1
|
Dai H, Wu B, Ge Y, Hao Y, Zhou L, Hong R, Zhang J, Jiang W, Zhang Y, Li H, Zhang L. Deubiquitylase OTUD3 regulates integrated stress response to suppress progression and sorafenib resistance of liver cancer. Cell Rep 2024; 43:114487. [PMID: 38996071 DOI: 10.1016/j.celrep.2024.114487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/13/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
The integrated stress response (ISR) is activated in response to intrinsic and extrinsic stimuli, playing a role in tumor progression and drug resistance. The regulatory role and mechanism of ISR in liver cancer, however, remain largely unexplored. Here, we demonstrate that OTU domain-containing protein 3 (OTUD3) is a deubiquitylase of eukaryotic initiation factor 2α (eIF2α), antagonizing ISR and suppressing liver cancer. OTUD3 decreases interactions between eIF2α and the kinase EIF2ΑK3 by removing K27-linked polyubiquitylation on eIF2α. OTUD3 deficiency in mice leads to enhanced ISR and accelerated progression of N-nitrosodiethylamine-induced hepatocellular carcinoma. Additionally, decreased OTUD3 expression associated with elevated eIF2α phosphorylation correlates with the progression of human liver cancer. Moreover, ISR activation due to decreased OTUD3 expression renders liver cancer cells resistant to sorafenib, while the combined use of the ISR inhibitor ISRIB significantly improves their sensitivity to sorafenib. Collectively, these findings illuminate the regulatory mechanism of ISR in liver cancer and provide a potential strategy to counteract sorafenib resistance.
Collapse
Affiliation(s)
- Hongmiao Dai
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China; Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Bo Wu
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China
| | - Yingwei Ge
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China
| | - Yang Hao
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China
| | - Lijie Zhou
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China; School of Medicine, Tsinghua University, Beijing 100084, China
| | - Ruolin Hong
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China; Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China
| | - Jinhao Zhang
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China; Department of Cell Biology, School of Basic Medicine, Medical College, Qingdao University, Qingdao 266071, China
| | - Wenli Jiang
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China; School of Life Sciences, Hebei University, Baoding, Hebei 071002, China
| | - Yuting Zhang
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China; School of Life Sciences, Hebei University, Baoding, Hebei 071002, China
| | - Hongchang Li
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China.
| | - Lingqiang Zhang
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China.
| |
Collapse
|
2
|
Zhang Q, Liu Y, Ren L, Li J, Lin W, Lou L, Wang M, Li C, Jiang Y. Proteomic analysis of DEN and CCl 4-induced hepatocellular carcinoma mouse model. Sci Rep 2024; 14:8013. [PMID: 38580754 PMCID: PMC10997670 DOI: 10.1038/s41598-024-58587-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 04/01/2024] [Indexed: 04/07/2024] Open
Abstract
Hepatocellular carcinoma (HCC) seriously threatens human health, mostly developed from liver fibrosis or cirrhosis. Since diethylnitrosamine (DEN) and carbon tetrachloride (CCl4)-induced HCC mouse model almost recapitulates the characteristic of HCC with fibrosis and inflammation, it is taken as an essential tool to investigate the pathogenesis of HCC. However, a comprehensive understanding of the protein expression profile of this model is little. In this study, we performed proteomic analysis of this model to elucidate its proteomic characteristics. Compared with normal liver tissues, 432 differentially expressed proteins (DEPs) were identified in tumor tissues, among which 365 were up-regulated and 67 were down-regulated. Through Gene Ontology (GO) analysis, Ingenuity Pathway Analysis (IPA), protein-protein interaction networks (PPI) analysis and Gene-set enrichment analysis (GSEA) analysis of DEPs, we identified two distinguishing features of DEN and CCl4-induced HCC mouse model in protein expression, the upregulation of actin cytoskeleton and branched-chain amino acids metabolic reprogramming. In addition, matching DEPs from the mouse model to homologous proteins in the human HCC cohort revealed that the DEN and CCl4-induced HCC mouse model was relatively similar to the subtype of HCC with poor prognosis. Finally, combining clinical information from the HCC cohort, we screened seven proteins with prognostic significance, SMAD2, PTPN1, PCNA, MTHFD1L, MBOAT7, FABP5, and AGRN. Overall, we provided proteomic data of the DEN and CCl4-induced HCC mouse model and highlighted the important proteins and pathways in it, contributing to the rational application of this model in HCC research.
Collapse
Affiliation(s)
- Qian Zhang
- State Key Laboratory of Medicle Proteomics, Beijing Institute of Lifeomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing, 102206, China
| | - Yuhui Liu
- State Key Laboratory of Medicle Proteomics, Beijing Institute of Lifeomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing, 102206, China
| | - Liangliang Ren
- State Key Laboratory of Medicle Proteomics, Beijing Institute of Lifeomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing, 102206, China
| | - Junqing Li
- State Key Laboratory of Medicle Proteomics, Beijing Institute of Lifeomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing, 102206, China
- School of Basic Medical Science, Anhui Medical University, Hefei, 230032, China
| | - Weiran Lin
- State Key Laboratory of Medicle Proteomics, Beijing Institute of Lifeomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing, 102206, China
| | - Lijuan Lou
- State Key Laboratory of Medicle Proteomics, Beijing Institute of Lifeomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing, 102206, China
| | - Minghan Wang
- State Key Laboratory of Medicle Proteomics, Beijing Institute of Lifeomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing, 102206, China
| | - Chaoying Li
- State Key Laboratory of Medicle Proteomics, Beijing Institute of Lifeomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing, 102206, China
| | - Ying Jiang
- State Key Laboratory of Medicle Proteomics, Beijing Institute of Lifeomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing, 102206, China.
- School of Basic Medical Science, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
3
|
Hussein S, Soliman NA, Dahmy SIE, Khamis T, Sameh R, Mostafa FM. Effectiveness of cannabidiol (CBD) on histopathological changes and gene expression in hepatocellular carcinoma (HCC) model in male rats: the role of Hedgehog (Hh) signaling pathway. Histochem Cell Biol 2024; 161:337-343. [PMID: 38296878 DOI: 10.1007/s00418-023-02262-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2023] [Indexed: 02/02/2024]
Abstract
The third most prevalent malignancy to cause mortality is hepatocellular carcinoma (HCC). The Hedgehog (Hh) signaling pathway is activated by binding to the transmembrane receptor Patched-1 (PTCH-1), which depresses the transmembrane G protein-coupled receptor Smoothened (SMO). This study was performed to examine the preventative and therapeutic effects of cannabidiol in adult rats exposed to diethyl nitrosamine (DENA)-induced HCC.A total of 50 male rats were divided into five groups of 10 rats each. Group I was the control group. Group II received intraperitoneal (IP) injections of DENA for 14 weeks. Group III included rats that received cannabidiol (CBD) orally (3-30 mg/kg) for 2 weeks and DENA injections for 14 weeks. Group IV rats received oral CBD for 2 weeks before 14 weeks of DENA injections. Group V included rats that received CBD orally for 2 weeks after their last injection of DENA. Measurements were made for alanine aminotransferase (ALT), aspartate aminotransferase (AST), gamma glutamyl transferase (GGT), superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA), and alpha fetoprotein (AFP). Following total RNA extraction, Smo, Hhip, Ptch-1, and Gli-1 expressions were measured using quantitative real-time polymerase chain reaction (qRT-PCR). A histopathological analysis of liver tissues was performed.The liver enzymes, oxidant-antioxidant state, morphological, and molecular parameters of the adult male rat model of DENA-induced HCC showed a beneficial improvement after CBD administration. In conclusion, by focusing on the Hh signaling system, administration of CBD showed a beneficial improvement in the liver enzymes, oxidant-antioxidant status, morphological, and molecular parameters in the DENA-induced HCC in adult male rats.
