1
|
Wang X, Yamaguchi N. Cause or effect: Probing the roles of epigenetics in plant development and environmental responses. CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102569. [PMID: 38833828 DOI: 10.1016/j.pbi.2024.102569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 06/06/2024]
Abstract
Epigenetic modifications are inheritable, reversible changes that control gene expression without altering the DNA sequence itself. Recent advances in epigenetic and sequencing technologies have revealed key regulatory regions in genes with multiple epigenetic changes. However, causal associations between epigenetic changes and physiological events have rarely been examined. Epigenome editing enables alterations to the epigenome without changing the underlying DNA sequence. Modifying epigenetic information in plants has important implications for causality assessment of the epigenome. Here, we briefly review tools for selectively interrogating the epigenome. We highlight promising research on site-specific DNA methylation and histone modifications and propose future research directions to more deeply investigate epigenetic regulation, including cause-and-effect relationships between epigenetic modifications and the development/environmental responses of Arabidopsis thaliana.
Collapse
Affiliation(s)
- Xuejing Wang
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara, 630-0192, Japan
| | - Nobutoshi Yamaguchi
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara, 630-0192, Japan.
| |
Collapse
|
2
|
Chiang BJ, Lin KY, Chen YF, Huang CY, Goh FJ, Huang LT, Chen LH, Wu CH. Development of a tightly regulated copper-inducible transient gene expression system in Nicotiana benthamiana incorporating a suicide exon and Cre recombinase. THE NEW PHYTOLOGIST 2024; 244:318-331. [PMID: 39081031 DOI: 10.1111/nph.20021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 07/15/2024] [Indexed: 09/17/2024]
Abstract
Chemical-inducible gene expression systems are commonly used to regulate gene expression for functional genomics in various plant species. However, a convenient system that can tightly regulate transgene expression in Nicotiana benthamiana is still lacking. In this study, we developed a tightly regulated copper-inducible system that can control transgene expression and conduct cell death assays in N. benthamiana. We tested several chemical-inducible systems using Agrobacterium-mediated transient expression and found that the copper-inducible system exhibited the least concerns regarding leakiness in N. benthamiana. Although the copper-inducible system can control the expression of some tested reporters, it is not sufficiently tight to regulate certain tested hypersensitive cell death responses. Using the MoClo-based synthetic biology approach, we incorporated the suicide exon HyP5SM/OsL5 and Cre/LoxP as additional regulatory elements to enhance the tightness of the regulation. This new design allowed us to tightly control the hypersensitive cell death induced by several tested leucine-rich repeat-containing proteins and their matching avirulence factors, and it can be easily applied to regulate the expression of other transgenes in transient expression assays. Our findings offer new approaches for both fundamental and translational studies in plant functional genomics.
Collapse
Affiliation(s)
- Bing-Jen Chiang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 115 201, Taiwan
| | - Kuan-Yu Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 115 201, Taiwan
| | - Yi-Feng Chen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 115 201, Taiwan
| | - Ching-Yi Huang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 115 201, Taiwan
| | - Foong-Jing Goh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 115 201, Taiwan
| | - Lo-Ting Huang
- Department of Plant Pathology, National Chung Hsing University, Taichung, 402 202, Taiwan
| | - Li-Hung Chen
- Department of Plant Pathology, National Chung Hsing University, Taichung, 402 202, Taiwan
- Advanced Plant and Food Crop Biotechnology Center, National Chung Hsing University, Taichung, 402 202, Taiwan
| | - Chih-Hang Wu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 115 201, Taiwan
| |
Collapse
|
3
|
Huang L, Rojas-Pierce M. Rapid depletion of target proteins in plants by an inducible protein degradation system. THE PLANT CELL 2024; 36:3145-3161. [PMID: 38446628 PMCID: PMC11371150 DOI: 10.1093/plcell/koae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 02/14/2024] [Accepted: 02/26/2024] [Indexed: 03/08/2024]
Abstract
Inducible protein knockdowns are excellent tools to test the function of essential proteins in short time scales and to capture the role of proteins in dynamic events. Current approaches destroy or sequester proteins by exploiting plant biological mechanisms such as the activity of photoreceptors for optogenetics or auxin-mediated ubiquitination in auxin degrons. It follows that these are not applicable for plants as light and auxin are strong signals for plant cells. We describe here an inducible protein degradation system in plants named E3-DART for E3-targeted Degradation of Plant Proteins. The E3-DART system is based on the specific and well-characterized interaction between the Salmonella-secreted protein H1 (SspH1) and its human target protein kinase N1 (PKN1). This system harnesses the E3 catalytic activity of SspH1 and the SspH1-binding activity of the homology region 1b (HR1b) domain from PKN1. Using Nicotiana benthamiana and Arabidopsis (Arabidopsis thaliana), we show that a chimeric protein containing the leucine-rich repeat and novel E3 ligase domains of SspH1 efficiently targets protein fusions of varying sizes containing HR1b for degradation. Target protein degradation was induced by transcriptional control of the chimeric E3 ligase using a glucocorticoid transactivation system, and target protein depletion was detected as early as 3 h after induction. This system could be used to study the loss of any plant protein with high-temporal resolution and may become an important tool in plant cell biology.
Collapse
Affiliation(s)
- Linzhou Huang
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Marcela Rojas-Pierce
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
4
|
Wittmer J, Heidstra R. Appreciating animal induced pluripotent stem cells to shape plant cell reprogramming strategies. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4373-4393. [PMID: 38869461 PMCID: PMC11263491 DOI: 10.1093/jxb/erae264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 06/12/2024] [Indexed: 06/14/2024]
Abstract
Animals and plants have developed resilience mechanisms to effectively endure and overcome physical damage and environmental challenges throughout their life span. To sustain their vitality, both animals and plants employ mechanisms to replenish damaged cells, either directly, involving the activity of adult stem cells, or indirectly, via dedifferentiation of somatic cells that are induced to revert to a stem cell state and subsequently redifferentiate. Stem cell research has been a rapidly advancing field in animal studies for many years, driven by its promising potential in human therapeutics, including tissue regeneration and drug development. A major breakthrough was the discovery of induced pluripotent stem cells (iPSCs), which are reprogrammed from somatic cells by expressing a limited set of transcription factors. This discovery enabled the generation of an unlimited supply of cells that can be differentiated into specific cell types and tissues. Equally, a keen interest in the connection between plant stem cells and regeneration has been developed in the last decade, driven by the demand to enhance plant traits such as yield, resistance to pathogens, and the opportunities provided by CRISPR/Cas-mediated gene editing. Here we discuss how knowledge of stem cell biology benefits regeneration technology, and we speculate on the creation of a universal genotype-independent iPSC system for plants to overcome regenerative recalcitrance.
Collapse
Affiliation(s)
- Jana Wittmer
- Cell and Developmental Biology, cluster Plant Developmental Biology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Renze Heidstra
- Cell and Developmental Biology, cluster Plant Developmental Biology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| |
Collapse
|
5
|
Boo A, Toth T, Yu Q, Pfotenhauer A, Fields BD, Lenaghan SC, Stewart CN, Voigt CA. Synthetic microbe-to-plant communication channels. Nat Commun 2024; 15:1817. [PMID: 38418817 PMCID: PMC10901793 DOI: 10.1038/s41467-024-45897-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 02/07/2024] [Indexed: 03/02/2024] Open
Abstract
Plants and microbes communicate to collaborate to stop pests, scavenge nutrients, and react to environmental change. Microbiota consisting of thousands of species interact with each other and plants using a large chemical language that is interpreted by complex regulatory networks. In this work, we develop modular interkingdom communication channels, enabling bacteria to convey environmental stimuli to plants. We introduce a "sender device" in Pseudomonas putida and Klebsiella pneumoniae, that produces the small molecule p-coumaroyl-homoserine lactone (pC-HSL) when the output of a sensor or circuit turns on. This molecule triggers a "receiver device" in the plant to activate gene expression. We validate this system in Arabidopsis thaliana and Solanum tuberosum (potato) grown hydroponically and in soil, demonstrating its modularity by swapping bacteria that process different stimuli, including IPTG, aTc and arsenic. Programmable communication channels between bacteria and plants will enable microbial sentinels to transmit information to crops and provide the building blocks for designing artificial consortia.
