1
|
Kohl F, Laufkötter O, Firth M, Krimpenfort L, Mangla P, Ansarizadeh M, Geylan G, Eklund L, De Maria L, Jakobsson L, Wiseman J. Identification of cell type-specific cell-penetrating peptides through in vivo phage display leveraged by next generation sequencing. Biomed Pharmacother 2025; 182:117740. [PMID: 39671725 DOI: 10.1016/j.biopha.2024.117740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/18/2024] [Accepted: 12/03/2024] [Indexed: 12/15/2024] Open
Abstract
Vascular anomalies (VA) refer to abnormal blood or lymphatic vessel architecture, most often as a result of dysregulated growth. Venous malformations (VM), a subgroup of VAs, are triggered by activating mutations in the Angiopoietin/TIE2-PI3K/AKT/mTOR signaling pathway with TIE2 L914F (gene name TEK) being one of the most frequent mutations in patients with VMs. Although systemic targeting of the overactivated pathway is possible, it would be a therapeutic advantage to restrict treatment to only the affected lesions. To identify peptides with potential selective binding to TIE2 L914F lesions we applied in vivo phage display to TIE2 L914F-overexpressing endothelial cells (ECs) in a subcutaneous matrigel xenograft mouse model of VMs. By panning for lesion-targeting phages in combination with subcellular fractionation, a screen for cell-penetrating candidate phages was established. Employing Next Generation Sequencing (NGS) and a refined bioinformatic analysis we were able to identify many novel cell-penetrating peptides (CPPs). To pinpoint the most selective and viable CCP candidates a hierarchical clustering algorithm was utilized. This method aggregated CPPs with highly similar sequences into a small number of clusters from which consensus sequences could be derived. Selected candidate CPPs exhibited uptake in TIE2 L914F-expressing human umbilical vein endothelial cells (HUVEC) in culture and were able to deliver siRNA into these cells. In conclusion, our NGS bioinformatic-supported approach led to the identification of novel and selective CPPs capable of transporting a siRNA cargo into targeted cells.
Collapse
Affiliation(s)
- Franziska Kohl
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden; Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Oliver Laufkötter
- Department of Life Science Informatics, B-IT, Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany
| | - Mike Firth
- Data Sciences and Quantitative Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Luc Krimpenfort
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Priyanka Mangla
- Oligonucleotides and Targeted Delivery, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Mohammadhassan Ansarizadeh
- Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland; Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland; Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Gökçe Geylan
- Molecular AI, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden; Division of Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Lauri Eklund
- Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland; Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland; Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Leonardo De Maria
- Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Lars Jakobsson
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - John Wiseman
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
| |
Collapse
|
2
|
Jeong SL, Zhang H, Yamaki S, Yang C, McKemy D, Lieber M, Pham P, Goodman M. Immunoglobulin somatic hypermutation in a defined biochemical system recapitulates affinity maturation and permits antibody optimization. Nucleic Acids Res 2022; 50:11738-11754. [PMID: 36321646 PMCID: PMC9723645 DOI: 10.1093/nar/gkac995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/10/2022] [Accepted: 10/18/2022] [Indexed: 11/05/2022] Open
Abstract
We describe a purified biochemical system to produce monoclonal antibodies (Abs) in vitro using activation-induced deoxycytidine deaminase (AID) and DNA polymerase η (Polη) to diversify immunoglobulin variable gene (IgV) libraries within a phage display format. AID and Polη function during B-cell affinity maturation by catalyzing somatic hypermutation (SHM) of immunoglobulin variable genes (IgV) to generate high-affinity Abs. The IgV mutational motif specificities observed in vivo are conserved in vitro. IgV mutations occurred in antibody complementary determining regions (CDRs) and less frequently in framework (FW) regions. A unique feature of our system is the use of AID and Polη to perform repetitive affinity maturation on libraries reconstructed from a preceding selection step. We have obtained scFv Abs against human glucagon-like peptide-1 receptor (GLP-1R), a target in the treatment of type 2 diabetes, and VHH nanobodies targeting Fatty Acid Amide Hydrolase (FAAH), involved in chronic pain, and artemin, a neurotropic factor that regulates cold pain. A round of in vitro affinity maturation typically resulted in a 2- to 4-fold enhancement in Ab-Ag binding, demonstrating the utility of the system. We tested one of the affinity matured nanobodies and found that it reduced injury-induced cold pain in a mouse model.
