1
|
Summers RA, Fagiani F, Rowitch DH, Absinta M, Reich DS. Novel human iPSC models of neuroinflammation in neurodegenerative disease and regenerative medicine. Trends Immunol 2024; 45:799-813. [PMID: 39307583 PMCID: PMC11471369 DOI: 10.1016/j.it.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 10/13/2024]
Abstract
The importance of neuroinflammation in neurodegenerative diseases is becoming increasingly evident, and, in parallel, human induced pluripotent stem cell (hiPSC) models of physiology and pathology are emerging. Here, we review new advancements in the differentiation of hiPSCs into glial, neural, and blood-brain barrier (BBB) cell types, and the integration of these cells into complex organoids and chimeras. These advancements are relevant for modeling neuroinflammation in the context of prevalent neurodegenerative disorders, such as Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS). With awareness of current limitations, recent progress in the development and application of various hiPSC-derived models shows potential for aiding the identification of candidate therapeutic targets and immunotherapy approaches.
Collapse
Affiliation(s)
- Rose Ana Summers
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK; Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Francesca Fagiani
- Translational Neuropathology Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - David H Rowitch
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Martina Absinta
- Translational Neuropathology Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
2
|
Lam I, Ndayisaba A, Lewis AJ, Fu Y, Sagredo GT, Kuzkina A, Zaccagnini L, Celikag M, Sandoe J, Sanz RL, Vahdatshoar A, Martin TD, Morshed N, Ichihashi T, Tripathi A, Ramalingam N, Oettgen-Suazo C, Bartels T, Boussouf M, Schäbinger M, Hallacli E, Jiang X, Verma A, Tea C, Wang Z, Hakozaki H, Yu X, Hyles K, Park C, Wang X, Theunissen TW, Wang H, Jaenisch R, Lindquist S, Stevens B, Stefanova N, Wenning G, van de Berg WDJ, Luk KC, Sanchez-Pernaute R, Gómez-Esteban JC, Felsky D, Kiyota Y, Sahni N, Yi SS, Chung CY, Stahlberg H, Ferrer I, Schöneberg J, Elledge SJ, Dettmer U, Halliday GM, Bartels T, Khurana V. Rapid iPSC inclusionopathy models shed light on formation, consequence, and molecular subtype of α-synuclein inclusions. Neuron 2024; 112:2886-2909.e16. [PMID: 39079530 PMCID: PMC11377155 DOI: 10.1016/j.neuron.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 10/26/2023] [Accepted: 06/03/2024] [Indexed: 09/07/2024]
Abstract
The heterogeneity of protein-rich inclusions and its significance in neurodegeneration is poorly understood. Standard patient-derived iPSC models develop inclusions neither reproducibly nor in a reasonable time frame. Here, we developed screenable iPSC "inclusionopathy" models utilizing piggyBac or targeted transgenes to rapidly induce CNS cells that express aggregation-prone proteins at brain-like levels. Inclusions and their effects on cell survival were trackable at single-inclusion resolution. Exemplar cortical neuron α-synuclein inclusionopathy models were engineered through transgenic expression of α-synuclein mutant forms or exogenous seeding with fibrils. We identified multiple inclusion classes, including neuroprotective p62-positive inclusions versus dynamic and neurotoxic lipid-rich inclusions, both identified in patient brains. Fusion events between these inclusion subtypes altered neuronal survival. Proteome-scale α-synuclein genetic- and physical-interaction screens pinpointed candidate RNA-processing and actin-cytoskeleton-modulator proteins like RhoA whose sequestration into inclusions could enhance toxicity. These tractable CNS models should prove useful in functional genomic analysis and drug development for proteinopathies.