Collapse
Affiliation(s)
- Alice Boo
- Department of Biological Engineering, Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Tyler Toth
- Department of Biological Engineering, Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Qiguo Yu
- Department of Biological Engineering, Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Alexander Pfotenhauer
- Center for Agricultural Synthetic Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Brandon D Fields
- Department of Biological Engineering, Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Scott C Lenaghan
- Center for Agricultural Synthetic Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - C Neal Stewart
- Center for Agricultural Synthetic Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Christopher A Voigt
- Department of Biological Engineering, Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
6
|
Cho YB, Boyd RA, Ren Y, Lee MS, Jones SI, Ruiz-Vera UM, McGrath JM, Masters MD, Ort DR. Reducing chlorophyll levels in seed-filling stages results in higher seed nitrogen without impacting canopy carbon assimilation. PLANT, CELL & ENVIRONMENT 2024; 47:278-293. [PMID: 37828764 DOI: 10.1111/pce.14737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/28/2023] [Accepted: 10/04/2023] [Indexed: 10/14/2023]
Abstract
Chlorophyll is the major light-absorbing pigment for plant photosynthesis. While evolution has been selected for high chlorophyll content in leaves, previous work suggests that domesticated crops grown in modern high-density agricultural environments overinvest in chlorophyll production, thereby lowering light use and nitrogen use efficiency. To investigate the potential benefits of reducing chlorophyll levels, we created ethanol-inducible RNAi tobacco mutants that suppress Mg-chelatase subunit I (CHLI) with small RNA within 3 h of induction and reduce chlorophyll within 5 days in field conditions. We initiated chlorophyll reduction later in plant development to avoid the highly sensitive seedling stage and to allow young plants to have full green leaves to maximise light interception before canopy formation. This study demonstrated that leaf chlorophyll reduction >60% during seed-filling stages increased tobacco seed nitrogen concentration by as much as 17% while canopy photosynthesis, biomass and seed yields were maintained. These results indicate that time-specific reduction of chlorophyll could be a novel strategy that decouples the inverse relationship between yield and seed nitrogen by utilising saved nitrogen from the reduction of chlorophyll while maintaining full carbon assimilation capacity.
Collapse
Affiliation(s)
- Young B Cho
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Ryan A Boyd
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Yudong Ren
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Moon-Sub Lee
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Sarah I Jones
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Ursula M Ruiz-Vera
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Justin M McGrath
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Michael D Masters
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Donald R Ort
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
7
|
Rados T, Andre K, Cerletti M, Bisson A. A sweet new set of inducible and constitutive promoters in Haloferax volcanii. Front Microbiol 2023; 14:1204876. [PMID: 37637112 PMCID: PMC10448506 DOI: 10.3389/fmicb.2023.1204876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/27/2023] [Indexed: 08/29/2023] Open
Abstract
Inducible promoters are one of cellular and molecular biology's most important technical tools. The ability to deplete, replete, and overexpress genes on demand is the foundation of most functional studies. Here, we developed and characterized a new xylose-responsive promoter (Pxyl), the second inducible promoter system for the model haloarcheon Haloferax volcanii. Generating RNA-seq datasets from cultures in the presence of four historically used inducers (arabinose, xylose, maltose, and IPTG), we mapped upregulated genomic regions primarily repressed in the absence of the above inducers. We found a highly upregulated promoter that controls the expression of the xacEA (HVO_B0027-28) operon in the pHV3 chromosome. To characterize this promoter region, we cloned msfGFP (monomeric superfold green fluorescent protein) under the control of two upstream regions into a modified pTA962 vector: the first 250 bp (P250) and the whole 750 bp intergenic fragments (P750). The P250 sequence drove the expression of msfGFP constitutively, and its expression did not respond to the presence or absence of xylose. However, the P750 promoter showed not only to be repressed in the absence of xylose but also expressed higher levels of msfGFP than the previously described inducible promoter PtnaA in the presence of the inducer. Finally, we validated the inducible Pxyl promoter by reproducing morphological phenotypes already described in the literature. By overexpressing the tubulin-like FtsZ1 and FtsZ2, we observed similar but slightly more pronounced morphological defects than the tryptophan-inducible promoter PtnaA. FtsZ1 overexpression created larger, deformed cells, whereas cells overexpressing FtsZ2 were smaller but mostly retained their shape. In summary, this work contributes a new xylose-inducible promoter that could be used simultaneously with the well-established PtnaA in functional studies in H. volcanii in the future.
Collapse
Affiliation(s)
- Theopi Rados
- Department of Biology, Brandeis University, Waltham, MA, United States
| | - Katherine Andre
- Department of Biology, Brandeis University, Waltham, MA, United States
| | - Micaela Cerletti
- Department of Biology, Brandeis University, Waltham, MA, United States
- Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Alex Bisson
- Department of Biology, Brandeis University, Waltham, MA, United States
| |
Collapse
|
8
|
Lawrence JM, Yin Y, Bombelli P, Scarampi A, Storch M, Wey LT, Climent-Catala A, Baldwin GS, O’Hare D, Howe CJ, Zhang JZ, Ouldridge TE, Ledesma-Amaro R. Synthetic biology and bioelectrochemical tools for electrogenetic system engineering. SCIENCE ADVANCES 2022; 8:eabm5091. [PMID: 35507663 PMCID: PMC9067924 DOI: 10.1126/sciadv.abm5091] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Synthetic biology research and its industrial applications rely on deterministic spatiotemporal control of gene expression. Recently, electrochemical control of gene expression has been demonstrated in electrogenetic systems (redox-responsive promoters used alongside redox inducers and electrodes), allowing for the direct integration of electronics with biological processes. However, the use of electrogenetic systems is limited by poor activity, tunability, and standardization. In this work, we developed a strong, unidirectional, redox-responsive promoter before deriving a mutant promoter library with a spectrum of strengths. We constructed genetic circuits with these parts and demonstrated their activation by multiple classes of redox molecules. Last, we demonstrated electrochemical activation of gene expression under aerobic conditions using a novel, modular bioelectrochemical device. These genetic and electrochemical tools facilitate the design and improve the performance of electrogenetic systems. Furthermore, the genetic design strategies used can be applied to other redox-responsive promoters to further expand the available tools for electrogenetics.
Collapse
Affiliation(s)
- Joshua M. Lawrence
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Yutong Yin
- Department of Bioengineering, Imperial College London, London, UK
| | - Paolo Bombelli
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Department of Bioengineering, Imperial College London, London, UK
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milano, Italy
| | - Alberto Scarampi
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Marko Storch
- London DNA Foundry, Imperial College Translation and Innovation Hub, London, UK
| | - Laura T. Wey
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | | | - Geoff S. Baldwin
- Department of Life Sciences, Imperial College London, London, UK
| | - Danny O’Hare
- Department of Bioengineering, Imperial College London, London, UK
| | | | - Jenny Z. Zhang
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | | | - Rodrigo Ledesma-Amaro
- Department of Bioengineering, Imperial College London, London, UK
- Corresponding author.
| |
Collapse
|
9
|
El-Sappah AH, Rather SA, Wani SH, Elrys AS, Bilal M, Huang Q, Dar ZA, Elashtokhy MMA, Soaud N, Koul M, Mir RR, Yan K, Li J, El-Tarabily KA, Abbas M. Heat Stress-Mediated Constraints in Maize ( Zea mays) Production: Challenges and Solutions. FRONTIERS IN PLANT SCIENCE 2022; 13:879366. [PMID: 35615131 PMCID: PMC9125997 DOI: 10.3389/fpls.2022.879366] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 03/30/2022] [Indexed: 05/05/2023]
Abstract
An increase in temperature and extreme heat stress is responsible for the global reduction in maize yield. Heat stress affects the integrity of the plasma membrane functioning of mitochondria and chloroplast, which further results in the over-accumulation of reactive oxygen species. The activation of a signal cascade subsequently induces the transcription of heat shock proteins. The denaturation and accumulation of misfolded or unfolded proteins generate cell toxicity, leading to death. Therefore, developing maize cultivars with significant heat tolerance is urgently required. Despite the explored molecular mechanism underlying heat stress response in some plant species, the precise genetic engineering of maize is required to develop high heat-tolerant varieties. Several agronomic management practices, such as soil and nutrient management, plantation rate, timing, crop rotation, and irrigation, are beneficial along with the advanced molecular strategies to counter the elevated heat stress experienced by maize. This review summarizes heat stress sensing, induction of signaling cascade, symptoms, heat stress-related genes, the molecular feature of maize response, and approaches used in developing heat-tolerant maize varieties.