Collapse
Affiliation(s)
- Samia Hussein
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| | - Nabil A Soliman
- Department of Zoology, Faculty of Science, Zagazig University, Sharkia, Egypt
| | - Samih I El Dahmy
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Sharkia, Egypt
| | - Tarek Khamis
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Sharkia, Egypt
| | - Reham Sameh
- Department of Pathology, Faculty of Medicine, Zagazig University, Sharkia, Egypt
| | - Fatma M Mostafa
- Department of Zoology, Faculty of Science, Zagazig University, Sharkia, Egypt
| |
Collapse
|
4
|
Fu Y, Mackowiak B, Feng D, Lu H, Guan Y, Lehner T, Pan H, Wang XW, He Y, Gao B. MicroRNA-223 attenuates hepatocarcinogenesis by blocking hypoxia-driven angiogenesis and immunosuppression. Gut 2023; 72:1942-1958. [PMID: 36593103 PMCID: PMC11283862 DOI: 10.1136/gutjnl-2022-327924] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 12/14/2022] [Indexed: 01/04/2023]
Abstract
OBJECTIVE The current treatment for hepatocellular carcinoma (HCC) to block angiogenesis and immunosuppression provides some benefits only for a subset of patients with HCC, thus optimised therapeutic regimens are unmet needs, which require a thorough understanding of the underlying mechanisms by which tumour cells orchestrate an inflamed tumour microenvironment with significant myeloid cell infiltration. MicroRNA-223 (miR-223) is highly expressed in myeloid cells but its role in regulating tumour microenvironment remains unknown. DESIGN Wild-type and miR-223 knockout mice were subjected to two mouse models of inflammation-associated HCC induced by injection of diethylnitrosamine (DEN) or orthotopic HCC cell implantation in chronic carbon tetrachloride (CCl4)-treated mice. RESULTS Genetic deletion of miR-223 markedly exacerbated tumourigenesis in inflammation-associated HCC. Compared with wild-type mice, miR-223 knockout mice had more infiltrated programmed cell death 1 (PD-1+) T cells and programmed cell death ligand 1 (PD-L1+) macrophages after DEN+CCl4 administration. Bioinformatic analyses of RNA sequencing data revealed a strong correlation between miR-223 levels and tumour hypoxia, a condition that is well-documented to regulate PD-1/PD-L1. In vivo and in vitro mechanistic studies demonstrated that miR-223 did not directly target PD-1 and PD-L1 in immune cells rather than indirectly downregulated them by modulating tumour microenvironment via the suppression of hypoxia-inducible factor 1α-driven CD39/CD73-adenosine pathway in HCC. Moreover, gene delivery of miR-223 via adenovirus inhibited angiogenesis and hypoxia-mediated PD-1/PD-L1 activation in both HCC models, thereby hindering HCC progression. CONCLUSION The miR-223 plays a critical role in modulating hypoxia-induced tumour immunosuppression and angiogenesis, which may serve as a novel therapeutic target for HCC.
Collapse
Affiliation(s)
- Yaojie Fu
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Bryan Mackowiak
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Dechun Feng
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Hongkun Lu
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Yukun Guan
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Taylor Lehner
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Hongna Pan
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Xin Wei Wang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yong He
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
5
|
Saito Y, Yin D, Kubota N, Wang X, Filliol A, Remotti H, Nair A, Fazlollahi L, Hoshida Y, Tabas I, Wangensteen KJ, Schwabe RF. A Therapeutically Targetable TAZ-TEAD2 Pathway Drives the Growth of Hepatocellular Carcinoma via ANLN and KIF23. Gastroenterology 2023; 164:1279-1292. [PMID: 36894036 PMCID: PMC10335360 DOI: 10.1053/j.gastro.2023.02.043] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 01/24/2023] [Accepted: 02/14/2023] [Indexed: 03/11/2023]
Abstract
BACKGROUND & AIMS Despite recent progress, long-term survival remains low for hepatocellular carcinoma (HCC). The most effective HCC therapies target the tumor immune microenvironment (TIME), and there are almost no therapies that directly target tumor cells. Here, we investigated the regulation and function of tumor cell-expressed Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) in HCC. METHODS HCC was induced in mice by Sleeping Beauty-mediated expression of MET, CTNNB1-S45Y, or TAZ-S89A, or by diethylnitrosamine plus CCl4. Hepatocellular TAZ and YAP were deleted in floxed mice via adeno-associated virus serotype 8-mediated expression of Cre. TAZ target genes were identified from RNA sequencing, confirmed by chromatin immunoprecipitation, and evaluated in a clustered regularly interspaced short palindromic repeats interference (CRISPRi) screen. TEA domain transcription factors (TEADs), anillin (ANLN), Kif23, and programmed cell death protein ligand 1 were knocked down by guide RNAs in dead clustered regularly interspaced short palindromic repeats-associated protein 9 (dCas9) knock-in mice. RESULTS YAP and TAZ were up-regulated in murine and human HCC, but only deletion of TAZ consistently decreased HCC growth and mortality. Conversely, overexpression of activated TAZ was sufficient to trigger HCC. TAZ expression in HCC was regulated by cholesterol synthesis, as demonstrated by pharmacologic or genetic inhibition of 3-hydroxy-3-methylglutaryl- coenzyme A reductase (HMGCR), farnesyl pyrophosphate synthase, farnesyl-diphosphate farnesyltransferase 1 (FDFT1), or sterol regulatory element-binding protein 2 (SREBP2). TAZ- and MET/CTNNB1-S45Y-driven HCC required the expression of TEAD2 and, to a lesser extent, TEAD4. Accordingly, TEAD2 displayed the most profound effect on survival in patients with HCC. TAZ and TEAD2 promoted HCC via increased tumor cell proliferation, mediated by TAZ target genes ANLN and kinesin family member 23 (KIF23). Therapeutic targeting of HCC, using pan-TEAD inhibitors or the combination of a statin with sorafenib or anti-programmed cell death protein 1, decreased tumor growth. CONCLUSIONS Our results suggest the cholesterol-TAZ-TEAD2-ANLN/KIF23 pathway as a mediator of HCC proliferation and tumor cell-intrinsic therapeutic target that could be synergistically combined with TIME-targeted therapies.
Collapse
Affiliation(s)
- Yoshinobu Saito
- Department of Medicine, Columbia University, New York, New York.
| | - Dingzi Yin
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania; Mayo Clinic, Rochester, Minnesota
| | - Naoto Kubota
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Xiaobo Wang
- Department of Medicine, Columbia University, New York, New York
| | - Aveline Filliol
- Department of Medicine, Columbia University, New York, New York
| | - Helen Remotti
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Ajay Nair
- Department of Medicine, Columbia University, New York, New York
| | - Ladan Fazlollahi
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Yujin Hoshida
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ira Tabas
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York; Institute of Human Nutrition, New York, New York
| | - Kirk J Wangensteen
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania; Mayo Clinic, Rochester, Minnesota.
| | - Robert F Schwabe
- Department of Medicine, Columbia University, New York, New York; Institute of Human Nutrition, New York, New York.
| |
Collapse
|
6
|
Moreno E, Matondo AB, Bongiovanni L, van de Lest CHA, Molenaar MR, Toussaint MJM, van Essen SC, Houweling M, Helms JB, Westendorp B, de Bruin A. Inhibition of polyploidization in Pten-deficient livers reduces steatosis. Liver Int 2022; 42:2442-2452. [PMID: 35924448 PMCID: PMC9826152 DOI: 10.1111/liv.15384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/23/2022] [Accepted: 07/24/2022] [Indexed: 01/11/2023]
Abstract
The tumour suppressor PTEN is a negative regulator of the PI3K/AKT signalling pathway. Liver-specific deletion of Pten in mice results in the hyper-activation PI3K/AKT signalling accompanied by enhanced genome duplication (polyploidization), marked lipid accumulation (steatosis) and formation of hepatocellular carcinomas. However, it is unknown whether polyploidization in this model has an impact on the development of steatosis and the progression towards liver cancer. Here, we used a liver-specific conditional knockout approach to delete Pten in combination with deletion of E2f7/8, known key inducers of polyploidization. As expected, Pten deletion caused severe steatosis and liver tumours accompanied by enhanced polyploidization. Additional deletion of E2f7/8 inhibited polyploidization, alleviated Pten-induced steatosis without affecting lipid species composition and accelerated liver tumour progression. Global transcriptomic analysis showed that inhibition of polyploidization in Pten-deficient livers resulted in reduced expression of genes involved in energy metabolism, including PPAR-gamma signalling. However, we find no evidence that deregulated genes in Pten-deficient livers are direct transcriptional targets of E2F7/8, supporting that reduction in steatosis and progression towards liver cancer are likely consequences of inhibiting polyploidization. Lastly, flow cytometry and image analysis on isolated primary wildtype mouse hepatocytes provided further support that polyploid cells can accumulate more lipid droplets than diploid hepatocytes. Collectively, we show that polyploidization promotes steatosis and function as an important barrier against liver tumour progression in Pten-deficient livers.