Collapse
Affiliation(s)
- Isabel Lam
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA; Division of Movement Disorders, American Parkinson Disease Association (APDA) Center for Advanced Research and MSA Center of Excellence, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Alain Ndayisaba
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA; Division of Movement Disorders, American Parkinson Disease Association (APDA) Center for Advanced Research and MSA Center of Excellence, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Division of Neurobiology, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Amanda J Lewis
- École Polytechnique Fédérale de Lausanne and University of Lausanne, Lausanne, Switzerland
| | - YuHong Fu
- The University of Sydney Brain and Mind Centre and Faculty of Medicine and Health School of Medical Science, Sydney, NSW, Australia
| | - Giselle T Sagredo
- The University of Sydney Brain and Mind Centre and Faculty of Medicine and Health School of Medical Science, Sydney, NSW, Australia
| | - Anastasia Kuzkina
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA; Division of Movement Disorders, American Parkinson Disease Association (APDA) Center for Advanced Research and MSA Center of Excellence, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | | | - Meral Celikag
- Dementia Research Institute, University College London, London, UK
| | - Jackson Sandoe
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Ricardo L Sanz
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA; Division of Movement Disorders, American Parkinson Disease Association (APDA) Center for Advanced Research and MSA Center of Excellence, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Aazam Vahdatshoar
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA; Division of Movement Disorders, American Parkinson Disease Association (APDA) Center for Advanced Research and MSA Center of Excellence, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Timothy D Martin
- Harvard Medical School, Boston, MA, USA; Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Nader Morshed
- Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA; Boston Children's Hospital, Boston, MA, USA; The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Arati Tripathi
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Nagendran Ramalingam
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Charlotte Oettgen-Suazo
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA; Division of Movement Disorders, American Parkinson Disease Association (APDA) Center for Advanced Research and MSA Center of Excellence, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Theresa Bartels
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Manel Boussouf
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA; Division of Movement Disorders, American Parkinson Disease Association (APDA) Center for Advanced Research and MSA Center of Excellence, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Max Schäbinger
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA; Division of Movement Disorders, American Parkinson Disease Association (APDA) Center for Advanced Research and MSA Center of Excellence, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Erinc Hallacli
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA; Division of Movement Disorders, American Parkinson Disease Association (APDA) Center for Advanced Research and MSA Center of Excellence, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Xin Jiang
- Yumanity Therapeutics, Cambridge, MA, USA
| | - Amrita Verma
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA; Division of Movement Disorders, American Parkinson Disease Association (APDA) Center for Advanced Research and MSA Center of Excellence, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Challana Tea
- University of California, San Diego, San Diego, CA, USA
| | - Zichen Wang
- University of California, San Diego, San Diego, CA, USA
| | | | - Xiao Yu
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA; Division of Movement Disorders, American Parkinson Disease Association (APDA) Center for Advanced Research and MSA Center of Excellence, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Kelly Hyles
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA; Division of Movement Disorders, American Parkinson Disease Association (APDA) Center for Advanced Research and MSA Center of Excellence, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Chansaem Park
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA; Division of Movement Disorders, American Parkinson Disease Association (APDA) Center for Advanced Research and MSA Center of Excellence, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Xinyuan Wang
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA; Division of Movement Disorders, American Parkinson Disease Association (APDA) Center for Advanced Research and MSA Center of Excellence, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | | | - Haoyi Wang
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Susan Lindquist
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Beth Stevens
- Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA; Boston Children's Hospital, Boston, MA, USA; The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nadia Stefanova
- Division of Neurobiology, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Gregor Wenning
- Division of Neurobiology, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Kelvin C Luk
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Rosario Sanchez-Pernaute
- BioBizkaia Health Research Institute, Barakaldo, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | | | - Daniel Felsky
- Centre for Addiction and Mental Health, Toronto, ON, Canada; University of Toronto, Toronto, ON, Canada
| | | | - Nidhi Sahni
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Baylor College of Medicine, Houston, TX, USA
| | - S Stephen Yi
- The University of Texas at Austin, Austin, TX, USA
| | | | - Henning Stahlberg
- École Polytechnique Fédérale de Lausanne and University of Lausanne, Lausanne, Switzerland
| | - Isidro Ferrer
- The University of Barcelona, Institut d'Investigacio Biomedica de Bellvitge IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | | | - Stephen J Elledge
- Harvard Medical School, Boston, MA, USA; Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Ulf Dettmer
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Glenda M Halliday
- The University of Sydney Brain and Mind Centre and Faculty of Medicine and Health School of Medical Science, Sydney, NSW, Australia; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Tim Bartels
- Dementia Research Institute, University College London, London, UK
| | - Vikram Khurana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA; Division of Movement Disorders, American Parkinson Disease Association (APDA) Center for Advanced Research and MSA Center of Excellence, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; The Broad Institute of MIT and Harvard, Cambridge, MA, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA; Harvard Stem Cell Institute, Cambridge, MA, USA.
| |
Collapse
|
3
|
Zhao Y, Liu K, Wang Y, Ma Y, Guo W, Shi C. Human-mouse chimeric brain models constructed from iPSC-derived brain cells: Applications and challenges. Exp Neurol 2024; 379:114848. [PMID: 38857749 DOI: 10.1016/j.expneurol.2024.114848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/27/2024] [Accepted: 06/06/2024] [Indexed: 06/12/2024]
Abstract
The establishment of reliable human brain models is pivotal for elucidating specific disease mechanisms and facilitating the discovery of novel therapeutic strategies for human brain disorders. Human induced pluripotent stem cell (iPSC) exhibit remarkable self-renewal capabilities and can differentiate into specialized cell types. This makes them a valuable cell source for xenogeneic or allogeneic transplantation. Human-mouse chimeric brain models constructed from iPSC-derived brain cells have emerged as valuable tools for modeling human brain diseases and exploring potential therapeutic strategies for brain disorders. Moreover, the integration and functionality of grafted stem cells has been effectively assessed using these models. Therefore, this review provides a comprehensive overview of recent progress in differentiating human iPSC into various highly specialized types of brain cells. This review evaluates the characteristics and functions of the human-mouse chimeric brain model. We highlight its potential roles in brain function and its ability to reconstruct neural circuitry in vivo. Additionally, we elucidate factors that influence the integration and differentiation of human iPSC-derived brain cells in vivo. This review further sought to provide suitable research models for cell transplantation therapy. These research models provide new insights into neuropsychiatric disorders, infectious diseases, and brain injuries, thereby advancing related clinical and academic research.
