1
|
Zhang Q, Liu N, Wang J, Liu Y, Wang K, Zhang J, Pan X. The Recent Advance of Cell-Penetrating and Tumor-Targeting Peptides as Drug Delivery Systems Based on Tumor Microenvironment. Mol Pharm 2023; 20:789-809. [PMID: 36598861 DOI: 10.1021/acs.molpharmaceut.2c00629] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cancer has become the primary reason for industrial countries death. Although first-line treatments have achieved remarkable results in inhibiting tumors, they could have serious side effects because of insufficient selectivity. Therefore, specific localization of tumor cells is currently the main desire for cancer treatment. In recent years, cell-penetrating peptides (CPPs), as a kind of promising delivery vehicle, have attracted much attention because they mediate the high-efficiency import of large quantities of cargos in vivo and vitro. Unfortunately, the poor targeting of CPPs is still a barrier to their clinical application. In order to solve this problem, researchers use the various characteristics of tumor microenvironment and multiple receptors to improve the specificity toward tumors. This review focuses on the characteristics of the tumor microenvironment, and introduces the development of strategies and peptides based on these characteristics as drug delivery system in the tumor-targeted therapy.
Collapse
Affiliation(s)
- Qingqing Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Nanxin Liu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Jin Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yuying Liu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Kai Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Jie Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiaoyan Pan
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
2
|
Chen R, Lin S, Chen X. The promising novel therapies for familial hypercholesterolemia. J Clin Lab Anal 2022; 36:e24552. [PMID: 35712827 PMCID: PMC9279988 DOI: 10.1002/jcla.24552] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/27/2022] [Accepted: 05/28/2022] [Indexed: 02/06/2023] Open
Abstract
Background The incidence of premature atherosclerotic cardiovascular disease in familial hypercholesterolemia (FH) is high. In recent years, novel therapeutic modalities have shown significant lipid‐lowering ability. In this paper, we summarize the recent developments in novel therapies for FH via the treatment of different targets and discuss the characteristics of each targeted therapy. Based on the process of protein synthesis, we attempt to summarize the direct‐effect targets including protein, RNA, and DNA. Methods For this systematic review, relevant studies are assessed by searching in several databases including PubMed, Web of Science, Scopus, and Google Scholar. The publications of original researches are considered for screening. Results Most drugs are protein‐targeted such as molecule‐based and monoclonal antibodies, including statins, ezetimibe, alirocumab, evolocumab, and evinacumab. Both antisense oligonucleotide (ASO) and small interfering RNA (siRNA) approaches, such as mipomersen, vupanorsen, inclisiran, and ARO‐ANG3, are designed to reduce the number of mRNA transcripts and then degrade proteins. DNA‐targeted therapies such as adeno‐associated virus or CRISPR–Cas9 modification could be used to deliver or edit genes to address a genetic deficiency and improve the related phenotype. Conclusion While the therapies based on different targets including protein, RNA, and DNA are on different stages of development, the mechanisms of these novel therapies may provide new ideas for precision medicine.
Collapse
Affiliation(s)
- Ruoyu Chen
- School of Medicine of Ningbo University, Ningbo, China
| | - Shaoyi Lin
- The Affiliated Ningbo First Hospital, School of Medicine of Ningbo University, Ningbo, China
| | - Xiaomin Chen
- The Affiliated Ningbo First Hospital, School of Medicine of Ningbo University, Ningbo, China.,Ningbo First Hospital Affiliated to School of Medicine of Zhejiang University, Ningbo, China
| |
Collapse
|
3
|
Klabenkova K, Fokina A, Stetsenko D. Chemistry of Peptide-Oligonucleotide Conjugates: A Review. Molecules 2021; 26:5420. [PMID: 34500849 PMCID: PMC8434111 DOI: 10.3390/molecules26175420] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 12/25/2022] Open
Abstract
Peptide-oligonucleotide conjugates (POCs) represent one of the increasingly successful albeit costly approaches to increasing the cellular uptake, tissue delivery, bioavailability, and, thus, overall efficiency of therapeutic nucleic acids, such as, antisense oligonucleotides and small interfering RNAs. This review puts the subject of chemical synthesis of POCs into the wider context of therapeutic oligonucleotides and the problem of nucleic acid drug delivery, cell-penetrating peptide structural types, the mechanisms of their intracellular transport, and the ways of application, which include the formation of non-covalent complexes with oligonucleotides (peptide additives) or covalent conjugation. The main strategies for the synthesis of POCs are viewed in detail, which are conceptually divided into (a) the stepwise solid-phase synthesis approach and (b) post-synthetic conjugation either in solution or on the solid phase, especially by means of various click chemistries. The relative advantages and disadvantages of both strategies are discussed and compared.
Collapse
Affiliation(s)
- Kristina Klabenkova
- Faculty of Physics, Novosibirsk State University, 630090 Novosibirsk, Russia; (K.K.); (D.S.)
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Branch, 630090 Novosibirsk, Russia
| | - Alesya Fokina
- Faculty of Physics, Novosibirsk State University, 630090 Novosibirsk, Russia; (K.K.); (D.S.)
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Branch, 630090 Novosibirsk, Russia
| | - Dmitry Stetsenko
- Faculty of Physics, Novosibirsk State University, 630090 Novosibirsk, Russia; (K.K.); (D.S.)
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Branch, 630090 Novosibirsk, Russia
| |
Collapse
|
4
|
Hakobyan AV, Burakova EA, Arabyan EA, Fokina AA, Kotsinyan AR, Vasilyeva SV, Zakaryan OS, Stetsenko DA. Antiviral Activity of Nanocomplexes of Antisense Oligonucleotides Targeting VP72 Protein in Vero Cells Infected by African Swine Fever Virus. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162021020035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Gomes de Oliveira AG, Dubovichenko MV, ElDeeb AA, Wanjohi J, Zablotskaya S, Kolpashchikov DM. RNA-Cleaving DNA Thresholder Controlled by Concentrations of miRNA Cancer Marker. Chembiochem 2021; 22:1750-1754. [PMID: 33433948 DOI: 10.1002/cbic.202000769] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/30/2020] [Indexed: 11/10/2022]
Abstract
Oligonucleotide gene therapy (OGT) agents suppress specific mRNAs in cells and thus reduce the expression of targeted genes. The ability to unambiguously distinguish cancer from healthy cells can solve the low selectivity problem of OGT agents. Cancer RNA markers are expressed in both healthy and cancer cells with a higher expression level in cancer cells. We have designed a DNA-based construct, named DNA thresholder (DTh) that cleaves targeted RNA only at high concentrations of cancer marker RNA and demonstrates low cleavage activity at low marker concentrations. The RNA-cleaving activity can be adjusted within one order of magnitude of the cancer marker RNA concentration by simply redesigning DTh. Importantly, DTh recognizes cancer marker RNA, while cleaving targeted RNA; this offers a possibility to suppress vital genes exclusively in cancer cells, thus triggering their death. DTh is a prototype of computation-inspired molecular device for controlling gene expression and cancer treatment.