Collapse
Affiliation(s)
- Soo Lim Jeong
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Hongyu Zhang
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Shanni Yamaki
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Chenyu Yang
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - David D McKemy
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Michael R Lieber
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA,Departments of Pathology, Biochemistry & Molecular Biology, and Molecular Microbiology & Immunology, Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
| | - Phuong Pham
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Myron F Goodman
- To whom correspondence should be addressed. Tel: +1 213 740 5190; Fax: +1 213 821 1138;
| |
Collapse
|
3
|
Novel Human Antibodies to Insulin Growth Factor 2 Receptor (IGF2R) for Radioimmunoimaging and Therapy of Canine and Human Osteosarcoma. Cancers (Basel) 2021; 13:cancers13092208. [PMID: 34064450 PMCID: PMC8124616 DOI: 10.3390/cancers13092208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Osteosarcoma (OS) is the most common type of bone cancer and mainly affects children, teens and young adults. The overall survival rate is ~67%, but patients with distant metastases have poor prognosis. Insulin growth factor 2 receptor (IGF2R) is a protein that has been shown to be expressed widely in human patient-derived OS cells and is a suitable for target for monoclonal antibody-based therapies. Given the similarities between canine and human OS, IGF2R is also overexpressed in canine OS. Towards the goal of one-health approach, we generated human antibodies that bind with similar affinities to IGF2R expressed in human, murine and canine tissues. We demonstrate tumor accumulation of radiolabeled antibodies in mice bearing human and canine patients derived tumors. Therefore, these antibodies show promise for development into the agents for radioimmunoimaging and radioimmunotherapy of OS in human and canine patients. Abstract Etiological and genetic drivers of osteosarcoma (OS) are not well studied and vary from one tumor to another; making it challenging to pursue conventional targeted therapy. Recent studies have shown that cation independent mannose-6-phosphate/insulin-like growth factor-2 receptor (IGF2R) is consistently overexpressed in almost all of standard and patient-derived OS cell lines, making it an ideal therapeutic target for development of antibody-based drugs. Monoclonal antibodies, targeting IGF2R, can be conjugated with alpha- or beta-emitter radionuclides to deliver cytocidal doses of radiation to target IGF2R expression in OS. This approach known as radioimmunotherapy (RIT) can therefore be developed as a novel treatment for OS. In addition, OS is one of the common cancers in companion dogs and very closely resembles human OS in clinical presentation and molecular aberrations. In this study, we have developed human antibodies that cross-react with similar affinities to IGF2R proteins of human, canine and murine origin. We used naïve and synthetic antibody Fab-format phage display libraries to develop antibodies to a conserved region on IGF2R. The generated antibodies were radiolabeled and characterized in vitro and in vivo using human and canine OS patient-derived tumors in SCID mouse models. We demonstrate specific binding to IGF2R and tumor uptake in these models, as well as binding to tumor tissue of canine OS patients, making these antibodies suitable for further development of RIT for OS
Collapse
|
4
|
Zhou D, Chan JFW, Zhou B, Zhou R, Li S, Shan S, Liu L, Zhang AJ, Chen SJ, Chan CCS, Xu H, Poon VKM, Yuan S, Li C, Chik KKH, Chan CCY, Cao J, Chan CY, Kwan KY, Du Z, Lau TTK, Zhang Q, Zhou J, To KKW, Zhang L, Ho DD, Yuen KY, Chen Z. Robust SARS-CoV-2 infection in nasal turbinates after treatment with systemic neutralizing antibodies. Cell Host Microbe 2021; 29:551-563.e5. [PMID: 33657424 PMCID: PMC7904446 DOI: 10.1016/j.chom.2021.02.019] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/01/2021] [Accepted: 02/19/2021] [Indexed: 01/12/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is characterized by a burst in the upper respiratory portal for high transmissibility. To determine human neutralizing antibodies (HuNAbs) for entry protection, we tested three potent HuNAbs (IC50 range, 0.0007-0.35 μg/mL) against live SARS-CoV-2 infection in the golden Syrian hamster