Collapse
Affiliation(s)
- Ya Zhao
- Laboratory Animal Center, Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China
| | - Ke Liu
- Laboratory Animal Center, Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China; Gansu University of traditional Chinese medicine, Lanzhou 730030, PR China
| | - Yinghua Wang
- Medical College of Yan'an University, Yan'an 716000, PR China
| | - Yifan Ma
- Laboratory Animal Center, Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China; Gansu University of traditional Chinese medicine, Lanzhou 730030, PR China
| | - Wenwen Guo
- Laboratory Animal Center, Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China
| | - Changhong Shi
- Laboratory Animal Center, Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China.
| |
Collapse
|
4
|
Vieira R, Mariani JN, Huynh NPT, Stephensen HJT, Solly R, Tate A, Schanz S, Cotrupi N, Mousaei M, Sporring J, Benraiss A, Goldman SA. Young glial progenitor cells competitively replace aged and diseased human glia in the adult chimeric mouse brain. Nat Biotechnol 2024; 42:719-730. [PMID: 37460676 PMCID: PMC11098747 DOI: 10.1038/s41587-023-01798-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 04/20/2023] [Indexed: 08/26/2023]
Abstract
Competition among adult brain cells has not been extensively researched. To investigate whether healthy glia can outcompete diseased human glia in the adult forebrain, we engrafted wild-type (WT) human glial progenitor cells (hGPCs) produced from human embryonic stem cells into the striata of adult mice that had been neonatally chimerized with mutant Huntingtin (mHTT)-expressing hGPCs. The WT hGPCs outcompeted and ultimately eliminated their human Huntington's disease (HD) counterparts, repopulating the host striata with healthy glia. Single-cell RNA sequencing revealed that WT hGPCs acquired a YAP1/MYC/E2F-defined dominant competitor phenotype upon interaction with the host HD glia. WT hGPCs also outcompeted older resident isogenic WT cells that had been transplanted neonatally, suggesting that competitive success depended primarily on the relative ages of competing populations, rather than on the presence of mHTT. These data indicate that aged and diseased human glia may be broadly replaced in adult brain by younger healthy hGPCs, suggesting a therapeutic strategy for the replacement of aged and diseased human glia.
Collapse
Affiliation(s)
- Ricardo Vieira
- Center for Translational Neuromedicine, University of Copenhagen Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | - John N Mariani
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Nguyen P T Huynh
- Center for Translational Neuromedicine, University of Copenhagen Faculty of Health and Medical Sciences, Copenhagen, Denmark
- Sana Biotechnology, Inc, Cambridge, MA, USA
| | - Hans J T Stephensen
- Center for Translational Neuromedicine, University of Copenhagen Faculty of Health and Medical Sciences, Copenhagen, Denmark
- Department of Computer Science, University of Copenhagen Faculty of Science, Copenhagen, Denmark
| | - Renee Solly
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, USA
- Sana Biotechnology, Inc, Cambridge, MA, USA
| | - Ashley Tate
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, USA
- Sana Biotechnology, Inc, Cambridge, MA, USA
| | - Steven Schanz
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Natasha Cotrupi
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Marzieh Mousaei
- Center for Translational Neuromedicine, University of Copenhagen Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | - Jon Sporring
- Department of Computer Science, University of Copenhagen Faculty of Science, Copenhagen, Denmark
| | - Abdellatif Benraiss
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Steven A Goldman
- Center for Translational Neuromedicine, University of Copenhagen Faculty of Health and Medical Sciences, Copenhagen, Denmark.
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, USA.
- Sana Biotechnology, Inc, Cambridge, MA, USA.
| |
Collapse
|
5
|
Franklin RJM, Bodini B, Goldman SA. Remyelination in the Central Nervous System. Cold Spring Harb Perspect Biol 2024; 16:a041371. [PMID: 38316552 PMCID: PMC10910446 DOI: 10.1101/cshperspect.a041371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
The inability of the mammalian central nervous system (CNS) to undergo spontaneous regeneration has long been regarded as a central tenet of neurobiology. However, while this is largely true of the neuronal elements of the adult mammalian CNS, save for discrete populations of granule neurons, the same is not true of its glial elements. In particular, the loss of oligodendrocytes, which results in demyelination, triggers a spontaneous and often highly efficient regenerative response, remyelination, in which new oligodendrocytes are generated and myelin sheaths are restored to denuded axons. Yet remyelination in humans is not without limitation, and a variety of demyelinating conditions are associated with sustained and disabling myelin loss. In this work, we will (1) review the biology of remyelination, including the cells and signals involved; (2) describe when remyelination occurs and when and why it fails, including the consequences of its failure; and (3) discuss approaches for therapeutically enhancing remyelination in demyelinating diseases of both children and adults, both by stimulating endogenous oligodendrocyte progenitor cells and by transplanting these cells into demyelinated brain.
