1
|
Li J, Cheng R, Bian Z, Niu J, Xia J, Mao G, Liu H, Wu C, Hao C. Development of multiplex allele-specific RT-qPCR assays for differentiation of SARS-CoV-2 Omicron subvariants. Appl Microbiol Biotechnol 2024; 108:35. [PMID: 38183475 DOI: 10.1007/s00253-023-12941-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/18/2023] [Accepted: 10/25/2023] [Indexed: 01/08/2024]
Abstract
Quick differentiation of current circulating variants and the emerging recombinant variants of SARS-CoV-2 is essential to monitor their transmissions. However, the widely applied gene sequencing method is time-consuming and costly especially when facing recombinant variants, because a large part or whole genome sequencing is required. Allele-specific reverse transcriptase real time RT-PCR (RT-qPCR) represents a quick and cost-effective method for SNP (single nucleotide polymorphism) genotyping and has been successfully applied for SARS-CoV-2 variant screening. In the present study, we developed a panel of 5 multiplex allele-specific RT-qPCR assays targeting 20 key mutations for quick differentiation of the Omicron subvariants (BA.1 to BA.5 and their descendants) and the recombinant variants (XBB.1 and XBB.1.5). Two parallel multiplex RT-qPCR reactions were designed to separately target the prototype allele and the mutated allele of each mutation in the allele-specific RT-qPCR assay. Optimal annealing temperatures, primer and probe dosage, and time for annealing/extension for each reaction were determined by multi-factor and multi-level orthogonal test. The variation of Cp (crossing point) values (ΔCp) between the two multiplex RT-qPCR reactions was applied to determine if a mutation occurs or not. SARS-CoV-2 subvariants and related recombinant variants were differentiated by their unique mutation patterns. The developed multiplex allele-specific RT-qPCR assays exhibited excellent analytical sensitivities (with limits of detection (LoDs) of 1.47-18.52 copies per reaction), wide linear detection ranges (109-100 copies per reaction), good amplification efficiencies (88.25 to 110.68%), excellent reproducibility (coefficient of variations (CVs) < 5% in both intra-assay and inter-assay tests), and good clinical performances (99.5-100% consistencies with Sanger sequencing). The developed multiplex allele-specific RT-qPCR assays in the present study provide an alternative tool for quick differentiation of the SARS-CoV-2 Omicron subvariants and their recombinant variants. KEY POINTS: • A panel of five multiplex allele-specific RT-qPCR assays for quick differentiation of 11 SARS-CoV-2 Omicron subvariants (BA.1, BA.2, BA.4, BA.5, and their descendants) and 2 recombinant variants (XBB.1 and XBB.1.5). • The developed assays exhibited good analytical sensitivities and reproducibility, wide linear detection ranges, and good clinical performances, providing an alternative tool for quick differentiation of the SARS-CoV-2 Omicron subvariants and their recombinant variants.
Collapse
Affiliation(s)
- Jianguo Li
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, People's Republic of China.
| | - Ruiling Cheng
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, People's Republic of China
| | - Zixin Bian
- College of Life Sciences, Shanxi University, Taiyuan, 030006, People's Republic of China
| | - Jiahui Niu
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, People's Republic of China
| | - Juan Xia
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, People's Republic of China
| | - Guoli Mao
- Shanxi Guoxin Caregeno Biotechnology Co., Ltd., Taiyuan, 030032, People's Republic of China
| | - Hulong Liu
- Shanxi Guoxin Caregeno Biotechnology Co., Ltd., Taiyuan, 030032, People's Republic of China
| | - Changxin Wu
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, People's Republic of China
| | - Chunyan Hao
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan, 030024, People's Republic of China.
| |
Collapse
|
2
|
Morshedzadeh F, Abbaszadegan MR, Peymani M, Mozaffari-Jovin S. KRAS mutations detection methodology: from RFLP to CRISPR/Cas based methods. Funct Integr Genomics 2024; 24:183. [PMID: 39367162 DOI: 10.1007/s10142-024-01421-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/08/2024] [Accepted: 08/08/2024] [Indexed: 10/06/2024]
Abstract
In personalized cancer medicine, the identification of KRAS mutations is essential for making treatment decisions and improving patient outcomes. This work presents a comprehensive review of the current approaches for detection of KRAS mutations in different cancers. We highlight the value of fast and reliable KRAS mutations discovery and the effectiveness of molecular testing for selecting individuals who might benefit from targeted therapy. We provide an overview of various methods and tools available for detecting KRAS mutations, such as digital droplet PCR, next-generation sequencing (NGS), and polymerase chain reaction (PCR). We also address the difficulties and limitations in the identification of KRAS mutations, namely tumor heterogeneity and the emergence of resistance mechanisms. This article aims to guide clinicians in KRAS mutation identification.
Collapse
Affiliation(s)
- Firouzeh Morshedzadeh
- Department of Genetics, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Mohammad Reza Abbaszadegan
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Maryam Peymani
- Department of Genetics, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Sina Mozaffari-Jovin
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Ryan CE, Salvetti TR, Baum IR, Figueroa BA, LeBere BE, Alberti MO. Single-tube Ptprc SNP genotyping of JAXBoy (CD45.1) and C57BL/6J (CD45.2) mice by endpoint PCR and gel electrophoresis. Mol Cell Probes 2024; 75:101962. [PMID: 38697553 PMCID: PMC11146669 DOI: 10.1016/j.mcp.2024.101962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/21/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Allelic variation at the Ptprc gene, which encodes the pan-leukocyte marker CD45/Ly5, is commonly exploited to track hematopoietic reconstitution by flow cytometry in mixed bone marrow chimera transplant experiments. Historically, this was accomplished using bone marrow from C57BL/6 (Ptprcb/CD45.2/Ly5.2) and congenic B6.SJL-PtprcaPepcb/Boy (Ptprca/CD45.1/Ly5.1) mice. Recently, the Jackson Laboratory directly CRISPR-engineered the Ptprca allele in C57BL/6J mice. This new isogenic strain, termed JAXBoy, differs from wild-type C57BL/6J mice by two nucleotides, compared to the biologically significant 37 megabase (Mb) SJL interval retained in B6.SJL-PtprcaPepcb/Boy/J mice. Currently, Ptprc/CD45 variants are identified by flow cytometry or allele-specific real-time PCR, both of which require specialized workflows and equipment compared to standard genotyping of endpoint PCR products by gel electrophoresis. Here, we employed allele-specific oligonucleotides in conjunction with differential incorporation of a long non-specific oligo 5'-tail to allow for simultaneous identification of the Ptprca and Ptprcb alleles using endpoint PCR and gel electrophoresis. This method allows for integration of Ptprc genotyping into standard genotyping workflows, which use a single set of thermocycling and gel electrophoresis conditions. Importantly, the strategy of primer placement and tail addition described here can be adapted to discriminate similar single- or multi-nucleotide polymorphisms at other genomic loci.
Collapse
Affiliation(s)
- Claire E Ryan
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Thomas R Salvetti
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ilana R Baum
- Gates Institute Summer Internship Program (GSIP), University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Brandon A Figueroa
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Brittany E LeBere
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Michael O Alberti
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
4
|
Zhang Y, Gong B, Lin Y, Zhu Y, Su G, Yu Y. Split G-quadruplex based PfAgo sensing platform for nucleotide mutation discrimination and human genotyping. Analyst 2024; 149:707-711. [PMID: 38230655 DOI: 10.1039/d3an02090h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
A PfAgo-G4 sensing platform exploiting G4 as a signal reporter was proposed, validated, and optimized. By introducing two mismatches at the Link strand, a universal nucleotide design rule was established for accurate single nucleotide polymorphism discrimination with PfAgo-G4. The FUT2 gene was then successfully and accurately genotyped using human buccal swab samples.
Collapse
Affiliation(s)
- Yan Zhang
- School of Pharmacy, Nantong University, Nantong, Jiangsu 226001, China.
| | - Bin Gong
- School of Pharmacy, Nantong University, Nantong, Jiangsu 226001, China.
| | - Yanan Lin
- School of Pharmacy, Nantong University, Nantong, Jiangsu 226001, China.
| | - Yuedong Zhu
- School of Pharmacy, Nantong University, Nantong, Jiangsu 226001, China.
| | - Gaoxing Su
- School of Pharmacy, Nantong University, Nantong, Jiangsu 226001, China.
| | - Yanyan Yu
- School of Pharmacy, Nantong University, Nantong, Jiangsu 226001, China.
| |
Collapse
|
5
|
Kovalchuk SN, Arkhipova AL. Development of TaqMan PCR assay for genotyping SNP rs211250281 of the bovine agpat6 gene. Anim Biotechnol 2023; 34:3250-3255. [PMID: 35635030 DOI: 10.1080/10495398.2022.2077742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Milk fat percentage is an important production trait of dairy cattle and is one of the goals of breeding programs. Over 95% of the milk fat accounts for triacylglycerols. AGPAT6 (1-acylglycerol-3-phosphate O-acyltransferase 6) catalyzes an intermediary step of triglyceride synthesis in the mammary cells. Genome-wide association studies identified SNP rs211250281 (g27: 36520069 G/T) in the agpat6 gene associated with milk fat content and fat-to-protein ratio in dairy cattle. The article presents data on the development of TaqMan PCR assay for genotyping SNP rs211250281 of the bovine agpat6 gene. In this method, a primer pair, initiating amplification of 75-bp fragments of the agpat6 gene, and two allele-specific TaqMan probes are used. Identification of the G and T alleles is based on a comparison of the final fluorescence intensity of FAM and VIC dyes, respectively. The developed TaqMan PCR assay was validated by Sanger sequencing method. The results of both methods fully coincided, that confirmed high accuracy of the developed TaqMan PCR assay. This reliable, simple, rapid, and high-throughput method could be a suitable tool for studying the distribution of the SNP rs211250281 among different cattle breeds and its association with milk fat content.
Collapse
Affiliation(s)
- Svetlana N Kovalchuk
- Department of Molecular Biotechnology, Institute of Innovative Biotechnologies in Animal Husbandry - the branch of L.K. Ernst Federal Research Center for Animal Husbandry, Moscow, Russia
| | - Anna L Arkhipova
- Department of Molecular Biotechnology, Institute of Innovative Biotechnologies in Animal Husbandry - the branch of L.K. Ernst Federal Research Center for Animal Husbandry, Moscow, Russia
| |
Collapse
|
6
|
Blin M, Dametto S, Agniwo P, Webster BL, Angora E, Dabo A, Boissier J. A duplex tetra-primer ARMS-PCR assay to discriminate three species of the Schistosoma haematobium group: Schistosoma curassoni, S. bovis, S. haematobium and their hybrids. Parasit Vectors 2023; 16:121. [PMID: 37029440 PMCID: PMC10082484 DOI: 10.1186/s13071-023-05754-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/22/2023] [Indexed: 04/09/2023] Open
Abstract
BACKGROUND The use of applications involving single nucleotide polymorphisms (SNPs) has greatly increased since the beginning of the 2000s, with the number of associated techniques expanding rapidly in the field of molecular research. Tetra-primer amplification refractory mutation system-PCR (T-ARMS-PCR) is one such technique involving SNP genotyping. It has the advantage of amplifying multiple alleles in a single reaction with the inclusion of an internal molecular control. We report here the development of a rapid, reliable and cost-effective duplex T-ARMS-PCR assay to distinguish between three Schistosoma species, namely Schistosoma haematobium (human parasite), Schistosoma bovis and Schistosoma curassoni (animal parasites), and their hybrids. This technique will facilitate studies of population genetics and the evolution of introgression events. METHODS During the development of the technique we focused on one of the five inter-species internal transcribed spacer (ITS) SNPs and one of the inter-species 18S SNPs which, when combined, discriminate between all three Schistosoma species and their hybrid forms. We designed T-ARMS-PCR primers to amplify amplicons of specific lengths for each species, which in turn can then be visualized on an electrophoresis gel. This was further tested using laboratory and field-collected adult worms and field-collected larval stages (miracidia) from Spain, Egypt, Mali, Senegal and Ivory Coast. The combined duplex T-ARMS-PCR and ITS + 18S primer set was then used to differentiate the three species in a single reaction. RESULTS The T-ARMS-PCR assay was able to detect DNA from both species being analysed at the maximum and minimum levels in the DNA ratios (95/5) tested. The duplex T-ARMS-PCR assay was also able to detect all hybrids tested and was validated by sequencing the ITS and the 18S amplicons of 148 of the field samples included in the study. CONCLUSIONS The duplex tetra-primer ARMS-PCR assay described here can be applied to differentiate between Schistosoma species and their hybrid forms that infect humans and animals, thereby providing a method to investigate the epidemiology of these species in endemic areas. The addition of several markers in a single reaction saves considerable time and is of long-standing interest for investigating genetic populations.