model. These HuNAbs inhibit SARS-CoV-2 infection by competing with human angiotensin converting enzyme-2 for binding to the viral receptor binding domain (RBD). Prophylactic intraperitoneal or intranasal injection of individual HuNAb or DNA vaccination significantly reduces infection in the lungs but not in the nasal turbinates of hamsters intranasally challenged with SARS-CoV-2. Although postchallenge HuNAb therapy suppresses viral loads and lung damage, robust infection is observed in nasal turbinates treated within 1-3 days. Our findings demonstrate that systemic HuNAb suppresses SARS-CoV-2 replication and injury in lungs; however, robust viral infection in nasal turbinate may outcompete the antibody with significant implications to subprotection, reinfection, and vaccine.
Collapse
Affiliation(s)
- Dongyan Zhou
- AIDS Institute, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR, PRC; Department of Microbiology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR, PRC
| | - Jasper Fuk-Woo Chan
- State Key Laboratory of Emerging Infectious Diseases, the University of Hong Kong, Pokfulam, Hong Kong SAR, PRC; Department of Microbiology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR, PRC; Carol Yu Center for Infection, The University of Hong Kong, Pokfulam, Hong Kong SAR, PRC; Department of Clinical Microbiology and Infection Control, the University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, PRC
| | - Biao Zhou
- AIDS Institute, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR, PRC; Department of Microbiology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR, PRC
| | - Runhong Zhou
- AIDS Institute, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR, PRC; Department of Microbiology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR, PRC
| | - Shuang Li
- AIDS Institute, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR, PRC; Department of Microbiology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR, PRC
| | - Sisi Shan
- Center for Global Health and Infectious Diseases, Comprehensive AIDS Research Center and School of Medicine, and Vanke School of Public Health, Tsinghua University, Beijing, PRC
| | - Li Liu
- AIDS Institute, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR, PRC; Department of Microbiology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR, PRC
| | - Anna Jinxia Zhang
- State Key Laboratory of Emerging Infectious Diseases, the University of Hong Kong, Pokfulam, Hong Kong SAR, PRC; Department of Microbiology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR, PRC; Carol Yu Center for Infection, The University of Hong Kong, Pokfulam, Hong Kong SAR, PRC
| | - Serena J Chen
- AIDS Institute, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR, PRC; State Key Laboratory of Emerging Infectious Diseases, the University of Hong Kong, Pokfulam, Hong Kong SAR, PRC
| | - Chris Chung-Sing Chan
- State Key Laboratory of Emerging Infectious Diseases, the University of Hong Kong, Pokfulam, Hong Kong SAR, PRC; Department of Microbiology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR, PRC
| | - Haoran Xu
- AIDS Institute, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR, PRC; Department of Microbiology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR, PRC
| | - Vincent Kwok-Man Poon
- State Key Laboratory of Emerging Infectious Diseases, the University of Hong Kong, Pokfulam, Hong Kong SAR, PRC; Department of Microbiology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR, PRC
| | - Shuofeng Yuan
- State Key Laboratory of Emerging Infectious Diseases, the University of Hong Kong, Pokfulam, Hong Kong SAR, PRC; Department of Microbiology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR, PRC; Carol Yu Center for Infection, The University of Hong Kong, Pokfulam, Hong Kong SAR, PRC; Department of Clinical Microbiology and Infection Control, the University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, PRC
| | - Cun Li
- State Key Laboratory of Emerging Infectious Diseases, the University of Hong Kong, Pokfulam, Hong Kong SAR, PRC; Department of Microbiology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR, PRC
| | - Kenn Ka-Heng Chik
- State Key Laboratory of Emerging Infectious Diseases, the University of Hong Kong, Pokfulam, Hong Kong SAR, PRC; Department of Microbiology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR, PRC
| | - Chris Chun-Yiu Chan