Collapse
Affiliation(s)
- Ahmed H. El-Sappah
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Department of Genetics, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
- Key Laboratory of Sichuan Province for Refining Sichuan Tea, Yibin, China
| | - Shabir A. Rather
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, China
| | - Shabir Hussain Wani
- Mountain Research Centre for Field Crops Khudwani Anantnag, SKUAST–Kashmir, Srinagar, India
| | - Ahmed S. Elrys
- Department of Soil Science, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Muhammad Bilal
- School of Life Sciences and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Qiulan Huang
- Key Laboratory of Sichuan Province for Refining Sichuan Tea, Yibin, China
- College of Tea Science, Yibin University, Yibin, China
| | - Zahoor Ahmad Dar
- Dryland Agriculture Research Station, SKUAST–Kashmir, Srinagar, India
| | | | - Nourhan Soaud
- Department of Crop Science, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Monika Koul
- Department of Botany, Hansraj College, University of Delhi, New Delhi, India
| | - Reyazul Rouf Mir
- Division of Genetics and Plant Breeding, Faculty of Agriculture (FoA), SKUAST–Kashmir, Sopore, India
| | - Kuan Yan
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Key Laboratory of Sichuan Province for Refining Sichuan Tea, Yibin, China
| | - Jia Li
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Key Laboratory of Sichuan Province for Refining Sichuan Tea, Yibin, China
| | - Khaled A. El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
- Harry Butler Institute, Murdoch University, Murdoch, WA, Australia
| | - Manzar Abbas
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Key Laboratory of Sichuan Province for Refining Sichuan Tea, Yibin, China
| |
Collapse
|
10
|
Verma S, Attuluri VPS, Robert HS. Transcriptional control of Arabidopsis seed development. PLANTA 2022; 255:90. [PMID: 35318532 PMCID: PMC8940821 DOI: 10.1007/s00425-022-03870-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 03/04/2022] [Indexed: 05/04/2023]
Abstract
The entire process of embryo development is under the tight control of various transcription factors. Together with other proteins, they act in a combinatorial manner and control distinct events during embryo development. Seed development is a complex process that proceeds through sequences of events regulated by the interplay of various genes, prominent among them being the transcription factors (TFs). The members of WOX, HD-ZIP III, ARF, and CUC families have a preferential role in embryonic patterning. While WOX TFs are required for initiating body axis, HD-ZIP III TFs and CUCs establish bilateral symmetry and SAM. And ARF5 performs a major role during embryonic root, ground tissue, and vasculature development. TFs such as LEC1, ABI3, FUS3, and LEC2 (LAFL) are considered the master regulators of seed maturation. Furthermore, several new TFs involved in seed storage reserves and dormancy have been identified in the last few years. Their association with those master regulators has been established in the model plant Arabidopsis. Also, using chromatin immunoprecipitation (ChIP) assay coupled with transcriptomics, genome-wide target genes of these master regulators have recently been proposed. Many seed-specific genes, including those encoding oleosins and albumins, have appeared as the direct target of LAFL. Also, several other TFs act downstream of LAFL TFs and perform their function during maturation. In this review, the function of different TFs in different phases of early embryogenesis and maturation is discussed in detail, including information about their genetic and molecular interactors and target genes. Such knowledge can further be leveraged to understand and manipulate the regulatory mechanisms involved in seed development. In addition, the genomics approaches and their utilization to identify TFs aiming to study embryo development are discussed.
Collapse
Affiliation(s)
- Subodh Verma
- Mendel Centre for Genomics and Proteomics of Plants Systems, CEITEC MU - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Venkata Pardha Saradhi Attuluri
- Mendel Centre for Genomics and Proteomics of Plants Systems, CEITEC MU - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Hélène S. Robert
- Mendel Centre for Genomics and Proteomics of Plants Systems, CEITEC MU - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| |
Collapse
|
11
|
Brophy JAN. Toward synthetic plant development. PLANT PHYSIOLOGY 2022; 188:738-748. [PMID: 34904660 PMCID: PMC8825267 DOI: 10.1093/plphys/kiab568] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/01/2021] [Indexed: 06/14/2023]
Abstract
The ability to engineer plant form will enable the production of novel agricultural products designed to tolerate extreme stresses, boost yield, reduce waste, and improve manufacturing practices. While historically, plants were altered through breeding to change their size or shape, advances in our understanding of plant development and our ability to genetically engineer complex eukaryotes are leading to the direct engineering of plant structure. In this review, I highlight the central role of auxin in plant development and the synthetic biology approaches that could be used to turn auxin-response regulators into powerful tools for modifying plant form. I hypothesize that recoded, gain-of-function auxin response proteins combined with synthetic regulation could be used to override endogenous auxin signaling and control plant structure. I also argue that auxin-response regulators are key to engineering development in nonmodel plants and that single-cell -omics techniques will be essential for characterizing and modifying auxin response in these plants. Collectively, advances in synthetic biology, single-cell -omics, and our understanding of the molecular mechanisms underpinning development have set the stage for a new era in the engineering of plant structure.
Collapse
Affiliation(s)
- Jennifer A N Brophy
- Department of Bioengineering, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
12
|
Optogenetic and Chemical Induction Systems for Regulation of Transgene Expression in Plants: Use in Basic and Applied Research. Int J Mol Sci 2022; 23:ijms23031737. [PMID: 35163658 PMCID: PMC8835832 DOI: 10.3390/ijms23031737] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 02/01/2023] Open
Abstract
Continuous and ubiquitous expression of foreign genes sometimes results in harmful effects on the growth, development and metabolic activities of plants. Tissue-specific promoters help to overcome this disadvantage, but do not allow one to precisely control transgene expression over time. Thus, inducible transgene expression systems have obvious benefits. In plants, transcriptional regulation is usually driven by chemical agents under the control of chemically-inducible promoters. These systems are diverse, but usually contain two elements, the chimeric transcription factor and the reporter gene. The commonly used chemically-induced expression systems are tetracycline-, steroid-, insecticide-, copper-, and ethanol-regulated. Unlike chemical-inducible systems, optogenetic tools enable spatiotemporal, quantitative and reversible control over transgene expression with light, overcoming limitations of chemically-inducible systems. This review updates and summarizes optogenetic and chemical induction methods of transgene expression used in basic plant research and discusses their potential in field applications.
Collapse
|
13
|
Parambi DGT, Alharbi KS, Kumar R, Harilal S, Batiha GES, Cruz-Martins N, Magdy O, Musa A, Panda DS, Mathew B. Gene Therapy Approach with an Emphasis on Growth Factors: Theoretical and Clinical Outcomes in Neurodegenerative Diseases. Mol Neurobiol 2022; 59:191-233. [PMID: 34655056 PMCID: PMC8518903 DOI: 10.1007/s12035-021-02555-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 09/05/2021] [Indexed: 12/11/2022]
Abstract
The etiology of many neurological diseases affecting the central nervous system (CNS) is unknown and still needs more effective and specific therapeutic approaches. Gene therapy has a promising future in treating neurodegenerative disorders by correcting the genetic defects or by therapeutic protein delivery and is now an attraction for neurologists to treat brain disorders, like Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, spinal muscular atrophy, spinocerebellar ataxia, epilepsy, Huntington's disease, stroke, and spinal cord injury. Gene therapy allows the transgene induction, with a unique expression in cells' substrate. This article mainly focuses on the delivering modes of genetic materials in the CNS, which includes viral and non-viral vectors and their application in gene therapy. Despite the many clinical trials conducted so far, data have shown disappointing outcomes. The efforts done to improve outcomes, efficacy, and safety in the identification of targets in various neurological disorders are also discussed here. Adapting gene therapy as a new therapeutic approach for treating neurological disorders seems to be promising, with early detection and delivery of therapy before the neuron is lost, helping a lot the development of new therapeutic options to translate to the clinic.