Collapse
Affiliation(s)
- Manon Blin
- Hosts Pathogens Environment Interactions, UMR 5244, CNRS, IFREMER, UM, University of Perpignan Via Domitia, Perpignan, 66860, France
- SAS ParaDev®, 66860, Perpignan, France
| | - Sarah Dametto
- Hosts Pathogens Environment Interactions, UMR 5244, CNRS, IFREMER, UM, University of Perpignan Via Domitia, Perpignan, 66860, France
| | - Privat Agniwo
- Hosts Pathogens Environment Interactions, UMR 5244, CNRS, IFREMER, UM, University of Perpignan Via Domitia, Perpignan, 66860, France
- Department of Epidemiology of Infectious Diseases, Faculty of Pharmacy, IRL 3189, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Bonnie L Webster
- Wolfson Wellcome Biomedical Laboratories, Department of Science, Natural History Museum, London, SW7 5BD, UK
- London Centre for Neglected Tropical Disease Research, Imperial College London School of Public Health, London, W2 1PG, UK
| | - Etienne Angora
- Swiss Tropical and Public Health Institute, P.O. Box, 4002, Basel, Switzerland
- University of Basel, Kreuzstrasse 2, 4123, Allschwil, Switzerland
- Unité de Formation et de Recherche Sciences Pharmaceutiques et Biologiques, Université Félix Houphouët-Boigny, BPV 34, Abidjan, Côte d'Ivoire
| | - Abdoulaye Dabo
- Department of Epidemiology of Infectious Diseases, Faculty of Pharmacy, IRL 3189, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Jérôme Boissier
- Hosts Pathogens Environment Interactions, UMR 5244, CNRS, IFREMER, UM, University of Perpignan Via Domitia, Perpignan, 66860, France.
| |
Collapse
|
7
|
Wang Q, Qi H, Wu Y, Yu L, Bouchareb R, Li S, Lassén E, Casalena G, Stadler K, Ebefors K, Yi Z, Shi S, Salem F, Gordon R, Lu L, Williams RW, Duffield J, Zhang W, Itan Y, Böttinger E, Daehn I. Genetic susceptibility to diabetic kidney disease is linked to promoter variants of XOR. Nat Metab 2023; 5:607-625. [PMID: 37024752 PMCID: PMC10821741 DOI: 10.1038/s42255-023-00776-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/07/2023] [Indexed: 04/08/2023]
Abstract
The lifetime risk of kidney disease in people with diabetes is 10-30%, implicating genetic predisposition in the cause of diabetic kidney disease (DKD). Here we identify an expression quantitative trait loci (QTLs) in the cis-acting regulatory region of the xanthine dehydrogenase, or xanthine oxidoreductase (Xor), a binding site for C/EBPβ, to be associated with diabetes-induced podocyte loss in DKD in male mice. We examine mouse inbred strains that are susceptible (DBA/2J) and resistant (C57BL/6J) to DKD, as well as a panel of recombinant inbred BXD mice, to map QTLs. We also uncover promoter XOR orthologue variants in humans associated with high risk of DKD. We introduced the risk variant into the 5'-regulatory region of XOR in DKD-resistant mice, which resulted in increased Xor activity associated with podocyte depletion, albuminuria, oxidative stress and damage restricted to the glomerular endothelium, which increase further with type 1 diabetes, high-fat diet and ageing. Therefore, differential regulation of Xor contributes to phenotypic consequences with diabetes and ageing.
Collapse
Affiliation(s)
- Qin Wang
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pharmacy, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Haiying Qi
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yiming Wu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Liping Yu
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rihab Bouchareb
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shuyu Li
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emelie Lassén
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gabriella Casalena
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Krisztian Stadler
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Kerstin Ebefors
- Department of Neuroscience and Physiology, Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Zhengzi Yi
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shaolin Shi
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Fadi Salem
- Pathology, Molecular and Cell based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ronald Gordon
- Pathology, Molecular and Cell based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Robert W Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | | | - Weijia Zhang
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yuval Itan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Erwin Böttinger
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Hasso Plattner Institute for Digital Heath at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Digital Health Center, Hasso Plattner Institut, University of Potsdam, Potsdam, Germany
| | - Ilse Daehn
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
8
|
Schlevogt B, Schlieper V, Krader J, Schröter R, Wagner T, Weiand M, Zibert A, Schmidt HH, Bergmann C, Nedvetsky PI, Krahn MP. A SEC61A1 variant is associated with autosomal dominant polycystic liver disease. Liver Int 2023; 43:401-412. [PMID: 36478640 DOI: 10.1111/liv.15493] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/28/2022] [Accepted: 11/12/2022] [Indexed: 01/22/2023]
Abstract
BACKGROUND AND AIMS Autosomal dominant polycystic liver and kidney disease is a spectrum of hereditary diseases, which display disturbed function of primary cilia leading to cyst formation. In autosomal dominant polycystic kidney disease a genetic cause can be determined in almost all cases. However, in isolated polycystic liver disease (PLD) about half of all cases remain genetically unsolved, suggesting more, so far unidentified genes to be implicated in this disease. METHODS Customized next-generation sequencing was used to identify the underlying pathogenesis in two related patients with PLD. A variant identified in SEC61A1 was further analysed in immortalized patients' urine sediment cells and in an epithelial cell model. RESULTS In both patients, a heterozygous missense change (c.706C>T/p.Arg236Cys) was found in SEC61A1, which encodes for a subunit of the translocation machinery of protein biosynthesis at the endoplasmic reticulum (ER). While kidney disease is absent in the proposita, her mother displays an atypical polycystic kidney phenotype with severe renal failure. In immortalized urine sediment cells, mutant SEC61A1 is expressed at reduced levels, resulting in decreased levels of polycystin-2 (PC2). In an epithelial cell culture model, we found the proteasomal degradation of mutant SEC61A1 to be increased, whereas its localization to the ER is not affected. CONCLUSIONS Our data expand the allelic and clinical spectrum for SEC61A1, adding PLD as a new and the major phenotypic trait in the family described. We further demonstrate that mutant SEC61A1 results in enhanced proteasomal degradation and impaired biosynthesis of PC2.
Collapse
Affiliation(s)
- Bernhard Schlevogt
- Department of Medicine B, University Hospital Muenster, Muenster, Germany
| | - Vincent Schlieper
- Department of Medicine D, University Hospital Muenster, Muenster, Germany
| | - Jana Krader
- Department of Medicine D, University Hospital Muenster, Muenster, Germany
| | - Rita Schröter
- Department of Medicine D, University Hospital Muenster, Muenster, Germany
| | - Thomas Wagner
- Department of Medicine D, University Hospital Muenster, Muenster, Germany
| | - Matthias Weiand
- Department of Medicine B, University Hospital Muenster, Muenster, Germany
| | - Andree Zibert
- Department of Medicine B, University Hospital Muenster, Muenster, Germany
| | - Hartmut H Schmidt
- Department of Medicine B, University Hospital Muenster, Muenster, Germany.,Department of Gastroenterology and Hepatology, University Hospital Essen, Essen, Germany
| | - Carsten Bergmann
- Department of Medicine IV, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany.,Medizinische Genetik Mainz, Limbach Genetics, Mainz, Germany
| | - Pavel I Nedvetsky
- Department of Medicine D, University Hospital Muenster, Muenster, Germany
| | - Michael P Krahn
- Department of Medicine D, University Hospital Muenster, Muenster, Germany
| |
Collapse
|
9
|
Chen M, Shen MC, Chang SP, Ma GC, Huang YC, Lin CY. Origin and timing of de novo variants implicated in type 2 von Willebrand disease. J Cell Mol Med 2022; 26:5403-5413. [PMID: 36226571 PMCID: PMC9639050 DOI: 10.1111/jcmm.17563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/30/2022] [Accepted: 09/11/2022] [Indexed: 12/03/2022] Open
Abstract
Very few studies have shown the real origin and timing of de novo variants (DNV) implicated in von Willebrand disease (VWD). We investigated four families with type 2 VWD. First, we conducted linkage analysis using single nucleotide variant genotyping to recognize the possible provenance of DNV. Second, we performed amplification refractory mutation system‐quantitative polymerase chain reaction to confirm the real origin of variant (~0% mutant cells) or presence of a genetic mosaic variant (0%–50% mutant cells) in three embryonic germ layer‐derived tissues and sperm cells. Then, three possible timings of DNV were categorized based on the relative likelihood of occurrence according to the number of cell divisions during embryogenesis. Two each with type 2B VWD (proband 1 p.Arg1308Cys, proband 4 p.Arg1306Trp) and type 2A VWD (proband 2 p.Leu1276Arg, proband 3 p.Ser1506Leu) were identified. Variant origins were identified for families 1, 2 and 3 and confirmed to originate from the mother, father and father, respectively. However, the father of family 4 was confirmed to have isolated germline mosaicism with 2.2% mutant sperm cells. Further investigation confirmed the paternal grandfather to be the origin of variant. Thus, we proposed that DNV originating from the two fathers most likely occurred at the single sperm cell, the one originating from the mother occurred at the zygote during the first few cellular divisions; alternatively, in family 4, the DNV most likely occurred at the early postzygotic development in the father. Our findings are essential for understanding genetic pathogenesis and providing accurate genetic counselling.
Collapse
Affiliation(s)
- Ming Chen
- Department of Genomic Medicine, Changhua Christian Hospital, Changhua, Taiwan.,Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan
| | - Ming-Ching Shen
- Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan.,Department of Laboratory Medicine and Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Shun-Ping Chang
- Department of Genomic Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - Gwo-Chin Ma
- Department of Genomic Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - Ying-Chih Huang
- Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - Ching-Yeh Lin
- Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan
| |
Collapse
|
10
|
He Q, Hu O, Chen M, Liang Z, Liang L, Chen Z. A novel and cost-efficient allele-specific PCR method for multiple SNP genotyping in a single run. Anal Chim Acta 2022; 1229:340366. [PMID: 36156224 DOI: 10.1016/j.aca.2022.340366] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/28/2022]
Abstract
Cost-effective methods for DNA genotyping were needed because single nucleotide polymorphisms (SNPs) were essential biomarkers associated with many diseases. Allele-specific PCR (AS-PCR) has the advantages of mature instruments and high sensitivity. But conventional AS-PCR needs to multiply the number of reactions or primers for multiple targets, which complicates the operation and increases the cost. Herein, we proposed a novel AS-PCR method for multiple SNP genotyping in a single run. Wild-type allele-specific primer (WT primer) was designed for each target gene. The sample and WT primers only needed to undergo multiplexed AS-PCR once simultaneously. After AS-PCR, the concentration of remaining primers varied among the samples of each genotype combination, due to the different matching performance between template and WT primers. The remaining primers then triggered multiplexed molecular beacon-rolling circle amplification, and the molecular beacons labelled with different fluorescent dyes corresponded to different targets. The fluorescence ratios of the sample to the positive control were used as the genotyping indexes. This method was able to detect samples with concentrations as low as 10 fM. We successfully applied the method to the multiple genotyping of 23 hair root samples for ADH1B and ALDH2 genes, obtaining completely consistent results with sequencing. The reagent cost was 0.6 dollar for one sample, showing a good cost performance. This proposed approach had a great application prospect in simultaneously rapid and accurate genotyping of multi-SNPs, and provided a new method for personalized health management.
Collapse
Affiliation(s)
- Qidi He
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Ou Hu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Meng Chen
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Zhixian Liang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China; Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, 510006, People's Republic of China
| | - Lushan Liang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Zuanguang Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
11
|
Li J, Gao Z, Chen J, Cheng R, Niu J, Zhang J, Yang Y, Yuan X, Xia J, Mao G, Liu H, Dong Y, Wu C. Development of a panel of three multiplex allele-specific qRT-PCR assays for quick differentiation of recombinant variants and Omicron subvariants of SARS-CoV-2. Front Cell Infect Microbiol 2022; 12:953027. [PMID: 36061868 PMCID: PMC9433905 DOI: 10.3389/fcimb.2022.953027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Quick differentiation of the circulating variants and the emerging recombinant variants of SARS-CoV-2 is essential to monitor their transmission. However, the widely used gene sequencing method is time-consuming and costly when facing the viral recombinant variants, because partial or whole genome sequencing is required. Allele-specific real time RT-PCR (qRT-PCR) represents a quick and cost-effective method in SNP genotyping and has been successfully applied for SARS-CoV-2 variant screening. In the present study, we developed a panel of 3 multiplex allele-specific qRT-PCR assays targeting 12 key differential mutations for quick differentiation of SARS-CoV-2 recombinant variants (XD and XE) and Omicron subvariants (BA.1 and BA.2). Two parallel multiplex qRT-PCR reactions were designed to separately target the protype allele and the mutated allele of the four mutations in each allele-specific qRT-PCR assay. The variation of Cp values (ΔCp) between the two multiplex qRT-PCR reactions was applied for mutation determination. The developed multiplex allele-specific qRT-PCR assays exhibited outstanding analytical sensitivities (with limits of detection [LoDs] of 2.97-27.43 copies per reaction), wide linear detection ranges (107-100 copies per reaction), good amplification efficiencies (82% to 95%), good reproducibility (Coefficient of Variations (CVs) < 5% in both intra-assay and inter-assay tests) and clinical performances (99.5%-100% consistency with Sanger sequencing). The developed multiplex allele-specific qRT-PCR assays in this study provide an alternative tool for quick differentiation of SARS-CoV-2 recombinant variants (XD and XE) and Omicron subvariants (BA.1 and BA.2).