- State Key Laboratory of Emerging Infectious Diseases, the University of Hong Kong, Pokfulam, Hong Kong SAR, PRC; Department of Microbiology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR, PRC
| | - Jianli Cao
- State Key Laboratory of Emerging Infectious Diseases, the University of Hong Kong, Pokfulam, Hong Kong SAR, PRC; Department of Microbiology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR, PRC
| | - Chun-Yin Chan
- AIDS Institute, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR, PRC; Department of Microbiology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR, PRC
| | - Ka-Yi Kwan
- AIDS Institute, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR, PRC; Department of Microbiology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR, PRC
| | - Zhenglong Du
- AIDS Institute, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR, PRC; Department of Microbiology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR, PRC
| | - Thomas Tsz-Kan Lau
- AIDS Institute, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR, PRC; Department of Microbiology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR, PRC
| | - Qi Zhang
- Center for Global Health and Infectious Diseases, Comprehensive AIDS Research Center and School of Medicine, and Vanke School of Public Health, Tsinghua University, Beijing, PRC
| | - Jie Zhou
- State Key Laboratory of Emerging Infectious Diseases, the University of Hong Kong, Pokfulam, Hong Kong SAR, PRC; Department of Microbiology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR, PRC; Carol Yu Center for Infection, The University of Hong Kong, Pokfulam, Hong Kong SAR, PRC
| | - Kelvin Kai-Wang To
- State Key Laboratory of Emerging Infectious Diseases, the University of Hong Kong, Pokfulam, Hong Kong SAR, PRC; Department of Microbiology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR, PRC; Carol Yu Center for Infection, The University of Hong Kong, Pokfulam, Hong Kong SAR, PRC; Department of Clinical Microbiology and Infection Control, the University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, PRC
| | - Linqi Zhang
- Center for Global Health and Infectious Diseases, Comprehensive AIDS Research Center and School of Medicine, and Vanke School of Public Health, Tsinghua University, Beijing, PRC
| | - David D Ho
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, the University of Hong Kong, Pokfulam, Hong Kong SAR, PRC; Department of Microbiology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR, PRC; Carol Yu Center for Infection, The University of Hong Kong, Pokfulam, Hong Kong SAR, PRC; Department of Clinical Microbiology and Infection Control, the University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, PRC.
| | - Zhiwei Chen
- AIDS Institute, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR, PRC; State Key Laboratory of Emerging Infectious Diseases, the University of Hong Kong, Pokfulam, Hong Kong SAR, PRC; Department of Microbiology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR, PRC; Department of Clinical Microbiology and Infection Control, the University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, PRC.
| |
Collapse
|
5
|
Aloisio A, Nisticò N, Mimmi S, Maisano D, Vecchio E, Fiume G, Iaccino E, Quinto I. Phage-Displayed Peptides for Targeting Tyrosine Kinase Membrane Receptors in Cancer Therapy. Viruses 2021; 13:649. [PMID: 33918836 PMCID: PMC8070105 DOI: 10.3390/v13040649] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/04/2021] [Accepted: 04/07/2021] [Indexed: 02/06/2023] Open
Abstract
Receptor tyrosine kinases (RTKs) regulate critical physiological processes, such as cell growth, survival, motility, and metabolism. Abnormal activation of RTKs and relative downstream signaling is implicated in cancer pathogenesis. Phage display allows the rapid selection of peptide ligands of membrane receptors. These peptides can target in vitro and in vivo tumor cells and represent a novel therapeutic approach for cancer therapy. Further, they are more convenient compared to antibodies, being less expensive and non-immunogenic. In this review, we describe the state-of-the-art of phage display for development of peptide ligands of tyrosine kinase membrane receptors and discuss their potential applications for tumor-targeted therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ileana Quinto
- Correspondence: (A.A.); (I.Q.): Tel.: +39-0961-3694057 (I.Q.)