Collapse
Affiliation(s)
- Robin J M Franklin
- Altos Labs Cambridge Institute of Science, Cambridge CB21 6GH, United Kingdom
| | - Benedetta Bodini
- Sorbonne Université, Paris Brain Institute, CNRS, INSERM, Paris 75013, France
- Saint-Antoine Hospital, APHP, Paris 75012, France
| | - Steven A Goldman
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York 14642, USA
- University of Copenhagen Faculty of Medicine, Copenhagen 2200, Denmark
| |
Collapse
|
6
|
Wang M, Zhang L, Novak SW, Yu J, Gallina IS, Xu LL, Lim CK, Fernandes S, Shokhirev MN, Williams AE, Saxena MD, Coorapati S, Parylak SL, Quintero C, Molina E, Andrade LR, Manor U, Gage FH. Morphological diversification and functional maturation of human astrocytes in glia-enriched cortical organoid transplanted in mouse brain. Nat Biotechnol 2024:10.1038/s41587-024-02157-8. [PMID: 38418648 PMCID: PMC11349933 DOI: 10.1038/s41587-024-02157-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/30/2024] [Indexed: 03/02/2024]
Abstract
Astrocytes, the most abundant glial cell type in the brain, are underrepresented in traditional cortical organoid models due to the delayed onset of cortical gliogenesis. Here we introduce a new glia-enriched cortical organoid model that exhibits accelerated astrogliogenesis. We demonstrated that induction of a gliogenic switch in a subset of progenitors enabled the rapid derivation of astroglial cells, which account for 25-31% of the cell population within 8-10 weeks of differentiation. Intracerebral transplantation of these organoids reliably generated a diverse repertoire of cortical neurons and anatomical subclasses of human astrocytes. Spatial transcriptome profiling identified layer-specific expression patterns among distinct subclasses of astrocytes within organoid transplants. Using an in vivo acute neuroinflammation model, we identified a subpopulation of astrocytes that rapidly activates pro-inflammatory pathways upon cytokine stimulation. Additionally, we demonstrated that CD38 signaling has a crucial role in mediating metabolic and mitochondrial stress in reactive astrocytes. This model provides a robust platform for investigating human astrocyte function.
Collapse
Affiliation(s)
- Meiyan Wang
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Lei Zhang
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Sammy Weiser Novak
- Waitt Advanced Biophotonics Core, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jingting Yu
- Integrative Genomics and Bioinformatics Core, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Iryna S Gallina
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Lynne L Xu
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Christina K Lim
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Sarah Fernandes
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Maxim N Shokhirev
- Integrative Genomics and Bioinformatics Core, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - April E Williams
- Integrative Genomics and Bioinformatics Core, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Monisha D Saxena
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Shashank Coorapati
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Sarah L Parylak
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Cristian Quintero
- Next Generation Sequencing Core, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Elsa Molina
- Next Generation Sequencing Core, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Leonardo R Andrade
- Waitt Advanced Biophotonics Core, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Uri Manor
- Waitt Advanced Biophotonics Core, The Salk Institute for Biological Studies, La Jolla, CA, USA
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Fred H Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
7
|
Osorio MJ, Mariani JN, Zou L, Schanz SJ, Heffernan K, Cornwell A, Goldman SA. Glial progenitor cells of the adult human white and grey matter are contextually distinct. Glia 2023; 71:524-540. [PMID: 36334067 PMCID: PMC10100527 DOI: 10.1002/glia.24291] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 09/19/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2022]
Abstract
Genomic analyses have revealed heterogeneity among glial progenitor cells (GPCs), but the compartment selectivity of human GPCs (hGPCs) is unclear. Here, we asked if GPCs of human grey and white brain matter are distinct in their architecture and associated gene expression. RNA profiling of NG2-defined hGPCs derived from adult human neocortex and white matter differed in their expression of genes involved in Wnt, NOTCH, BMP and TGFβ signaling, suggesting compartment-selective biases in fate and self-renewal. White matter hGPCs over-expressed the BMP antagonists BAMBI and CHRDL1, suggesting their tonic suppression of astrocytic fate relative to cortical hGPCs, whose relative enrichment of cytoskeletal genes presaged their greater morphological complexity. In human glial chimeric mice, cortical hGPCs assumed larger and more complex morphologies than white matter hGPCs, and both were more complex than their mouse counterparts. These findings suggest that human grey and white matter GPCs comprise context-specific pools with distinct functional biases.