Collapse
Affiliation(s)
- Della Grace Thomas Parambi
- College of Pharmacy, Department of Pharmaceutical Chemistry, Jouf University, Al Jouf-2014, Sakaka, Saudi Arabia
| | - Khalid Saad Alharbi
- College of Pharmacy, Department of Pharmaceutical Chemistry, Jouf University, Al Jouf-2014, Sakaka, Saudi Arabia
| | - Rajesh Kumar
- Kerala University of Health Sciences, Thrissur, Kerala 680596 India
| | - Seetha Harilal
- Kerala University of Health Sciences, Thrissur, Kerala 680596 India
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511 Al Beheira Egypt
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
- Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal
| | - Omnia Magdy
- Department of Clinical Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al Jouf-2014 Kingdom of Saudi Arabia
- Pharmacognosy Department, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341 Kingdom of Saudi Arabia
| | - Arafa Musa
- Pharmacognosy Department, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341 Kingdom of Saudi Arabia
- Pharmacognosy Department, Faculty of Pharmacy, Al-Azhar University, Cairo, 11371 Egypt
| | - Dibya Sundar Panda
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Al Jouf, Sakaka, 72341 Kingdom of Saudi Arabia
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041 India
| |
Collapse
|
14
|
Wang P, Jiang H, Boeren S, Dings H, Kulikova O, Bisseling T, Limpens E. A nuclear-targeted effector of Rhizophagus irregularis interferes with histone 2B mono-ubiquitination to promote arbuscular mycorrhisation. THE NEW PHYTOLOGIST 2021; 230:1142-1155. [PMID: 33507543 PMCID: PMC8048545 DOI: 10.1111/nph.17236] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 01/18/2021] [Indexed: 05/17/2023]
Abstract
Arguably, symbiotic arbuscular mycorrhizal (AM) fungi have the broadest host range of all fungi, being able to intracellularly colonise root cells in the vast majority of all land plants. This raises the question how AM fungi effectively deal with the immune systems of such a widely diverse range of plants. Here, we studied the role of a nuclear-localisation signal-containing effector from Rhizophagus irregularis, called Nuclear Localised Effector1 (RiNLE1), that is highly and specifically expressed in arbuscules. We showed that RiNLE1 is able to translocate to the host nucleus where it interacts with the plant core nucleosome protein histone 2B (H2B). RiNLE1 is able to impair the mono-ubiquitination of H2B, which results in the suppression of defence-related gene expression and enhanced colonisation levels. This study highlights a novel mechanism by which AM fungi can effectively control plant epigenetic modifications through direct interaction with a core nucleosome component. Homologues of RiNLE1 are found in a range of fungi that establish intimate interactions with plants, suggesting that this type of effector may be more widely recruited to manipulate host defence responses.
Collapse
Affiliation(s)
- Peng Wang
- Laboratory of Molecular BiologyWageningen University & ResearchWageningen6708 PBthe Netherlands
| | - Henan Jiang
- Laboratory of Molecular BiologyWageningen University & ResearchWageningen6708 PBthe Netherlands
| | - Sjef Boeren
- Laboratory of BiochemistryWageningen University & ResearchWageningen6708 WEthe Netherlands
| | - Harm Dings
- Laboratory of Molecular BiologyWageningen University & ResearchWageningen6708 PBthe Netherlands
| | - Olga Kulikova
- Laboratory of Molecular BiologyWageningen University & ResearchWageningen6708 PBthe Netherlands
| | - Ton Bisseling
- Laboratory of Molecular BiologyWageningen University & ResearchWageningen6708 PBthe Netherlands
| | - Erik Limpens
- Laboratory of Molecular BiologyWageningen University & ResearchWageningen6708 PBthe Netherlands
| |
Collapse
|
15
|
McNulty MJ, Xiong YM, Yates K, Karuppanan K, Hilzinger JM, Berliner AJ, Delzio J, Arkin AP, Lane NE, Nandi S, McDonald KA. Molecular pharming to support human life on the moon, mars, and beyond. Crit Rev Biotechnol 2021; 41:849-864. [PMID: 33715563 DOI: 10.1080/07388551.2021.1888070] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Space missions have always assumed that the risk of spacecraft malfunction far outweighs the risk of human system failure. This assumption breaks down for longer duration exploration missions and exposes vulnerabilities in space medical systems. Space agencies can no longer reduce the majority of the human health and performance risks through crew members selection process and emergency re-supply or evacuation. No mature medical solutions exist to address this risk. With recent advances in biotechnology, there is promise for lessening this risk by augmenting a space pharmacy with a biologically-based space foundry for the on-demand manufacturing of high-value medical products. Here we review the challenges and opportunities of molecular pharming, the production of pharmaceuticals in plants, as the basis of a space medical foundry to close the risk gap in current space medical systems. Plants have long been considered to be an important life support object in space and can now also be viewed as programmable factories in space. Advances in molecular pharming-based space foundries will have widespread applications in promoting simple and accessible pharmaceutical manufacturing on Earth.
Collapse
Affiliation(s)
- Matthew J McNulty
- Center for the Utilization of Biological Engineering in Space (CUBES), Berkeley, CA, USA.,Department of Chemical Engineering, University of California, Davis, CA, USA
| | - Yongao Mary Xiong
- Center for the Utilization of Biological Engineering in Space (CUBES), Berkeley, CA, USA.,Department of Chemical Engineering, University of California, Davis, CA, USA
| | - Kevin Yates
- Center for the Utilization of Biological Engineering in Space (CUBES), Berkeley, CA, USA.,Department of Chemical Engineering, University of California, Davis, CA, USA
| | - Kalimuthu Karuppanan
- Center for the Utilization of Biological Engineering in Space (CUBES), Berkeley, CA, USA.,Radcliffe Department of Medicine, Oxford University, Oxford, UK
| | - Jacob M Hilzinger
- Center for the Utilization of Biological Engineering in Space (CUBES), Berkeley, CA, USA.,Department of Bioengineering, University of California, Berkeley, CA, USA
| | - Aaron J Berliner
- Center for the Utilization of Biological Engineering in Space (CUBES), Berkeley, CA, USA.,Department of Bioengineering, University of California, Berkeley, CA, USA
| | - Jesse Delzio
- Center for the Utilization of Biological Engineering in Space (CUBES), Berkeley, CA, USA.,Department of Chemical Engineering, University of California, Davis, CA, USA
| | - Adam P Arkin
- Center for the Utilization of Biological Engineering in Space (CUBES), Berkeley, CA, USA.,Department of Bioengineering, University of California, Berkeley, CA, USA
| | - Nancy E Lane
- Center for Musculoskeletal Health, School of Medicine, University of California, Davis, CA, USA
| | - Somen Nandi
- Center for the Utilization of Biological Engineering in Space (CUBES), Berkeley, CA, USA.,Department of Chemical Engineering, University of California, Davis, CA, USA.,Global HealthShare® Initiative, University of California, Davis, CA, USA
| | - Karen A McDonald
- Center for the Utilization of Biological Engineering in Space (CUBES), Berkeley, CA, USA.,Department of Chemical Engineering, University of California, Davis, CA, USA.,Global HealthShare® Initiative, University of California, Davis, CA, USA
| |
Collapse
|
16
|
Reprogramming plant specialized metabolism by manipulating protein kinases. ABIOTECH 2021; 2:226-239. [PMID: 34377580 PMCID: PMC8209778 DOI: 10.1007/s42994-021-00053-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/05/2021] [Indexed: 02/08/2023]
Abstract
Being sessile, plants have evolved sophisticated mechanisms to balance between growth and defense to survive in the harsh environment. The transition from growth to defense is commonly achieved by factors, such as protein kinases (PKs) and transcription factors, that initiate signal transduction and regulate specialized metabolism. Plants produce an array of lineage-specific specialized metabolites for chemical defense and stress tolerance. Some of these molecules are also used by humans as drugs. However, many of these defense-responsive metabolites are toxic to plant cells and inhibitory to growth and development. Plants have, thus, evolved complex regulatory networks to balance the accumulation of the toxic metabolites. Perception of external stimuli is a vital part of the regulatory network. Protein kinase-mediated signaling activates a series of defense responses by phosphorylating the target proteins and translating the stimulus into downstream cellular signaling. As biosynthesis of specialized metabolites is triggered when plants perceive stimuli, a possible connection between PKs and specialized metabolism is well recognized. However, the roles of PKs in plant specialized metabolism have not received much attention until recently. Here, we summarize the recent advances in understanding PKs in plant specialized metabolism. We aim to highlight how the stimulatory signals are transduced, leading to the biosynthesis of corresponding metabolites. We discuss the post-translational regulation of specialized metabolism and provide insights into the mechanisms by which plants respond to the external signals. In addition, we propose possible strategies to increase the production of plant specialized metabolites in biotechnological applications using PKs.