| |
Collapse
|
6
|
Wollacott AM, Xue C, Qin Q, Hua J, Bohnuud T, Viswanathan K, Kolachalama VB. Quantifying the nativeness of antibody sequences using long short-term memory networks. Protein Eng Des Sel 2020; 32:347-354. [PMID: 31504835 PMCID: PMC7372931 DOI: 10.1093/protein/gzz031] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 06/11/2019] [Accepted: 07/07/2019] [Indexed: 11/12/2022] Open
Abstract
Antibodies often undergo substantial engineering en route to the generation of a therapeutic candidate with good developability properties. Characterization of antibody libraries has shown that retaining native-like sequence improves the overall quality of the library. Motivated by recent advances in deep learning, we developed a bi-directional long short-term memory (LSTM) network model to make use of the large amount of available antibody sequence information, and use this model to quantify the nativeness of antibody sequences. The model scores sequences for their similarity to naturally occurring antibodies, which can be used as a consideration during design and engineering of libraries. We demonstrate the performance of this approach by training a model on human antibody sequences and show that our method outperforms other approaches at distinguishing human antibodies from those of other species. We show the applicability of this method for the evaluation of synthesized antibody libraries and humanization of mouse antibodies.
Collapse
Affiliation(s)
| | - Chonghua Xue
- Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Qiuyuan Qin
- Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - June Hua
- Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | - Vijaya B Kolachalama
- Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA.,Hariri Institute of Computing and Computational Science & Engineering, Boston University, Boston, MA 02115, USA.,Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA.,Boston University Alzheimer's Disease Center, Boston, MA 02118, USA
| |
Collapse
|
7
|
Dolgikh VV, Timofeev SA, Zhuravlyov VS, Senderskiy IV. Construction and heterologous overexpression of two chimeric proteins carrying outer hydrophilic loops of Vairimorpha ceranae and Nosema bombycis ATP/ADP carriers. J Invertebr Pathol 2020; 171:107337. [PMID: 32035083 DOI: 10.1016/j.jip.2020.107337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 02/02/2020] [Accepted: 02/04/2020] [Indexed: 01/15/2023]
Abstract
Microsporidia Nosema bombycis and Vairimorpha ceranae cause destructive epizootics of honey bees and silkworms. Insufficient efficiency of the antibiotic fumagillin against V. ceranae, its toxicity and the absence of effective methods of N. bombycis treatment demand the discovery of novel strategies to suppress infections of domesticated insects. RNA interference is one such novel treatment strategy. Another one implies that the intracellular development of microsporidia may be suppressed by single-chain antibodies (scFv fragments) against functionally important parasite proteins. Important components of microsporidian metabolism are non-mitochondrial, plastidic-bacterial ATP/ADP carriers. These membrane transporters import host-derived ATP and provide the capacity to pathogens for energy parasitism. Here, we analyzed membrane topology of four V. ceranae and three N. bombycis ATP/ADP transporters to construct two fusion proteins carrying their outer hydrophilic loops contacting with infected host cell cytoplasm. Interestingly, full-size genes of N. bombycis transporters may be derived from the Asian swallowtail Papilio xuthus genome sequencing project. Synthesis of the artificial genes was followed by overexpression of recombinant proteins in E. coli as insoluble inclusion bodies. The gene fragments encoding the loops of individual transporters were also effectively expressed in bacteria. The chimeric antigens may be used to construct immune libraries or select microsporidia-suppressing scFv fragments from synthetic, semisynthetic, naïve and immune antibody libraries. A further expression of such antibodies in insect cells may increase their resistance to microsporidial infections.