Collapse
Affiliation(s)
- Andrey Giovanni Gomes de Oliveira
- SCAMT institute, Laboratory of Molecular Robotics and Biosensor Materials, ITMO University, 9 Lomonosova Str., 191002, St. Petersburg, Russian Federation
| | - Mikhail V Dubovichenko
- SCAMT institute, Laboratory of Molecular Robotics and Biosensor Materials, ITMO University, 9 Lomonosova Str., 191002, St. Petersburg, Russian Federation
| | - Ahmed A ElDeeb
- SCAMT institute, Laboratory of Molecular Robotics and Biosensor Materials, ITMO University, 9 Lomonosova Str., 191002, St. Petersburg, Russian Federation
| | - Joseph Wanjohi
- SCAMT institute, Laboratory of Molecular Robotics and Biosensor Materials, ITMO University, 9 Lomonosova Str., 191002, St. Petersburg, Russian Federation
| | - Sofia Zablotskaya
- SCAMT institute, Laboratory of Molecular Robotics and Biosensor Materials, ITMO University, 9 Lomonosova Str., 191002, St. Petersburg, Russian Federation
| | - Dmitry M Kolpashchikov
- SCAMT institute, Laboratory of Molecular Robotics and Biosensor Materials, ITMO University, 9 Lomonosova Str., 191002, St. Petersburg, Russian Federation.,Chemistry Department, University of Central Florida, 32816-2366, Orlando, FL, USA.,Burnett School of Biomedical Sciences, University of Central Florida, 32816, Orlando, FL, USA
| |
Collapse
|
6
|
Sakamuri S, Liu D, Eltepu L, Liu B, Reboton LJ, Preston R, Bradshaw CW. Identification of a Tricyclic P III Chiral Auxiliary for Solid-Supported Synthesis of Stereopure Phosphorothioate-Containing Oligonucleotides. Chembiochem 2020; 21:1298-1303. [PMID: 31863718 DOI: 10.1002/cbic.201900631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/19/2019] [Indexed: 12/27/2022]
Abstract
Since the recognition of oligonucleotides as a therapeutic modality, significant work has been devoted to improving therapeutic properties, including nuclease stability. Phosphorothioate (PS) modifications of phosphodiesters are one of the most explored chemical modification and integral to currently approved oligonucleotide therapeutics, including antisense oligonucleotides (ASOs) and short interfering RNAs (siRNAs). Insertion of sulfur into the phosphate bridge in an n-mer leads to 2n isomeric mixtures of PSs, with different nuclease stability and protein-binding properties. Efforts to create stereopure PS-containing oligonucleotides has spurred interest in identifying new synthetic methods. Herein, work on a novel and practical tricyclic PIII chiral auxiliary and its application in solid-supported synthesis of stereopure PS-containing oligonucleotides is reported.
Collapse
Affiliation(s)
- Sukumar Sakamuri
- Solstice Biologics, 9535 Waples Street, San Diego, CA, 92121, USA
| | - Dingguo Liu
- Solstice Biologics, 9535 Waples Street, San Diego, CA, 92121, USA
| | - Laxman Eltepu
- Solstice Biologics, 9535 Waples Street, San Diego, CA, 92121, USA
| | - Bin Liu
- Solstice Biologics, 9535 Waples Street, San Diego, CA, 92121, USA
| | - Lisa Jo Reboton
- Solstice Biologics, 9535 Waples Street, San Diego, CA, 92121, USA
| | - Ryan Preston
- Solstice Biologics, 9535 Waples Street, San Diego, CA, 92121, USA
| | - Curt W Bradshaw
- Solstice Biologics, 9535 Waples Street, San Diego, CA, 92121, USA
| |
Collapse
|
7
|
Ma L, Yan Y, Bai Y, Yang Y, Pan Y, Gang X, Karnes RJ, Zhang J, Lv Q, Wu Q, Huang H. Overcoming EZH2 Inhibitor Resistance by Taxane in PTEN-Mutated Cancer. Am J Cancer Res 2019; 9:5020-5034. [PMID: 31410199 PMCID: PMC6691386 DOI: 10.7150/thno.34700] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 06/07/2019] [Indexed: 12/24/2022] Open
Abstract
Rationale: The Polycomb group (PcG) protein EZH2 is implicated in cancer progression due to its frequent overexpression in many cancer types and therefore is a promising therapeutic target. Forkhead box transcription factor-1 (FOXO1) is a tumor suppressor that is often transcriptionally downregulated in human cancers such as prostate cancer although the underlying regulatory mechanisms remain elusive. Methods: Analysis of EZH2 ChIP-seq and ChIP-on-chip data in various cell types was performed. ChIP-qPCR, RT-qPCR, and western blot analyses were conducted to determine the mechanism by which EZH2 represses FOXO1 expression. Immunohistochemistry was employed to assess the correlation between EZH2 and FOXO1 protein expression in prostate cancer patient specimens. In vitro MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) and animal experiments were performed to determine the anti-cancer efficacy of EZH2 inhibitor alone or in combination of docetaxel, a chemotherapy agent of the taxane family, and dependency of the efficacy on FOXO1 expression. Results: We demonstrated that EZH2 binds to the FOXO1 gene promoter. EZH2 represses FOXO1 gene expression at the transcriptional level. EZH2 protein level inversely correlated with FOXO1 protein expression in prostate cancer patient specimens. This repression requires the methyltransferase activity and the functional PRC2 complex. While effectively inducing loss of viability of PTEN-positive 22Rv1 prostate cancer cells, EZH2 inhibitor failed to inhibit growth of PTEN-negative C4-2 prostate cancer cells. Co-treatment with docetaxel overcame EZH2 inhibitor resistance in PTEN-negative cancer cells in vitro and in mice. This effect was largely mediated by docetaxel-induced nuclear localization and activation of FOXO1. Conclusions: This study identifies FOXO1 as a bona fide repression target of EZH2 and an essential mediator of EZH2 inhibition-induced cell death. Our findings suggest that EZH2 repression of FOXO1 can be targeted by EZH2 inhibitor as a monotherapy for PTEN-proficient cancers or in combination with taxane for treatment of cancers with PTEN mutation or deletion.
Collapse
|
8
|
Droplet Digital PCR Detection of the Erythropoietin Transgene from Horse Plasma and Urine for Gene-Doping Control. Genes (Basel) 2019; 10:genes10030243. [PMID: 30901981 PMCID: PMC6471249 DOI: 10.3390/genes10030243] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/16/2019] [Accepted: 03/16/2019] [Indexed: 02/08/2023] Open
Abstract
Indiscriminate genetic manipulation to improve athletic ability is a major threat to human sports and the horseracing industry, in which methods involving gene-doping, such as transgenesis, should be prohibited to ensure fairness. Therefore, development of methods to detect indiscriminate genetic manipulation are urgently needed. Here, we developed a highly sensitive method to detect horse erythropoietin (EPO) transgenes using droplet digital PCR (ddPCR). We designed two TaqMan probe/primer sets, and the EPO transgene was cloned into a plasmid for use as a model. We extracted the spiked EPO transgene from horse plasma and urine via magnetic beads, followed by ddPCR amplification for absolute quantification and transgene detection. The results indicated high recovery rates (at least ~60% and ~40% in plasma and urine, respectively), suggesting successful detection of the spiked transgene at concentrations of >130 and 200 copies/mL of plasma and urine, respectively. Additionally, successful detection was achieved following intramuscular injection of 20 mg of the EPO transgene. This represents the first study demonstrating a method for detecting the EPO transgene in horse plasma and urine, with our results demonstrating its efficacy for promoting the control of gene-doping in the horseracing industry.
Collapse
|
9
|
Huang DJ, Cao T, Huang ZM, Wu Z, Tang LJ, Jiang JH. Crosslinking catalytic hairpin assembly for high-contrast imaging of multiple mRNAs in living cells. Chem Commun (Camb) 2019; 55:3899-3902. [DOI: 10.1039/c9cc01033e] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A novel DNA nanotetrad mediated crosslinking catalytic hairpin assembly has been developed for high-contrast imaging of multiple mRNAs in living cells.