Collapse
|
17
|
Castellanos-Arévalo AP, Estrada-Luna AA, Cabrera-Ponce JL, Valencia-Lozano E, Herrera-Ubaldo H, de Folter S, Blanco-Labra A, Délano-Frier JP. Agrobacterium rhizogenes-mediated transformation of grain (Amaranthus hypochondriacus) and leafy (A. hybridus) amaranths. PLANT CELL REPORTS 2020; 39:1143-1160. [PMID: 32430681 DOI: 10.1007/s00299-020-02553-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 05/07/2020] [Indexed: 06/11/2023]
Abstract
Transgenic A. hypochondriacus and A. hybridus roots were generated. Further, a distinct plant regeneration program via somatic embryos produced from hairy roots was established. Work was implemented to develop an optimized protocol for root genetic transformation of the three grain amaranth species and A. hybridus, their presumed ancestor. Transformation efficiency was species-specific, being higher in A. hypochondriacus and followed by A. hybridus. Amaranthus cruentus and A. caudatus remained recalcitrant. A reliable and efficient Agrobacteruim rhizogenes-mediated transformation of these species was established using cotyledon explants infected with the previously untested BVG strain. Optimal OD600 bacterial cell densities were 0.4 and 0.8 for A. hypochondriacus and A. hybridus, respectively. Hairy roots of both amaranth species were validated by the amplification of appropriate marker genes and, when pertinent, by monitoring green fluorescent protein emission or β-glucuronidase activity. Embryogenic calli were generated from A. hypochondriacus rhizoclones. Subsequent somatic embryo maturation and germination required the activation of cytokinin signaling, osmotic stress, red light, and calcium incorporation. A crucial step to ensure the differentiation of germinating somatic embryos into plantlets was their individualization and subcultivation in 5/5 media containing 5% sucrose, 5 g/L gelrite, and 0.2 mg/L 2-isopentenyladenine (2iP) previously acidified to pH 4.0 with phosphoric acid, followed by their transfer to 5/5 + 2iP media supplemented with 100 mg/L CaCl2. These steps were strictly red light dependent. This process represents a viable protocol for plant regeneration via somatic embryo germination from grain amaranth transgenic hairy roots. Its capacity to overcome the recalcitrance to genetic transformation characteristic of grain amaranth has the potential to significantly advance the knowledge of several unresolved biological aspects of grain amaranths.
Collapse
Affiliation(s)
- Andrea P Castellanos-Arévalo
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del I.P.N. (Cinvestav), Unidad Irapuato. Km 9.6 del Libramiento Norte Carretera Irapuato-León. Apartado Postal 629, C.P. 36824, Irapuato, Gto., México
| | - Andrés A Estrada-Luna
- Departamento de Ingeniería Genética, Cinvestav, Unidad Irapuato, Km 9.6 del Libramiento Norte Carretera Irapuato-León. Apartado Postal 629, C.P. 36824, Irapuato, Gto., México
| | - José L Cabrera-Ponce
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del I.P.N. (Cinvestav), Unidad Irapuato. Km 9.6 del Libramiento Norte Carretera Irapuato-León. Apartado Postal 629, C.P. 36824, Irapuato, Gto., México
| | - Eliana Valencia-Lozano
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del I.P.N. (Cinvestav), Unidad Irapuato. Km 9.6 del Libramiento Norte Carretera Irapuato-León. Apartado Postal 629, C.P. 36824, Irapuato, Gto., México
| | - Humberto Herrera-Ubaldo
- Unidad de Genómica Avanzada (Cinvestav, UGA-LANGEBIO), Km 9.6 del Libramiento Norte Carretera Irapuato-León. Apartado Postal 629, C.P. 36824, Irapuato, Gto., México
| | - Stefan de Folter
- Unidad de Genómica Avanzada (Cinvestav, UGA-LANGEBIO), Km 9.6 del Libramiento Norte Carretera Irapuato-León. Apartado Postal 629, C.P. 36824, Irapuato, Gto., México
| | - Alejandro Blanco-Labra
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del I.P.N. (Cinvestav), Unidad Irapuato. Km 9.6 del Libramiento Norte Carretera Irapuato-León. Apartado Postal 629, C.P. 36824, Irapuato, Gto., México
| | - John P Délano-Frier
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del I.P.N. (Cinvestav), Unidad Irapuato. Km 9.6 del Libramiento Norte Carretera Irapuato-León. Apartado Postal 629, C.P. 36824, Irapuato, Gto., México.
| |
Collapse
|
18
|
Damaj MB, Jifon JL, Woodard SL, Vargas-Bautista C, Barros GOF, Molina J, White SG, Damaj BB, Nikolov ZL, Mandadi KK. Unprecedented enhancement of recombinant protein production in sugarcane culms using a combinatorial promoter stacking system. Sci Rep 2020; 10:13713. [PMID: 32792533 PMCID: PMC7426418 DOI: 10.1038/s41598-020-70530-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 07/21/2020] [Indexed: 11/09/2022] Open
Abstract
Plants represent a safe and cost-effective platform for producing high-value proteins with pharmaceutical properties; however, the ability to accumulate these in commercially viable quantities is challenging. Ideal crops to serve as biofactories would include low-input, fast-growing, high-biomass species such as sugarcane. The objective of this study was to develop an efficient expression system to enable large-scale production of high-value recombinant proteins in sugarcane culms. Bovine lysozyme (BvLz) is a potent broad-spectrum antimicrobial enzyme used in the food, cosmetics and agricultural industries. Here, we report a novel strategy to achieve high-level expression of recombinant proteins using a combinatorial stacked promoter system. We demonstrate this by co-expressing BvLz under the control of multiple constitutive and culm-regulated promoters on separate expression vectors and combinatorial plant transformation. BvLz accumulation reached 1.4% of total soluble protein (TSP) (10.0 mg BvLz/kg culm mass) in stacked multiple promoter:BvLz lines, compared to 0.07% of TSP (0.56 mg/kg) in single promoter:BvLz lines. BvLz accumulation was further boosted to 11.5% of TSP (82.5 mg/kg) through event stacking by re-transforming the stacked promoter:BvLz lines with additional BvLz expression vectors. The protein accumulation achieved with the combinatorial promoter stacking expression system was stable in multiple vegetative propagations, demonstrating the feasibility of using sugarcane as a biofactory for producing high-value proteins and bioproducts.
Collapse
Affiliation(s)
- Mona B Damaj
- Texas A&M AgriLife Research and Extension Center, 2415 East US Highway 83, Weslaco, TX, 78596, USA.
| | - John L Jifon
- Texas A&M AgriLife Research and Extension Center, 2415 East US Highway 83, Weslaco, TX, 78596, USA
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, 77843-2133, USA
| | - Susan L Woodard
- National Center for Therapeutics Manufacturing, Texas A&M University, 100 Discovery Drive, College Station, TX, 77843-4482, USA
| | - Carol Vargas-Bautista
- Texas A&M AgriLife Research and Extension Center, 2415 East US Highway 83, Weslaco, TX, 78596, USA
- College of Medicine, Texas A&M University, 8447 Riverside Parkway, Bryan, TX, 77807, USA
| | - Georgia O F Barros
- BioSeparation Laboratory, Biological and Agricultural Engineering Department, College Station, TX, 77843-2117, USA
| | - Joe Molina
- Texas A&M AgriLife Research and Extension Center, 2415 East US Highway 83, Weslaco, TX, 78596, USA
| | - Steven G White
- BioSeparation Laboratory, Biological and Agricultural Engineering Department, College Station, TX, 77843-2117, USA
| | - Bassam B Damaj
- Innovus Pharmaceuticals, Inc., 8845 Rehco Road, San Diego, CA, 92121, USA
| | - Zivko L Nikolov
- BioSeparation Laboratory, Biological and Agricultural Engineering Department, College Station, TX, 77843-2117, USA
| | - Kranthi K Mandadi
- Texas A&M AgriLife Research and Extension Center, 2415 East US Highway 83, Weslaco, TX, 78596, USA.