Collapse
Affiliation(s)
- Eva Moreno
- Departments of Biomolecular Health Sciences, Division Cell Biology, Metabolism & Cancer, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Augustine B. Matondo
- Departments of Biomolecular Health Sciences, Division Cell Biology, Metabolism & Cancer, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Laura Bongiovanni
- Departments of Biomolecular Health Sciences, Division Cell Biology, Metabolism & Cancer, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Chris H. A. van de Lest
- Departments of Biomolecular Health Sciences, Division Cell Biology, Metabolism & Cancer, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Martijn R. Molenaar
- Departments of Biomolecular Health Sciences, Division Cell Biology, Metabolism & Cancer, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Mathilda J. M. Toussaint
- Departments of Biomolecular Health Sciences, Division Cell Biology, Metabolism & Cancer, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Saskia C. van Essen
- Departments of Biomolecular Health Sciences, Division Cell Biology, Metabolism & Cancer, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Martin Houweling
- Departments of Biomolecular Health Sciences, Division Cell Biology, Metabolism & Cancer, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - J. Bernd Helms
- Departments of Biomolecular Health Sciences, Division Cell Biology, Metabolism & Cancer, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Bart Westendorp
- Departments of Biomolecular Health Sciences, Division Cell Biology, Metabolism & Cancer, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Alain de Bruin
- Departments of Biomolecular Health Sciences, Division Cell Biology, Metabolism & Cancer, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands,Pediatrics, Division Molecular GeneticsUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
| |
Collapse
|
7
|
Chandra VM, Wilkins LR, Brautigan DL. Animal Models of Hepatocellular Carcinoma for Local-Regional Intraarterial Therapies. Radiol Imaging Cancer 2022; 4:e210098. [PMID: 35838531 PMCID: PMC9358488 DOI: 10.1148/rycan.210098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 05/10/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Animal models play a crucial role in developing and testing new therapies for hepatocellular carcinoma (HCC), providing preclinical evidence prior to exploring human safety and efficacy outcomes. The interventional radiologist must weigh the advantages and disadvantages of various animal models available when testing a new local-regional therapy. This review highlights the currently available animal models for testing local-regional therapies for HCC and details the importance of considering animal genetics, tumor biology, and molecular mechanisms when ultimately choosing an animal model. Keywords: Animal Studies, Interventional-Vascular, Molecular Imaging-Clinical Translation, Molecular Imaging-Cancer, Chemoembolization, Liver © RSNA, 2022.
Collapse
|
8
|
Wang KX, Du GH, Qin XM, Gao L. 1H-NMR-based metabolomics reveals the biomarker panel and molecular mechanism of hepatocellular carcinoma progression. Anal Bioanal Chem 2022; 414:1525-1537. [PMID: 35024914 DOI: 10.1007/s00216-021-03768-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/27/2021] [Accepted: 11/02/2021] [Indexed: 11/30/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most extensive and most deadly cancers in the world. Biomarkers for early diagnosis of HCC are still lacking, and noninvasive and effective biomarkers are urgently needed. Metabolomics is committed to studying the changes of metabolites under stimulation, and provides a new approach for discovery of potential biomarkers. In the current work, 1H nuclear magnetic resonance (NMR) metabolomics approach was utilized to explore the potential biomarkers in HCC progression, and the biomarker panel was evaluated by receiver operating characteristic (ROC) curve analyses. Our results revealed that a biomarker panel consisting of hippurate, creatinine, putrescine, choline, and taurine might be involved in HCC progression. Functional pathway analysis showed that taurine and hypotaurine metabolism is markedly involved in the occurrence and development of HCC. Furthermore, our results indicated that the TPA activity and the level and expression of PKM2 were gradually increased in HCC progression. This research provides a scientific basis for screening potential biomarkers of HCC.
Collapse
Affiliation(s)
- Ke-Xin Wang
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
- Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, China
| | - Guan-Hua Du
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xue-Mei Qin
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China.
- Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, China.
| | - Li Gao
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China.
- Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, China.
| |
Collapse
|
9
|
Asgharpour A, Sanyal AJ. Generation of a Diet-Induced Mouse Model of Nonalcoholic Fatty Liver Disease. Methods Mol Biol 2022; 2455:19-30. [PMID: 35212982 DOI: 10.1007/978-1-0716-2128-8_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The obesity epidemic is driving the increased prevalence of nonalcoholic fatty liver disease (NAFLD) globally. The more aggressive subtype of NAFLD, nonalcoholic steatohepatitis (NASH), can lead to progressive disease and ultimately lead to cirrhosis, liver cancer, and death. There are many unmet needs in the field of NAFLD including understanding of molecular mechanisms driving disease, natural history, risk for liver cancer, and most importantly FDA approved therapeutics. Animal models serve as a tool to aid in answering some of these questions. Here, we describe the diet-induced animal model of NAFLD (DIAMOND), a mouse model with many characteristics that mimic human NASH.
Collapse
Affiliation(s)
- Amon Asgharpour
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA.
| | - Arun J Sanyal
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
10
|
Castro‐Gil MP, Sánchez‐Rodríguez R, Torres‐Mena JE, López‐Torres CD, Quintanar‐Jurado V, Gabiño‐López NB, Villa‐Treviño S, del‐Pozo‐Jauner L, Arellanes‐Robledo J, Pérez‐Carreón JI. Enrichment of progenitor cells by 2-acetylaminofluorene accelerates liver carcinogenesis induced by diethylnitrosamine in vivo. Mol Carcinog 2021; 60:377-390. [PMID: 33765333 PMCID: PMC8251613 DOI: 10.1002/mc.23298] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/24/2021] [Accepted: 03/15/2021] [Indexed: 02/06/2023]
Abstract
The potential role of hepatocytes versus hepatic progenitor cells (HPC) on the onset and pathogenesis of hepatocellular carcinoma (HCC) has not been fully clarified. Because the administration of 2-acetylaminofluorene (2AAF) followed by a partial hepatectomy, selectively induces the HPC proliferation, we investigated the effects of chronic 2AAF administration on the HCC development caused by the chronic administration of the carcinogen diethylnitrosamine (DEN) for 16 weeks in the rat. DEN + 2AAF protocol impeded weight gain of animals but promoted prominent hepatomegaly and exacerbated liver alterations compared to DEN protocol alone. The tumor areas detected by γ-glutamyl transferase, prostaglandin reductase-1, and glutathione S-transferase Pi-1 liver cancer markers increased up to 80% as early as 12 weeks of treatment, meaning 6 weeks earlier than DEN alone. This protocol also increased the number of Ki67-positive cells and those of CD90 and CK19, two well-known progenitor cell markers. Interestingly, microarray analysis revealed that DEN + 2AAF protocol differentially modified the global gene expression signature and induced the differential expression of 30 genes identified as HPC markers as early as 6 weeks of treatment. In conclusion, 2AAF induces the early appearance of HPC markers and as a result, accelerates the hepatocarcinogenesis induced by DEN in the rat. Thus, since 2AAF simultaneously administrated with DEN enriches HPC during hepatocarcinogenesis, we propose that DEN + 2AAF protocol might be a useful tool to investigate the cellular origin of HCC with progenitor features.
Collapse
Affiliation(s)
| | - Ricardo Sánchez‐Rodríguez
- Foundation Istituto di Ricerca Pediatrica‐Città della SperanzaPadovaItaly
- Department of Biomedical SciencesUniversity of PadovaPadovaItaly
| | | | | | | | | | - Saúl Villa‐Treviño
- Department of Cell BiologyCenter for Research and Advanced Studies of the National Polytechnic InstituteCiudad de MéxicoMexico
| | | | - Jaime Arellanes‐Robledo
- Laboratory of Liver DiseasesNational Institute of Genomic MedicineCiudad de MéxicoMexico
- Directorate of CátedrasNational Council of Science and TechnologyCiudad de MéxicoMexico
| | | |
Collapse
|
11
|
Wu S, Tseng IC, Huang WC, Su CW, Lai YH, Lin C, Lee AYL, Kuo CY, Su LY, Lee MC, Hsu TC, Yu CH. Establishment of an Immunocompetent Metastasis Rat Model with Hepatocyte Cancer Stem Cells. Cancers (Basel) 2020; 12:cancers12123721. [PMID: 33322441 PMCID: PMC7764036 DOI: 10.3390/cancers12123721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/30/2020] [Accepted: 12/09/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer mortality. Cancer stem cells (CSCs) are responsible for the maintenance, metastasis, and relapse of various tumors. The effects of CSCs on the tumorigenesis of HCC are still not fully understood, however. We have recently established two new rat HCC cell lines HTC and TW-1, which we isolated from diethylnitrosamine-induced rat liver cancer. Results showed that TW-1 expressed the genetic markers of CSCs, including CD133, GSTP1, CD44, CD90, and EpCAM. Moreover, TW-1 showed higher tolerance to sorafenib than HTC did. In addition, tumorigenesis and metastasis were observed in nude mice and wild-type rats with TW-1 xenografts. Finally, we combined highly expressed genes in TW-1/HTC with well-known biomarkers from recent HCC studies to predict HCC-related biomarkers and able to identify HCC with AUCs > 0.9 after machine learning. These results indicated that TW-1 was a novel rat CSC line, and the mice or rat models we established with TW-1 has great potential on HCC studies in the future.