Collapse
Affiliation(s)
- Du-Juan Huang
- Institute of Chemical Biology and Nanomedicine
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
| | - Ting Cao
- Institute of Chemical Biology and Nanomedicine
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
| | - Zhi-Mei Huang
- Institute of Chemical Biology and Nanomedicine
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
| | - Zhenkun Wu
- Institute of Chemical Biology and Nanomedicine
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
| | - Li-Juan Tang
- Institute of Chemical Biology and Nanomedicine
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
| | - Jian-Hui Jiang
- Institute of Chemical Biology and Nanomedicine
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
| |
Collapse
|
10
|
Tozaki T, Karasawa K, Minamijima Y, Ishii H, Kikuchi M, Kakoi H, Hirota KI, Kusano K, Nagata SI. Detection of phosphorothioated (PS) oligonucleotides in horse plasma using a product ion (m/z 94.9362) derived from the PS moiety for doping control. BMC Res Notes 2018; 11:770. [PMID: 30373660 PMCID: PMC6206624 DOI: 10.1186/s13104-018-3885-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 10/25/2018] [Indexed: 01/19/2023] Open
Abstract
OBJECTIVE Clinical research on gene therapy has advanced the field of veterinary medicine, and gene doping, which is the illegal use of gene therapy, has become a major concern in horseracing. Since the International Federation of Horseracing Authorities defined the administration of oligonucleotides and its analogues as a genetic therapy in 2017, the development of therapeutic nucleotide-detection techniques has become an urgent need. Most currently marketed and developed oligonucleotide therapeutics for humans consist of modified nucleotides to increase stability, and phosphorothioate (PS) modification is common. RESULTS We demonstrated the specific detection of phosphorothioated oligonucleotides (PSOs) using LC/MS/MS. PSOs produce the specific product ion (m/z 94.9362) derived from PS moiety. PS is not derived from endogenous substances in animal body, and the product ion is a suitable marker for the detection of PSOs. With our strategy, reproducible target analyses were achieved for identifying the specific substances, with a LOD of 0.1 ng/mL and a quantification rage of 0.1-200 ng/mL in deproteinated plasma. Non-target analyses could also detect the presence of PSOs selectively with 100 ng/mL in the same matrix. These results suggested that the detection of PSOs in horse blood is possible by targeting the product ion using LC/MS/MS.
Collapse
Affiliation(s)
- Teruaki Tozaki
- Genetic Analysis Department, Laboratory of Racing Chemistry, 1731-2 Tsurutamachi, Utsunomiya, Tochigi, 320-0851, Japan.
| | - Kaoru Karasawa
- AB Sciex, 4-7-35 Kitashinagawa, Shinagawa-ku, Tokyo, 140-0001, Japan.
| | - Yohei Minamijima
- Drug Analysis Department, Laboratory of Racing Chemistry, 1731-2 Tsurutamachi, Utsunomiya, Tochigi, 320-0851, Japan
| | - Hideaki Ishii
- Drug Analysis Department, Laboratory of Racing Chemistry, 1731-2 Tsurutamachi, Utsunomiya, Tochigi, 320-0851, Japan
| | - Mio Kikuchi
- Genetic Analysis Department, Laboratory of Racing Chemistry, 1731-2 Tsurutamachi, Utsunomiya, Tochigi, 320-0851, Japan
| | - Hironaga Kakoi
- Genetic Analysis Department, Laboratory of Racing Chemistry, 1731-2 Tsurutamachi, Utsunomiya, Tochigi, 320-0851, Japan
| | - Kei-Ichi Hirota
- Genetic Analysis Department, Laboratory of Racing Chemistry, 1731-2 Tsurutamachi, Utsunomiya, Tochigi, 320-0851, Japan
| | - Kanichi Kusano
- Racehorse Hospital Ritto Training Center, Japan Racing Association, 1028 Misono, Ritto, Shiga, 520-3085, Japan
| | - Shun-Ichi Nagata
- Genetic Analysis Department, Laboratory of Racing Chemistry, 1731-2 Tsurutamachi, Utsunomiya, Tochigi, 320-0851, Japan
| |
Collapse
|
11
|
Trainer PJ, Newell-Price JDC, Ayuk J, Aylwin SJB, Rees A, Drake W, Chanson P, Brue T, Webb SM, Fajardo C, Aller J, McCormack AI, Torpy DJ, Tachas G, Atley L, Ryder D, Bidlingmaier M. A randomised, open-label, parallel group phase 2 study of antisense oligonucleotide therapy in acromegaly. Eur J Endocrinol 2018; 179:97-108. [PMID: 29789410 PMCID: PMC6063983 DOI: 10.1530/eje-18-0138] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 05/22/2018] [Indexed: 11/20/2022]
Abstract
OBJECTIVE ATL1103 is a second-generation antisense oligomer targeting the human growth hormone (GH) receptor. This phase 2 randomised, open-label, parallel-group study assessed the potential of ATL1103 as a treatment for acromegaly. DESIGN Twenty-six patients with active acromegaly (IGF-I >130% upper limit of normal) were randomised to subcutaneous ATL1103 200 mg either once or twice weekly for 13 weeks and monitored for a further 8-week washout period. METHODS The primary efficacy measures were change in IGF-I at week 14, compared to baseline and between cohorts. For secondary endpoints (IGFBP3, acid labile subunit (ALS), GH, growth hormone-binding protein (GHBP)), comparison was between baseline and week 14. Safety was assessed by reported adverse events. RESULTS AND CONCLUSIONS Baseline median IGF-I was 447 and 649 ng/mL in the once- and twice-weekly groups respectively. Compared to baseline, at week 14, twice-weekly ATL1103 resulted in a median fall in IGF-I of 27.8% (P = 0.0002). Between cohort comparison at week 14 demonstrated the median fall in IGF-I to be 25.8% (P = 0.0012) greater with twice-weekly dosing. In the twice-weekly cohort, IGF-I was still declining at week 14, and remained lower at week 21 than at baseline by a median of 18.7% (P = 0.0005). Compared to baseline, by week 14, IGFBP3 and ALS had declined by a median of 8.9% (P = 0.027) and 16.7% (P = 0.017) with twice-weekly ATL1103; GH had increased by a median of 46% at week 14 (P = 0.001). IGFBP3, ALS and GH did not change with weekly ATL1103. GHBP fell by a median of 23.6% and 48.8% in the once- and twice-weekly cohorts (P = 0.027 and P = 0.005) respectively. ATL1103 was well tolerated, although 84.6% of patients experienced mild-to-moderate injection-site reactions. This study provides proof of concept that ATL1103 is able to significantly lower IGF-I in patients with acromegaly.
Collapse
Affiliation(s)
- Peter J Trainer
- Department of EndocrinologyThe Christie NHS Foundation Trust, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Correspondence should be addressed to P J Trainer;
| | - John D C Newell-Price
- Department of Oncology and MetabolismThe Medical School, University of Sheffield, Sheffield, UK
- Royal Hallamshire HospitalSheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - John Ayuk
- Medicine EndocrinologyQueen Elizabeth Hospital Birmingham, Edgbaston, UK
| | | | - Aled Rees
- Neuroscience and Mental Health Research InstituteSchool of Medicine, Cardiff University, Hadyn Ellis Building, Cardiff, UK
| | - William Drake
- Department of EndocrinologySt Bartholomew’s Hospital, London, UK
| | - Philippe Chanson
- Assistance Publique-Hôpitaux de ParisHôpitaux Universitaires Paris-Sud, Hôpital de Bicêtre, Service d’Endocrinologie et des Maladies de la Reproduction, Le Kremlin-Bicêtre, France
- Inserm 1185Fac Med Paris Sud, Univ Paris-Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Thierry Brue
- Aix-Marseille UniversitéCNRS, CRN2M UMR 7286, Marseille, France
- APHMHôpital Conception, Service d’Endocrinologie, Diabète et Maladies Métaboliques, Centre de Référence des Maladies Rares d’Origine Hypophysaire, Marseille, France
| | - Susan M Webb
- Department of EndocrinologyCIBERER Group 747, IIB-S Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Carmen Fajardo
- Servicio de EndocrinologíaHospital Universitario de La Ribera, Alzira, Valencia, Spain
| | - Javier Aller
- Endocrinology DepartmentHospital Universitario Puerta de Hierro Majadahonda, Majadahonda, Spain
| | - Ann I McCormack
- Garvan Institute of Medical Research and St Vincent’s HospitalDarlinghurst Sydney, New South Wales, Australia
| | - David J Torpy
- Royal Adelaide HospitalNorth Terrace, Adelaide, Australia
| | - George Tachas
- Antisense Therapeutics LimitedToorak, Victoria, Australia
| | - Lynne Atley
- Antisense Therapeutics LimitedToorak, Victoria, Australia
| | - David Ryder
- Manchester Academic Health Science Centre (MAHSC) Clinical Trials UnitThe Christie NHS Foundation Trust, University of Manchester, Manchester, UK
| | - Martin Bidlingmaier
- Endocrine LaboratoryMedizinische Klinik und Poliklinik IV, Klinikum der Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
12
|
Kotkowiak W, Lisowiec-Wachnicka J, Grynda J, Kierzek R, Wengel J, Pasternak A. Thermodynamic, Anticoagulant, and Antiproliferative Properties of Thrombin Binding Aptamer Containing Novel UNA Derivative. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 10:304-316. [PMID: 29499943 PMCID: PMC5862132 DOI: 10.1016/j.omtn.2017.12.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 12/21/2017] [Accepted: 12/21/2017] [Indexed: 12/25/2022]
Abstract
Thrombin is a serine protease that plays a crucial role in hemostasis, fibrinolysis, cell proliferation, and migration. Thrombin binding aptamer (TBA) is able to inhibit the activity of thrombin molecule via binding to its exosite I. This 15-nt DNA oligonucleotide forms an intramolecular, antiparallel G-quadruplex structure with a chair-like conformation. In this paper, we report on our investigations on the influence of certain modified nucleotide residues on thermodynamic stability, folding topology, and biological properties of TBA variants. In particular, the effect of single incorporation of a novel 4-thiouracil derivative of unlocked nucleic acid (UNA), as well as single incorporation of 4-thiouridine and all four canonical UNAs, was evaluated. The studies presented herein have shown that 4-thiouridine in RNA and UNA series, as well as all four canonical UNAs, can efficiently modulate G-quadruplex thermodynamic and biological stability, and that the effect is strongly position dependent. Interestingly, TBA variants containing the modified nucleotide residues are characterized by unchanged folding topology. Thrombin time assay revealed that incorporation of certain UNA residues may improve G-quadruplex anticoagulant properties. Noteworthy, some TBA variants, characterized by decreased ability to inhibit thrombin activity, possess significant antiproliferative properties reducing the viability of the HeLa cell line even by 95% at 10 μM concentration.