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, 77843-2132, USA.
| |
Collapse
|
19
|
Ansari WA, Chandanshive SU, Bhatt V, Nadaf AB, Vats S, Katara JL, Sonah H, Deshmukh R. Genome Editing in Cereals: Approaches, Applications and Challenges. Int J Mol Sci 2020; 21:E4040. [PMID: 32516948 PMCID: PMC7312557 DOI: 10.3390/ijms21114040] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 12/13/2022] Open
Abstract
Over the past decades, numerous efforts were made towards the improvement of cereal crops mostly employing traditional or molecular breeding approaches. The current scenario made it possible to efficiently explore molecular understanding by targeting different genes to achieve desirable plants. To provide guaranteed food security for the rising world population particularly under vulnerable climatic condition, development of high yielding stress tolerant crops is needed. In this regard, technologies upgradation in the field of genome editing looks promising. Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 is a rapidly growing genome editing technique being effectively applied in different organisms, that includes both model and crop plants. In recent times CRISPR/Cas9 is being considered as a technology which revolutionized fundamental as well as applied research in plant breeding. Genome editing using CRISPR/Cas9 system has been successfully demonstrated in many cereal crops including rice, wheat, maize, and barley. Availability of whole genome sequence information for number of crops along with the advancement in genome-editing techniques provides several possibilities to achieve desirable traits. In this review, the options available for crop improvement by implementing CRISPR/Cas9 based genome-editing techniques with special emphasis on cereal crops have been summarized. Recent advances providing opportunities to simultaneously edit many target genes were also discussed. The review also addressed recent advancements enabling precise base editing and gene expression modifications. In addition, the article also highlighted limitations such as transformation efficiency, specific promoters and most importantly the ethical and regulatory issues related to commercial release of novel crop varieties developed through genome editing.
Collapse
Affiliation(s)
- Waquar A. Ansari
- Department of Botany, Savitribai Phule Pune University, Pune 411007, India; (W.A.A.); (S.U.C.); (V.B.)
| | - Sonali U. Chandanshive
- Department of Botany, Savitribai Phule Pune University, Pune 411007, India; (W.A.A.); (S.U.C.); (V.B.)
| | - Vacha Bhatt
- Department of Botany, Savitribai Phule Pune University, Pune 411007, India; (W.A.A.); (S.U.C.); (V.B.)
| | - Altafhusain B. Nadaf
- Department of Botany, Savitribai Phule Pune University, Pune 411007, India; (W.A.A.); (S.U.C.); (V.B.)
| | - Sanskriti Vats
- Agri-Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), Mohali 140306, India; (S.V.); (H.S.)
| | | | - Humira Sonah
- Agri-Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), Mohali 140306, India; (S.V.); (H.S.)
| | - Rupesh Deshmukh
- Agri-Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), Mohali 140306, India; (S.V.); (H.S.)
| |
Collapse
|
20
|
Vlad D, Abu-Jamous B, Wang P, Langdale JA. A modular steroid-inducible gene expression system for use in rice. BMC PLANT BIOLOGY 2019; 19:426. [PMID: 31615413 PMCID: PMC6794914 DOI: 10.1186/s12870-019-2038-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/13/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Chemically inducible systems that provide both spatial and temporal control of gene expression are essential tools, with many applications in plant biology, yet they have not been extensively tested in monocotyledonous species. RESULTS Using Golden Gate modular cloning, we have created a monocot-optimized dexamethasone (DEX)-inducible pOp6/LhGR system and tested its efficacy in rice using the reporter enzyme β-glucuronidase (GUS). The system is tightly regulated and highly sensitive to DEX application, with 6 h of induction sufficient to induce high levels of GUS activity in transgenic callus. In seedlings, GUS activity was detectable in the root after in vitro application of just 0.01 μM DEX. However, transgenic plants manifested severe developmental perturbations when grown on higher concentrations of DEX. The direct cause of these growth defects is not known, but the rice genome contains sequences with high similarity to the LhGR target sequence lacO, suggesting non-specific activation of endogenous genes by DEX induction. These off-target effects can be minimized by quenching with isopropyl β-D-1-thiogalactopyranoside (IPTG). CONCLUSIONS Our results demonstrate that the system is suitable for general use in rice, when the method of DEX application and relevant controls are tailored appropriately for each specific application.
Collapse
Affiliation(s)
- Daniela Vlad
- Department of Plant Sciences, University of Oxford, South Parks Rd, Oxford, OX1 3RB UK
| | - Basel Abu-Jamous
- Present address: Sensyne Health, Schrödinger Building, Heatley Road, Oxford Science Park, Oxford, OX4 4GE UK
| | - Peng Wang
- Present Address: Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
| | - Jane A. Langdale
- Department of Plant Sciences, University of Oxford, South Parks Rd, Oxford, OX1 3RB UK
| |
Collapse
|
21
|
Durut N, Mittelsten Scheid O. The Role of Noncoding RNAs in Double-Strand Break Repair. FRONTIERS IN PLANT SCIENCE 2019; 10:1155. [PMID: 31611891 PMCID: PMC6776598 DOI: 10.3389/fpls.2019.01155] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 08/23/2019] [Indexed: 06/10/2023]
Abstract
Genome stability is constantly threatened by DNA lesions generated by different environmental factors as well as endogenous processes. If not properly and timely repaired, damaged DNA can lead to mutations or chromosomal rearrangements, well-known reasons for genetic diseases or cancer in mammals, or growth abnormalities and/or sterility in plants. To prevent deleterious consequences of DNA damage, a sophisticated system termed DNA damage response (DDR) detects DNA lesions and initiates DNA repair processes. In addition to many well-studied canonical proteins involved in this process, noncoding RNA (ncRNA) molecules have recently been discovered as important regulators of the DDR pathway, extending the broad functional repertoire of ncRNAs to the maintenance of genome stability. These ncRNAs are mainly connected with double-strand breaks (DSBs), the most dangerous type of DNA lesions. The possibility to intentionally generate site-specific DSBs in the genome with endonucleases constitutes a powerful tool to study, in vivo, how DSBs are processed and how ncRNAs participate in this crucial event. In this review, we will summarize studies reporting the different roles of ncRNAs in DSB repair and discuss how genome editing approaches, especially CRISPR/Cas systems, can assist DNA repair studies. We will summarize knowledge concerning the functional significance of ncRNAs in DNA repair and their contribution to genome stability and integrity, with a focus on plants.
Collapse
|
22
|
Zheng B, Thomson B, Wellmer F. A Specific Knockdown of Transcription Factor Activities in Arabidopsis. Methods Mol Biol 2018; 1830:81-92. [PMID: 30043365 DOI: 10.1007/978-1-4939-8657-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Transcription factors are pivotal for the control of development and the response of organisms to changes in the environment. Therefore, a detailed understanding of their functions is of central importance for biology. Over the years, different experimental methods have been developed to study the activities of transcription factors in plants. These methods include perturbation assays, where the activity of a given transcription factor is disrupted and subsequently, the resulting effects are monitored using molecular, genomic, or physiological approaches. Perturbation assays can also be used to distinguish primary roles of transcription factors of interest from secondary effects. Thus, molecular genetic experiments after perturbation can be advantageous or even necessary for the precise understanding of transcription factor function at a certain stage of plant development or in a single tissue or organ type. In this chapter, we describe several commonly used techniques to knock down transcription factor activities and provide detailed information on how those techniques are employed in the model plant Arabidopsis thaliana.