Collapse
Affiliation(s)
- Semon Wu
- Department of Life Science, Chinese Culture University, Taipei 11114, Taiwan;
- Correspondence: (S.W.); (C.-H.Y.); Tel.: +886-2-2861-0511(ext. 26234) (S.W.); +886-2-66289779 (C.-H.Y.); Fax: +886-2-2862-3724 (S.W.); +886-2-66289009 (C.-H.Y.)
| | - I-Chieh Tseng
- Department of Life Science, Chinese Culture University, Taipei 11114, Taiwan;
| | - Wen-Cheng Huang
- License Biotech, Co., Ltd., Taipei 10690, Taiwan; (W.-C.H.); (C.-W.S.)
| | - Cheng-Wen Su
- License Biotech, Co., Ltd., Taipei 10690, Taiwan; (W.-C.H.); (C.-W.S.)
| | - Yu-Heng Lai
- Department of Chemistry, Chinese Culture University, Taipei 11114, Taiwan;
| | - Che Lin
- Department of Electrical Engineering and Graduate Institute of Communication Engineering, National Taiwan University, Taipei 10617, Taiwan;
| | - Alan Yueh-Luen Lee
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan;
| | - Chan-Yen Kuo
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taipei 23142, Taiwan; (C.-Y.K.); (L.-Y.S.); (M.-C.L.)
| | - Li-Yu Su
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taipei 23142, Taiwan; (C.-Y.K.); (L.-Y.S.); (M.-C.L.)
| | - Ming-Cheng Lee
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taipei 23142, Taiwan; (C.-Y.K.); (L.-Y.S.); (M.-C.L.)
| | - Te-Cheng Hsu
- Department of Electrical Engineering, National Tsing Hua University, Hsinchu, Taipei 30013, Taiwan;
| | - Chun-Hsien Yu
- Department of Pediatrics, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taipei 23142, Taiwan
- Department of Pediatrics, School of Medicine, Tzu Chi University, Hualien 97071, Taiwan
- Correspondence: (S.W.); (C.-H.Y.); Tel.: +886-2-2861-0511(ext. 26234) (S.W.); +886-2-66289779 (C.-H.Y.); Fax: +886-2-2862-3724 (S.W.); +886-2-66289009 (C.-H.Y.)
| |
Collapse
|
12
|
Zhang XN, Meng FG, Wang YR, Liu SX, Zeng T. Transformed ALDH2 -/- hepatocytes by ethanol could serve as a useful tool for studying alcoholic hepatocarcinogenesis. Med Hypotheses 2020; 146:110366. [PMID: 33208242 DOI: 10.1016/j.mehy.2020.110366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/16/2020] [Accepted: 10/26/2020] [Indexed: 02/06/2023]
Abstract
Alcohol is a well-recognized hepatic carcinogen. Alcohol is metabolized into genotoxic acetaldehyde in hepatocytes, which is catalyzed by aldehyde dehydrogenase 2 (ALDH2). The detailed underlying mechanisms of alcohol-related hepatocellular carcinoma (HCC) remains unclear, at least partially, due to the absence of appropriate experimental models. Current studies suggest that rodents are not good models of the most common liver diseases that trigger HCC including alcoholic liver injury. We hypothesize that ethanol could induce transformation of immortalized normal liver cells, which may serve as a versatile tool for studying alcoholic HCC. Besides, we believe that knockout of ALDH2 will help to shorten the time course of transformation, as ALDH2 deficiency will significantly increase the accumulation of acetaldehyde in hepatocytes. Using this model, the dynamic changes of carcinogenesis-related molecular events could be easily examined. Furthermore, the transformed cells isolated from soft agar could be inoculated to mice for studying invasion, metastasis, and also for screening prophylactics.
Collapse
Affiliation(s)
- Xiu-Ning Zhang
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Fan-Ge Meng
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yi-Ran Wang
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Shi-Xuan Liu
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Tao Zeng
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
13
|
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide and the third leading cause of cancer related mortality with a 10 year survival rate of merely 22-35%. Tumorigenesis frequently occurs in patients with chronic liver disease where continued liver cell damage, compensatory proliferation and inflammation provide the basis for tumor initiation, promotion and progression. Animal models of HCC are particularly useful to better understand molecular events underlying liver tumorigenesis. To this end, chemical carcinogenesis protocols based on the injection of genotoxic compounds such as diethylnitrosamine (DEN) are widely used to model liver tumorigenesis in rodents. DEN injection into 2 week old mice is sufficient to cause liver tumorigenesis after 8-10 months. When injected into older mice, DEN has to be combined with administration of tumor promoting agents such as phenobarbital or feeding high fat diet. Such protocols allow to dissect the different steps of tumor formation (i.e., tumor initiation and promotion) experimentally and to model liver pathologies in mice which frequently lead to HCC in human patients such as non-alcoholic fatty liver disease. Here, we review several established chemical carcinogenesis protocols based on DEN injection into mice and discuss their advantages as well as potential limitations.
Collapse
Affiliation(s)
- Isabel Schulien
- Department of Medicine II, Medical Center-University of Freiburg and Faculty of Medicine, University Hospital Freiburg, Freiburg, Germany
| | - Peter Hasselblatt
- Department of Medicine II, Medical Center-University of Freiburg and Faculty of Medicine, University Hospital Freiburg, Freiburg, Germany.
| |
Collapse
|
14
|
Lee SE, Alcedo KP, Kim HJ, Snider NT. Alternative Splicing in Hepatocellular Carcinoma. Cell Mol Gastroenterol Hepatol 2020; 10:699-712. [PMID: 32389640 PMCID: PMC7490524 DOI: 10.1016/j.jcmgh.2020.04.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) accounts for the majority of primary liver cancer cases, with more than 850,000 new diagnoses per year globally. Recent trends in the United States have shown that liver cancer mortality has continued to increase in both men and women, while 5-year survival remains below 20%. Understanding key mechanisms that drive chronic liver disease progression to HCC can reveal new therapeutic targets and biomarkers for early detection of HCC. In that regard, many studies have underscored the importance of alternative splicing as a source of novel HCC prognostic markers and disease targets. Alternative splicing of pre-mRNA provides functional diversity to the genome, and endows cells with the ability to rapidly remodel the proteome. Genes that control fundamental processes, such as metabolism, cell proliferation, and apoptosis, are altered globally in HCC by alternative splicing. This review highlights the major splicing factors, RNA binding proteins, transcriptional targets, and signaling pathways that are of key relevance to HCC. We highlight primary research from the past 3-5 years involving functional interrogation of alternative splicing in rodent and human liver, using both large-scale transcriptomic and focused mechanistic approaches. Because this is a rapidly advancing field, we anticipate that it will be transformative for the future of basic liver biology, as well as HCC diagnosis and management.
Collapse
Affiliation(s)
- Seung Eun Lee
- Department of Surgery, Chung-Ang University, Seoul, Korea,Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Karel P. Alcedo
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Hong Jin Kim
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Natasha T. Snider
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina,Correspondence Address correspondence to: Natasha Snider, PhD, Department of Cell Biology and Physiology, University of North Carolina–Chapel Hill, 5340C MBRB, 111 Mason Farm Road, Chapel Hill, North Carolina 27516. fax: (919) 966-6927.
| |
Collapse
|
15
|
Bresnahan E, Lindblad KE, Ruiz de Galarreta M, Lujambio A. Mouse Models of Oncoimmunology in Hepatocellular Carcinoma. Clin Cancer Res 2020; 26:5276-5286. [PMID: 32327473 DOI: 10.1158/1078-0432.ccr-19-2923] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/10/2020] [Accepted: 04/20/2020] [Indexed: 12/13/2022]
Abstract
Liver cancer is the fourth leading cause of cancer-related mortality worldwide and incidence is on the rise. Hepatocellular carcinoma (HCC) is the most common form of liver cancer, with a complex etiology and limited treatment options. The standard-of-care treatment for patients with advanced HCC is sorafenib, a tyrosine kinase inhibitor that offers limited survival benefit. In the past years, therapeutic options for the treatment of advanced HCC have increased substantially, including additional multikinase inhibitors as well as immune checkpoint inhibitors. Nivolumab and pembrolizumab were approved in 2017 and 2018, respectively, as second-line treatment in advanced HCC. These drugs, both targeting the programmed death-1 pathway, demonstrate unprecedented results, with objective response rates of approximately 20%. However, the majority of patients do not respond, necessitating the identification of biomarkers of response and resistance to immunotherapy. With the recent success of immunotherapies in oncology, mouse models that better recapitulate the human disease and antitumor immune response are needed. This review lists ongoing clinical trials testing immunotherapy in HCC, briefly discusses the unique immunosuppressive environment of the liver, and then delves into the most applicable current murine model systems to study oncoimmunology within the context of HCC, including syngeneic, genetically engineered, and humanized models.