Collapse
Affiliation(s)
- Weronika Kotkowiak
- Department of Nucleic Acids Bioengineering, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland.
| | - Jolanta Lisowiec-Wachnicka
- Department of Nucleic Acids Bioengineering, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Jakub Grynda
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdansk, Poland
| | - Ryszard Kierzek
- Department of Structural Chemistry and Biology of Nucleic Acids, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Jesper Wengel
- Department of Physics, Chemistry and Pharmacy, Biomolecular Nanoscale Engineering Center, University of Southern Denmark, Campusvej 55, Odense M 5230, Denmark
| | - Anna Pasternak
- Department of Nucleic Acids Bioengineering, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland.
| |
Collapse
|
13
|
Fan C, Tang Y, Wang J, Xiong F, Guo C, Wang Y, Zhang S, Gong Z, Wei F, Yang L, He Y, Zhou M, Li X, Li G, Xiong W, Zeng Z. Role of long non-coding RNAs in glucose metabolism in cancer. Mol Cancer 2017; 16:130. [PMID: 28738810 PMCID: PMC5525357 DOI: 10.1186/s12943-017-0699-3] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 07/11/2017] [Indexed: 02/06/2023] Open
Abstract
Long-noncoding RNAs (lncRNAs) are a group of transcripts that are longer than 200 nucleotides and do not code for proteins. However, this class of RNAs plays pivotal regulatory roles. The mechanism of their action is highly complex. Mounting evidence shows that lncRNAs can regulate cancer onset and progression in a variety of ways. They can not only regulate cancer cell proliferation, differentiation, invasion and metastasis, but can also regulate glucose metabolism in cancer cells through different ways, such as by directly regulating the glycolytic enzymes and glucose transporters (GLUTs), or indirectly modulating the signaling pathways. In this review, we summarized the role of lncRNAs in regulating glucose metabolism in cancer, which will help understand better the pathogenesis of malignant tumors. The understanding of the role of lncRNAs in glucose metabolism may help provide new therapeutic targets and novel diagnostic and prognosis markers for human cancer.
Collapse
Affiliation(s)
- Chunmei Fan
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yanyan Tang
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Jinpeng Wang
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Fang Xiong
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Can Guo
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yumin Wang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Shanshan Zhang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaojian Gong
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Fang Wei
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Liting Yang
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yi He
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Ming Zhou
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoling Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guiyuan Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Xiong
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Zhaoyang Zeng
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
14
|
Management of Alzheimer’s disease—An insight of the enzymatic and other novel potential targets. Int J Biol Macromol 2017; 97:700-709. [DOI: 10.1016/j.ijbiomac.2017.01.076] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/15/2017] [Accepted: 01/16/2017] [Indexed: 12/25/2022]
|
15
|
Heestermans M, van Vlijmen BJ. Oligonucleotides targeting coagulation factor mRNAs: use in thrombosis and hemophilia research and therapy. Thromb J 2017; 15:7. [PMID: 28286423 PMCID: PMC5341404 DOI: 10.1186/s12959-017-0130-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/27/2017] [Indexed: 02/08/2023] Open
Abstract
Small interfering (si) RNAs and antisense oligonucleotides (ASOs; here for simplicity reasons, both referred to as oligonucleotides) are small synthetic RNA or DNA molecules with a sequence complementary to a (pre)mRNA. Although the basic mechanisms of action between siRNAs and ASO are distinct, a sequence-specific interaction of the both oligonucleotides with the target (pre)mRNA alters the target's fate, which includes highly effective sequence-specific blockade of translation and consequently depletion of the corresponding protein. For a number of years, these oligonucleotides have been used as a tool in biological research to study gene function in vitro. More recently, safe and specific delivery of these oligonucleotides to the liver of mammals has been achieved and optimized. This not only allowed their use for in vivo gene studies in physiology and disease, but also opened the opportunity for the development of a new generation of RNA-specific drugs for therapeutic purposes. In 2013, the first oligonucleotide product targeting RNA from the hepatic cholesterol pathway was approved. For blood coagulation, a large portion of key proteins are produced in the liver, and thereby siRNAs and ASOs can also be used as appropriate tools to target these proteins in vivo. In this review, we describe the first use of oligonucleotides for this purpose from zebrafish to primates. As the use of oligonucleotides allows avoidance of early lethality associated with full deficiency of several coagulation factors, it has proved to be of value for studying these proteins in physiology and disease. Currently, oligonucleotides are tested as therapeutics, with the ultimate goal to beneficially modulate the hemostatic balance in thrombosis and hemophilia patients. We discuss both the preclinical and clinical studies of a number of siRNAs and ASOs with the potential to be introduced as drugs for prophylactic and/or treatment of thrombosis or hemophilia. We conclude that for the coagulation field, oligonucleotides are of value for research purposes, and now the moment has come to fulfill their promise as therapeutics.
Collapse
Affiliation(s)
- Marco Heestermans
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Department of Internal Medicine, Division of Thrombosis and Hemostasis, Leiden University Medical Center, Leiden, The Netherlands
| | - Bart J.M. van Vlijmen
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Department of Internal Medicine, Division of Thrombosis and Hemostasis, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
16
|
|
17
|
Recent Advances in the Characterization and Analysis of Therapeutic Oligonucleotides by Analytical Separation Methods Coupling with Mass Spectrometry. ADVANCES IN CHROMATOGRAPHY 2016. [DOI: 10.1201/9781315370385-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
18
|
Barata P, Sood AK, Hong DS. RNA-targeted therapeutics in cancer clinical trials: Current status and future directions. Cancer Treat Rev 2016; 50:35-47. [PMID: 27612280 DOI: 10.1016/j.ctrv.2016.08.004] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 08/12/2016] [Indexed: 12/25/2022]
Abstract
Recent advances in RNA delivery and target selection provide unprecedented opportunities for cancer treatment, especially for cancers that are particularly hard to treat with existing drugs. Small interfering RNAs, microRNAs, and antisense oligonucleotides are the most widely used strategies for silencing gene expression. In this review, we summarize how these approaches were used to develop drugs targeting RNA in human cells. Then, we review the current state of clinical trials of these agents for different types of cancer and outcomes from published data. Finally, we discuss lessons learned from completed studies and future directions for this class of drugs.