Collapse
Affiliation(s)
- Viacheslav V Dolgikh
- Laboratory of Molecular Plant Protection, All-Russian Institute of Plant Protection, St. Petersburg, Pushkin, Russia.
| | - Sergey A Timofeev
- Laboratory of Molecular Plant Protection, All-Russian Institute of Plant Protection, St. Petersburg, Pushkin, Russia
| | - Vladimir S Zhuravlyov
- Laboratory of Molecular Plant Protection, All-Russian Institute of Plant Protection, St. Petersburg, Pushkin, Russia
| | - Igor V Senderskiy
- Laboratory of Molecular Plant Protection, All-Russian Institute of Plant Protection, St. Petersburg, Pushkin, Russia
| |
Collapse
|
8
|
Feng M, Bian H, Wu X, Fu T, Fu Y, Hong J, Fleming BD, Flajnik MF, Ho M. Construction and next-generation sequencing analysis of a large phage-displayed V NAR single-domain antibody library from six naïve nurse sharks. Antib Ther 2019; 2:1-11. [PMID: 30627698 PMCID: PMC6312525 DOI: 10.1093/abt/tby011] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/27/2018] [Accepted: 11/01/2018] [Indexed: 12/19/2022] Open
Abstract
Background: Shark new antigen receptor variable domain (VNAR) antibodies can bind restricted epitopes that may be inaccessible to conventional antibodies. Methods: Here, we developed a library construction method based on polymerase chain reaction (PCR)-Extension Assembly and Self-Ligation (named "EASeL") to construct a large VNAR antibody library with a size of 1.2 × 1010 from six naïve adult nurse sharks (Ginglymostoma cirratum). Results: The next-generation sequencing analysis of 1.19 million full-length VNARs revealed that this library is highly diversified because it covers all four classical VNAR types (Types I-IV) including 11% of classical Type I and 57% of classical Type II. About 30% of the total VNARs could not be categorized as any of the classical types. The high variability of complementarity determining region (CDR) 3 length and cysteine numbers are important for the diversity of VNARs. To validate the use of the shark VNAR library for antibody discovery, we isolated a panel of VNAR phage binders to cancer therapy-related antigens, including glypican-3, human epidermal growth factor receptor 2 (HER2), and programmed cell death-1 (PD1). Additionally, we identified binders to viral antigens that included the Middle East respiratory syndrome (MERS) and severe acute respiratory syndrome (SARS) spike proteins. The isolated shark single-domain antibodies including Type I and Type II VNARs were produced in Escherichia coli and validated for their antigen binding. A Type II VNAR (PE38-B6) has a high affinity (Kd = 10.1 nM) for its antigen. Conclusions: The naïve nurse shark VNAR library is a useful source for isolating single-domain antibodies to a wide range of antigens. The EASeL method may be applicable to the construction of other large diversity gene expression libraries.
Collapse
Affiliation(s)
- Mingqian Feng
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Hejiao Bian
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Xiaolin Wu
- Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Tianyun Fu
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Ying Fu
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Jessica Hong
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Bryan D Fleming
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Martin F Flajnik
- Department of Microbiology and Immunology, University of Maryland Baltimore School of Medicine, Baltimore, MD, USA
| | - Mitchell Ho
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
9
|
Ministro J, Manuel AM, Goncalves J. Therapeutic Antibody Engineering and Selection Strategies. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2019; 171:55-86. [PMID: 31776591 DOI: 10.1007/10_2019_116] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Antibody drugs became an increasingly important element of the therapeutic landscape. Their accomplishment has been driven by many unique properties, in particular by their very high specificity and selectivity, in contrast to the off-target liabilities of small molecules (SMs). Antibodies can bring additional functionality to the table with their ability to interact with the immune system, and this can be further manipulated with advances in antibody engineering.The expansion of strategies related to discovery technologies of monoclonal antibodies (mAbs) (phage display, yeast display, ribosome display, bacterial display, mammalian cell surface display, mRNA display, DNA display, transgenic animal, and human B cell derived) opened perspectives for the screening and the selection of therapeutic antibodies for, theoretically, any target from any kind of organism. Moreover, antibody engineering technologies were developed and explored to obtain chosen characteristics of selected leading candidates such as high affinity, low immunogenicity, improved functionality, improved protein production, improved stability, and others. This chapter contains an overview of discovery technologies, mainly display methods and antibody humanization methods for the selection of therapeutic humanized and human mAbs that appeared along the development of these technologies and thereafter. The increasing applications of these technologies will be highlighted in the antibody engineering area (affinity maturation, guided selection to obtain human antibodies) giving promising perspectives for the development of future therapeutics.