Collapse
Affiliation(s)
- Erin Bresnahan
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.,Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Katherine E Lindblad
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.,Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Graduate School of Biomedical Sciences at Icahn School of Medicine at Mount Sinai, New York, New York
| | - Marina Ruiz de Galarreta
- Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Amaia Lujambio
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York. .,Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Graduate School of Biomedical Sciences at Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
16
|
Recent Advances in Practical Methods for Liver Cell Biology: A Short Overview. Int J Mol Sci 2020; 21:ijms21062027. [PMID: 32188134 PMCID: PMC7139397 DOI: 10.3390/ijms21062027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 12/14/2022] Open
Abstract
Molecular and cellular research modalities for the study of liver pathologies have been tremendously improved over the recent decades. Advanced technologies offer novel opportunities to establish cell isolation techniques with excellent purity, paving the path for 2D and 3D microscopy and high-throughput assays (e.g., bulk or single-cell RNA sequencing). The use of stem cell and organoid research will help to decipher the pathophysiology of liver diseases and the interaction between various parenchymal and non-parenchymal liver cells. Furthermore, sophisticated animal models of liver disease allow for the in vivo assessment of fibrogenesis, portal hypertension and hepatocellular carcinoma (HCC) and for the preclinical testing of therapeutic strategies. The purpose of this review is to portray in detail novel in vitro and in vivo methods for the study of liver cell biology that had been presented at the workshop of the 8th meeting of the European Club for Liver Cell Biology (ECLCB-8) in October of 2018 in Bonn, Germany.
Collapse
|
17
|
Lu ZN, Luo Q, Zhao LN, Shi Y, Wang N, Wang L, Han ZG. The Mutational Features of Aristolochic Acid-Induced Mouse and Human Liver Cancers. Hepatology 2020; 71:929-942. [PMID: 31692012 DOI: 10.1002/hep.30863] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 07/15/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIMS Aristolochic acid (AA) exposure has been statistically associated with human liver cancers. However, direct evidence of AA exposure-induced liver cancer is absent. This study aims to establish a direct causal relationship between AA exposure and liver cancers based on a mouse model and then explores the AA-mediated genomic alterations that could be implicated in human cancers with AA-associated mutational signature. APPROACH AND RESULTS We subjected mice, including phosphatase and tensin homolog (Pten)-deficient ones, to aristolochic acid I (AAI) alone or a combination of AAI and CCl4 . Significantly, AAI exposure induced mouse liver cancers, including hepatocellular carcinoma (HCC) and combined HCC and intrahepatic cholangiocarcinoma, in a dose-dependent manner. Moreover, AAI exposure also enhanced tumorigenesis in these CCl4 -treated or Pten-deficient mice. AAI led to DNA damage and AAI-DNA adduct that could initiate liver cancers through characteristic adenine-to-thymine transversions, as indicated by comprehensive genomic analysis, which revealed recurrent mutations in Harvey rat sarcoma virus oncogene. Interestingly, an AA-associated mutational signature was mainly implicated in human liver cancers, especially from China. Moreover, we detected the AAI-DNA adduct in 25.8% (16/62) of paratumor liver tissues from randomly selected Chinese patients with HCC. Furthermore, based on phylogenetic analysis, the characteristic mutations were found in the initiating malignant clones in the AA-implicated mouse and human liver cancers where the mutations of tumor protein p53 and Janus kinase 1 were prone to be significantly enriched in the AA-affected human tumors. CONCLUSIONS This study provides evidence for AA-induced liver cancer with the featured mutational processes during malignant clonal evolution, laying a solid foundation for the prevention and diagnosis of AA-associated human cancers, especially liver cancers.
Collapse
Affiliation(s)
- Zhao-Ning Lu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qing Luo
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li-Nan Zhao
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Shi
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Na Wang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lan Wang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ze-Guang Han
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
18
|
Novel patient-derived preclinical models of liver cancer. J Hepatol 2020; 72:239-249. [PMID: 31954489 DOI: 10.1016/j.jhep.2019.09.028] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/24/2019] [Accepted: 09/28/2019] [Indexed: 12/25/2022]
Abstract
Preclinical models of cancer based on the use of human cancer cell lines and mouse models have enabled discoveries that have been successfully translated into patients. And yet the majority of clinical trials fail, emphasising the urgent need to improve preclinical research to better interrogate the potential efficacy of each therapy and the patient population most likely to benefit. This is particularly important for liver malignancies, which lack highly efficient treatments and account for hundreds of thousands of deaths around the globe. Given the intricate network of genetic and environmental factors that contribute to liver cancer development and progression, the identification of new druggable targets will mainly depend on establishing preclinical models that mirror the complexity of features observed in patients. The development of new 3D cell culture systems, originating from cells/tissues isolated from patients, might create new opportunities for the generation of more specific and personalised therapies. However, these systems are unable to recapitulate the tumour microenvironment and interactions with the immune system, both proven to be critical influences on therapeutic outcomes. Patient-derived xenografts, in particular with humanised mouse models, more faithfully mimic the physiology of human liver cancer but are costly and time-consuming, which can be prohibitive for personalising therapies in the setting of an aggressive malignancy. In this review, we discuss the latest advances in the development of more accurate preclinical models to better understand liver cancer biology and identify paradigm-changing therapies, stressing the importance of a bi-directional communicative flow between clinicians and researchers to establish reliable model systems and determine how best to apply them to expanding our current knowledge.
Collapse
|
19
|
Zhao Z, Dai J, Yu Y, Zhang Q, Liu S, Huang G, Zhang Z, Chen T, Pan R, Lu L, Zhang W, Liao W, Lu X. Non-invasive Bioluminescence Monitoring of Hepatocellular Carcinoma Therapy in an HCR Mouse Model. Front Oncol 2019; 9:864. [PMID: 31572672 PMCID: PMC6749040 DOI: 10.3389/fonc.2019.00864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 08/21/2019] [Indexed: 12/12/2022] Open
Abstract
Animal models play crucial roles in the development of anticancer therapeutics. The ability to quickly assess the localized primary hepatocellular carcinoma (HCC) status in a non-invasive manner would significantly improve the effectiveness of anti-HCC therapeutic studies. However, to date, animal models with this advantage are extremely scarce. In this study, we developed a novel animal model for the fast assessment of drug efficacy against primary HCC in vivo. HCC was induced in immunocompetent hepatocarcinogenesis reporter (HCR) mice by diethylnitrosamine (DEN) injection and confirmed by histopathological staining. Using the bioluminescence imaging (BLI) technique, HCC progression was longitudinally visualized and monitored in a non-invasive way. Tests of two clinical drugs showed that both sorafenib and oxaliplatin significantly inhibited the BLI signal in mouse liver in a dose-dependent manner. The in vivo intensity of BLI signals was highly consistent with the final tumor burden status in mouse liver after drug treatment. The inhibitory effect of anti-HCC drugs was accurately evaluated through in vivo BLI intensity detection. Our study successfully established a bioluminescence mouse model for non-invasive real-time monitoring of HCC therapy, and this HCR mouse model would be a useful tool for potential anti-HCC drug screening and new therapeutic strategy development.