Collapse
Affiliation(s)
- Pedro Barata
- Department of Solid Tumors, Taussig Cancer Institute, Cleveland Clinic, Cleveland, USA
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David S Hong
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
19
|
Protein Kinase C-α is a Critical Protein for Antisense Oligonucleotide-mediated Silencing in Mammalian Cells. Mol Ther 2016; 24:1117-1125. [PMID: 26961407 DOI: 10.1038/mt.2016.54] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 02/18/2016] [Indexed: 01/08/2023] Open
Abstract
We have identified the existence of a productive, PKC-α-dependent endocytotic silencing pathway that leads gymnotically-delivered locked nucleic acid (LNA)-gapmer phosphorothioate antisense oligonucleotides (ASOs) into late endosomes. By blocking the maturation of early endosomes to late endosomes, silencing the expression of PKC-α results in the potent reduction of ASO silencing ability in the cell. We have also demonstrated that silencing of gene expression in the cytoplasm is vitiated when PKC-α expression is reduced. Restoring PKC-α expression via a reconstitution experiment reinstates the ability of ASOs to silence. These results advance our understanding of intracellular ASO trafficking and activity following gymnotic delivery, and further demonstrate the existence of two distinct silencing pathways in mammalian cells, one in the cytoplasmic and the other in the nuclear compartment.
Collapse
|
20
|
A molecular nanodevice for targeted degradation of mRNA during protein synthesis. Sci Rep 2016; 6:20733. [PMID: 26857021 PMCID: PMC4746582 DOI: 10.1038/srep20733] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/06/2016] [Indexed: 11/28/2022] Open
Abstract
RNase H is an endonuclease that catalyzes the cleavage of RNA. Because it only acts on RNA in RNA:DNA hybrids, RNase H can be used for targeted degradation of RNA when used in combination with antisense oligodeoxyribonucleotides (ASODNs) designed against a specific sequence of the target RNA. In this study, ASODN and RNase H were co-conjugated on magnetic nanoparticles. The resulting nanoparticles, having integrated functions of probing and processing target RNA, were able to remove target mRNA sequences more effectively than free ASODNs. The paramagnetic property of the nanoparticles also enabled timed engagement and disengagement of the RNA-degrading components in a given system, and these nanoparticles were able to be used for ON/OFF control of gene expression during cell-free protein synthesis reactions.
Collapse
|
21
|
Niemietz C, Chandhok G, Schmidt H. Therapeutic Oligonucleotides Targeting Liver Disease: TTR Amyloidosis. Molecules 2015; 20:17944-75. [PMID: 26437390 PMCID: PMC6332041 DOI: 10.3390/molecules201017944] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 09/23/2015] [Accepted: 09/23/2015] [Indexed: 12/13/2022] Open
Abstract
The liver has become an increasingly interesting target for oligonucleotide therapy. Mutations of the gene encoding transthyretin (TTR), expressed in vast amounts by the liver, result in a complex degenerative disease, termed familial amyloid polyneuropathy (FAP). Misfolded variants of TTR are linked to the establishment of extracellular protein deposition in various tissues, including the heart and the peripheral nervous system. Recent progress in the chemistry and formulation of antisense (ASO) and small interfering RNA (siRNA) designed for a knockdown of TTR mRNA in the liver has allowed to address the issue of gene-specific molecular therapy in a clinical setting of FAP. The two therapeutic oligonucleotides bind to RNA in a sequence specific manner but exploit different mechanisms. Here we describe major developments that have led to the advent of therapeutic oligonucleotides for treatment of TTR-related disease.
Collapse
MESH Headings
- Amyloid Neuropathies, Familial/genetics
- Amyloid Neuropathies, Familial/therapy
- Animals
- Clinical Studies as Topic
- Drug Evaluation, Preclinical
- Gene Silencing
- Genetic Therapy
- Humans
- Liver Diseases/genetics
- Liver Diseases/therapy
- Mutation
- Oligonucleotides/administration & dosage
- Oligonucleotides/chemistry
- Oligonucleotides/genetics
- Oligonucleotides/therapeutic use
- Oligonucleotides, Antisense/administration & dosage
- Oligonucleotides, Antisense/chemistry
- Oligonucleotides, Antisense/genetics
- Oligonucleotides, Antisense/therapeutic use
- Prealbumin/genetics
- RNA Interference
- RNA, Small Interfering/administration & dosage
- RNA, Small Interfering/chemistry
- RNA, Small Interfering/genetics
- RNA, Small Interfering/therapeutic use
- Treatment Outcome
Collapse
Affiliation(s)
- Christoph Niemietz
- Klinik für Transplantationsmedizin, Universitätsklinikum Münster, Albert-Schweitzer-Campus 1, Gebäude A14, D-48149 Münster, Germany.
| | - Gursimran Chandhok
- Klinik für Transplantationsmedizin, Universitätsklinikum Münster, Albert-Schweitzer-Campus 1, Gebäude A14, D-48149 Münster, Germany.
| | - Hartmut Schmidt
- Klinik für Transplantationsmedizin, Universitätsklinikum Münster, Albert-Schweitzer-Campus 1, Gebäude A14, D-48149 Münster, Germany.
| |
Collapse
|
22
|
Hornum M, Kumar P, Podsiadly P, Nielsen P. Increasing the Stability of DNA:RNA Duplexes by Introducing Stacking Phenyl-Substituted Pyrazole, Furan, and Triazole Moieties in the Major Groove. J Org Chem 2015; 80:9592-602. [PMID: 26334359 DOI: 10.1021/acs.joc.5b01577] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Consecutive incorporations of our previously published thymidine analogue, 5-(1-phenyl-1H-1,2,3-triazol-4-yl)-2'-deoxyuridine monomer W in oligonucleotides, has demonstrated significant duplex-stabilizing properties due to its efficient staking properties in the major groove of DNA:RNA duplexes. The corresponding 2'-deoxycytidine analogue is not as well-accommodated in duplexes, however, due to its clear preference for the ring-flipped coplanar conformation. In our present work, we have used ab initio calculations to design two new building blocks, 5-(5-phenylfuran-2-yl)-2'-deoxycytidine monomer Y and 5-(1-phenyl-1H-pyrazol-3-yl)-2'-deoxycytidine monomer Z, that emulate the conformation of W. These monomers were synthesized by Suzuki-Miyaura couplings, and the pyrazole moiety was obtained in a cycloaddition from N-phenylsydnone. We show that the novel analogues Y and Z engage in efficient stacking either with themselves or with W due to a better overlap of the aromatic moieties. Importantly, we demonstrate that this translates into very thermally stable DNA:RNA duplexes, thus making Y and especially Z good candidates for improving the binding affinities of oligonucleotide-based therapeutics. Since we now have both efficiently stacking T and C analogues in hand, any purine rich stretch can be effectively targeted using these simple analogues. Notably, we show that the introduction of the aromatic rings in the major groove does not significantly change the helical geometry.
Collapse
Affiliation(s)
- Mick Hornum
- Nucleic Acid Center, Department of Physics, Chemistry & Pharmacy, University of Southern Denmark , Campusvej 55, DK-5230 Odense, Denmark
| | - Pawan Kumar
- Nucleic Acid Center, Department of Physics, Chemistry & Pharmacy, University of Southern Denmark , Campusvej 55, DK-5230 Odense, Denmark
| | - Patricia Podsiadly
- Nucleic Acid Center, Department of Physics, Chemistry & Pharmacy, University of Southern Denmark , Campusvej 55, DK-5230 Odense, Denmark
| | - Poul Nielsen
- Nucleic Acid Center, Department of Physics, Chemistry & Pharmacy, University of Southern Denmark , Campusvej 55, DK-5230 Odense, Denmark
| |
Collapse
|
23
|
Kočišová E, Praus P, Bok J, Bonneau S, Sureau F. Intracellular Monitoring of AS1411 Aptamer by Time-Resolved Microspectrofluorimetry and Fluorescence Imaging. J Fluoresc 2015; 25:1245-50. [PMID: 26179074 DOI: 10.1007/s10895-015-1612-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 06/30/2015] [Indexed: 01/09/2023]
Abstract
Time-resolved microspectrofluorimetry and fluorescence microscopy imaging-two complementary fluorescence techniques-provide important information about the intracellular distribution, level of uptake and binding/interactions inside living cell of the labeled molecule of interest. They were employed to monitor the "fate" of AS1411 aptamer labeled by ATTO 425 in human living cells. Confocal microspectrofluorimeter adapted for time-resolved intracellular fluorescence measurements by using a phase-modulation principle with homodyne data acquisition was employed to obtain emission spectra and to determine fluorescence lifetimes in U-87 MG tumor brain cells and Hs68 non-tumor foreskin cells. Acquired spectra from both the intracellular space and the reference solutions were treated to observe the aptamer localization and its interaction with biological structures inside the living cell. The emission spectra and the maximum emission wavelengths coming from the cells are practically identical, however significant lifetime lengthening was observed for tumor cell line in comparison to non-tumor one.