Collapse
Affiliation(s)
- Jianguo Li
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
- *Correspondence: Jianguo Li, ; Changxin Wu,
| | - Zefeng Gao
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Jing Chen
- Shanxi Provincial Key Laboratory for Major Infectious Disease Response, Shanxi Provincial Center for Disease Control and Prevention, Taiyuan, China
| | - Ruiling Cheng
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Jiahui Niu
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Jialei Zhang
- College of Life Sciences, Shanxi University, Taiyuan, China
| | - You Yang
- College of Life Sciences, Shanxi University, Taiyuan, China
| | - Ximei Yuan
- College of Life Sciences, Shanxi University, Taiyuan, China
| | - Juan Xia
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Guoli Mao
- Laboratory, Shanxi Guoxin Caregeno Biotechnology Co., Ltd, Taiyuan, China
| | - Hulong Liu
- Laboratory, Shanxi Guoxin Caregeno Biotechnology Co., Ltd, Taiyuan, China
| | - Yongkang Dong
- Administrative Office, the Fourth People's Hospital of Taiyuan, Taiyuan, China
| | - Changxin Wu
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
- *Correspondence: Jianguo Li, ; Changxin Wu,
| |
Collapse
|
12
|
Development of allele-specific PCR methodology (AS-PCR) to screening A. lumbricoides and A. suum. Parasitol Res 2022; 121:2389-2397. [PMID: 35710846 DOI: 10.1007/s00436-022-07572-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/03/2022] [Indexed: 10/18/2022]
Abstract
Ascaris lumbricoides and Ascaris suum are described as helminths that infect humans and pigs, respectively. It is estimated that infection by A. lumbricoides affects about 447 million individuals living in tropical regions of developing countries. However, there is an increasing number of cases of human ascariasis in countries with no recent history of autochthonous infection by A. lumbricoides. In these places, pigs have been incriminated as the main source of human infection. Conventional parasitological diagnosis does not allow species-specific identification, and the real epidemiological scenario of human and swine ascariasis is still uncertain. Therefore, this work presents the application of a species-specific molecular diagnosis, based on the allele-specific PCR methodology (AS-PCR), using the Internal Transcript Space 1 (ITS-1) of the ribosomal DNA, as a target for differentiating between the two species, using DNA obtained from eggs. To validate the methodology, stool samples positive for Ascaris spp, were obtained from 68 humans from seven Brazilian states and from six pigs from the state of Minas Gerais. All samples obtained from humans were genotyped as A. lumbricoides and all samples obtained from swine were genotyped as A. suum. These results are in agreement with the literature, which demonstrates that in most endemic regions, transmission cycles are separate. Therefore, the execution of this work allowed the availability of a useful methodology for the differential diagnosis of the species, which may contribute to the characterization of the real epidemiological profile of human and swine ascariasis, and to the implementation of future control strategies.
Collapse
|
13
|
Miyazaki S, Kawano T, Yanagisawa M, Hayashi Y. Intracellular Ca2+ dynamics in the ALA neuron reflect sleep pressure and regulate sleep in Caenorhabditis elegans. iScience 2022; 25:104452. [PMID: 35707721 PMCID: PMC9189131 DOI: 10.1016/j.isci.2022.104452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/03/2022] [Accepted: 05/17/2022] [Indexed: 11/30/2022] Open
Abstract
The mechanisms underlying sleep homeostasis are poorly understood. The nematode Caenorhabditis elegans exhibits 2 types of sleep: lethargus, or developmentally timed, and stress-induced sleep. Lethargus is characterized by alternating cycles of sleep and motion bouts. Sleep bouts are homeostatically regulated, i.e., prolonged active bouts lead to prolonged sleep bouts. Here we reveal that the interneuron ALA is crucial for homeostatic regulation during lethargus. Intracellular Ca2+ in ALA gradually increased during active bouts and rapidly decayed upon transitions to sleep bouts. Longer active bouts were accompanied by higher intracellular Ca2+ peaks. Optogenetic activation of ALA during active bouts caused transitions to sleep bouts. Dysfunction of CEH-17, which is an LIM homeodomain transcription factor selectively expressed in ALA, impaired the characteristic patterns of ALA intracellular Ca2+ and abolished the homeostatic regulation of sleep bouts. These findings indicate that ALA encodes sleep pressure and contributes to sleep homeostasis. ALA gradually increases its activity during motion bouts during lethargus in C. elegans Dysfunction or artificial activation of ALA perturbs the sleep structure ALA plays a crucial role in homeostatic sleep regulation
Collapse
Affiliation(s)
- Shinichi Miyazaki
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- PhD Program in Humanics, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Taizo Kawano
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Life Science Center for Survival Dynamics (TARA), University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
- R&D Center for Frontiers of Mirai in Policy and Technology (F-MIRAI), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yu Hayashi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 603-8363, Japan
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Corresponding author
| |
Collapse
|
14
|
LaForce GR, Farr JS, Liu J, Akesson C, Gumus E, Pinkard O, Miranda HC, Johnson K, Sweet TJ, Ji P, Lin A, Coller J, Philippidou P, Wagner EJ, Schaffer AE. Suppression of premature transcription termination leads to reduced mRNA isoform diversity and neurodegeneration. Neuron 2022; 110:1340-1357.e7. [PMID: 35139363 PMCID: PMC9035109 DOI: 10.1016/j.neuron.2022.01.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 09/26/2021] [Accepted: 01/12/2022] [Indexed: 12/12/2022]
Abstract
Tight regulation of mRNA isoform expression is essential for neuronal development, maintenance, and function; however, the repertoire of proteins that govern isoform composition and abundance remains incomplete. Here, we show that the RNA kinase CLP1 regulates mRNA isoform expression through suppression of proximal cleavage and polyadenylation. We found that human stem-cell-derived motor neurons without CLP1 or with the disease-associated CLP1 p.R140H variant had distinct patterns of RNA-polymerase-II-associated cleavage and polyadenylation complex proteins that correlated with polyadenylation site usage. These changes resulted in imbalanced mRNA isoform expression of long genes important for neuronal function that were recapitulated in vivo. Strikingly, we observed the same pattern of reduced mRNA isoform diversity in 3' end sequencing data from brain tissues of patients with neurodegenerative disease. Together, our results identify a previously uncharacterized role for CLP1 in mRNA 3' end formation and reveal an mRNA misprocessing signature in neurodegeneration that may suggest a common mechanism of disease.
Collapse
Affiliation(s)
- Geneva R LaForce
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jordan S Farr
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jingyi Liu
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Cydni Akesson
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Evren Gumus
- Department of Medical Genetics, Faculty of Medicine, Mugla Sitki Kocman University, Mugla 48000, Turkey; Department of Medical Genetics, Faculty of Medicine, University of Harran, Sanliurfa 63000, Turkey
| | - Otis Pinkard
- Department of Molecular Biology and Genetics, Johns Hopkins, Baltimore, MD 21205, USA
| | - Helen C Miranda
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Katherine Johnson
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Thomas J Sweet
- Department of Molecular Biology and Genetics, Johns Hopkins, Baltimore, MD 21205, USA
| | - Ping Ji
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Ai Lin
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, WC67+HC Dongcheng, Beijing, China
| | - Jeff Coller
- Department of Molecular Biology and Genetics, Johns Hopkins, Baltimore, MD 21205, USA
| | - Polyxeni Philippidou
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Eric J Wagner
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Ashleigh E Schaffer
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
15
|
Rahman MM, Lim SJ, Park YC. Molecular Identification of Bacillus Isolated from Korean Water Deer (Hydropotes inermis argyropus) and Striped Field Mouse (Apodemus agrarius) Feces by Using an SNP-Based 16S Ribosomal Marker. Animals (Basel) 2022; 12:ani12080979. [PMID: 35454225 PMCID: PMC9031142 DOI: 10.3390/ani12080979] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Wildlife is a great concern because of its free-ranging movements. They carry bacterial zoonoses in their feces, such as Bacillus species. In this study, we developed a 16S Bacillus species-specific 16S ribosomal RNA (rRNA) molecular marker for species identification. For discrimination of genetically similar members of Bacillus cereus group, including Bacillus cereus, B. anthrax, and B. thuringiensis, a single nucleotide polymorphism (SNP)-based marker was developed. We altered an artificial base at the 3′-end of SNP sites in each SNP-based 16S rRNA primer sequence to improve the ability of SNP-based primers to bind the PCR template sequence, thereby improving the allele-specific detection of target B. cereus strains. SNP analysis in high-quality DNA sequences could facilitate identification and discrimination of closely related bacterial species. Abstract Ambiguous, heterogeneous, endospore-forming Bacillus species, notably Bacillus cereus, often produce fatal toxins that threaten human health. We identified Bacillus from wild animal fecal samples (n = 80), including the Korean water deer (n = 25) and striped field mouse (n = 55). Using traditional culture-based methods, 25 animal fecal samples (31.25%; 25/80) were found to be positive for Bacillus species, whereas using molecular techniques, 19 samples (23.75%; 19/80) were found to be positive for the same. In addition, we designed a Bacillus species-specific 16S ribosomal RNA (rRNA) gene marker and utilized it to identify 19 samples by means of PCR amplification and sequencing, using at least one colony from the 19 Bacillus positive samples. The recovered sequences were matched to sequences of three Bacillus species (B. cereus, B. amyloliquefaciens, and B. megaterium) from the GenBank database. Moreover, the phylogenetic tree generated in this study established specific clades for the Bacillus group. In addition, to differentiate between B. cereus, B. anthracis, and B. thuringiensis, we designed a single nucleotide polymorphism (SNP)-based primer by identifying SNPs in the alignment of 16S rRNA gene sequences of B. cereus group strains. The SNPs were used to design primer sets for discrimination between highly similar species from the B. cereus group. The study could be used in surveillance of agricultural fresh-produce-associated Bacillus outbreaks, for accurate identification of each Bacillus species, and in the development of control measures.
Collapse
Affiliation(s)
- Md-Mafizur Rahman
- Division of Forest Science, Kangwon National University, Chuncheon 24341, Korea;
- Department Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia 7003, Bangladesh
| | - Sang-Jin Lim
- Institute of Forest Science, Kangwon National University, Chuncheon 24341, Korea
- Correspondence: (S.-J.L.); (Y.-C.P.)
| | - Yung-Chul Park
- Division of Forest Science, Kangwon National University, Chuncheon 24341, Korea;
- Correspondence: (S.-J.L.); (Y.-C.P.)
| |
Collapse
|
16
|
Oh C, Kim K, Araud E, Wang L, Shisler JL, Nguyen TH. A novel approach to concentrate human and animal viruses from wastewater using receptors-conjugated magnetic beads. WATER RESEARCH 2022; 212:118112. [PMID: 35091223 DOI: 10.1016/j.watres.2022.118112] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 02/07/2023]
Abstract
Viruses are present at low concentrations in wastewater; therefore, an effective method for concentrating virus particles is necessary for accurate wastewater-based epidemiology (WBE). We designed a novel approach to concentrate human and animal viruses from wastewater using porcine gastric mucin-conjugated magnetic beads (PGM-MBs). We systematically evaluated the performances of the PGM-MBs method (sensitivity, specificity, and robustness to environmental inhibitors) with six viral species, including Tulane virus (a surrogate for human norovirus), rotavirus, adenovirus, porcine coronavirus (transmissible gastroenteritis virus or TGEV), and two human coronaviruses (NL63 and SARS-CoV-2) in influent wastewater and raw sewage samples. We determined the multiplication factor (the ratio of genome concentration of the final solution to that of the initial solution) for the PGM-MBs method, which ranged from 1.3 to 64.0 depending on the viral species. Because the recovery efficiency was significantly higher when calculated with virus titers than it was with genome concentration, the PGM-MBs method could be an appropriate tool for assessing the risk to humans who are inadvertently exposed to wastewater contaminated with infectious viruses. Furthermore, PCR inhibitors were not concentrated by PGM-MBs, suggesting that this tool will be successful for use with environmental samples. In addition, the PGM-MBs method is cost-effective (0.5 USD/sample) and has a fast turnaround time (3 h from virus concentration to genome quantification). Thus, this method can be implemented in high throughput facilities. Because of its strong performance, intrinsic characteristics of targeting the infectious virus, robustness to wastewater, and adaptability to high throughput systems, the PGM-MBs method can be successfully applied to WBE and ultimately provides valuable public health information.