Collapse
Affiliation(s)
- Zhu Zhao
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Juji Dai
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yan Yu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qian Zhang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Sai Liu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Guanmeng Huang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zheng Zhang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Tianke Chen
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Rulu Pan
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Liting Lu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Wenyi Zhang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Wanqin Liao
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xincheng Lu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
20
|
Fuentes-Hernández S, Alarcón-Sánchez BR, Guerrero-Escalera D, Montes-Aparicio AV, Castro-Gil MP, Idelfonso-García OG, Rosas-Madrigal S, Aparicio-Bautista DI, Pérez-Hernández JL, Reyes-Gordillo K, Lakshman MR, Vásquez-Garzón VR, Baltiérrez-Hoyos R, López-González MDL, Sierra-Santoyo A, Villa-Treviño S, Pérez-Carreón JI, Arellanes-Robledo J. Chronic administration of diethylnitrosamine to induce hepatocarcinogenesis and to evaluate its synergistic effect with other hepatotoxins in mice. Toxicol Appl Pharmacol 2019; 378:114611. [DOI: 10.1016/j.taap.2019.114611] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 05/31/2019] [Accepted: 06/03/2019] [Indexed: 02/06/2023]
|
21
|
TrxR1, Gsr, and oxidative stress determine hepatocellular carcinoma malignancy. Proc Natl Acad Sci U S A 2019; 116:11408-11417. [PMID: 31097586 DOI: 10.1073/pnas.1903244116] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Thioredoxin reductase-1 (TrxR1)-, glutathione reductase (Gsr)-, and Nrf2 transcription factor-driven antioxidant systems form an integrated network that combats potentially carcinogenic oxidative damage yet also protects cancer cells from oxidative death. Here we show that although unchallenged wild-type (WT), TrxR1-null, or Gsr-null mouse livers exhibited similarly low DNA damage indices, these were 100-fold higher in unchallenged TrxR1/Gsr-double-null livers. Notwithstanding, spontaneous cancer rates remained surprisingly low in TrxR1/Gsr-null livers. All genotypes, including TrxR1/Gsr-null, were susceptible to N-diethylnitrosamine (DEN)-induced liver cancer, indicating that loss of these antioxidant systems did not prevent cancer cell survival. Interestingly, however, following DEN treatment, TrxR1-null livers developed threefold fewer tumors compared with WT livers. Disruption of TrxR1 in a marked subset of DEN-initiated cancer cells had no effect on their subsequent contributions to tumors, suggesting that TrxR1-disruption does not affect cancer progression under normal care, but does decrease the frequency of DEN-induced cancer initiation. Consistent with this idea, TrxR1-null livers showed altered basal and DEN-exposed metabolomic profiles compared with WT livers. To examine how oxidative stress influenced cancer progression, we compared DEN-induced cancer malignancy under chronically low oxidative stress (TrxR1-null, standard care) vs. elevated oxidative stress (TrxR1/Gsr-null livers, standard care or phenobarbital-exposed TrxR1-null livers). In both cases, elevated oxidative stress was correlated with significantly increased malignancy. Finally, although TrxR1-null and TrxR1/Gsr-null livers showed strong Nrf2 activity in noncancerous hepatocytes, there was no correlation between malignancy and Nrf2 expression within tumors across genotypes. We conclude that TrxR1, Gsr, Nrf2, and oxidative stress are major determinants of liver cancer but in a complex, context-dependent manner.
Collapse
|
22
|
Kieckhaefer JE, Maina F, Wells R, Wangensteen KJ. Liver Cancer Gene Discovery Using Gene Targeting, Sleeping Beauty, and CRISPR/Cas9. Semin Liver Dis 2019; 39:261-274. [PMID: 30912094 PMCID: PMC7485130 DOI: 10.1055/s-0039-1678725] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) is a devastating and prevalent cancer with limited treatment options. Technological advances have enabled genetic screens to be employed in HCC model systems to characterize genes regulating tumor initiation and growth. Relative to traditional methods for studying cancer biology, such as candidate gene approaches or expression analysis, genetic screens have several advantages: they are unbiased, with no a priori selection; can directly annotate gene function; and can uncover gene-gene interactions. In HCC, three main types of screens have been conducted and are reviewed here: (1) transposon-based mutagenesis screens, (2) knockdown screens using RNA interference (RNAi) or the CRISPR/Cas9 system, and (3) overexpression screens using CRISPR activation (CRISPRa) or cDNAs. These methods will be valuable in future genetic screens to delineate the mechanisms underlying drug resistance and to identify new treatments for HCC.
Collapse
Affiliation(s)
- Julia E. Kieckhaefer
- Department of Medicine, Division of Gastroenterology, University of Pennsylvania, Philadelphia, PA, USA
| | - Flavio Maina
- Aix Marseille University, CNRS, Developmental Biology Institute of Marseille (IBDM), Parc Scientifique de Luminy, Marseille, France
| | - Rebecca Wells
- Department of Medicine, Division of Gastroenterology, University of Pennsylvania, Philadelphia, PA, USA
- Pathology and Laboratory Medicine and Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Kirk J. Wangensteen
- Department of Medicine, Division of Gastroenterology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
23
|
Remodelling and Improvements in Organoid Technology to Study Liver Carcinogenesis in a Dish. Stem Cells Int 2019; 2019:3831213. [PMID: 30915124 PMCID: PMC6399527 DOI: 10.1155/2019/3831213] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/24/2019] [Indexed: 02/07/2023] Open
Abstract
Primary liver cancer (PLC) is the sixth most common tumour disease and one of the leading causes of cancer-related death worldwide. The two most common types of PLC are hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (iCCA). Diverse subgroups are described and a manifold number of gene mutations are known. Asymptomatic disease progression and limited therapeutic options are the reasons for the high mortality rate in PLC. Up to date, the multikinase inhibitors sorafenib and lenvatinib are the only FDA-approved first-line treatments for advanced HCC. One of the major drawbacks in the preclinical drug development is the lack of suitable model systems. In recent years, 3D organoid cultures were established from several organs and tumour subtypes, thereby opening new avenues in tumour research. 3D organoid cultures are used to describe the tumour diversity, for cancer modelling in a dish and for therapy responsiveness. The establishment of living biobanks and the development of next-generation matrices are promising approaches to overcome drug resistance and to improve the quality of personalised anticancer strategies for patients with PLC. In this review, we summarise the current knowledge of 3D cultures generated from healthy liver and primary liver cancer.
Collapse
|
24
|
Singh V, Yeoh BS, Chassaing B, Xiao X, Saha P, Aguilera Olvera R, Lapek JD, Zhang L, Wang WB, Hao S, Flythe MD, Gonzalez DJ, Cani PD, Conejo-Garcia JR, Xiong N, Kennett MJ, Joe B, Patterson AD, Gewirtz AT, Vijay-Kumar M. Dysregulated Microbial Fermentation of Soluble Fiber Induces Cholestatic Liver Cancer. Cell 2018; 175:679-694.e22. [PMID: 30340040 PMCID: PMC6232850 DOI: 10.1016/j.cell.2018.09.004] [Citation(s) in RCA: 331] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 06/03/2018] [Accepted: 09/06/2018] [Indexed: 12/25/2022]
Abstract
Dietary soluble fibers are fermented by gut bacteria into short-chain fatty acids (SCFA), which are considered broadly health-promoting. Accordingly, consumption of such fibers ameliorates metabolic syndrome. However, incorporating soluble fiber inulin, but not insoluble fiber, into a compositionally defined diet, induced icteric hepatocellular carcinoma (HCC). Such HCC was microbiota-dependent and observed in multiple strains of dysbiotic mice but not in germ-free nor antibiotics-treated mice. Furthermore, consumption of an inulin-enriched high-fat diet induced both dysbiosis and HCC in wild-type (WT) mice. Inulin-induced HCC progressed via early onset of cholestasis, hepatocyte death, followed by neutrophilic inflammation in liver. Pharmacologic inhibition of fermentation or depletion of fermenting bacteria markedly reduced intestinal SCFA and prevented HCC. Intervening with cholestyramine to prevent reabsorption of bile acids also conferred protection against such HCC. Thus, its benefits notwithstanding, enrichment of foods with fermentable fiber should be approached with great caution as it may increase risk of HCC.
Collapse
Affiliation(s)
- Vishal Singh
- UT-Microbiome Consortium, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Beng San Yeoh
- Graduate Program in Immunology and Infectious Diseases, Pennsylvania State University, State College, PA 16802, USA
| | - Benoit Chassaing
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA; Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Xia Xiao
- Department of Nutritional Sciences, Pennsylvania State University, State College, PA 16802, USA
| | - Piu Saha
- UT-Microbiome Consortium, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Rodrigo Aguilera Olvera
- Department of Nutritional Sciences, Pennsylvania State University, State College, PA 16802, USA
| | - John D Lapek
- Department of Pharmacology, University of California, San Diego, CA 92093, USA
| | - Limin Zhang
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, State College, PA 16802, USA; CAS and State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan, China
| | - Wei-Bei Wang
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, State College, PA 16802, USA
| | - Sijie Hao
- Department of Biomedical Engineering, Pennsylvania State University, State College, PA 16802, USA
| | - Michael D Flythe
- USDA-Agriculture Research Service, University of Kentucky, Lexington, KY 40546, USA
| | - David J Gonzalez
- Department of Pharmacology, University of California, San Diego, CA 92093, USA
| | - Patrice D Cani
- WELBIO (Walloon Excellence in Life Sciences and Biotechnology), Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | | | - Na Xiong
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, State College, PA 16802, USA
| | - Mary J Kennett
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, State College, PA 16802, USA
| | - Bina Joe
- UT-Microbiome Consortium, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Andrew D Patterson
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, State College, PA 16802, USA
| | - Andrew T Gewirtz
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Matam Vijay-Kumar
- UT-Microbiome Consortium, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; Department of Medical Microbiology and Immunology, University of Toledo, Toledo, OH 43614, USA.