Collapse
Affiliation(s)
- Eva Kočišová
- Faculty of Mathematics and Physics, Institute of Physics, Charles University in Prague, 12116, Prague 2, Czech Republic.
| | - Petr Praus
- Faculty of Mathematics and Physics, Institute of Physics, Charles University in Prague, 12116, Prague 2, Czech Republic
| | - Jiří Bok
- Faculty of Mathematics and Physics, Institute of Physics, Charles University in Prague, 12116, Prague 2, Czech Republic
| | - Stéphanie Bonneau
- Laboratoire Jean Perrin, Université Pierre et Marie Curie, case courrier 114, 4 Place Jussieu, 75005, Paris, France
| | - Franck Sureau
- Laboratoire Jean Perrin, Université Pierre et Marie Curie, case courrier 114, 4 Place Jussieu, 75005, Paris, France
| |
Collapse
|
24
|
Sarvaiya J, Agrawal Y. Chitosan as a suitable nanocarrier material for anti-Alzheimer drug delivery. Int J Biol Macromol 2015; 72:454-65. [DOI: 10.1016/j.ijbiomac.2014.08.052] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 08/24/2014] [Accepted: 08/28/2014] [Indexed: 11/25/2022]
|
25
|
Sayed RH, Hawkins PN, Lachmann HJ. Emerging treatments for amyloidosis. Kidney Int 2014; 87:516-26. [PMID: 25469850 DOI: 10.1038/ki.2014.368] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/22/2014] [Accepted: 04/24/2014] [Indexed: 12/11/2022]
Abstract
Amyloidosis results from protein misfolding, and ongoing amyloid deposition can ultimately lead to organ failure and death. Historically, this is a group of diseases with limited treatment options and frequently poor prognosis. However, there are now 'targeted' therapeutics emerging in the form of stabilizers of the precursor protein, inhibitors of fibrillogenesis, fibril disruptors, and blockers of protein translation, transcription, and immunotherapy. We review many of these approaches that are currently being assessed in clinical trials.
Collapse
Affiliation(s)
- Rabya H Sayed
- 1] National Amyloidosis Centre, UCL Medical School, Royal Free Hospital, London, UK [2] UCL Centre for Nephrology, UCL Medical School, Royal Free Hospital, London, UK
| | - Philip N Hawkins
- National Amyloidosis Centre, UCL Medical School, Royal Free Hospital, London, UK
| | - Helen J Lachmann
- 1] National Amyloidosis Centre, UCL Medical School, Royal Free Hospital, London, UK [2] UCL Centre for Nephrology, UCL Medical School, Royal Free Hospital, London, UK
| |
Collapse
|
26
|
Astakhova IK, Wengel J. Scaffolding along nucleic acid duplexes using 2'-amino-locked nucleic acids. Acc Chem Res 2014; 47:1768-77. [PMID: 24749544 DOI: 10.1021/ar500014g] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
CONSPECTUS: Incorporation of chemically modified nucleotide scaffolds into nucleic acids to form assemblies rich in function is an innovative area with great promise for nanotechnology and biomedical and material science applications. The intrinsic biorecognition potential of nucleic acids combined with advanced properties of the locked nucleic acids (LNAs) provide opportunities to develop new nanomaterials and devices like sensors, aptamers, and machines. In this Account, we describe recent research on preparation and investigation of the properties of LNA/DNA hybrids containing functionalized 2'-amino-LNA nucleotides. By application of different chemical reactions, modification of 2'-amino-LNA scaffolds can be efficiently performed in high yields and with various tags, postsynthetically or during the automated oligonucleotide synthesis. The choice of a synthetic method for scaffolding along 2'-amino-LNA mainly depends on the chemical nature of the modification, its price, its availability, and applications of the product. One of the most useful applications of the product LNA/DNA scaffolds containing 2'-amino-LNA is to detect complementary DNA and RNA targets. Examples of these applications include sensing of clinically important single-nucleotide polymorphisms (SNPs) and imaging of nucleic acids in vitro, in cell culture, and in vivo. According to our studies, 2'-amino-LNA scaffolds are efficient within diagnostic probes for DNA and RNA targets and as therapeutics, whereas both 2'-amino- and isomeric 2'-α-l-amino-LNA scaffolds have promising properties for stabilization and detection of DNA nanostructures. Attachment of fluorescent groups to the 2'-amino group results in very high fluorescent quantum yields of the duplexes and remarkable sensitivity of the fluorescence signal to target binding. Notably, fluorescent LNA/DNA probes bind nucleic acid targets with advantages of high affinity and specificity. Thus, molecular motion of nanodevices and programmable self-assembly of chemically modified LNA/DNA nanomaterials can be followed by bright fluorescence signaling from the functionalized LNA units. Another appealing aspect of the amino-LNA scaffolds is specific targeting of nucleic acids and proteins for therapeutic applications. 2'-Amino-LNA/DNA conjugates containing peptide and polyaromatic hydrocarbon (PAH) groups are promising in this context as well as for advanced imaging and diagnostic purposes in vivo. For imaging applications, photostability of fluorescence dyes is of crucial importance. Chemically stable and photostable fluorescent PAH molecules attached to 2'-amino functionality of the 2'-amino-LNA are potent for in vitro and in vivo imaging of DNA and RNA targets. We believe that rational evolution of the biopolymers of Nature may solve the major challenges of the future material science and biomedicine. However, this requires strong scientific progress and efficient interdisciplinary research. Examples of this Account demonstrate that among other synthetic biopolymers, synthetic nucleic acids containing functionalized 2'-amino-LNA scaffolds offer great opportunities for material science, diagnostics, and medicine of the future.
Collapse
Affiliation(s)
- I. Kira Astakhova
- Nucleic Acid Center,
Department
of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Jesper Wengel
- Nucleic Acid Center,
Department
of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| |
Collapse
|
27
|
Oligonucleotide-based therapy for neurodegenerative diseases. Brain Res 2014; 1584:116-28. [PMID: 24727531 DOI: 10.1016/j.brainres.2014.04.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 04/04/2014] [Accepted: 04/05/2014] [Indexed: 12/12/2022]
Abstract
Molecular genetics insight into the pathogenesis of several neurodegenerative diseases, such as Alzheimer׳s disease, Parkinson׳s disease, Huntington׳s disease and amyotrophic lateral sclerosis, encourages direct interference with the activity of neurotoxic genes or the molecular activation of neuroprotective pathways. Oligonucleotide-based therapies are recently emerging as an efficient strategy for drug development and these can be employed as new treatments of neurodegenerative states. Here we review advances in this field in recent years which suggest an encouraging assessment that oligonucleotide technologies for targeting of RNAs will enable the development of new therapies and will contribute to preservation of brain integrity.