Collapse
Affiliation(s)
- Maria Joana Osorio
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York, USA.,Center for Translational Neuromedicine, University of Copenhagen, Copenhagen, Denmark
| | - John N Mariani
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Lisa Zou
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Steven J Schanz
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Kate Heffernan
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Adam Cornwell
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Steven A Goldman
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York, USA.,Center for Translational Neuromedicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Yang Z, Gong M, Yang C, Chen C, Zhang K. Applications of Induced Pluripotent Stem Cell-Derived Glia in Brain Disease Research and Treatment. Handb Exp Pharmacol 2023; 281:103-140. [PMID: 37735301 DOI: 10.1007/164_2023_697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Glia are integral components of neural networks and are crucial in both physiological functions and pathological processes of the brain. Many brain diseases involve glial abnormalities, including inflammatory changes, mitochondrial damage, calcium signaling disturbance, hemichannel opening, and loss of glutamate transporters. Induced pluripotent stem cell (iPSC)-derived glia provide opportunities to study the contributions of glia in human brain diseases. These cells have been used for human disease modeling as well as generating new therapies. This chapter introduces glial involvement in brain diseases, then summarizes different methods of generating iPSC-derived glia disease models of these cells. Finally, strategies for treating disease using iPSC-derived glia are discussed. The goal of this chapter is to provide an overview and shed light on the applications of iPSC-derived glia in brain disease research and treatment.
Collapse
Affiliation(s)
- Zhiqi Yang
- Brain Research Center and State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University, Chongqing, China
| | - Mingyue Gong
- Brain Research Center and State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University, Chongqing, China
| | - Chuanyan Yang
- Brain Research Center and State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University, Chongqing, China
| | - Chunhai Chen
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Kuan Zhang
- Brain Research Center and State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University, Chongqing, China.
| |
Collapse
|
9
|
Looking to the stars for answers: Strategies for determining how astrocytes influence neuronal activity. Comput Struct Biotechnol J 2022; 20:4146-4156. [PMID: 36016711 PMCID: PMC9379862 DOI: 10.1016/j.csbj.2022.07.052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/29/2022] [Accepted: 07/29/2022] [Indexed: 11/24/2022] Open
Abstract
Astrocytes are critical components of neural circuits positioned in close proximity to the synapse, allowing them to rapidly sense and respond to neuronal activity. One repeatedly observed biomarker of astroglial activation is an increase in intracellular Ca2+ levels. These astroglial Ca2+ signals are often observed spreading throughout various cellular compartments from perisynaptic astroglial processes, to major astrocytic branches and on to the soma or cell body. Here we review recent evidence demonstrating that astrocytic Ca2+ events are remarkably heterogeneous in both form and function, propagate through the astroglial syncytia, and are directly linked to the ability of astroglia to influence local neuronal activity. As many of the cellular functions of astroglia can be linked to intracellular Ca2+ signaling, and the diversity and heterogeneity of these events becomes more apparent, there is an increasing need for novel experimental strategies designed to better understand the how these signals evolve in parallel with neuronal activity. Here we review the recent advances that enable the characterization of both subcellular and population-wide astrocytic Ca2+ dynamics. Additionally, we also outline the experimental design required for simultaneous in vivo Ca2+ imaging in the context of neuronal or astroglial manipulation, highlighting new experimental strategies made possible by recent advances in viral vector, imaging, and quantification technologies. Through combined usage of these reagents and methodologies, we provide a conceptual framework to study how astrocytes functionally integrate into neural circuits and to what extent they influence and direct the synaptic activity underlying behavioral responses.
Collapse
|
10
|
Hastings N, Kuan WL, Osborne A, Kotter MRN. Therapeutic Potential of Astrocyte Transplantation. Cell Transplant 2022; 31:9636897221105499. [PMID: 35770772 PMCID: PMC9251977 DOI: 10.1177/09636897221105499] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cell transplantation is an attractive treatment strategy for a variety of brain disorders, as it promises to replenish lost functions and rejuvenate the brain. In particular, transplantation of astrocytes has come into light recently as a therapy for amyotrophic lateral sclerosis (ALS); moreover, grafting of astrocytes also showed positive results in models of other conditions ranging from neurodegenerative diseases of older age to traumatic injury and stroke. Despite clear differences in etiology, disorders such as ALS, Parkinson's, Alzheimer's, and Huntington's diseases, as well as traumatic injury and stroke, converge on a number of underlying astrocytic abnormalities, which include inflammatory changes, mitochondrial damage, calcium signaling disturbance, hemichannel opening, and loss of glutamate transporters. In this review, we examine these convergent pathways leading to astrocyte dysfunction, and explore the existing evidence for a therapeutic potential of transplantation of healthy astrocytes in various models. Existing literature presents a wide variety of methods to generate astrocytes, or relevant precursor cells, for subsequent transplantation, while described outcomes of this type of treatment also differ between studies. We take technical differences between methodologies into account to understand the variability of therapeutic benefits, or lack thereof, at a deeper level. We conclude by discussing some key requirements of an astrocyte graft that would be most suitable for clinical applications.