| |
Collapse
|
25
|
Connor F, Rayner TF, Aitken SJ, Feig C, Lukk M, Santoyo-Lopez J, Odom DT. Mutational landscape of a chemically-induced mouse model of liver cancer. J Hepatol 2018; 69:840-850. [PMID: 29958939 PMCID: PMC6142872 DOI: 10.1016/j.jhep.2018.06.009] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 06/04/2018] [Accepted: 06/05/2018] [Indexed: 01/09/2023]
Abstract
BACKGROUND & AIMS Carcinogen-induced mouse models of liver cancer are used extensively to study the pathogenesis of the disease and are critical for validating candidate therapeutics. These models can recapitulate molecular and histological features of human disease. However, it is not known if the genomic alterations driving these mouse tumour genomes are comparable to those found in human tumours. Herein, we provide a detailed genomic characterisation of tumours from a commonly used mouse model of hepatocellular carcinoma (HCC). METHODS We analysed whole exome sequences of liver tumours arising in mice exposed to diethylnitrosamine (DEN). Mutational signatures were compared between liver tumours from DEN-treated and untreated mice, and human HCCs. RESULTS DEN-initiated tumours had a high, uniform number of somatic single nucleotide variants (SNVs), with few insertions, deletions or copy number alterations, consistent with the known genotoxic action of DEN. Exposure of hepatocytes to DEN left a reproducible mutational imprint in resulting tumour exomes which we could computationally reconstruct using six known COSMIC mutational signatures. The tumours carried a high diversity of low-incidence, non-synonymous point mutations in many oncogenes and tumour suppressors, reflecting the stochastic introduction of SNVs into the hepatocyte genome by the carcinogen. We identified four recurrently mutated genes that were putative oncogenic drivers of HCC in this model. Every neoplasm carried activating hotspot mutations either in codon 61 of Hras, in codon 584 of Braf or in codon 254 of Egfr. Truncating mutations of Apc occurred in 21% of neoplasms, which were exclusively carcinomas supporting a role for deregulation of Wnt/β-catenin signalling in cancer progression. CONCLUSIONS Our study provides detailed insight into the mutational landscape of tumours arising in a commonly used carcinogen model of HCC, facilitating the future use of this model to better understand the human disease. LAY SUMMARY Mouse models are widely used to study the biology of cancer and to test potential therapies. Herein, we have described the mutational landscape of tumours arising in a carcinogen-induced mouse model of liver cancer. Since cancer is a disease caused by genomic alterations, information about the patterns and types of mutations in the tumours in this mouse model should facilitate its use to study human liver cancer.
Collapse
Affiliation(s)
- Frances Connor
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
| | - Tim F Rayner
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
| | - Sarah J Aitken
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK; Department of Histopathology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge CB2 0QQ, UK
| | - Christine Feig
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
| | - Margus Lukk
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
| | - Javier Santoyo-Lopez
- Edinburgh Genomics (Clinical), The Roslin Institute, The University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Duncan T Odom
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK.
| |
Collapse
|
26
|
Punvittayagul C, Chariyakornkul A, Chewonarin T, Jarukamjorn K, Wongpoomchai R. Augmentation of diethylnitrosamine-induced early stages of rat hepatocarcinogenesis by 1,2-dimethylhydrazine. Drug Chem Toxicol 2018; 42:641-648. [PMID: 29722557 DOI: 10.1080/01480545.2018.1464019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Diethylnitrosamine (DEN) and 1,2-dimethylhydrazine (DMH) are classical carcinogens used in experimental rodent carcinogenesis. However, the interaction effects of these carcinogens on biochemical and molecular changes during carcinogenesis have not been investigated. Therefore, the effect of DEN and DMH co-administration on preneoplastic lesion formation and its molecular mechanism in rats were determined. Triple intraperitoneal administrations of DEN were made before, during or after double subcutaneous injections of DMH. At week 8 of the experiment, the preneoplastic hepatic glutathione-S-transferase placental form (GST-P) positive foci and colonic aberrant crypt foci (ACF) were analyzed. The combined treatment of these carcinogens increased toxicity to rats. Administration of DMH alone did not induce hepatic GST-P positive foci, while co-treatment with DMH enhanced hepatic GST-P positive foci formation. However, DEN did not influence the size or number of colonic ACF. The treatment with DMH alone induced CYP2E1 and P450 reductase, demonstrating that DMH enhanced DEN metabolism in DEN- and DMH-treated rats. These findings were related to increases in hepatic O6-methylguanine DNA adducts and hepatotoxicity, which are associated with the induction of cell proliferation and liver cancer development. DEN-induced early stages of rat hepatocarcinogenesis were synergistically promoted by DMH via metabolic enzyme induction leading to enhanced DNA mutation and hepatocarcinogenicity.
Collapse
Affiliation(s)
- Charatda Punvittayagul
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Research Affairs, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Arpamas Chariyakornkul
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Teera Chewonarin
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Kanokwan Jarukamjorn
- Research Group for Pharmaceutical Activities of Natural Products using Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Rawiwan Wongpoomchai
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
27
|
Obeid M, Khabbaz RC, Garcia KD, Schachtschneider KM, Gaba RC. Translational Animal Models for Liver Cancer. ACTA ACUST UNITED AC 2018. [DOI: 10.25259/ajir-11-2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Animal models have become increasingly important in the study of hepatocellular carcinoma (HCC), as they serve as a critical bridge between laboratory-based discoveries and human clinical trials. Developing an ideal animal model for translational use is challenging, as the perfect model must be able to reproduce human disease genetically, anatomically, physiologically, and pathologically. This brief review provides an overview of the animal models currently available for translational liver cancer research, including rodent, rabbit, non-human primate, and pig models, with a focus on their respective benefits and shortcomings. While small animal models offer a solid starting point for investigation, large animal HCC models are becoming increasingly important for translation of preclinical results to clinical practice.
Collapse
Affiliation(s)
- Michele Obeid
- Department of Radiology, University of Illinois, 1740 West Taylor Street MC 931, Chicago, IL, 60612, United States
| | - Ramzy C. Khabbaz
- Department of Radiology, University of Illinois, 1740 West Taylor Street MC 931, Chicago, IL, 60612, United States
| | - Kelly D. Garcia
- College of Medicine, University of Illinois, 1740 West Taylor Street MC 931, Chicago, IL, 60612, United States
| | - Kyle M. Schachtschneider
- Department of Biological Resources Laboratory, University of Illinois, 1740 West Taylor Street MC 931, Chicago, IL, 60612, United States
| | - Ron C. Gaba
- Department of Radiology, University of Illinois, 1740 West Taylor Street MC 931, Chicago, IL, 60612, United States
| |
Collapse
|
28
|
Yan J, Caviglia JM, Schwabe RF. Animal models of HCC - When injury meets mutation. J Hepatol 2017; 68:S0168-8278(17)32197-9. [PMID: 29153595 DOI: 10.1016/j.jhep.2017.07.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/11/2017] [Accepted: 07/16/2017] [Indexed: 12/04/2022]
Affiliation(s)
- Jun Yan
- Department of Medicine, Columbia University, New York, NY 10032, USA; Department of Pathology, Tianjin First Center Hospital, Tianjin NSFC81300346, China
| | | | - Robert F Schwabe
- Department of Medicine, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
29
|
Luo H, Chen Y, Sun B, Xiang T, Zhang S. ESTABLISHMENT AND EVALUATION OF ORTHOTOPIC HEPATOCELLULAR CARCINOMA AND DRUG-INDUCED HEPATOCELLULAR CARCINOMA IN MICE WITH SPLEEN-DEFICIENCY SYNDROME IN TRADITIONAL CHINESE MEDICINE. AFRICAN JOURNAL OF TRADITIONAL, COMPLEMENTARY, AND ALTERNATIVE MEDICINES 2017; 14:165-173. [PMID: 28480394 PMCID: PMC5411868 DOI: 10.21010/ajtcam.v14i1.18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Spleen-deficiency syndrome (SDS) in Traditional Chinese Medicine (TCM) played pivotal roles on the development of hepatocellular carcinoma (HCC). This study was performed to establish and evaluate HCC model in mice with SDS in TCM. MATERIAL AND METHODS A total of 90 C57BL/6 mice were randomized in six groups (n=15 for each group): A, Control group; B, SDS group; C, orthotopic HCC (OHCC) group; D, OHCC based on SDS (SDS-OHCC) group; E, Drug-induced HCC (DHCC) group; F, DHCC based on SDS (SDS-DHCC) group. The SDS model were established by subcutaneous injection of reserpine, followed by the OHCC or DHCC model establishment. The SDS scores, tumor formation rate and survival time were recorded and calculated, as well as the histochemical stain was performed. RESULTS The SDS scores of mice in Group B, D, F were 17.57±4.86 (P<0.05 vs. Group A), 18.13±4.53 (P<0.05 vs. Group A and C) and 23.32±4.94 (P<0.05 vs. Group A and E) respectively. The tumor formation rate of mice in Group C, D, E and F were 73.33%, 100%, 60% and 80% respectively. The survival time of mice in Group C, D, E and F were 26.42±5.27, 17.33±4.76 (P<0.05 vs. Group C), 35.77±6.12 and 22.61±5.05 (P<0.05 vs. Group E) respectively. CONCLUSION The SDS-oriented HCC mice models were simple and easily-operated models for further studies on SDS oriented tumor. Meanwhile, SDS was a pivotal factor for low outcome of hepatic tumor. Abbreviations: HCC, Hepatocellular carcinoma; OHCC, Orthotopic hepatocellular carcinoma; DHCC, Drug-induced hepatocellular carcinoma; SDS, Spleen-deficiency syndrome; TCM, Traditional Chinese Medicine; SPF, Specific pathogen-free; DEN, Diethylnitrosamine; CCl4, Carbon tetrachloride; HE, Hematoxylin-eosin; IACUC, Institutional Animal Care and Use Committee.