Collapse
|
28
|
Deng Y, Wang CC, Choy KW, Du Q, Chen J, Wang Q, Li L, Chung TKH, Tang T. Therapeutic potentials of gene silencing by RNA interference: Principles, challenges, and new strategies. Gene 2014; 538:217-27. [DOI: 10.1016/j.gene.2013.12.019] [Citation(s) in RCA: 175] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 11/27/2013] [Accepted: 12/11/2013] [Indexed: 12/27/2022]
|
29
|
Sehgal A, Vaishnaw A, Fitzgerald K. Liver as a target for oligonucleotide therapeutics. J Hepatol 2013; 59:1354-9. [PMID: 23770039 DOI: 10.1016/j.jhep.2013.05.045] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 05/17/2013] [Accepted: 05/29/2013] [Indexed: 12/18/2022]
Abstract
Oligonucleotide-based therapeutics are an emerging class of drugs that hold the promise for silencing "un-druggable" targets,thus creating unique opportunities for innovative medicines. As opposed to gene therapy, oligonucleotides are considered to be more akin to small molecule therapeutics because they are small,completely synthetic in origin, do not integrate into the host genome,and have a defined duration of therapeutic activity after which effects recover to baseline. They offer a high degree of specificity at the genetic level, thereby reducing off-target effects.At the same time, they provide a strategy for targeting any gene in the genome, including transcripts that produce mutated proteins.Oligonucleotide-based therapeutics include short interfering RNA (siRNA), that degrade target mRNA through RISC mediated RNAi; anti-miRs, that target miRNAs; miRNA mimics, that regulate target mRNA; antisense oligonucleotides, that may be working through RNAseH mediated mRNA decay; mRNA upregulation,by targeting long non-coding RNAs; and oligonucleotides induced alternative splicing [1]. All these approaches require some minimal degree of homology at the nucleic acid sequence level for them to be functional. The different mechanisms of action and their relevant activity are outlined in Fig. 1. Besides homology,RNA secondary structure has also been exploited in the case of ribozymes and aptamers, which act by binding to nucleic acids or proteins, respectively. While there have been many reports of gene knockdown and gene modulation in cell lines and mice with all these methods, very few have advanced to clinical stages.The main obstacle to date has been the safe and effective intracellular delivery of these compounds in higher species, including humans. Indeed, their action requires direct interaction with DNA/RNA within the target cell so even when one solves the issues of tissue and cellular access, intracellular/intranuclear location represents yet another barrier to overcome. To date,hepatic delivery of oligonucleotides has been the area with greatest progress, and thus we have focused on liver-targeted therapeutics that have shown promise at the preclinical and/or clinical level.The liver is the largest internal organ in the body, playing a central role in metabolism, detoxification, synthesis, and secretion of major plasma proteins (carrier proteins, coagulation factors,complement components, hormones, and apolipoproteins),and iron homeostasis. It is therefore not surprising that a large number of disease targets reside in the liver where they are susceptible to modulation by oligonucleotide therapies.
Collapse
Affiliation(s)
- Alfica Sehgal
- Alnylam Pharmaceuticals Inc., Cambridge, MA 02142, USA.
| | | | | |
Collapse
|
30
|
End-to-end conformational communication through a synthetic purinergic receptor by ligand-induced helicity switching. Nat Chem 2013; 5:853-60. [PMID: 24056342 DOI: 10.1038/nchem.1747] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 08/06/2013] [Indexed: 11/08/2022]
Abstract
The long-range communication of information, exemplified by signal transduction through membrane-bound receptors, is a central biochemical function. Reversible binding of a messenger ligand induces a local conformational change that is relayed through the receptor, inducing a chemical effect typically several nanometres from the binding site. We report a synthetic receptor mimic that transmits structural information from a boron-based ligand binding site to a spectroscopic reporter located more than 2 nm away. Reversible binding of a diol ligand to the N-terminal binding site induces a screw-sense preference in a helical oligo(aminoisobutyric acid) foldamer, which is relayed to a reporter group at the remote C-terminus, communicating information about the structure and stereochemistry of the ligand. The reversible nature of boronate esterification was exploited to switch the receptor sequentially between left- and right-handed helices, while the exquisite conformational sensitivity of the helical relay allowed the reporter to differentiate even between purine and pyrimidine nucleosides as ligands.
Collapse
|
31
|
Pastorino F, Brignole C, Loi M, Di Paolo D, Di Fiore A, Perri P, Pagnan G, Ponzoni M. Nanocarrier-mediated targeting of tumor and tumor vascular cells improves uptake and penetration of drugs into neuroblastoma. Front Oncol 2013; 3:190. [PMID: 23936762 PMCID: PMC3733002 DOI: 10.3389/fonc.2013.00190] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 07/08/2013] [Indexed: 11/15/2022] Open
Abstract
Neuroblastoma (NB) is the most common extracranial solid tumor in children, accounting for about 8% of childhood cancers. Despite aggressive treatment, patients suffering from high-risk NB have very poor 5-year overall survival rate, due to relapsed and/or treatment-resistant tumors. A further increase in therapeutic dose intensity is not feasible, because it will lead to prohibitive short-term and long-term toxicities. New approaches with targeted therapies may improve efficacy and decrease toxicity. The use of drug delivery systems allows site specific delivery of higher payload of active agents associated with lower systemic toxicity compared to the use of conventional (“free”) drugs. The possibility of imparting selectivity to the carriers to the cancer foci through the use of a targeting moiety (e.g., a peptide or an antibody) further enhances drug efficacy and safety. We have recently developed two strategies for increasing local concentration of anti-cancer agents, such as CpG-containing oligonucleotides, small interfering RNAs, and chemotherapeutics in NB. For doing that, we have used the monoclonal antibody anti-disialoganglioside (GD2), able to specifically recognize the NB tumor and the peptides containing NGR and CPRECES motifs, that selectively bind to the aminopeptidase N-expressing endothelial and the aminopeptidase A-expressing perivascular tumor cells, respectively. The review will focus on the use of tumor- and tumor vasculature-targeted nanocarriers to improve tumor targeting, uptake, and penetration of drugs in preclinical models of human NB.
Collapse
Affiliation(s)
- Fabio Pastorino
- Experimental Therapy Unit, Laboratory of Oncology, Istituto Giannina Gaslini , Genoa , Italy
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Ugarte-Uribe B, Grijalvo S, Busto JV, Martín C, Eritja R, Goñi FM, Alkorta I. Double-tailed lipid modification as a promising candidate for oligonucleotide delivery in mammalian cells. Biochim Biophys Acta Gen Subj 2013; 1830:4872-84. [PMID: 23800579 DOI: 10.1016/j.bbagen.2013.06.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 05/31/2013] [Accepted: 06/13/2013] [Indexed: 12/17/2022]
Abstract
BACKGROUND The potential use of nucleic acids as therapeutic drugs has triggered the quest for oligonucleotide conjugates with enhanced cellular permeability. To this end, the biophysical aspects of previously reported potential lipid oligodeoxyribonucleotide conjugates were studied including its membrane-binding properties and cellular uptake. METHODS These conjugates were fully characterized by MALDI-TOF mass spectrometry and HPLC chromatography. Their ability to insert into lipid model membrane systems was evaluated by Langmuir balance and confocal microscopy followed by the study of the internalization of a lipid oligodeoxyribonucleotide conjugate bearing a double-tail lipid modification (C28) into different cell lines by confocal microscopy and flow cytometry. This compound was also compared with other lipid containing conjugates and with the classical lipoplex formulation using Transfectin as transfection reagent. RESULTS This double-tail lipid modification showed better incorporation into both lipid model membranes and cell systems. Indeed, this lipid conjugation was capable of inserting the oligodeoxyribonucleotide into both liquid-disordered and liquid-ordered domains of model lipid bilayer systems and produced an enhancement of oligodeoxyribonucleotide uptake in cells, even better than the effect caused by lipoplexes. In addition, in β2 integrin (CR3) expressing cells this receptor was directly involved in the enhanced internalization of this compound. CONCLUSIONS All these features confirm that the dual lipid modification (C28) is an excellent modification for enhancing nucleic acid delivery without altering their binding properties. GENERAL SIGNIFICANCE Compared to the commercial lipoplex approach, oligodeoxyribonucleotide conjugation with C28 dual lipid modification seems to be promising to improve oligonucleotide delivery in mammalian cells.