Collapse
Affiliation(s)
- Nataly Hastings
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.,Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Wei-Li Kuan
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Andrew Osborne
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Mark R N Kotter
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.,Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
11
|
Sanchez A, Morales I, Rodriguez-Sabate C, Sole-Sabater M, Rodriguez M. Astrocytes, a Promising Opportunity to Control the Progress of Parkinson's Disease. Biomedicines 2021; 9:biomedicines9101341. [PMID: 34680458 PMCID: PMC8533570 DOI: 10.3390/biomedicines9101341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/17/2021] [Accepted: 09/24/2021] [Indexed: 12/21/2022] Open
Abstract
At present, there is no efficient treatment to prevent the evolution of Parkinson’s disease (PD). PD is generated by the concurrent activity of multiple factors, which is a serious obstacle for the development of etio-pathogenic treatments. Astrocytes may act on most factors involved in PD and the promotion of their neuroprotection activity may be particularly suitable to prevent the onset and progression of this basal ganglia (BG) disorder. The main causes proposed for PD, the ability of astrocytes to control these causes, and the procedures that can be used to promote the neuroprotective action of astrocytes will be commented upon, here.
Collapse
Affiliation(s)
- Alberto Sanchez
- Laboratory of Neurobiology and Experimental Neurology, Department of Physiology, Faculty of Medicine, University of La Laguna, 38200 Tenerife, Spain; (A.S.); (I.M.); (C.R.-S.)
- Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
| | - Ingrid Morales
- Laboratory of Neurobiology and Experimental Neurology, Department of Physiology, Faculty of Medicine, University of La Laguna, 38200 Tenerife, Spain; (A.S.); (I.M.); (C.R.-S.)
- Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
| | - Clara Rodriguez-Sabate
- Laboratory of Neurobiology and Experimental Neurology, Department of Physiology, Faculty of Medicine, University of La Laguna, 38200 Tenerife, Spain; (A.S.); (I.M.); (C.R.-S.)
- Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
- Department of Psychiatry, Getafe University Hospital, 28905 Madrid, Spain
| | - Miguel Sole-Sabater
- Department of Neurology, La Candelaria University Hospital, 38010 Tenerife, Spain;
| | - Manuel Rodriguez
- Laboratory of Neurobiology and Experimental Neurology, Department of Physiology, Faculty of Medicine, University of La Laguna, 38200 Tenerife, Spain; (A.S.); (I.M.); (C.R.-S.)
- Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
- Correspondence: ; Tel.: +34-922-319361; Fax: +34-922-319397
| |
Collapse
|
12
|
Perrier S, Michell-Robinson MA, Bernard G. POLR3-Related Leukodystrophy: Exploring Potential Therapeutic Approaches. Front Cell Neurosci 2021; 14:631802. [PMID: 33633543 PMCID: PMC7902007 DOI: 10.3389/fncel.2020.631802] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 12/28/2020] [Indexed: 12/19/2022] Open
Abstract
Leukodystrophies are a class of rare inherited central nervous system (CNS) disorders that affect the white matter of the brain, typically leading to progressive neurodegeneration and early death. Hypomyelinating leukodystrophies are characterized by the abnormal formation of the myelin sheath during development. POLR3-related or 4H (hypomyelination, hypodontia, and hypogonadotropic hypogonadism) leukodystrophy is one of the most common types of hypomyelinating leukodystrophy for which no curative treatment or disease-modifying therapy is available. This review aims to describe potential therapies that could be further studied for effectiveness in pre-clinical studies, for an eventual translation to the clinic to treat the neurological manifestations associated with POLR3-related leukodystrophy. Here, we discuss the therapeutic approaches that have shown promise in other leukodystrophies, as well as other genetic diseases, and consider their use in treating POLR3-related leukodystrophy. More specifically, we explore the approaches of using stem cell transplantation, gene replacement therapy, and gene editing as potential treatment options, and discuss their possible benefits and limitations as future therapeutic directions.
Collapse
Affiliation(s)
- Stefanie Perrier
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
- Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Mackenzie A. Michell-Robinson
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
- Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Geneviève Bernard
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
- Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Department of Pediatrics, McGill University, Montréal, QC, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- Department of Specialized Medicine, Division of Medical Genetics, Montréal Children’s Hospital and McGill University Health Centre, Montréal, QC, Canada
| |
Collapse
|
13
|
Goldman SA, Mariani JN, Madsen PM. Glial progenitor cell-based repair of the dysmyelinated brain: Progression to the clinic. Semin Cell Dev Biol 2021; 116:62-70. [PMID: 33414060 DOI: 10.1016/j.semcdb.2020.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 11/25/2022]
Abstract
Demyelinating disorders of the central white matter are among the most prevalent and disabling conditions in neurology. Since myelin-producing oligodendrocytes comprise the principal cell type deficient or lost in these conditions, their replacement by new cells generated from transplanted bipotential oligodendrocyte-astrocyte progenitor cells has emerged as a therapeutic strategy for a variety of primary dysmyelinating diseases. In this review, we summarize the research and clinical considerations supporting current efforts to bring this treatment approach to patients.