Collapse
Affiliation(s)
- Chamteut Oh
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, United States.
| | - Kyukyoung Kim
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, United States
| | - Elbashir Araud
- Holonyak Micro & Nanotechnology Lab, University of Illinois at Urbana-Champaign
| | - Leyi Wang
- Veterinary Diagnostic Laboratory and Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, United States
| | - Joanna L Shisler
- Department of Microbiology, University of Illinois at Urbana-Champaign, United States
| | - Thanh H Nguyen
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, United States; Institute of Genomic Biology, University of Illinois at Urbana-Champaign, United States
| |
Collapse
|
17
|
Gydush G, Nguyen E, Bae JH, Blewett T, Rhoades J, Reed SC, Shea D, Xiong K, Liu R, Yu F, Leong KW, Choudhury AD, Stover DG, Tolaney SM, Krop IE, Christopher Love J, Parsons HA, Mike Makrigiorgos G, Golub TR, Adalsteinsson VA. Massively parallel enrichment of low-frequency alleles enables duplex sequencing at low depth. Nat Biomed Eng 2022; 6:257-266. [PMID: 35301450 PMCID: PMC9089460 DOI: 10.1038/s41551-022-00855-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 01/28/2022] [Indexed: 02/07/2023]
Abstract
Assaying for large numbers of low-frequency mutations requires sequencing at extremely high depth and accuracy. Increasing sequencing depth aids the detection of low-frequency mutations yet limits the number of loci that can be simultaneously probed. Here we report a method for the accurate tracking of thousands of distinct mutations that requires substantially fewer reads per locus than conventional hybrid-capture duplex sequencing. The method, which we named MAESTRO (for minor-allele-enriched sequencing through recognition oligonucleotides), combines massively parallel mutation enrichment with duplex sequencing to track up to 10,000 low-frequency mutations, with up to 100-fold fewer reads per locus. We show that MAESTRO can be used to test for chimaerism by tracking donor-exclusive single-nucleotide polymorphisms in sheared genomic DNA from human cell lines, to validate whole-exome sequencing and whole-genome sequencing for the detection of mutations in breast-tumour samples from 16 patients, and to monitor the patients for minimal residual disease via the analysis of cell-free DNA from liquid biopsies. MAESTRO improves the breadth, depth, accuracy and efficiency of mutation testing by sequencing.
Collapse
Affiliation(s)
| | - Erica Nguyen
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jin H Bae
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | | | | | - Douglas Shea
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kan Xiong
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ruolin Liu
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Fangyan Yu
- Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Boston, MA, USA
| | - Ka Wai Leong
- Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Atish D Choudhury
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Daniel G Stover
- Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Sara M Tolaney
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ian E Krop
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - J Christopher Love
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA, USA
| | - Heather A Parsons
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - G Mike Makrigiorgos
- Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Boston, MA, USA.
| | - Todd R Golub
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
| | - Viktor A Adalsteinsson
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA, USA.
| |
Collapse
|
18
|
Choi W, Park E, Bae S, Choi KH, Han S, Son KH, Lee DY, Cho IJ, Seong H, Hwang KS, Nam JM, Choi J, Lee H, Choi N. Multiplex SNP Genotyping Using SWITCH: Sequence-Specific Nanoparticle with Interpretative Toehold-Mediated Sequence Decoding in Hydrogel. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105538. [PMID: 34923738 DOI: 10.1002/smll.202105538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/29/2021] [Indexed: 06/14/2023]
Abstract
Single nucleotide polymorphisms (SNPs) that can alter phenotypes of individuals play a pivotal role in disease development and, more importantly, responses to therapy. However, SNP genotyping has been challenging due to the similarity of SNP alleles and their low concentration in biological samples. Sequence-specific nanoparticle with interpretative toehold-mediated sequence decoding in hydrogel (SWITCH) for multiplex SNP genotyping is presented. The encoding with gold nanoparticle probes transduces each SNP target to ≈1000 invaders with prominently different sequences between wild and mutant types, featuring polymerase chain reaction (PCR)-free amplification. Subsequently, the toehold-mediated DNA replacement in hydrogel microparticles decodes the invaders via SNP-specific fluorescence signals. The 4-plex detection of the warfarin-associated SNP targets spiked in commercially validated human serum (S1-100ML, Merck) is successfully demonstrated with excellent specificity. This work is the first technology development presenting PCR-free, multiplex SNP genotyping with a single reporting fluorophore, to the best of knowledge.
Collapse
Affiliation(s)
- Woongsun Choi
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Korea
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea
| | - Eunhye Park
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea
| | - Seojin Bae
- OPTOLANE Technologies, Inc., Seongnam, 13494, Korea
| | | | - Sangeun Han
- OPTOLANE Technologies, Inc., Seongnam, 13494, Korea
| | - Kuk-Hui Son
- Department of Thoracic and Cardiovascular Surgery, Gachon University Gil Medical Center, Incheon, 21936, Korea
| | - Do Young Lee
- OPTOLANE Technologies, Inc., Seongnam, 13494, Korea
| | - Il-Joo Cho
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea
- Yonsei-KIST Convergence Research Institute, Yonsei University, Seoul, 03722, Korea
- School of Electrical and Electronics Engineering, Yonsei University, Seoul, 03722, Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, Korea
| | - Hyejeong Seong
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea
| | - Kyo Seon Hwang
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Kyung Hee University, Seoul, 02447, Korea
| | - Jwa-Min Nam
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea
| | - Jungkyu Choi
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Korea
| | - Hyojin Lee
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, Korea
| | - Nakwon Choi
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Korea
| |
Collapse
|
19
|
Development of Single Nucleotide Polymorphism (SNP)-Based Triplex PCR Marker for Serotype-Specific Escherichia coli Detection. Pathogens 2022; 11:pathogens11020115. [PMID: 35215059 PMCID: PMC8874422 DOI: 10.3390/pathogens11020115] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/29/2021] [Accepted: 01/14/2022] [Indexed: 01/27/2023] Open
Abstract
Single-nucleotide polymorphisms (SNPs) are one of the most common forms of genetic variation and as such are powerful tools for the identification of bacterial strains, their genetic diversity, phylogenetic analysis, and outbreak surveillance. In this study, we used 15 sets of SNP-containing primers to amplify and sequence the target Escherichia coli. Based on the combination of the 15-sequence primer sets, each SNP site encompassing forward and reverse primer sequences (620–919 bp) were aligned and an SNP-based marker was designed. Each SNP marker exists in at least two SNP sites at the 3′ end of each primer; one natural and the other artificially created by transition or transversion mutation. Thus, 12 sets of SNP primers (225–488 bp) were developed for validation by amplifying the target E. coli. Finally, a temperature gradient triplex PCR kit was designed to detect target E. coli strains. The selected primers were amplified in three genes (ileS, thrB, and polB), with fragment sizes of 401, 337, and 232 bp for E. coli O157:H7, E. coli, and E. coli O145:H28, respectively. This allele-specific SNP-based triplex primer assay provides serotype-specific detection of E. coli strains in one reaction tube. The developed marker would be used to diagnose, investigate, and control food-borne E. coli outbreaks.
Collapse
|
20
|
Mismatch-introduced DNA probes constructed on the basis of thermodynamic analysis enable the discrimination of single nucleotide variants. Anal Bioanal Chem 2021; 414:5337-5345. [PMID: 34632527 DOI: 10.1007/s00216-021-03708-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/08/2021] [Accepted: 09/30/2021] [Indexed: 10/20/2022]
Abstract
Genotyping of single nucleotide variants (SNVs) has enabled the assessment of disease-related risk factors and significantly improved the potency of diagnosis and prognosis. Meanwhile, genotyping of SNVs is challenging due to the high sequence similarity between wild-type (WT) and SNV. To increase the discrimination between WT and SNV, probes are modified with nucleic acid analogues such as locked nucleic acid (LNA), or deliberate mismatches are introduced to the probe sequence. However, nucleic acid analogues have limitation in high cost and complexity in their synthesis. And a generalized methodology has not been proposed for determining the position and type of deliberate mismatches at the designated experimental conditions to the best of our knowledge. Herein, we propose a reliable workflow for designing mismatch-introduced probes (MIPs) based on nucleic acid thermodynamic analysis and rejection sampling. The theoretical hybridization state of MIP was calculated using nucleic acid thermodynamics, and the detectability was estimated by rejection sampling that simulates the errors from experimental environments. We fabricated MIPs for SNVs in epidermal growth factor receptor, and experimentally demonstrated optimized detectability. The detectability increased up to 7.19-fold depending on the position and type of mismatch; moreover, the optimized MIP showed higher detectability than the LNA probe. This indicates that the workflow can be broadly applied to the optimization of probe sequence for the detection of various disease-related SNVs.
Collapse
|
21
|
Sargazi S, Mirani Sargazi F, Heidari Nia M, Sheervalilou R, Saravani R, Mirinejad S, Shakiba M. Functional Variants of miR-143 Are Associated with Schizophrenia Susceptibility: A Preliminary Population-Based Study and Bioinformatics Analysis. Biochem Genet 2021; 60:868-881. [PMID: 34515927 DOI: 10.1007/s10528-021-10133-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 09/04/2021] [Indexed: 12/19/2022]
Abstract
Single nucleotide polymorphisms within genes encoding microRNAs may alter the expression of microRNAs and their target genes, contributing to the etiology of psychiatric disorders. We aimed to investigate the link between rs4705342T/C and rs4705343T/C polymorphisms in the promoter region of miR-143 and the risk of schizophrenia (SCZ) in a sample of an Iranian population. In this experimental study, a total of 398 subjects were recruited. Genotyping carried out using allele-specific PCR (AS-PCR) method. Different bioinformatics databases and Cytoscape V3.4.0 software were used for the analysis of the gene-miRNA interaction network. The genotypic analysis of rs4705342C/T showed that CC genotype in the co-dominant model significantly decreased the risk of SCZ (p < 0.001). Also, a significantly reduced risk of SCZ was observed under allelic (p < 0.001), dominant (p = 0.007), and recessive (p = 0.001) models of this variant. As regards rs4705343T/C, significantly enhanced risk of SCZ was found under the co-dominant CC (p = 0.01) and recessive (p = 0.007) contrasted genetic models. For this variant, the C allele conferred an increased risk of SCZ by 1.41 fold. Haplotype analysis showed that the Crs4705342 Trs4705343 haplotype significantly diminished SCZ susceptibility. The result of the bioinformatics analysis showed that miR-143, as a critical miRNA, targets ERK5, ERBB3, HK2, and PKCε, the four major genes involved in SCZ development. Our findings suggest that these two polymorphisms might affect SCZ susceptibility. Elucidating the precise regulatory mechanisms of gene expression in the development of SCZ will help researchers discover a novel target for therapeutic interventions.
Collapse
Affiliation(s)
- Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Fariba Mirani Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Milad Heidari Nia
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | | | - Ramin Saravani
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran. .,Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Shekoufeh Mirinejad
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mansoor Shakiba
- Department of Psychiatry, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
22
|
Suciu SK, Long AB, Caspary T. Smoothened and ARL13B are critical in mouse for superior cerebellar peduncle targeting. Genetics 2021; 218:6300527. [PMID: 34132778 PMCID: PMC8864748 DOI: 10.1093/genetics/iyab084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/15/2021] [Indexed: 01/07/2023] Open
Abstract
Patients with the ciliopathy Joubert syndrome present with physical anomalies, intellectual disability, and a hindbrain malformation described as the "molar tooth sign" due to its appearance on an MRI. This radiological abnormality results from a combination of hypoplasia of the cerebellar vermis and inappropriate targeting of the white matter tracts of the superior cerebellar peduncles. ARL13B is a cilia-enriched regulatory GTPase established to regulate cell fate, cell proliferation, and axon guidance through vertebrate Hedgehog signaling. In patients, mutations in ARL13B cause Joubert syndrome. To understand the etiology of the molar tooth sign, we used mouse models to investigate the role of ARL13B during cerebellar development. We found that ARL13B regulates superior cerebellar peduncle targeting and these fiber tracts require Hedgehog signaling for proper guidance. However, in mouse, the Joubert-causing R79Q mutation in ARL13B does not disrupt Hedgehog signaling nor does it impact tract targeting. We found a small cerebellar vermis in mice lacking ARL13B function but no cerebellar vermis hypoplasia in mice expressing the Joubert-causing R79Q mutation. In addition, mice expressing a cilia-excluded variant of ARL13B that transduces Hedgehog normally showed normal tract targeting and vermis width. Taken together, our data indicate that ARL13B is critical for the control of cerebellar vermis width as well as superior cerebellar peduncle axon guidance, likely via Hedgehog signaling. Thus, our work highlights the complexity of ARL13B in molar tooth sign etiology.