Collapse
Affiliation(s)
- Haoxuan Luo
- Department of Chinese Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, P. R. China
| | - Yan Chen
- Department of Chinese Medicine, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, Guangdong, P. R. China
| | - Baoguo Sun
- Department of Chinese Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, P. R. China
| | - Ting Xiang
- Department of Chinese Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, P. R. China
| | - Shijun Zhang
- Department of Chinese Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, P. R. China
| |
Collapse
|
30
|
Affo S, Yu LX, Schwabe RF. The Role of Cancer-Associated Fibroblasts and Fibrosis in Liver Cancer. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2016; 12:153-186. [PMID: 27959632 DOI: 10.1146/annurev-pathol-052016-100322] [Citation(s) in RCA: 456] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Liver cancer is the second leading cause of cancer mortality worldwide, causing more than 700,000 deaths annually. Because of the wide landscape of genomic alterations and limited therapeutic success of targeting tumor cells, a recent focus has been on better understanding and possibly targeting the microenvironment in which liver tumors develop. A unique feature of liver cancer is its close association with liver fibrosis. More than 80% of hepatocellular carcinomas (HCCs) develop in fibrotic or cirrhotic livers, suggesting an important role of liver fibrosis in the premalignant environment (PME) of the liver. Cholangiocarcinoma (CCA), in contrast, is characterized by a strong desmoplasia that typically occurs in response to the tumor, suggesting a key role of cancer-associated fibroblasts (CAFs) and fibrosis in its tumor microenvironment (TME). Here, we discuss the functional contributions of myofibroblasts, CAFs, and fibrosis to the development of HCC and CCA in the hepatic PME and TME, focusing on myofibroblast- and extracellular matrix-associated growth factors, fibrosis-associated immunosuppressive pathways, as well as mechanosensitive signaling cascades that are activated by increased tissue stiffness. Better understanding of the role of myofibroblasts in HCC and CCA development and progression may provide the basis to target these cells for tumor prevention or therapy.
Collapse
Affiliation(s)
- Silvia Affo
- Department of Medicine, Columbia University, New York, NY 10032;
| | - Le-Xing Yu
- Department of Medicine, Columbia University, New York, NY 10032;
| | - Robert F Schwabe
- Department of Medicine, Columbia University, New York, NY 10032;
| |
Collapse
|
31
|
Nguyen CB, Kotturi H, Waris G, Mohammed A, Chandrakesan P, May R, Sureban S, Weygant N, Qu D, Rao CV, Dhanasekaran DN, Bronze MS, Houchen CW, Ali N. (Z)-3,5,4'-Trimethoxystilbene Limits Hepatitis C and Cancer Pathophysiology by Blocking Microtubule Dynamics and Cell-Cycle Progression. Cancer Res 2016; 76:4887-96. [PMID: 27287718 DOI: 10.1158/0008-5472.can-15-2722] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 06/05/2016] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is the third most common cause of cancer-related deaths worldwide. Chronic hepatitis C virus (HCV) infection causes induction of several tumors/cancer stem cell (CSC) markers and is known to be a major risk factor for development of HCC. Therefore, drugs that simultaneously target viral replication and CSC properties are needed for a risk-free treatment of advanced stage liver diseases, including HCC. Here, we demonstrated that (Z)-3,5,4'-trimethoxystilbene (Z-TMS) exhibits potent antitumor and anti-HCV activities without exhibiting cytotoxicity to human hepatocytes in vitro or in mice livers. Diethylnitrosamine (DEN)/carbon tetrachloride (CCl4) extensively induced expression of DCLK1 (a CSC marker) in the livers of C57BL/6 mice following hepatic injury. Z-TMS exhibited hepatoprotective effects against DEN/CCl4-induced injury by reducing DCLK1 expression and improving histologic outcomes. The drug caused bundling of DCLK1 with microtubules and blocked cell-cycle progression at G2-M phase in hepatoma cells via downregulation of CDK1, induction of p21(cip1/waf1) expression, and inhibition of Akt (Ser(473)) phosphorylation. Z-TMS also inhibited proliferation of erlotinib-resistant lung adenocarcinoma cells (H1975) bearing the T790M EGFR mutation, most likely by promoting autophagy and nuclear fragmentation. In conclusion, Z-TMS appears to be a unique therapeutic agent targeting HCV and concurrently eliminating cells with neoplastic potential during chronic liver diseases, including HCC. It may also be a valuable drug for targeting drug-resistant carcinomas and cancers of the lungs, pancreas, colon, and intestine, in which DCLK1 is involved in tumorigenesis. Cancer Res; 76(16); 4887-96. ©2016 AACR.
Collapse
Affiliation(s)
- Charles B Nguyen
- College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Hari Kotturi
- Department of Biology, University of Central Oklahoma, Edmond, Oklahoma
| | - Gulam Waris
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| | - Altaf Mohammed
- College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma. Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma. Center for Cancer Prevention and Drug Development, Hematology-Oncology Section, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Parthasarathy Chandrakesan
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma. Department of Medicine, Section of Digestive Diseases and Nutrition, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma. Department of Veterans Affairs Medical Center, Oklahoma City, Oklahoma
| | - Randal May
- Department of Medicine, Section of Digestive Diseases and Nutrition, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma. Department of Veterans Affairs Medical Center, Oklahoma City, Oklahoma
| | - Sripathi Sureban
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma. Department of Medicine, Section of Digestive Diseases and Nutrition, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma. Department of Veterans Affairs Medical Center, Oklahoma City, Oklahoma
| | - Nathaniel Weygant
- Department of Medicine, Section of Digestive Diseases and Nutrition, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Dongfeng Qu
- Department of Medicine, Section of Digestive Diseases and Nutrition, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma. Department of Veterans Affairs Medical Center, Oklahoma City, Oklahoma
| | - Chinthalapally V Rao
- College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma. Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma. Center for Cancer Prevention and Drug Development, Hematology-Oncology Section, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Danny N Dhanasekaran
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma. Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Michael S Bronze
- Department of Medicine, Section of Digestive Diseases and Nutrition, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Courtney W Houchen
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma. Department of Medicine, Section of Digestive Diseases and Nutrition, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma. Department of Veterans Affairs Medical Center, Oklahoma City, Oklahoma.
| | - Naushad Ali
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma. Department of Medicine, Section of Digestive Diseases and Nutrition, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma. Department of Veterans Affairs Medical Center, Oklahoma City, Oklahoma.
| |
Collapse
|
32
|
Hellerbrand C, Massoumi R. Cylindromatosis-A Protective Molecule against Liver Diseases. Med Res Rev 2016; 36:342-59. [DOI: 10.1002/med.21381] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 11/12/2015] [Accepted: 11/17/2015] [Indexed: 12/27/2022]
Affiliation(s)
- Claus Hellerbrand
- Department of Internal Medicine I; University Hospital Regensburg; 93053 Regensburg Germany
| | - Ramin Massoumi
- Department of Laboratory Medicine, Medicon Village; Lund University; 22381 Lund Sweden
| |
Collapse
|