Collapse
Affiliation(s)
- Steven A Goldman
- Center for Translational Neuromedicine and the Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA; Center for Translational Neuromedicine, University of Copenhagen Faculty of Health and Medical Science, Denmark; Neuroscience Center, Rigshospitalet, Copenhagen, Denmark.
| | - John N Mariani
- Center for Translational Neuromedicine and the Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Pernille M Madsen
- Center for Translational Neuromedicine and the Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA; Center for Translational Neuromedicine, University of Copenhagen Faculty of Health and Medical Science, Denmark
| |
Collapse
|
14
|
Sharif N, Calzolari F, Berninger B. Direct In Vitro Reprogramming of Astrocytes into Induced Neurons. Methods Mol Biol 2021; 2352:13-29. [PMID: 34324177 DOI: 10.1007/978-1-0716-1601-7_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Spontaneous neuronal replacement is almost absent in the postnatal mammalian nervous system. However, several studies have shown that both early postnatal and adult astroglia can be reprogrammed in vitro or in vivo by forced expression of proneural transcription factors, such as Neurogenin-2 or Achaete-scute homolog 1 (Ascl1), to acquire a neuronal fate. The reprogramming process stably induces properties such as distinctly neuronal morphology, expression of neuron-specific proteins, and the gain of mature neuronal functional features. Direct conversion of astroglia into neurons thus possesses potential as a basis for cell-based strategies against neurological diseases. In this chapter, we describe a well-established protocol used for direct reprogramming of postnatal cortical astrocytes into functional neurons in vitro and discuss available tools and approaches to dissect molecular and cell biological mechanisms underlying the reprogramming process.
Collapse
Affiliation(s)
- Nesrin Sharif
- Institute of Physiological Chemistry, University Medical Center Johannes Gutenberg University Mainz, Mainz, Germany
- International PhD Programme on Gene Regulation, Epigenetics and Genome Stability, Mainz, Germany
| | - Filippo Calzolari
- Institute of Physiological Chemistry, University Medical Center Johannes Gutenberg University Mainz, Mainz, Germany
| | - Benedikt Berninger
- Institute of Physiological Chemistry, University Medical Center Johannes Gutenberg University Mainz, Mainz, Germany.
- Institute of Psychiatry, Psychology, and Neuroscience, Centre for Developmental Neurobiology, King's College London, London, UK.
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK.
| |
Collapse
|
15
|
Spanos F, Liddelow SA. An Overview of Astrocyte Responses in Genetically Induced Alzheimer's Disease Mouse Models. Cells 2020; 9:E2415. [PMID: 33158189 PMCID: PMC7694249 DOI: 10.3390/cells9112415] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/26/2020] [Accepted: 11/02/2020] [Indexed: 12/21/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia. Despite many years of intense research, there is currently still no effective treatment. Multiple cell types contribute to disease pathogenesis, with an increasing body of data pointing to the active participation of astrocytes. Astrocytes play a pivotal role in the physiology and metabolic functions of neurons and other cells in the central nervous system. Because of their interactions with other cell types, astrocyte functions must be understood in their biologic context, thus many studies have used mouse models, of which there are over 190 available for AD research. However, none appear able to fully recapitulate the many functional changes in astrocytes reported in human AD brains. Our review summarizes the observations of astrocyte biology noted in mouse models of familial and sporadic AD. The limitations of AD mouse models will be discussed and current attempts to overcome these disadvantages will be described. With increasing understanding of the non-neuronal contributions to disease, the development of new methods and models will provide further insights and address important questions regarding the roles of astrocytes and other non-neuronal cells in AD pathophysiology. The next decade will prove to be full of exciting opportunities to address this devastating disease.