Collapse
Affiliation(s)
| | - Ana Margarida Manuel
- iMed - Research Institute for Medicines, Faculty of Pharmacy at University of Lisbon, Lisbon, Portugal
| | - Joao Goncalves
- iMed - Research Institute for Medicines, Faculty of Pharmacy at University of Lisbon, Lisbon, Portugal.
| |
Collapse
|
10
|
Lee NK, Bidlingmaier S, Su Y, Liu B. Modular Construction of Large Non-Immune Human Antibody Phage-Display Libraries from Variable Heavy and Light Chain Gene Cassettes. Methods Mol Biol 2018; 1701:61-82. [PMID: 29116500 DOI: 10.1007/978-1-4939-7447-4_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Monoclonal antibodies and antibody-derived therapeutics have emerged as a rapidly growing class of biological drugs for the treatment of cancer, autoimmunity, infection, and neurological diseases. To support the development of human antibodies, various display techniques based on antibody gene repertoires have been constructed over the last two decades. In particular, scFv-antibody phage display has been extensively utilized to select lead antibodies against a variety of target antigens. To construct a scFv phage display that enables efficient antibody discovery, and optimization, it is desirable to develop a system that allows modular assembly of highly diverse variable heavy chain and light chain (Vκ and Vλ) repertoires. Here, we describe modular construction of large non-immune human antibody phage-display libraries built on variable gene cassettes from heavy chain and light chain repertoires (Vκ- and Vλ-light can be made into independent cassettes). We describe utility of such libraries in antibody discovery and optimization through chain shuffling.
Collapse
Affiliation(s)
- Nam-Kyung Lee
- Department of Anesthesia, UCSF Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, 1001 Potrero Avenue, 1305, San Francisco, CA, 94110, USA
| | - Scott Bidlingmaier
- Department of Anesthesia, UCSF Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, 1001 Potrero Avenue, 1305, San Francisco, CA, 94110, USA
| | - Yang Su
- Department of Anesthesia, UCSF Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, 1001 Potrero Avenue, 1305, San Francisco, CA, 94110, USA
| | - Bin Liu
- Department of Anesthesia, UCSF Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, 1001 Potrero Avenue, 1305, San Francisco, CA, 94110, USA.
| |
Collapse
|
11
|
Pasello M, Mallano A, Flego M, Zamboni S, Giudice AM, Scotlandi K. Construction of Human Naïve Antibody Gene Libraries. Methods Mol Biol 2018; 1827:73-91. [PMID: 30196492 DOI: 10.1007/978-1-4939-8648-4_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Size and variability often represent an obstacle in generating an effective antibody gene library for the detection of an abundant repertoire of antigens. Therefore, optimizing the construction of a large library is essential for the selection of high-affinity reactive fragments. Here, we report a highly efficient method for the construction of a human naïve antibody gene library for the selection of antibodies as single-chain variable fragments. This protocol is based on many different sets of oligonucleotide primers and multistep electroporation and ligation reactions.This advanced method can be adopted by any molecular biology laboratory to generate a naïve library for use in isolating single-chain fragment variables against specific targets.