Collapse
Affiliation(s)
- Sarah K Suciu
- Genetics and Molecular Biology Graduate Program, Emory University, Atlanta, GA 30322, USA,Department of Human Genetics, Emory University, Atlanta, GA 30322, USA
| | - Alyssa B Long
- Department of Human Genetics, Emory University, Atlanta, GA 30322, USA
| | - Tamara Caspary
- Department of Human Genetics, Emory University, Atlanta, GA 30322, USA,Corresponding author: Department of Human Genetics, 615 Michael Street, Suite 301, Atlanta, GA 30322.
| |
Collapse
|
23
|
Song J, Kim S, Kim HY, Hur KH, Kim Y, Park HG. A novel method to detect mutation in DNA by utilizing exponential amplification reaction triggered by the CRISPR-Cas9 system. NANOSCALE 2021; 13:7193-7201. [PMID: 33720266 DOI: 10.1039/d1nr00438g] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
We, herein, describe a novel method to detect mutation in DNA by utilizing exponential amplification reaction (EXPAR) triggered by clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9, called CRISPR-EXPAR. The CRISPR system consisting of two Cas9/sgRNA complexes was designed to cut out a specific mutation region within the target DNA, which would consequently promote EXPAR by continuously repeated extension and nicking reactions. As a consequence, a large number of final EXPAR products, which can be monitored through duplex-specific fluorescent staining, are produced. Based on this design principle, we successfully identified a model target mutation within the human epidermal growth factor receptor 2 (HER2) gene down to 437 aM with excellent specificity. The practical capability of this method was verified by reliably identifying the target mutation directly from the genomic DNA (gDNA) extracted from the lung cancer cell line, NCI-H1781 (H1781), and its universal applicability was further confirmed by identifying another EFGF L858R mutation. This technique could serve as a new isothermal platform to identify various mutations by rationally redesigning single guide RNA (sgRNA) according to the target mutation site.
Collapse
Affiliation(s)
- Jayeon Song
- Department of Chemical and Biomolecular Engineering (BK 21+ program), KAIST, Daehak-ro 291, Yuseong-gu, Daejeon 34141, Republic of Korea.
| | | | | | | | | | | |
Collapse
|
24
|
Association of human platelet alloantigens encoding gene polymorphisms with the risk of Coronary artery disease in Iranian patients. BMC Cardiovasc Disord 2021; 21:68. [PMID: 33530946 PMCID: PMC7856748 DOI: 10.1186/s12872-021-01892-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 01/26/2021] [Indexed: 12/24/2022] Open
Abstract
Background Coronary artery disease (CAD) is characterized by narrowing/ blockade of coronary arteries that is mainly caused by atherosclerotic plaques. Considering the involvement of platelet abnormalities, such as defective aggregation and adhesion, in the cardiovascular-related disorders, genetic variations in human platelet alloantigens (HPA) have been implicated in the CAD susceptibility. Herein, we intended to determine the association of HPA-1 to -6, -9, and -15 biallelic polymorphisms with CAD in an Iranian population. Methods In this retrospective case–control study, 200 CAD subjects and 100 matched healthy individuals were enrolled. DNA samples were isolated from peripheral blood samples and genotyping of HPA polymorphisms was accomplished using polymerase chain reaction-sequence-specific primers. Results The alleles and genotypes of studied HPA polymorphisms were equally distributed among cases and controls and therefore no statistically significant differences were detected. Univariate analysis identified no association of combined haplotypes with CAD risk. However, multivariate analysis showed a positive association of the HPA1b/2a/3b haplotype with CAD after adjustment for some covariates (including BMI, TG, LDL, FBS and blood pressure) that conferred a CAD susceptibility haplotype (P = 0.015; OR = 2.792; 95% CI 1.45–8.59). Conclusions Although alleles, genotypes, and haplotypes of HPA polymorphisms were not associated with CAD risk, HPA1b/2a/3b haplotype was found to be a dependent disease risk haplotype in Iranian population after correcting for confounding factors.
Collapse
|
25
|
Zhang X, Ling L, Li Z, Wang J. Mining Listeria monocytogenes single nucleotide polymorphism sites to identify the major serotypes using allele-specific multiplex PCR. Int J Food Microbiol 2020; 335:108885. [DOI: 10.1016/j.ijfoodmicro.2020.108885] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/21/2020] [Accepted: 09/04/2020] [Indexed: 01/17/2023]
|
26
|
Tian H, Bai P, Tan Y, Li Z, Peng D, Xiao X, Zhao H, Zhou Y, Liang W, Zhang L. A new method to detect methylation profiles for forensic body fluid identification combining ARMS-PCR technique and random forest model. Forensic Sci Int Genet 2020; 49:102371. [DOI: 10.1016/j.fsigen.2020.102371] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/02/2020] [Accepted: 08/09/2020] [Indexed: 02/08/2023]
|
27
|
Devlin DJ, Nozawa K, Ikawa M, Matzuk MM. Knockout of family with sequence similarity 170 member A (Fam170a) causes male subfertility, while Fam170b is dispensable in mice†. Biol Reprod 2020; 103:205-222. [PMID: 32588889 PMCID: PMC7401401 DOI: 10.1093/biolre/ioaa082] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/09/2020] [Accepted: 05/21/2020] [Indexed: 01/08/2023] Open
Abstract
Families with sequence similarity 170 members A and B (FAM170A and FAM170B) are testis-specific, paralogous proteins that share 31% amino acid identity and are conserved throughout mammals. While previous in vitro experiments suggested that FAM170B, an acrosome-localized protein, plays a role in the mouse sperm acrosome reaction and fertilization, the role of FAM170A in the testis has not been explored. In this study, we used CRISPR/Cas9 to generate null alleles for each gene, and homozygous null (-/-) male mice were mated to wild-type females for 6 months to assess fertility. Fam170b-/- males were found to produce normal litter sizes and had normal sperm counts, motility, and sperm morphology. In contrast, mating experiments revealed significantly reduced litter sizes and a reduced pregnancy rate from Fam170a-/- males compared with controls. Fam170a-/-;Fam170b-/- double knockout males also produced markedly reduced litter sizes, although not significantly different from Fam170a-/- alone, suggesting that Fam170b does not compensate for the absence of Fam170a. Fam170a-/- males exhibited abnormal spermiation, abnormal head morphology, and reduced progressive sperm motility. Thus, FAM170A has an important role in male fertility, as the loss of the protein leads to subfertility, while FAM170B is expendable. The molecular functions of FAM170A in spermatogenesis are as yet unknown; however, the protein localizes to the nucleus of elongating spermatids and may mediate its effects on spermatid head shaping and spermiation by regulating the expression of other genes. This work provides the first described role of FAM170A in reproduction and has implications for improving human male infertility diagnoses.
Collapse
Affiliation(s)
- Darius J Devlin
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Kaori Nozawa
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, USA
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- The Institute of Medical Science, The University of Tokyo, Minato-ku, Toyko, Japan
| | - Martin M Matzuk
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
28
|
Zhou Z, Zhou Y, Yao Y, Qian J, Liu B, Yang Q, Shao C, Li H, Sun K, Tang Q, Xie J. A 16-plex Y-SNP typing system based on allele-specific PCR for the genotyping of Chinese Y-chromosomal haplogroups. Leg Med (Tokyo) 2020; 46:101720. [PMID: 32505804 DOI: 10.1016/j.legalmed.2020.101720] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/17/2020] [Accepted: 05/25/2020] [Indexed: 02/06/2023]
Abstract
Y-chromosomal SNP (Y-SNP), with its stable inheritance and low mutation, can provide Supplementary information in forensic investigation. While commonly used Y-chromosomal STR haplotypes show their limitations, typing of Y-SNP would become a powerful complement. In this study, a 16-plex Y-SNP typing system based on allele-specific PCR (AS-PCR) was developed to discriminate four dominant Y-chromosomal haplogroups (C-M130, D-CTS3946, N-M231, and O-M175) and 12 predominant sub-haplogroups of O-M175 (O1a-M119, O1a1a1a-CTS3265, O1b-M268, O1b1a2-Page59, O2-M122, O2a1-L127.1, O2a1b-F240, O2a1b1a1-CTS5820, O2a2-P201, O2a2b1a1-M177, O2a2b1a1a1a-Y17728, O2a2b1a2-F114). A series of experimental validation studies including sensitivity, species specificity, male-female mixture and inhibition were performed. The discrimination of the typing system was preliminarily proved with a haplogroup diversity of 0.9239. Altogether, the Y-SNP typing system based on AS-PCR should be capable of distinguishing China's dominant Y-chromosomal haplogroups in a rapid and reliable manner, thus can be employed as a useful complement in forensic casework.
Collapse
Affiliation(s)
- Zhihan Zhou
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yuxiang Zhou
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yining Yao
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Jinglei Qian
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Baonian Liu
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Qinrui Yang
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Chengchen Shao
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Hui Li
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, Shanghai 200083, China
| | - Kuan Sun
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Qiqun Tang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Jianhui Xie
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| |
Collapse
|
29
|
Human platelet antigen 1-6, 9 and 15 in the Iranian population: An anthropological genetic analysis. Sci Rep 2020; 10:7442. [PMID: 32366900 PMCID: PMC7198494 DOI: 10.1038/s41598-020-64469-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 04/15/2020] [Indexed: 11/09/2022] Open
Abstract
Human platelet antigens (HPAs) are membranous glycoproteins considered as alloantigens due to their polymorphisms. HPA-incompatibility in multiple pregnancies or blood transfusion can induce the development of alloantibodies leading to thrombocytopenia. The frequency of HPAs varies among populations, so that deep knowledge of HPA frequencies will help us to reduce those incompatibilities. Herein, we studied the allele and genotype frequencies of HPA1-6, HPA9, and HPA15 among the Iranians with intra- and inter-populations analyses on 36 worldwide populations with diverse ethnicities. The analysis shows that the HPA2 and HPA5 have the greatest differences in genotype distribution between the Iranians and other nations, although similar to other populations, the sole allele found in HPA4, 6, and 9 is “a”. Despite other HPAs, the most frequent allele in HPA15 is “b”, which is also abundant in HPA3. Hierarchical clustering indicates the highest degree of global similarity in HPA genotype frequency among Iranian, Argentinian, Brazilian, and German Turkish populations. Our findings can be applied to decrease the risk of alloimmunizations and platelet disorders, especially in neonates.
Collapse
|
30
|
Deng Y, Ma L, Han Q, Yu C, Johnson-Buck A, Su X. DNA-Templated Timer Probes for Multiplexed Sensing. NANO LETTERS 2020; 20:2688-2694. [PMID: 32119561 DOI: 10.1021/acs.nanolett.0c00313] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Simultaneous analysis based on encoded fluorophores suffers from potential crosstalk between fluorophores and the limited number of colors that can be practically resolved. Inspired by nontrivial temporal patterns in living organisms, we developed a DNA-templated probe by utilizing DNA polymerase (DNAP) for multiplexed detection of nucleic acids. These probes use differential delay times of signaling by a DNAP-mediated extension to distinguish different targets, which serve as the primers. Taking advantage of the high processivity and the controllable kinetics of DNAP, we find that multiplexed detection can be achieved in homogeneous solution using a single fluorophore. As a proof of concept, we developed assays for genomic DNA from four different bacteria. In addition, we designed and implemented probes to undergo a single oscillation in signal as an alternative way for multiplexing. We anticipate this approach will find broad applications not only in sensing but also in synthetic DNA nanosystems.
Collapse
Affiliation(s)
- Yingnan Deng
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Liang Ma
- Clinical Laboratory, China-Japan Friendship Hospital, Beijing 100029, China
| | - Qianqian Han
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Changyuan Yu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Alexander Johnson-Buck
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Xin Su
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
31
|
Lin B, Sun J, Fraser IDC. Single-tube genotyping for small insertion/deletion mutations: simultaneous identification of wild type, mutant and heterozygous alleles. Biol Methods Protoc 2020; 5:bpaa007. [PMID: 33782652 DOI: 10.1093/biomethods/bpaa007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/17/2020] [Accepted: 03/27/2020] [Indexed: 01/01/2023] Open
Abstract
Current methods of genotyping small insertion/deletion (indel) mutations are costly, laborious, and can be unreliable. To address this, we have developed a method for small indel genotyping in a single polymerase chain reaction, with wild-type, heterozygous and mutant alleles distinguishable by band pattern in routine agarose gel electrophoresis. We demonstrate this method with multiple genes to distinguish 10 bp, 4 bp and even 1 bp deletions from the wild type. Through systematic testing of numerous primer designs, we also propose guidelines for genotyping small indel mutations. Our method provides a convenient approach to genotyping small indels derived from clustered regularly interspaced short palindromic repeats-mediated gene editing, N-ethyl-N-nitrosourea induced mutagenesis or diagnosis of naturally occurring polymorphisms/mutations.