Collapse
Affiliation(s)
- Fokion Spanos
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY 10016, USA;
| | - Shane A. Liddelow
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY 10016, USA;
- Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
16
|
Gómez-Budia M, Konttinen H, Saveleva L, Korhonen P, Jalava PI, Kanninen KM, Malm T. Glial smog: Interplay between air pollution and astrocyte-microglia interactions. Neurochem Int 2020; 136:104715. [DOI: 10.1016/j.neuint.2020.104715] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 12/15/2022]
|
17
|
Goldman SA. Glial evolution as a determinant of human behavior and its disorders. Ann N Y Acad Sci 2020; 1471:72-85. [PMID: 32449961 DOI: 10.1111/nyas.14372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 04/24/2020] [Accepted: 04/24/2020] [Indexed: 01/08/2023]
Abstract
Astroglial complexity and pleomorphism have increased significantly with hominid evolution. This suggests a potential association between glial evolution and the development of human cognition, as well as between glial evolution and the advent of human-selective neurodegenerative and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Steven A Goldman
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York.,Center for Translational Neuromedicine, University of Copenhagen Faculty of Health and Medical Science, Copenhagen N, Denmark.,Neuroscience Center, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
18
|
Cerebellar Astrocytes: Much More Than Passive Bystanders In Ataxia Pathophysiology. J Clin Med 2020; 9:jcm9030757. [PMID: 32168822 PMCID: PMC7141261 DOI: 10.3390/jcm9030757] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 12/22/2022] Open
Abstract
Ataxia is a neurodegenerative syndrome, which can emerge as a major element of a disease or represent a symptom of more complex multisystemic disorders. It comprises several forms with a highly variegated etiology, mainly united by motor, balance, and speech impairments and, at the tissue level, by cerebellar atrophy and Purkinje cells degeneration. For this reason, the contribution of astrocytes to this disease has been largely overlooked in the past. Nevertheless, in the last few decades, growing evidences are pointing to cerebellar astrocytes as crucial players not only in the progression but also in the onset of distinct forms of ataxia. Although the current knowledge on this topic is very fragmentary and ataxia type-specific, the present review will attempt to provide a comprehensive view of astrocytes’ involvement across the distinct forms of this pathology. Here, it will be highlighted how, through consecutive stage-specific mechanisms, astrocytes can lead to non-cell autonomous neurodegeneration and, consequently, to the behavioral impairments typical of this disease. In light of that, treating astrocytes to heal neurons will be discussed as a potential complementary therapeutic approach for ataxic patients, a crucial point provided the absence of conclusive treatments for this disease.
Collapse
|
19
|
Sharma A, Sances S, Workman MJ, Svendsen CN. Multi-lineage Human iPSC-Derived Platforms for Disease Modeling and Drug Discovery. Cell Stem Cell 2020; 26:309-329. [PMID: 32142662 PMCID: PMC7159985 DOI: 10.1016/j.stem.2020.02.011] [Citation(s) in RCA: 173] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Human induced pluripotent stem cells (hiPSCs) provide a powerful platform for disease modeling and have unlocked new possibilities for understanding the mechanisms governing human biology, physiology, and genetics. However, hiPSC-derivatives have traditionally been utilized in two-dimensional monocultures, in contrast to the multi-systemic interactions that influence cells in the body. We will discuss recent advances in generating more complex hiPSC-based systems using three-dimensional organoids, tissue-engineering, microfluidic organ-chips, and humanized animal systems. While hiPSC differentiation still requires optimization, these next-generation multi-lineage technologies can augment the biomedical researcher's toolkit and enable more realistic models of human tissue function.
Collapse
Affiliation(s)
- Arun Sharma
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Samuel Sances
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Michael J Workman
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Clive N Svendsen
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| |
Collapse
|
20
|
Healy LM, Yaqubi M, Ludwin S, Antel JP. Species differences in immune-mediated CNS tissue injury and repair: A (neuro)inflammatory topic. Glia 2019; 68:811-829. [PMID: 31724770 DOI: 10.1002/glia.23746] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/04/2019] [Accepted: 10/11/2019] [Indexed: 12/13/2022]
Abstract
Cells of the adaptive and innate immune systems in the brain parenchyma and in the meningeal spaces contribute to physiologic functions and disease states in the central nervous system (CNS). Animal studies have demonstrated the involvement of immune constituents, along with major histocompatibility complex (MHC) molecules, in neural development and rare genetic disorders (e.g., colony stimulating factor 1 receptor [CSF1R] deficiency). Genome wide association studies suggest a comparable role of the immune system in humans. Although the CNS can be the target of primary autoimmune disorders, no current experimental model captures all of the features of the most common human disorder placed in this category, multiple sclerosis (MS). Such features include spontaneous onset, environmental contributions, and a recurrent/progressive disease course in a genetically predisposed host. Numerous therapeutic interventions related to antigen and cytokine specific therapies have demonstrated effectiveness in experimental autoimmune encephalomyelitis (EAE), the animal model used to define principles underlying immune-mediated mechanisms in MS. Despite the similarities in the two diseases, most treatments used to ameliorate EAE have failed to translate to the human disease. As directly demonstrated in animal models and implicated by correlative studies in humans, adaptive and innate immune constituents within the systemic compartment and resident in the CNS contribute to the disease course of neurodegenerative and neurobehavioral disorders. The expanding knowledge of the molecular properties of glial cells provides increasing insights into species related variables. These variables affect glial bidirectional interactions with the immune system as well as their own production of "immune molecules" that mediate tissue injury and repair.
Collapse
Affiliation(s)
- Luke M Healy
- Neuroimmunology Unit, Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montréal, Quebec, Canada
| | - Moein Yaqubi
- Neuroimmunology Unit, Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montréal, Quebec, Canada
| | - Samuel Ludwin
- Neuroimmunology Unit, Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montréal, Quebec, Canada.,Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Jack P Antel
- Neuroimmunology Unit, Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montréal, Quebec, Canada
| |
Collapse
|