Collapse
Affiliation(s)
- Beibei Zheng
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Bennett Thomson
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Frank Wellmer
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
23
|
Wang JP, Liu B, Sun Y, Chiang VL, Sederoff RR. Enzyme-Enzyme Interactions in Monolignol Biosynthesis. FRONTIERS IN PLANT SCIENCE 2018; 9:1942. [PMID: 30693007 PMCID: PMC6340093 DOI: 10.3389/fpls.2018.01942] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 12/13/2018] [Indexed: 05/18/2023]
Abstract
The enzymes that comprise the monolignol biosynthetic pathway have been studied intensively for more than half a century. A major interest has been the role of pathway in the biosynthesis of lignin and the role of lignin in the formation of wood. The pathway has been typically conceived as linear steps that convert phenylalanine into three major monolignols or as a network of enzymes in a metabolic grid. Potential interactions of enzymes have been investigated to test models of metabolic channeling or for higher order interactions. Evidence for enzymatic or physical interactions has been fragmentary and limited to a few enzymes studied in different species. Only recently the entire pathway has been studied comprehensively in any single plant species. Support for interactions comes from new studies of enzyme activity, co-immunoprecipitation, chemical crosslinking, bimolecular fluorescence complementation, yeast 2-hybrid functional screening, and cell type-specific gene expression based on light amplification by stimulated emission of radiation capture microdissection. The most extensive experiments have been done on differentiating xylem of Populus trichocarpa, where genomic, biochemical, chemical, and cellular experiments have been carried out. Interactions affect the rate, direction, and specificity of both 3 and 4-hydroxylation in the monolignol biosynthetic pathway. Three monolignol P450 mono-oxygenases form heterodimeric and heterotetrameric protein complexes that activate specific hydroxylation of cinnamic acid derivatives. Other interactions include regulatory kinetic control of 4-coumarate CoA ligases through subunit specificity and interactions between a cinnamyl alcohol dehydrogenase and a cinnamoyl-CoA reductase. Monolignol enzyme interactions with other pathway proteins have been associated with biotic and abiotic stress response. Evidence challenging or supporting metabolic channeling in this pathway will be discussed.
Collapse
Affiliation(s)
- Jack P. Wang
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, United States
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Baoguang Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- Department of Forestry, Beihua University, Jilin, China
| | - Yi Sun
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Vincent L. Chiang
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, United States
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Ronald R. Sederoff
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, United States
- *Correspondence: Ronald R. Sederoff,
| |
Collapse
|
24
|
Aggarwal P, Challa KR, Rath M, Sunkara P, Nath U. Generation of Inducible Transgenic Lines of Arabidopsis Transcription Factors Regulated by MicroRNAs. Methods Mol Biol 2018; 1830:61-79. [PMID: 30043364 DOI: 10.1007/978-1-4939-8657-6_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Transcription factors play key regulatory roles in all the life processes across kingdoms. In plants, the genome of a typical model species such as Arabidopsis thaliana encodes over 1500 transcription factors that regulate the expression dynamics of all the genes in time and space. Therefore, studying their function by analyzing the loss and gain-of-function lines is of prime importance in basic plant biology and its agricultural application. However, the current approach of knocking out genes often causes embryonic lethal phenotype, while inactivating one or two members of a redundant gene family yields little phenotypic changes, thereby making the functional analysis a technically challenging task. In such cases, inducible knock-down or overexpression of transcription factors appears to be a more effective approach. Restricting the transcription factors in the cytoplasm by fusing them with animal glucocorticoid/estrogen receptors (GR/ER) and then re-localizing them to the nucleus by external application of animal hormone analogues has been a useful method of gene function analysis in the model plants. In this chapter, we describe the recent advancements in the GR and ER expression systems and their use in analyzing the function of transcription factors in Arabidopsis.
Collapse
Affiliation(s)
- Pooja Aggarwal
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Krishna Reddy Challa
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Monalisha Rath
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Preethi Sunkara
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Utpal Nath
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India.
| |
Collapse
|
25
|
De Guglielmo C ZM, Fernandez Da Silva R. Principales promotores utilizados en la transformación genética de plantas. REVISTA COLOMBIANA DE BIOTECNOLOGÍA 2016. [DOI: 10.15446/rev.colomb.biote.v18n2.61529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
El conocimiento pleno de los promotores determina el éxito en la obtención de nuevos cultivares de plantas a través de técnicas biotecnológicas, ya que dicha secuencia del ADN regula la transcripción de otras regiones adyacentes o cercanas, encontrándose los siguientes promotores: constitutivos, tejido-específicos o estadio-específicos, inducibles y sintéticos. En esta revisión se resume de manera precisa los conceptos, ventajas y limitaciones de los distintos tipos de promotores, con ejemplos claros de ello.Palabras clave: promotor, biotecnología vegetal, transcripción genética.
Collapse
|
26
|
Buyel JF. Controlling the interplay between Agrobacterium tumefaciens and plants during the transient expression of proteins. Bioengineered 2015; 6:242-4. [PMID: 25997443 PMCID: PMC4601233 DOI: 10.1080/21655979.2015.1052920] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 05/13/2015] [Accepted: 05/15/2015] [Indexed: 12/31/2022] Open
Abstract
In May 2012, the first plant-derived biopharmaceutical protein received full regulatory approval for therapeutic use in humans. Although plant-based expression systems have many advantages, they can suffer from low expression levels and, depending on the species, the presence of potentially toxic secondary metabolites. Transient expression mediated by Agrobacterium tumefaciens can be used to increase product yields but may also increase the concentration of secondary metabolites generated by plant defense responses. We have recently investigated the sequence of defense responses triggered by A. tumefaciens in tobacco plants and considered how these can be modulated by the transient expression of type III effectors from Pseudomonas syringae. Here we discuss the limitations of this approach, potential solutions and additional issues concerning transient expression in plants that should be investigated in greater detail.
Collapse
Affiliation(s)
- J F Buyel
- Institute for Molecular Biotechnology; RWTH Aachen University; Aachen, Germany
- Fraunhofer-Institute for Molecular Biology and Applied Ecology IME; Aachen, Germany
| |
Collapse
|
27
|
Mileshina D, Niazi AK, Wyszko E, Szymanski M, Val R, Valentin C, Barciszewski J, Dietrich A. Mitochondrial targeting of catalytic RNAs. Methods Mol Biol 2015; 1265:227-54. [PMID: 25634279 DOI: 10.1007/978-1-4939-2288-8_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Genetic transformation of mitochondria in multicellular eukaryotes has remained inaccessible, hindering fundamental investigations and applications to gene therapy or biotechnology. In this context, we have developed a strategy to target nuclear transgene-encoded RNAs into mitochondria in plants. We describe here mitochondrial targeting of trans-cleaving ribozymes destined to knockdown organelle RNAs for regulation studies and inverse genetics and biotechnological purposes. The design and functional assessment of chimeric RNAs combining the ribozyme and the mitochondrial shuttle are detailed, followed by all procedures to prepare constructs for in vivo expression, generate stable plant transformants, and establish target RNA knockdown in mitochondria.
Collapse
Affiliation(s)
- Daria Mileshina
- Institut de Biologie Moléculaire des Plantes, CNRS and Université de Strasbourg, 12 rue du Général Zimmer, 67084, Strasbourg, France
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Lombardo L. Genetic use restriction technologies: a review. PLANT BIOTECHNOLOGY JOURNAL 2014; 12:995-1005. [PMID: 25185773 DOI: 10.1111/pbi.12242] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Revised: 07/16/2014] [Accepted: 07/17/2014] [Indexed: 05/23/2023]
Abstract
Genetic use restriction technologies (GURTs), developed to secure return on investments through protection of plant varieties, are among the most controversial and opposed genetic engineering biotechnologies as they are perceived as a tool to force farmers to depend on multinational corporations' seed monopolies. In this work, the currently proposed strategies are described and compared with some of the principal techniques implemented for preventing transgene flow and/or seed saving, with a simultaneous analysis of the future perspectives of GURTs taking into account potential benefits, possible impacts on farmers and local plant genetic resources (PGR), hypothetical negative environmental issues and ethical concerns related to intellectual property that have led to the ban of this technology.