Collapse
Affiliation(s)
- Bin Lin
- Signaling Systems Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jing Sun
- Signaling Systems Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Iain D C Fraser
- Signaling Systems Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
32
|
Min CY, Wu LQ, Qian TT, Ul Ain N, Liu WJ, Wu XN, Zhang C, Chen Z, Xie HP. Typing and determination of SNP functional gene based on highly selective and signal-amplified fluorescence double-probe with the help of ExoIII nuclease and magnetic bead. J Pharm Biomed Anal 2020; 179:112917. [PMID: 31767222 DOI: 10.1016/j.jpba.2019.112917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/27/2019] [Accepted: 10/05/2019] [Indexed: 02/01/2023]
Abstract
We have developed a fluorescence double-probe detection system with signal amplification for simple typing and determination of single nucleotide polymorphism (SNP) functional gene based on non-sequence dependence of ExoIII nuclease on dsDNA and rapid separation of magnetic bead. Matched detected gene can cyclically release abundant fluorescence-labeled ssDNA from the probe and the corresponding measured fluorescence signal is amplified up to 6063 times. In this case, the probe cannot release the measured fluorescence signal for the point mutation gene and then the corresponding measured signal is inhibited. According to signal amplification and inhabitation of the probe, we proposed both an accurate genotyping approach with strong specificity and a sensitive determination approach with high selectivity for SNP functional gene. For qualitative genotyping, there are obvious genotype-based differences of measured fluorescence phenotypes among three kinds of the samples of the investigated SNP. The quantitative determinations of its wild-type gene and mutant gene have all a good linearity in the range from 0.5 to 500 pmol/L with the correlation coefficients R2 of 0.9940 and 0.9911, and a high sensitivity with the detection limits of 0.11 and 0.20 pmol/L, respectively. Compared to the usual single-probe detection system, the developed double-probe system can achieve not only accurate genotyping but also the sensitive gene determination. Meanwhile, it is also a simple and reliable method for both quantitative and qualitative analysis of functional gene.
Collapse
Affiliation(s)
- Chun-Yan Min
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China; Suzhou Institute for Drug Control, Suzhou, 215104, China
| | - Lu-Qian Wu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Ting-Ting Qian
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China; Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huai'an, 223000, China
| | - Noor Ul Ain
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Wen-Juan Liu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Xiao-Ning Wu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Chen Zhang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Zhe Chen
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
| | - Hong-Ping Xie
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
33
|
Borowicz P, Chan H, Medina D, Gumpelmair S, Kjelstrup H, Spurkland A. A simple and efficient workflow for generation of knock‐in mutations in Jurkat T cells using CRISPR/Cas9. Scand J Immunol 2020; 91:e12862. [DOI: 10.1111/sji.12862] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 12/15/2019] [Accepted: 12/19/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Paweł Borowicz
- Department of Molecular Medicine Institute of Basic Medical Sciences University of Oslo Oslo Norway
| | - Hanna Chan
- Department of Molecular Medicine Institute of Basic Medical Sciences University of Oslo Oslo Norway
| | - Daniel Medina
- Department of Molecular Medicine Institute of Basic Medical Sciences University of Oslo Oslo Norway
| | - Simon Gumpelmair
- Department of Molecular Medicine Institute of Basic Medical Sciences University of Oslo Oslo Norway
| | - Hanna Kjelstrup
- Department of Molecular Medicine Institute of Basic Medical Sciences University of Oslo Oslo Norway
| | - Anne Spurkland
- Department of Molecular Medicine Institute of Basic Medical Sciences University of Oslo Oslo Norway
| |
Collapse
|
34
|
Zhu CY, Zhao CC, Wang YG, Ma DL, Song XP, Wang J, Meng FX. Establishment of an innovative and sustainable PCR technique for 1534 locus mutation of the knockdown resistance (kdr) gene in the dengue vector Aedes albopictus. Parasit Vectors 2019; 12:603. [PMID: 31878970 PMCID: PMC6933705 DOI: 10.1186/s13071-019-3829-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 12/02/2019] [Indexed: 12/16/2022] Open
Abstract
Background Mutation of the voltage-gated sodium channel (VGSC) gene, or knockdown resistance (kdr) gene, is an important resistance mechanism against DDT and pyrethroids for dengue vector Aedes albopictus. A phenylalanine to serine (F1534S), leucine (F1534L) and cysteine (F1534C) substitution were detected in many Ae. albopictus populations around the world, and the mutant allele frequencies have been increasing in recent years. Therefore, it is essential to establish a simple, time-saving and cost-effective procedure to monitor the alleles in large-scale studies. Methods Based on the mutation genotypes of the 1534 locus in the kdr gene, F/F, F/S, F/C, F/L, S/S, C/C, L/L and S/C, we designed specific forward and reverse primers and optimized the reaction conditions for establishing of the allele-specific PCR(AS-PCR) detection technique. DNA sequencing in this study was taken as the gold standard, and used to determine the accuracy of AS-PCR. Results The designed AS-PCR technique showed high specificity for distinguishing the mutations at the 1534 locus, as the accuracy for F/F, F/S, F/C, F/L, S/S, C/C and S/C were 100%, 95.35%, 100%, 100%, 100%, 100% and 100%, respectively. Conclusions The designed AS-PCR technique effectively distinguished individual genotypes for the mutations at the 1534 locus in the kdr gene, which could facilitate the knockdown resistance surveillance in Ae. albopictus in large-scale studies .
Collapse
Affiliation(s)
- Cai-Ying Zhu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, WHO Collaborating Center for Vector Surveillance and Management, Beijing, 102206, China
| | - Chun-Chun Zhao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, WHO Collaborating Center for Vector Surveillance and Management, Beijing, 102206, China
| | - Yi-Guan Wang
- School of Biological Sciences, University of Queensland, St Lucia, QLD, 4072, Australia
| | - De-Ling Ma
- Eco-Global Pest Solutions Australia/Termite Doctor Pty Ltd, Archerfield, QLD, 4108, Australia
| | - Xiu-Ping Song
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, WHO Collaborating Center for Vector Surveillance and Management, Beijing, 102206, China
| | - Jun Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, WHO Collaborating Center for Vector Surveillance and Management, Beijing, 102206, China
| | - Feng-Xia Meng
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, WHO Collaborating Center for Vector Surveillance and Management, Beijing, 102206, China.
| |
Collapse
|
35
|
Abstract
The present study was designed to measure the mean values of body mass index (BMI), random blood sugar/ fast ing blood sugar (RBS/FBS) tests, and Hb A1c and to investigate the role of a genetic variant rs1544410 in the VDR gene in a Pakistani cohort. For this purpose, a total of 917 samples including 469 diabetes mellitus type 2 (T2DM), 145 DM type 1 (T1DM), and 303 healthy control were collected. Out of the total sample set, 500 individuals (250 T2DM cases and 250 controls) were genotyped for rs1544410. It was found that 65 (26.0%) cases and 32 (12.8%) controls had homozygous AA, while 69 (27.6%) cases and 139 (55.6%) controls had heterozygous AG, and 116 (46.4%) cases and 79 (31.6%) controls had homozygous GG (χ2 = 41.81, p = 0.0001). In addition, a similar distribution of allele frequency was determined in cases and controls [p value = 0.866; odds ratio (OR) = 0.967; relative risk (RR) = 1.034]. A significant difference was observed in homozygous dominant [OR = 2.394 (1.501-3.816); RR = 1.46 (1.225-1.740); p = 0.003] and homozygous recessive models [OR = 2.970 (2.086-4.227); RR = 1.798 (1.501-2.154); p = <0.0001] analysis of rs1544410 in the VDR gene. These findings suggest that the VDR gene is associated with T2DM and genotype GG of genetic variant rs1544410 is the susceptible genotype in our Pakistani cohort.
Collapse
|
36
|
Keiller DR, Gordon DA. The plateau at V˙ O 2max is associated with anaerobic alleles. J Sci Med Sport 2019; 23:506-511. [PMID: 31924536 DOI: 10.1016/j.jsams.2019.11.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 11/15/2019] [Accepted: 11/27/2019] [Indexed: 12/30/2022]
Abstract
OBJECTIVES This study tests the hypothesis that individuals who achieve a plateau at V˙ O2max (V˙ O2plat) are more likely to possess alleles, associated with anaerobic capacity, than those who do not. DESIGN A literature survey, physiological testing and genetic analysis was used to determine any association between the aerobic and anaerobic polymorphisms of 40 genes and V˙ O2plat. METHODS 34, healthy, Caucasian volunteers, completed an exercise test to determine V˙ O2max, and V˙ O2plat. 28 of the volunteers agreed to DNA testing and 26 were successfully genotyped. A literature search was used to determine whether the 40 polymorphisms analysed were associated with aerobic, or anaerobic exercise performance. RESULTS The literature survey enabled classification of the 40 target alleles as aerobic [11], anaerobic [24], or having no apparent association (NAA) [5] with exercise performance. It also found no previous studies linking a genetic component with the ability to achieve V˙ O2plat. Independent t-tests showed a significant difference (p < 0.001) in the ability to achieve V˙ O2plat, but no other measured physiological variable was significantly different. Pearson's χ2 testing demonstrated a highly significant association (p = 0.008) between anaerobic allele frequency and V˙ O2plat, but not with V˙ O2max. There was no association between aerobic alleles and V˙ O2plat, or V˙ O2max. Finally there were no significant differences in the allelic frequencies, observed in this study and those expected of Northern and Western European Caucasians. CONCLUSION These results support the hypothesis that the ability to achieve V˙ O2plat is associated with alleles linked to anaerobic exercise capacity.
Collapse
Affiliation(s)
- Don R Keiller
- Faculty of Science and Engineering, School of Life Sciences, Anglia Ruskin University, UK.
| | - Dan A Gordon
- Faculty of Science and Engineering, School Psychology and Sports Science, Anglia Ruskin University, UK
| |
Collapse
|
37
|
Wang P, Teng Z, Liu X, Liu X, Kong C, Lu S. A new single nucleotide polymorphism affects the predisposition to thoracic ossification of the posterior longitudinal ligament. J Orthop Surg Res 2019; 14:438. [PMID: 31831033 PMCID: PMC6909598 DOI: 10.1186/s13018-019-1481-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 11/20/2019] [Indexed: 01/13/2023] Open
Abstract
Background Thoracic ossification of the posterior longitudinal ligament (T-OPLL) is one of the common factors that cause thoracic spinal stenosis, which results in intractable myelopathy and radiculopathy. Our previous study first reported rs201153092A site mutation in the collagen 6A1 (COL6A1) gene as a potentially pathogenic locus for T-OPLL. We aimed to determine whether the rs201153092A site mutation causes abnormal expression of the COL6A1 in Han Chinese patients with T-OPLL and whether this locus is also associated with cervical-OPLL. Methods Peripheral blood was collected from a total of 60 patients with T-OPLL disease (30 patients carrying the rs201153092A site mutation in COL6A1 and 30 wild-type patients) and 400 northern Chinese individuals (200 cervical-OPLL patients and 200 control subjects) using the Sequenom system. The expression of COL6A1 was analyzed by enzyme-linked immunosorbent assay, reverse transcription-quantitative polymerase chain reaction, and Western blotting. Results rs201153092A mutation resulted in markedly increased COL6A1 gene expression levels in peripheral blood samples. The allele frequency and genotype frequency results showed that this locus is no difference between cervical-OPLL patients and controls. Conclusions The rs201153092A site mutation of COL6A1 can significantly increase the expression of COL6A1. The COL6A1 gene rs201153092A site polymorphism is a potential pathogenic mutation in T-OPLL disease, which may be only associated with the occurrence of T-OPLL.
Collapse
Affiliation(s)
- Peng Wang
- Department of Orthopedics, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Xicheng, Beijing, 100053, People's Republic of China
| | - Ze Teng
- Department of Radiology, Cancer Hospital Chinese Academy of Medical Sciences, Beijing, 100021, People's Republic of China
| | - Xiaoguang Liu
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Xiao Liu
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Chao Kong
- Department of Orthopedics, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Xicheng, Beijing, 100053, People's Republic of China
| | - Shibao Lu
- Department of Orthopedics, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Xicheng, Beijing, 100053, People's Republic of China.
| |
Collapse
|
38
|
Ahmad M, Jalil F, Haq M, Shah A. Effect of variation in miRNA-binding site (rs8176318) of the BRCA1 gene in breast cancer patients. Turk J Med Sci 2019; 49:1433-1438. [PMID: 31651107 PMCID: PMC7018252 DOI: 10.3906/sag-1905-17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 07/17/2019] [Indexed: 12/24/2022] Open
Abstract
Background/aim A variation in the 3 prime untranslated regions (3′-UTRs) affects the binding of microRNA (miRNA) to the breast cancer (BC) susceptibility gene 1 (BRCA1) gene, and thus regulate its expression. In this study, the consequences of a variation in the miRNA-binding site (rs8176318G>T) in the 3′-UTRs of BRCA1 and its association with the risk of BC were investigated. Materials and methods The selected variation (rs8176318G>T) was genotyped in BC patients (n = 300) and healthy controls (n = 300) using allele-specific polymerase chain reaction (PCR) [tetra-primer amplification refractory mutation system-PCR (T-ARMS-PCR)]. The results of the T-ARMS-PCR were further confirmed by Sanger sequencing through a random selection of 10% previously analyzed samples by T-ARMS-PCR. Association of this variation with BC was tested by calculating the odds ratio (OR) (at 95% CI) and χ2-value using 4 different genetic models (codominant, dominant, recessive, and additive models). Results Using Fisher’s exact test, a significant association between variant rs8176318 (G>T) and BC was found in codominant [χ2-value = 15.68, df: 2 P < 0.0004], dominant [OR = 1.557 (1.082–2.241), P <0.0213], recessive [OR = 0.474 (0.3204–0.7017), P = 0.0002] and additive models [OR = 1.609 (1.282–2.018), P < 0.0001]. Conclusion It was therefore concluded that there is a significant association between rs8176318 and BC risk in a case-control study in a Pakistani population. Furthermore, an association study using a large sample size is required to further verify these findings.
