impair NADH concentration in different hippocampal areas.
Collapse
Affiliation(s)
- M W Riepe
- Department of Neurology, Humboldt University (Charité), Berlin, Germany.
| | | | | | | | | |
Collapse
|
37
|
Bazan NG, Rodriguez de Turco EB, Allan G. Mediators of injury in neurotrauma: intracellular signal transduction and gene expression. J Neurotrauma 1995; 12:791-814. [PMID: 8594208 DOI: 10.1089/neu.1995.12.791] [Citation(s) in RCA: 161] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Membrane lipid-derived second messengers are generated by phospholipase A2 (PLA2) during synaptic activity. Overstimulation of this enzyme during neurotrauma results in the accumulation of bioactive metabolites such as arachidonic acid, oxygenated derivatives of arachidonic acid, and platelet-activating factor (PAF). Several of these bioactive lipids participate in cell damage, cell death, or repair-regenerative neural plasticity. Neurotransmitters may activate PLA2 directly when linked to receptors coupled to G proteins and/or indirectly as calcium influx or mobilization from intracellular stores is stimulated. The release of arachidonic acid and its subsequent metabolism to prostaglandins are early responses linked to neuronal signal transduction. Free arachidonic acid may interact with membrane proteins, i.e., receptors, ion channels, and enzymes, modifying their activity. It can also be acted upon by prostaglandin synthase isoenzymes (the constitutive prostaglandin synthase PGS-1 or the inducible PGS-2) and by lipoxygenases, with the resulting formation of different prostaglandins and leukotrienes. Glutamatergic synaptic activity and activation of postsynaptic NMDA receptors are examples of neuronal activity, linked to memory and learning processes, which activate PLA2 with the consequent release of arachidonic acid and platelet-activating factor (PAF), another lipid mediator. Both mediators may exert presynaptic and postsynaptic effects contributing to long-lasting changes in glutamate synaptic efficacy or long-term potentiation (LTP), PAF, a potential retrograde messenger in LTP, stimulates glutamate release. The PAF antagonist BN 52021 competes for receptors in presynaptic membranes and blocks this effect. PAF may also be involved in plasticity responses because PAF leads to the expression of early response genes and subsequent gene cascades. The PAF antagonist BN 50730, selective for PAF intracellular binding, blocks PAF-mediated induction of gene expression. A consequence of neural injury induced by ischemia, trauma, or seizures is an increased release of neurotransmitters, that in turn generates an overproduction of second messengers. Glutamate, a key player in excitotoxic neuronal damage, triggers increased permeation of calcium mediated by NMDA receptors and activation of PLA2 in postsynaptic neurons. NMDA receptor antagonists reduce the accumulation of free fatty acids and elicit neuroprotection in ischemic damage. Increased production of free arachidonic acid and PAF converges to exacerbate glutamate-mediated neurotransmission. These neurotoxic actions may be brought about by arachidonic acid-induced potentiation of NMDA receptor activity and decreased glutamate reuptake. On the other hand, PAF stimulates the further release of glutamate at presynaptic endings. The neuroprotective effects of the PAF antagonist BN 52021 in ischemia-reperfusion are due, at least in part, to an inhibition of presynaptic glutamate release. PAF also induces expression of the inducible prostaglandin synthase gene, and PAF antagonists selective for the intracellular sites inhibit this effect. The PAF antagonist also inhibits the enhanced abundance, due to vasogenic cerebral edema and ischemia-reperfusion damage, of inducible prostaglandin synthase mRNA in vivo. Therefore, PAF, an injury-generated mediator, may favor the formation of other cell injury and inflammation mediators by turning on the expression of the gene that encodes prostaglandin synthase.
Collapse
Affiliation(s)
- N G Bazan
- LSU Neuroscience Center, Louisiana State University Medical Center, New Orleans 70112, USA
| | | | | |
Collapse
|
38
|
Trujillo KA, Akil H. Excitatory amino acids and drugs of abuse: a role for N-methyl-D-aspartate receptors in drug tolerance, sensitization and physical dependence. Drug Alcohol Depend 1995; 38:139-54. [PMID: 7671766 DOI: 10.1016/0376-8716(95)01119-j] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
N-methyl-D-aspartate (NMDA) receptors have been implicated in several types of neural and behavioral plasticity ranging from development to learning. The present paper reviews evidence suggesting that these receptors might also be involved in the neural and behavioral changes resulting from chronic administration of drugs of abuse. NMDA receptor antagonists have been found to interfere with tolerance, sensitization, physical dependence and conditioning to a variety of self-administered drugs, including psychomotor stimulants, opiates, ethanol and nicotine. The results indicate a broad role for NMDA receptors in drug-induced neural and behavioral plasticity, including changes in the brain and behavior that may lead to compulsive drug use, and suggest that drugs acting at the NMDA receptor complex may be clinically useful.
Collapse
Affiliation(s)
- K A Trujillo
- Psychology Program, California State University, San Marcos, CA 92096-0001, USA
| | | |
Collapse
|
39
|
Bazan NG, Rodriguez de Turco EB. Platelet-activating factor is a synapse messenger and a modulator of gene expression in the nervous system. Neurochem Int 1995; 26:435-41. [PMID: 7492941 DOI: 10.1016/0197-0186(94)00138-k] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- N G Bazan
- LSU Neuroscience Center, Louisiana State University Medical Center School of Medicine, New Orleans 70112, USA
| | | |
Collapse
|
40
|
Dai H, Gebhardt K, Carey RJ. Time course effects of MK-801: the relationship between brain neurochemistry and behavior. Brain Res Bull 1995; 36:175-80. [PMID: 7534612 DOI: 10.1016/0361-9230(94)00188-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Separate groups of rats were given saline or MK-801 treatments (0.3 mg/kg) and tested for locomotion activity levels for 10 min at 30, 60, and 120 min postinjection. At each postinjection time interval the MK-801 rats exhibited a marked hyperactivity that was unchanged across the three postinjection intervals. Ex vivo biochemical assays were performed to assess the neurochemical effects of MK-801 at each injection interval. In the striatum, a marked increase in dopamine metabolism was observed in the 120 injection group, but, otherwise, no other changes in striatum were detected. In contrast, a significant increase in dopamine metabolism was observed after 30 min in the medial prefrontal cortex, and this effect persisted across all postinjection intervals. At 120 min, however, the biochemical impact of the MK-801 treatment on medial prefrontal cortex broadened to include a decrease in purine metabolism and norepinephrine. Serotonin metabolism was unaffected in striatum or medial prefrontal cortex across all injection intervals, and there was no effect of MK-801 on plasma corticosterone levels.
Collapse
Affiliation(s)
- H Dai
- SUNY Health Science Centerm Syracuse
| | | | | |
Collapse
|