Collapse
Affiliation(s)
- Luca Lombardo
- Department of Crop Systems, Forestry and Environmental Sciences, University of Basilicata, Potenza, Italy
| |
Collapse
|
29
|
Knowles SM, Lu SX, Tobin EM. Pulsed induction of circadian clock genes in Arabidopsis seedlings. Methods Mol Biol 2014; 1158:203-8. [PMID: 24792053 DOI: 10.1007/978-1-4939-0700-7_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
The Alc-inducible system is a simple, yet effective, "gene switch" that can be used to transiently induce gene expression in Arabidopsis. Here we provide a protocol for using the Alc-inducible system to give a pulse in expression of a circadian clock gene in transgenic seedlings. The line we use as an example harbors an Alc-inducible copy of the CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) gene (Alc∷CCA1). Alc∷CCA1 seedlings are grown on solid MS medium and subsequently treated with ethanol vapor. Because the ethanol is quickly absorbed into the medium upon exposure, the seedlings are moved to fresh plates following treatment to avoid continuous induction. After the induction, the seedlings are harvested over a time-course for future total RNA and/or protein extraction that can be used for subsequent gene expression analyses.
Collapse
Affiliation(s)
- Stephen M Knowles
- Department of Molecular, Cell and Developmental Biology, University of California, Office 3313A Life Sciences, Los Angeles, CA, 90095-1606, USA,
| | | | | |
Collapse
|
30
|
Coego A, Brizuela E, Castillejo P, Ruíz S, Koncz C, del Pozo JC, Piñeiro M, Jarillo JA, Paz-Ares J, León J. The TRANSPLANTA collection of Arabidopsis lines: a resource for functional analysis of transcription factors based on their conditional overexpression. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 77:944-53. [PMID: 24456507 DOI: 10.1111/tpj.12443] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 01/08/2014] [Accepted: 01/13/2014] [Indexed: 05/07/2023]
Abstract
Transcription factors (TFs) are key regulators of gene expression in all organisms. In eukaryotes, TFs are often represented by functionally redundant members of large gene families. Overexpression might prove a means to unveil the biological functions of redundant TFs; however, constitutive overexpression of TFs frequently causes severe developmental defects, preventing their functional characterization. Conditional overexpression strategies help to overcome this problem. Here, we report on the TRANSPLANTA collection of Arabidopsis lines, each expressing one of 949 TFs under the control of a β-estradiol-inducible promoter. Thus far, 1636 independent homozygous lines, representing an average of 2.6 lines for every TF, have been produced for the inducible expression of 634 TFs. Along with a GUS-GFP reporter, randomly selected TRANSPLANTA lines were tested and confirmed for conditional transgene expression upon β-estradiol treatment. As a proof of concept for the exploitation of this resource, β-estradiol-induced proliferation of root hairs, dark-induced senescence, anthocyanin accumulation and dwarfism were observed in lines conditionally expressing full-length cDNAs encoding RHD6, WRKY22, MYB123/TT2 and MYB26, respectively, in agreement with previously reported phenotypes conferred by these TFs. Further screening performed with other TRANSPLANTA lines allowed the identification of TFs involved in different plant biological processes, illustrating that the collection is a powerful resource for the functional characterization of TFs. For instance, ANAC058 and a TINY/AP2 TF were identified as modulators of ABA-mediated germination potential, and RAP2.10/DEAR4 was identified as a regulator of cell death in the hypocotyl-root transition zone. Seeds of TRANSPLANTA lines have been deposited at the Nottingham Arabidopsis Stock Centre for further distribution.
Collapse
Affiliation(s)
- Alberto Coego
- Instituto de Biología Molecular y Celular de Plantas, Valencia (CSIC-UPV), CPI, Edificio 8E, Av. Fausto Elio s/n, 46022, Valencia, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Schäfer M, Brütting C, Gase K, Reichelt M, Baldwin I, Meldau S. 'Real time' genetic manipulation: a new tool for ecological field studies. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:506-18. [PMID: 23906159 PMCID: PMC4190501 DOI: 10.1111/tpj.12301] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 05/05/2013] [Accepted: 07/25/2013] [Indexed: 05/21/2023]
Abstract
Field experiments with transgenic plants often reveal the functional significance of genetic traits that are important for the performance of the plants in their natural environments. Until now, only constitutive overexpression, ectopic expression and gene silencing methods have been used to analyze gene-related phenotypes in natural habitats. These methods do not allow sufficient control over gene expression for the study of ecological interactions in real time, of genetic traits that play essential roles in development, or of dose-dependent effects. We applied the sensitive dexamethasone (DEX)-inducible pOp6/LhGR expression system to the ecological model plant Nicotiana attenuata and established a lanolin-based DEX application method to facilitate ectopic gene expression and RNA interference-mediated gene silencing in the field and under challenging conditions (e.g. high temperature, wind and UV radiation). Fully established field-grown plants were used to silence phytoene desaturase and thereby cause photobleaching only in specific plant sectors, and to activate expression of the cytokinin (CK) biosynthesis gene isopentenyl transferase (ipt). We used ipt expression to analyze the role of CKs in both the glasshouse and the field to understand resistance to the native herbivore Tupiocoris notatus, which attacks plants at small spatial scales. By spatially restricting ipt expression and elevating CK levels in single leaves, damage by T. notatus increased, demonstrating the role of CKs in this plant-herbivore interaction at a small scale. As the arena of most ecological interactions is highly constrained in time and space, these tools will advance the genetic analysis of dynamic traits that matter for plant performance in nature.
Collapse
Affiliation(s)
- Martin Schäfer
- Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Hans Knöll Str. 8, Jena 07745, Germany
| | - Christoph Brütting
- Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Hans Knöll Str. 8, Jena 07745, Germany
| | - Klaus Gase
- Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Hans Knöll Str. 8, Jena 07745, Germany
| | - Michael Reichelt
- Max Planck Institute for Chemical Ecology, Department of Biochemistry, Hans Knöll Str. 8, Jena 07745, Germany
| | - Ian Baldwin
- Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Hans Knöll Str. 8, Jena 07745, Germany
| | - Stefan Meldau
- Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Hans Knöll Str. 8, Jena 07745, Germany
- German Centre for integrative Biodiversity Research (iDiv), Deutscher Platz 5, Leipzig 04107, Germany
| |
Collapse
|
32
|
Nuthikattu S, McCue AD, Panda K, Fultz D, DeFraia C, Thomas EN, Slotkin RK. The initiation of epigenetic silencing of active transposable elements is triggered by RDR6 and 21-22 nucleotide small interfering RNAs. PLANT PHYSIOLOGY 2013; 162:116-31. [PMID: 23542151 PMCID: PMC3641197 DOI: 10.1104/pp.113.216481] [Citation(s) in RCA: 217] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 03/28/2013] [Indexed: 05/18/2023]
Abstract
Transposable elements (TEs) are mobile fragments of DNA that are repressed in both plant and animal genomes through the epigenetic inheritance of repressed chromatin and expression states. The epigenetic silencing of TEs in plants is mediated by a process of RNA-directed DNA methylation (RdDM). Two pathways of RdDM have been identified: RNA Polymerase IV (Pol IV)-RdDM, which has been shown to be responsible for the de novo initiation, corrective reestablishment, and epigenetic maintenance of TE and/or transgene silencing; and RNA-dependent RNA Polymerase6 (RDR6)-RdDM, which was recently identified as necessary for maintaining repression for a few TEs. We have further characterized RDR6-RdDM using a genome-wide search to identify TEs that generate RDR6-dependent small interfering RNAs. We have determined that TEs only produce RDR6-dependent small interfering RNAs when transcriptionally active, and we have experimentally identified two TE subfamilies as direct targets of RDR6-RdDM. We used these TEs to test the function of RDR6-RdDM in assays for the de novo initiation, corrective reestablishment, and maintenance of TE silencing. We found that RDR6-RdDM plays no role in maintaining TE silencing. Rather, we found that RDR6 and Pol IV are two independent entry points into RdDM and epigenetic silencing that perform distinct functions in the silencing of TEs: Pol IV-RdDM functions to maintain TE silencing and to initiate silencing in an RNA Polymerase II expression-independent manner, while RDR6-RdDM functions to recognize active Polymerase II-derived TE mRNA transcripts to both trigger and correctively reestablish TE methylation and epigenetic silencing.
Collapse
|