Collapse
Affiliation(s)
- Mushtaq Ahmad
- Department of Biotechnology, Faculty of Biological Sciences University of Malakand, Chakdara, Pakistan
| | - Fazal Jalil
- Department of Biotechnology, Abdul Wali Khan University Mardan (AWKUM), Pakistan
| | - Mutiul Haq
- Institute of Radiotherapy and Nuclear Medicine (IRNUM), Peshawar, Pakistan
| | - Aftab Shah
- Department of Biotechnology, Faculty of Biological Sciences University of Malakand, Chakdara, Pakistan
| |
Collapse
|
39
|
Prykhozhij SV, Fuller C, Steele SL, Veinotte CJ, Razaghi B, Robitaille JM, McMaster CR, Shlien A, Malkin D, Berman JN. Optimized knock-in of point mutations in zebrafish using CRISPR/Cas9. Nucleic Acids Res 2019; 46:e102. [PMID: 29905858 PMCID: PMC6158492 DOI: 10.1093/nar/gky512] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 05/23/2018] [Indexed: 12/21/2022] Open
Abstract
We have optimized point mutation knock-ins into zebrafish genomic sites using clustered regularly interspaced palindromic repeats (CRISPR)/Cas9 reagents and single-stranded oligodeoxynucleotides. The efficiency of knock-ins was assessed by a novel application of allele-specific polymerase chain reaction and confirmed by high-throughput sequencing. Anti-sense asymmetric oligo design was found to be the most successful optimization strategy. However, cut site proximity to the mutation and phosphorothioate oligo modifications also greatly improved knock-in efficiency. A previously unrecognized risk of off-target trans knock-ins was identified that we obviated through the development of a workflow for correct knock-in detection. Together these strategies greatly facilitate the study of human genetic diseases in zebrafish, with additional applicability to enhance CRISPR-based approaches in other animal model systems.
Collapse
Affiliation(s)
- Sergey V Prykhozhij
- Departments of Pediatrics, Microbiology & Immunology, and Pathology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Charlotte Fuller
- Michael G. DeGroote School of Medicine, McMaster University,Hamilton, ON, L8S4L8, Canada
| | | | - Chansey J Veinotte
- Departments of Pediatrics, Microbiology & Immunology, and Pathology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Babak Razaghi
- Departments of Pediatrics, Microbiology & Immunology, and Pathology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Johane M Robitaille
- Departments of Pediatrics, Microbiology & Immunology, and Pathology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Christopher R McMaster
- Departments of Pediatrics, Microbiology & Immunology, and Pathology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Adam Shlien
- Departments of Pediatrics and Medical Biophysics, University of Toronto, Toronto, ON, M5G 1X8, Canada
| | - David Malkin
- Departments of Pediatrics and Medical Biophysics, University of Toronto, Toronto, ON, M5G 1X8, Canada
| | - Jason N Berman
- Departments of Pediatrics, Microbiology & Immunology, and Pathology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| |
Collapse
|
40
|
Sridhar K, Singh A, Butzmann A, Jangam D, Ohgami RS. Molecular genetic testing methodologies in hematopoietic diseases: current and future methods. Int J Lab Hematol 2019; 41 Suppl 1:102-116. [PMID: 31069972 DOI: 10.1111/ijlh.13024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 03/08/2019] [Accepted: 03/12/2019] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Rapid technological advancements in clinical molecular genetics have increased our diagnostic and prognostic capabilities in health care. Understanding these assays, as well as how they may change over time, is critical for pathologists, clinicians, and translational researchers alike. METHODS This review provides a practical summary and basic reference for current molecular genetic technologies, as well as new testing methodologies that are in use, gaining momentum, or anticipated to contribute more broadly in the future. RESULTS Here, we discuss DNA and RNA based methodologies including classic assays such as the polymerase chain reaction (PCR), Sanger sequencing, and microarrays, to more cutting-edge next-generation sequencing (NGS) based assays and emerging molecular technologies such as cell-free DNA (cfDNA) or circulating tumor DNA (ctDNA), and NGS-based detection of infectious disease organisms. CONCLUSION This review serves as a basic foundation for knowledge in current and emerging clinical molecular genetic technologies.
Collapse
Affiliation(s)
- Kaushik Sridhar
- Department of Pathology, Stanford University, Stanford, California
| | - Amol Singh
- Department of Pathology, Stanford University, Stanford, California
| | | | - Diwash Jangam
- Department of Pathology, Stanford University, Stanford, California
| | - Robert S Ohgami
- Department of Pathology, Stanford University, Stanford, California.,Department of Pathology, University of California, San Francisco, CA
| |
Collapse
|
41
|
Ureña E, Guillem-Amat A, Couso-Ferrer F, Beroiz B, Perera N, López-Errasquín E, Castañera P, Ortego F, Hernández-Crespo P. Multiple mutations in the nicotinic acetylcholine receptor Ccα6 gene associated with resistance to spinosad in medfly. Sci Rep 2019; 9:2961. [PMID: 30814521 PMCID: PMC6393475 DOI: 10.1038/s41598-019-38681-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 12/28/2018] [Indexed: 11/23/2022] Open
Abstract
Spinosad is an insecticide widely used for the control of insect pest species, including Mediterranean fruit fly, Ceratitis capitata. Its target site is the α6 subunit of the nicotinic acetylcholine receptors, and different mutations in this subunit confer resistance to spinosad in diverse insect species. The insect α6 gene contains 12 exons, with mutually exclusive versions of exons 3 (3a, 3b) and 8 (8a, 8b, 8c). We report here the selection of a medfly strain highly resistant to spinosad, JW-100 s, and we identify three recessive Ccα6 mutant alleles in the JW-100 s population: (i) Ccα63aQ68* containing a point mutation that generates a premature stop codon on exon 3a (3aQ68*); (ii) Ccα63aAG>AT containing a point mutation in the 5' splicing site of exon 3a (3aAG > AT); and (iii) Ccα63aQ68*-K352* that contains the mutation 3aQ68* and another point mutation on exon 10 (K352*). Though our analysis of the susceptibility to spinosad in field populations indicates that resistance has not yet evolved, a better understanding of the mechanism of action of spinosad is essential to implement sustainable management practices to avoid the development of resistance in field populations.
Collapse
Affiliation(s)
- Enric Ureña
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, Gower St, London, WC1E 6BT, UK
| | - Ana Guillem-Amat
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
- Universidad Politecnica de Madrid, Madrid, Spain
| | - Francisco Couso-Ferrer
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Beatriz Beroiz
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Nathalia Perera
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Elena López-Errasquín
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Pedro Castañera
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Félix Ortego
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Pedro Hernández-Crespo
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain.
| |
Collapse
|
42
|
Musou-Yahada A, Honjoh KI, Yamamoto K, Miyamoto T, Ohta H. Utilization of Single Nucleotide Polymorphism-based Allele-specific PCR to Identify Shiikuwasha (<i>Citrus depressa</i> Hayata) and Calamondin (<i>Citrus madurensis</i> Lour.) in Processed Juice. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2019. [DOI: 10.3136/fstr.25.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
| | - Ken-ichi Honjoh
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University
| | - Kenta Yamamoto
- Department of Nutritional Sciences, Nakamura Gakuen University
| | - Takahisa Miyamoto
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University
| | - Hideaki Ohta
- Department of Nutritional Sciences, Nakamura Gakuen University
| |
Collapse
|
43
|
Huang T, Huang X, Shi B, Liang X, Luo J, Yao M. Relationship among MS4A8 expression, its variants, and the immune response in a porcine model of Salmonella. CANADIAN JOURNAL OF ANIMAL SCIENCE 2018. [DOI: 10.1139/cjas-2017-0037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Salmonella colonization often establishes carrier status in infected animals, which decreases their performance. Salmonella-carrying pigs shed large amounts of bacteria in their feces, and thus they have a negative economic impact on the swine industry. The MS4A8 gene (membrane-spanning 4-domains A8) was significantly activated, by up to 119-fold, in peripheral blood after Salmonella inoculation of pigs. The present study analyzed the correlation of peripheral blood expression level and a genetic variant of porcine MS4A8 with Salmonella-infection traits. The result indicated that MS4A8 expression levels correlated significantly with Salmonella shedding counts. Both the expression of MS4A8 and fecal shedding counts correlated with leukocytes, lymphocytes, monocytes, segmented neutrophils, and banded neutrophils. A novel single nucleotide polymorphism of porcine MS4A8 (nonsynonymous, Val > Ala) was associated with Salmonella shedding counts and average daily gain (ADG) of body weight. The TT genotype had higher fecal shedding counts, leukocyte counts, and lymphocyte counts than the TC and CC genotypes. The CC genotype had higher level of ADG than the TC and TT genotype (p < 0.05). Those results indicated that MS4A8 is intriguing and could be used as a prospective genetic marker for Salmonella susceptibility.
Collapse
Affiliation(s)
- Tinghua Huang
- College of Animal Science, Yangtze University, Jingzhou, Hubei 434025, People’s Republic of China
- College of Animal Science, Yangtze University, Jingzhou, Hubei 434025, People’s Republic of China
| | - Xiali Huang
- College of Animal Science, Yangtze University, Jingzhou, Hubei 434025, People’s Republic of China
- College of Animal Science, Yangtze University, Jingzhou, Hubei 434025, People’s Republic of China
| | - Bomei Shi
- College of Animal Science, Yangtze University, Jingzhou, Hubei 434025, People’s Republic of China
- College of Animal Science, Yangtze University, Jingzhou, Hubei 434025, People’s Republic of China
| | - Xiongyan Liang
- College of Animal Science, Yangtze University, Jingzhou, Hubei 434025, People’s Republic of China
- College of Animal Science, Yangtze University, Jingzhou, Hubei 434025, People’s Republic of China
| | - Jingbo Luo
- College of Animal Science, Yangtze University, Jingzhou, Hubei 434025, People’s Republic of China
- College of Animal Science, Yangtze University, Jingzhou, Hubei 434025, People’s Republic of China
| | - Min Yao
- College of Animal Science, Yangtze University, Jingzhou, Hubei 434025, People’s Republic of China
- College of Animal Science, Yangtze University, Jingzhou, Hubei 434025, People’s Republic of China
| |
Collapse
|
44
|
Abstract
Measuring biological data across time and space is critical for understanding complex biological processes and for various biosurveillance applications. However, such data are often inaccessible or difficult to directly obtain. Less invasive, more robust and higher-throughput biological recording tools are needed to profile cells and their environments. DNA-based cellular recording is an emerging and powerful framework for tracking intracellular and extracellular biological events over time across living cells and populations. Here, we review and assess DNA recorders that utilize CRISPR nucleases, integrases and base-editing strategies, as well as recombinase and polymerase-based methods. Quantitative characterization, modelling and evaluation of these DNA-recording modalities can guide their design and implementation for specific application areas.
Collapse
Affiliation(s)
- Ravi U Sheth
- Department of Systems Biology, Columbia University Medical Center, New York, NY, USA
- Integrated Program in Cellular, Molecular and Biomedical Studies, Columbia University, New York, NY, USA
| | - Harris H Wang
- Department of Systems Biology, Columbia University Medical Center, New York, NY, USA.
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
45
|
Prykhozhij SV, Fuller C, Steele SL, Veinotte CJ, Razaghi B, Robitaille JM, McMaster CR, Shlien A, Malkin D, Berman JN. Optimized knock-in of point mutations in zebrafish using CRISPR/Cas9. Nucleic Acids Res 2018; 46:e102. [PMID: 29905858 PMCID: PMC6158492 DOI: 10.1093/nar/gky512 10.1093/nar/gky674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/28/2018] [Accepted: 05/23/2018] [Indexed: 01/19/2024] Open
Abstract
We have optimized point mutation knock-ins into zebrafish genomic sites using clustered regularly interspaced palindromic repeats (CRISPR)/Cas9 reagents and single-stranded oligodeoxynucleotides. The efficiency of knock-ins was assessed by a novel application of allele-specific polymerase chain reaction and confirmed by high-throughput sequencing. Anti-sense asymmetric oligo design was found to be the most successful optimization strategy. However, cut site proximity to the mutation and phosphorothioate oligo modifications also greatly improved knock-in efficiency. A previously unrecognized risk of off-target trans knock-ins was identified that we obviated through the development of a workflow for correct knock-in detection. Together these strategies greatly facilitate the study of human genetic diseases in zebrafish, with additional applicability to enhance CRISPR-based approaches in other animal model systems.