Collapse
Affiliation(s)
- Begoña Ugarte-Uribe
- Department of Biochemistry and Molecular Biology, UPV/EHU and Biophysics Unit, Leioa, Spain
| | | | | | | | | | | | | |
Collapse
|
33
|
Blom DJ, Marais AD, Raal FJ, Lambert G. The potential use of monoclonal antibodies and other novel agents as drugs to lower LDL cholesterol. ACTA ACUST UNITED AC 2013. [DOI: 10.2217/clp.13.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
34
|
Pescina S, Antopolsky M, Santi P, Nicoli S, Murtomäki L. Effect of iontophoresis on the in vitro trans-scleral transport of three single stranded oligonucleotides. Eur J Pharm Sci 2013; 49:142-7. [PMID: 23485440 DOI: 10.1016/j.ejps.2013.02.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 12/21/2012] [Accepted: 02/03/2013] [Indexed: 01/17/2023]
Abstract
Oligonucleotides represent a subject of clinical interest due to their potential ability to treat several diseases, including those affecting the posterior segment of the eye. Unfortunately, therapeutic oligonucleotides are currently administered by means of highly invasive approaches, such as intravitreal injections. The aim of the present work was to study in vitro, across isolated bovine sclera, the effect of iontophoresis on the transport of three single stranded oligonucleotides (ssDNA), 12-, 24- and 36-mer, selected as reference compounds in view of a non-invasive drug delivery to the back of the eye. All the three sequences were able to cross bovine sclera in vitro without iontophoresis. When anodal iontophoresis was applied, no change in flux was observed, while in the presence of cathodal iontophoresis the permeability coefficients increased four-fold compared to passive conditions. This behavior can be ascribed to the electrorepulsive mechanism, due to the negative charge of the nucleic acid backbone. It was also observed that the molecular weights of the three sequences did not affect trans-scleral transport, neither in passive, nor in current assisted permeation. Furthermore, increasing the current intensity from 1.75 mA to 3 mA, no effect on the trans-scleral transport of the 24-mer was noticed. Although preliminary, the results demonstrate that cathodal iontophoresis enhances trans-scleral transport of single stranded oligonucleotides and suggest its use as a novel non-invasive approach for the treatment of diseases affecting the posterior segment of the eye.
Collapse
Affiliation(s)
- Silvia Pescina
- Department of Pharmacy, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | | | | | | | | |
Collapse
|
35
|
Zhang C, Kallakury BV, Ross JS, Mewani RR, Sheehan CE, Sakabe I, Luta G, Kumar D, Yadavalli S, Starr J, Sreenath TL, Srivastava S, Pollard HB, Eidelman O, Srivastava M, Kasid UN. The significance of TNFAIP8 in prostate cancer response to radiation and docetaxel and disease recurrence. Int J Cancer 2013; 133:31-42. [PMID: 23280553 DOI: 10.1002/ijc.27996] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Accepted: 11/19/2012] [Indexed: 12/12/2022]
Abstract
TNFAIP8 is a NF-κB-inducible, oncogenic molecule. Previous "promoter array" studies have identified differential methylation and regulation of TNFAIP8 in prostate epithelial and cancer cell lines. Here we demonstrate that TNFAIP8 expression is induced by androgen in hormone-responsive LNCaP prostate cancer cells. In athymic mice bearing hormone-refractory PC-3 prostate tumor xenografts, intravenous treatment with a liposomal formulation of TNFAIP8 antisense oligonucleotide (LE-AS5) caused reduced expression of TNFAIP8 in tumor tissues, and a combination of LE-AS5 and radiation or docetaxel treatment resulted in significant inhibition of PC-3 tumor growth as compared to single agents. The immunohistochemical evaluation of TNFAIP8 expression revealed correlation of both cytoplasmic and nuclear TNFAIP8 overexpression with high grade prostatic adenocarcinomas, while nuclear overexpression was found to be an independent predictor of disease recurrence controlling for tumor grade. Increased nuclear TNFAIP8 expression was statistically significantly associated with a 2.44 fold (95 % confidence interval: 1.01-5.91) higher risk of prostate cancer recurrence. Mechanistically, TNFAIP8 seems to function as a scaffold (or adaptor) protein. In the antibody microarray analysis of proteins associated with the TNFAIP8 immune-complex, we have identified Karyopherin alpha2 as a novel binding partner of nuclear TNFAIP8 in PC-3 cells. The Ingenuity Pathway Analysis of the TNFAIP8 interacting proteins suggested that TNFAIP8 influences cancer progression pathways and networks involving integrins and matrix metalloproteinases. Taken together, present studies demonstrate that TNFAIP8 is a novel therapeutic target in prostate cancer, and indicate a potential relationship of the nuclear trafficking of TNFAIP8 with adverse outcomes in a subset of prostate cancer patients.
Collapse
Affiliation(s)
- Chuanbo Zhang
- Department of Radiation Medicine, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Tang P, Huang H. Progress in understanding the role of inhibitor of apoptosis proteins in molecular targeted therapy of esophageal cancer. Shijie Huaren Xiaohua Zazhi 2012; 20:1843-1847. [DOI: 10.11569/wcjd.v20.i20.1843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The apoptosis and antiapoptotic signaling pathways play a critical role in the embryonic and lymphocyte development, immune system modulation, and tissue homeostasis, as well as carcinogenesis. As inhibitor of apoptosis proteins (IAPs) are highly expressed in several neoplasms and are closely related to carcinogenesis, cancer progression, radiochemotherapeutic resistance, and prognosis, therapies targeting IAPs have become a research hotspot for molecular targeted therapy of tumors. In recent years, many agents targeting IAPs which are being evaluated in clinical trials are showing promising prospect for neoplastic therapy. As such, the identification of key roles of IAPs in esophageal cancer has revealed their potential value as therapeutic targets. This report reviews the progress in understanding the role of IAPs in molecular targeted therapy of esophageal cancer.
Collapse
|
37
|
Awad AM, Collazo MJ, Carpio K, Flores C, Bruice TC. A convenient synthesis of the cytidyl 3′-terminal monomer for solid-phase synthesis of RNG oligonucleotides. Tetrahedron Lett 2012. [DOI: 10.1016/j.tetlet.2012.05.055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
38
|
|
39
|
Kjems J, Howard KA. Oligonucleotide delivery to the lung: waiting to inhale. MOLECULAR THERAPY. NUCLEIC ACIDS 2012; 1:e1. [PMID: 23344618 PMCID: PMC3381599 DOI: 10.1038/mtna.2011.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Jørgen Kjems
- Interdisciplinary Nanoscience Center iNANO, Department of Molecular Biology, Aarhus, Denmark
| | | |
Collapse
|
40
|
Kole R, Krainer AR, Altman S. RNA therapeutics: beyond RNA interference and antisense oligonucleotides. Nat Rev Drug Discov 2012; 11:125-40. [PMID: 22262036 PMCID: PMC4743652 DOI: 10.1038/nrd3625] [Citation(s) in RCA: 867] [Impact Index Per Article: 72.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Here, we discuss three RNA-based therapeutic technologies exploiting various oligonucleotides that bind to RNA by base pairing in a sequence-specific manner yet have different mechanisms of action and effects. RNA interference and antisense oligonucleotides downregulate gene expression by inducing enzyme-dependent degradation of targeted mRNA. Steric-blocking oligonucleotides block the access of cellular machinery to pre-mRNA and mRNA without degrading the RNA. Through this mechanism, steric-blocking oligonucleotides can redirect alternative splicing, repair defective RNA, restore protein production or downregulate gene expression. Moreover, they can be extensively chemically modified to acquire more drug-like properties. The ability of RNA-blocking oligonucleotides to restore gene function makes them best suited for the treatment of genetic disorders. Positive results from clinical trials for the treatment of Duchenne muscular dystrophy show that this technology is close to achieving its clinical potential.
Collapse
Affiliation(s)
- Ryszard Kole
- AVI BioPharma, 3450 Monte Villa Parkway, Bothell, Washington 98021, USA.
| | | | | |
Collapse
|