Collapse
Affiliation(s)
- Sergey V Prykhozhij
- Departments of Pediatrics, Microbiology & Immunology, and Pathology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Charlotte Fuller
- Michael G. DeGroote School of Medicine, McMaster University,Hamilton, ON, L8S4L8, Canada
| | | | - Chansey J Veinotte
- Departments of Pediatrics, Microbiology & Immunology, and Pathology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Babak Razaghi
- Departments of Pediatrics, Microbiology & Immunology, and Pathology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Johane M Robitaille
- Departments of Pediatrics, Microbiology & Immunology, and Pathology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Christopher R McMaster
- Departments of Pediatrics, Microbiology & Immunology, and Pathology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Adam Shlien
- Departments of Pediatrics and Medical Biophysics, University of Toronto, Toronto, ON, M5G 1X8, Canada
| | - David Malkin
- Departments of Pediatrics and Medical Biophysics, University of Toronto, Toronto, ON, M5G 1X8, Canada
| | - Jason N Berman
- Departments of Pediatrics, Microbiology & Immunology, and Pathology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| |
Collapse
|
46
|
Abrash E, Anleu Gil MX, Matos JL, Bergmann DC. Conservation and divergence of YODA MAPKKK function in regulation of grass epidermal patterning. Development 2018; 145:dev.165860. [PMID: 29945871 DOI: 10.1242/dev.165860] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 06/08/2018] [Indexed: 12/30/2022]
Abstract
All multicellular organisms must properly pattern cell types to generate functional tissues and organs. The organized and predictable cell lineages of the Brachypodium leaf enabled us to characterize the role of the MAPK kinase kinase gene BdYODA1 in regulating asymmetric cell divisions. We find that YODA genes promote normal stomatal spacing patterns in both Arabidopsis and Brachypodium, despite species-specific differences in those patterns. Using lineage tracing and cell fate markers, we show that, unexpectedly, patterning defects in bdyoda1 mutants do not arise from faulty physical asymmetry in cell divisions but rather from improper enforcement of alternative cellular fates after division. These cross-species comparisons allow us to refine our understanding of MAPK activities during plant asymmetric cell divisions.
Collapse
Affiliation(s)
- Emily Abrash
- Department of Biology, Stanford University, Stanford, CA 94305-5020, USA
| | - M Ximena Anleu Gil
- Department of Biology, Stanford University, Stanford, CA 94305-5020, USA
| | - Juliana L Matos
- Department of Biology, Stanford University, Stanford, CA 94305-5020, USA
| | - Dominique C Bergmann
- Department of Biology, Stanford University, Stanford, CA 94305-5020, USA .,Howard Hughes Medical Institute (HHMI), Stanford University, Stanford, CA 94305-5020, USA
| |
Collapse
|
47
|
Hassibi A, Manickam A, Singh R, Bolouki S, Sinha R, Jirage KB, McDermott MW, Hassibi B, Vikalo H, Mazarei G, Pei L, Bousse L, Miller M, Heshami M, Savage MP, Taylor MT, Gamini N, Wood N, Mantina P, Grogan P, Kuimelis P, Savalia P, Conradson S, Li Y, Meyer RB, Ku E, Ebert J, Pinsky BA, Dolganov G, Van T, Johnson KA, Naraghi-Arani P, Kuimelis RG, Schoolnik G. Multiplexed identification, quantification and genotyping of infectious agents using a semiconductor biochip. Nat Biotechnol 2018; 36:738-745. [PMID: 30010676 DOI: 10.1038/nbt.4179] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/23/2018] [Indexed: 02/04/2023]
Abstract
The emergence of pathogens resistant to existing antimicrobial drugs is a growing worldwide health crisis that threatens a return to the pre-antibiotic era. To decrease the overuse of antibiotics, molecular diagnostics systems are needed that can rapidly identify pathogens in a clinical sample and determine the presence of mutations that confer drug resistance at the point of care. We developed a fully integrated, miniaturized semiconductor biochip and closed-tube detection chemistry that performs multiplex nucleic acid amplification and sequence analysis. The approach had a high dynamic range of quantification of microbial load and was able to perform comprehensive mutation analysis on up to 1,000 sequences or strands simultaneously in <2 h. We detected and quantified multiple DNA and RNA respiratory viruses in clinical samples with complete concordance to a commercially available test. We also identified 54 drug-resistance-associated mutations that were present in six genes of Mycobacterium tuberculosis, all of which were confirmed by next-generation sequencing.
Collapse
Affiliation(s)
| | | | | | | | - Ruma Sinha
- InSilixa, Inc., Sunnyvale, California, USA
| | | | | | - Babak Hassibi
- Electrical Engineering Department, California Institute of Technology, Pasadena, California, USA
| | - Haris Vikalo
- Electrical and Computer Engineering Department, University of Texas at Austin, Austin, Texas, USA
| | | | - Lei Pei
- InSilixa, Inc., Sunnyvale, California, USA
| | - Luc Bousse
- InSilixa, Inc., Sunnyvale, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | - Yuan Li
- InSilixa, Inc., Sunnyvale, California, USA
| | | | - Edmond Ku
- InSilixa, Inc., Sunnyvale, California, USA
| | | | - Benjamin A Pinsky
- Department of Medicine, Stanford University, Stanford, California, USA
| | | | - Tran Van
- InSilixa, Inc., Sunnyvale, California, USA
| | | | | | | | - Gary Schoolnik
- InSilixa, Inc., Sunnyvale, California, USA.,Department of Medicine, Stanford University, Stanford, California, USA
| |
Collapse
|
48
|
Arbeithuber B, Heissl A, Tiemann-Boege I. Haplotyping of Heterozygous SNPs in Genomic DNA Using Long-Range PCR. Methods Mol Biol 2018; 1551:3-22. [PMID: 28138838 DOI: 10.1007/978-1-4939-6750-6_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
To study meiotic recombination products, cis- or trans-association of disease polymorphisms, or allele-specific expression patterns, it is necessary to phase heterozygous polymorphisms separated by several kilobases. Haplotyping using long-range polymerase chain reaction (PCR) is a powerful, cost-effective method to directly obtain the phase of multiple heterozygous sites with standard laboratory equipment in a handful of loci for many samples. The method is based on the amplification of large genomic DNA regions (up to ~40 kb) with a reaction mixture that combines a proofreading polymerase with allele-specific primer pairs that preferentially amplify matched templates. The analysis of two heterozygous SNPs requires four reactions, each containing one of the four possible allele-specific primer combinations (two forward and two reverse primers), with the mismatches occurring at the 3' ends of the primers. The two correct primer combinations will more efficiently elongate the matching alleles than the alternative alleles, and the difference in amplification efficiency can be monitored with real-time PCR.
Collapse
Affiliation(s)
- Barbara Arbeithuber
- Institute of Biophysics, Johannes Kepler University, Gruberstraße 40, Linz, 4020, Austria
| | - Angelika Heissl
- Institute of Biophysics, Johannes Kepler University, Gruberstraße 40, Linz, 4020, Austria
| | - Irene Tiemann-Boege
- Institute of Biophysics, Johannes Kepler University, Gruberstraße 40, Linz, 4020, Austria.
| |
Collapse
|
49
|
Wang P, Liu X, Zhu B, Ma Y, Yong L, Teng Z, Liang C, He G, Liu X. Association of IL17RC and COL6A1 genetic polymorphisms with susceptibility to ossification of the thoracic posterior longitudinal ligament in Chinese patients. J Orthop Surg Res 2018; 13:109. [PMID: 29764467 PMCID: PMC5952594 DOI: 10.1186/s13018-018-0817-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 02/19/2018] [Indexed: 11/23/2022] Open
Abstract
Background In our previous whole-genome sequencing study of 30 unrelated northern Chinese Han patients, we identified six single nucleotide polymorphisms (SNPs) in the interleukin 17 receptor C (IL17RC) and collagen type VI α1 chain (COL6A1) genes that were potentially associated with thoracic ossification of the posterior longitudinal ligament (T-OPLL). To determine whether these six SNPs are associated with susceptibility to T-OPLL in the northern Chinese Han population, we performed a case-control association study to confirm specific susceptible loci in the expanded samples. Methods The six SNPs in the IL17RC and COL6A1 genes were analyzed in 200 northern Chinese individuals (100 patients and 100 control subjects) using the Sequenom system. Results The genotype distributions and allele frequencies of each SNP in the control and patient groups were compared. rs201153092, rs13051496, rs199772854, rs76999397, and rs189013166 showed potential pathogenic loci for T-OPLL in the northern Chinese Han population, whereas rs151158105 did not. At the genotype level, the differences in the genotype frequencies of rs201153092, rs13051496, rs199772854, rs76999397, and rs189013166 between T-OPLL cases and controls reached statistical significance. Conclusions To the best of our knowledge, this is the first association study of susceptibility genes in Han Chinese patients with T-OPLL. The results revealed five SNPs in the IL17RC and COL6A1 genes that represented potentially pathogenic mutations in patients with T-OPLL.
Collapse
Affiliation(s)
- Peng Wang
- Department of Orthopedics, Peking University Third Hospital, 49 North Garden Street, Haidian District, Beijing, 100191, People's Republic of China
| | - Xiao Liu
- Department of Orthopedics, Peking University Third Hospital, 49 North Garden Street, Haidian District, Beijing, 100191, People's Republic of China
| | - Bin Zhu
- The Center for Pain Medicine, Peking University Third Hospital, Beijing, People's Republic of China
| | - Yunlong Ma
- Department of Orthopedics, Peking University Third Hospital, 49 North Garden Street, Haidian District, Beijing, 100191, People's Republic of China
| | - Lei Yong
- Department of Orthopedics, Peking University Third Hospital, 49 North Garden Street, Haidian District, Beijing, 100191, People's Republic of China
| | - Ze Teng
- Department of Radiology, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Chen Liang
- Department of Orthopedics, Peking University Third Hospital, 49 North Garden Street, Haidian District, Beijing, 100191, People's Republic of China
| | - Guanping He
- Department of Orthopedics, Peking University Third Hospital, 49 North Garden Street, Haidian District, Beijing, 100191, People's Republic of China
| | - Xiaoguang Liu
- Department of Orthopedics, Peking University Third Hospital, 49 North Garden Street, Haidian District, Beijing, 100191, People's Republic of China.
| |
Collapse
|
50
|
Hattersley N, Lara-Gonzalez P, Cheerambathur D, Gomez-Cavazos JS, Kim T, Prevo B, Khaliullin R, Lee KY, Ohta M, Green R, Oegema K, Desai A. Employing the one-cell C. elegans embryo to study cell division processes. Methods Cell Biol 2018; 144:185-231. [PMID: 29804670 DOI: 10.1016/bs.mcb.2018.03.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The one-cell Caenorhabditis elegans embryo offers many advantages for mechanistic analysis of cell division processes. Conservation of key genes and pathways involved in cell division makes findings in C. elegans broadly relevant. A key technical advantage of this system is the ability to penetrantly deplete essential gene products by RNA interference (RNAi) and replace them with wild-type or mutant versions expressed at endogenous levels from single copy RNAi-resistant transgene insertions. This ability to precisely perturb essential genes is complemented by the inherently highly reproducible nature of the zygotic division that facilitates development of quantitative imaging assays. Here, we detail approaches to generate targeted single copy transgene insertions that are RNAi-resistant, to engineer variants of individual genes employing transgene insertions as well as at the endogenous locus, and to in situ tag genes with fluorophores/purification tags. We also describe imaging assays and common image analysis tools employed to quantitatively monitor phenotypic effects of specific perturbations on meiotic and mitotic chromosome segregation, centrosome assembly/function, and cortical dynamics/cytokinesis.
Collapse
Affiliation(s)
- Neil Hattersley
- Ludwig Institute for Cancer Research, La Jolla, CA, United States; Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA, United States
| | - Pablo Lara-Gonzalez
- Ludwig Institute for Cancer Research, La Jolla, CA, United States; Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA, United States
| | - Dhanya Cheerambathur
- Ludwig Institute for Cancer Research, La Jolla, CA, United States; Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA, United States
| | - J Sebastian Gomez-Cavazos
- Ludwig Institute for Cancer Research, La Jolla, CA, United States; Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA, United States
| | - Taekyung Kim
- Ludwig Institute for Cancer Research, La Jolla, CA, United States; Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA, United States
| | - Bram Prevo
- Ludwig Institute for Cancer Research, La Jolla, CA, United States; Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA, United States
| | - Renat Khaliullin
- Ludwig Institute for Cancer Research, La Jolla, CA, United States; Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA, United States
| | - Kian-Yong Lee
- Ludwig Institute for Cancer Research, La Jolla, CA, United States; Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA, United States
| | - Midori Ohta
- Ludwig Institute for Cancer Research, La Jolla, CA, United States; Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA, United States
| | - Rebecca Green
- Ludwig Institute for Cancer Research, La Jolla, CA, United States; Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA, United States
| | - Karen Oegema
- Ludwig Institute for Cancer Research, La Jolla, CA, United States; Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA, United States
| | - Arshad Desai
- Ludwig Institute for Cancer Research, La Jolla, CA, United States; Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA, United States.
| |
Collapse
|