Collapse
Affiliation(s)
- Michela Pasello
- CRS Development of Biomolecular Therapies, Experimental Oncology Lab, Rizzoli Orthopedic Institute, Bologna, Italy.
| | - Alessandra Mallano
- National Center For Global Health, The National Institute of Health, Rome, Italy
| | - Michela Flego
- National Center For Global Health, The National Institute of Health, Rome, Italy
| | - Silvia Zamboni
- Department of Neuroscience, The National Institute of Health, Rome, Italy
| | - Anna Maria Giudice
- CRS Development of Biomolecular Therapies, Experimental Oncology Lab, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Katia Scotlandi
- CRS Development of Biomolecular Therapies, Experimental Oncology Lab, Rizzoli Orthopedic Institute, Bologna, Italy
| |
Collapse
|
12
|
Antibody-Based Protective Immunity against Helminth Infections: Antibody Phage Display Derived Antibodies against BmR1 Antigen. Int J Mol Sci 2017; 18:ijms18112376. [PMID: 29165352 PMCID: PMC5713345 DOI: 10.3390/ijms18112376] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 10/25/2017] [Accepted: 11/02/2017] [Indexed: 12/18/2022] Open
Abstract
Helminth parasite infections are significantly impacting global health, with more than two billion infections worldwide with a high morbidity rate. The complex life cycle of the nematodes has made host immune response studies against these parasites extremely difficult. In this study, we utilized two phage antibody libraries; the immune and naïve library were used to identify single chain fragment variable (scFv) clones against a specific filarial antigen (BmR1). The V-gene analysis of isolated scFv clones will help shed light on preferential VDJ gene segment usage against the filarial BmR1 antigen in healthy and infected states. The immune library showed the usage of both lambda and kappa light chains. However, the naïve library showed preferential use of the lambda family with different amino acid distributions. The binding characteristics of the scFv clones identified from this work were analyzed by immunoassay and immunoaffinity pull down of BmR1. The work highlights the antibody gene usage pattern of a naïve and immune antibody library against the same antigen as well as the robust nature of the enriched antibodies for downstream applications.
Collapse
|
13
|
Somplatzki S, Mühlenhoff M, Kröger A, Gerardy-Schahn R, Böldicke T. Intrabodies against the Polysialyltransferases ST8SiaII and ST8SiaIV inhibit Polysialylation of NCAM in rhabdomyosarcoma tumor cells. BMC Biotechnol 2017; 17:42. [PMID: 28499450 PMCID: PMC5429572 DOI: 10.1186/s12896-017-0360-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 04/19/2017] [Indexed: 01/05/2023] Open
Abstract
Background Polysialic acid (polySia) is a carbohydrate modification of the neural cell adhesion molecule (NCAM), which is implicated in neural differentiation and plays an important role in tumor development and metastasis. Polysialylation of NCAM is mediated by two Golgi-resident polysialyltransferases (polyST) ST8SiaII and ST8SiaIV. Intracellular antibodies (intrabodies; IB) expressed inside the ER and retaining proteins passing the ER such as cell surface receptors or secretory proteins provide an efficient means of protein knockdown. To inhibit the function of ST8SiaII and ST8SiaIV specific ER IBs were generated starting from two corresponding hybridoma clones. Both IBs αST8SiaII-IB and αST8SiaIV-IB were constructed in the scFv format and their functions characterized in vitro and in vivo. Results IBs directed against the polySTs prevented the translocation of the enzymes from the ER to the Golgi-apparatus. Co-immunoprecipitation of ST8SiaII and ST8SiaIV with the corresponding IBs confirmed the intracellular interaction with their cognate antigens. In CHO cells overexpressing ST8SiaII and ST8SiaIV, respectively, the transfection with αST8SiaII-IB or αST8SiaIV-IB inhibited significantly the cell surface expression of polysialylated NCAM. Furthermore stable expression of ST8SiaII-IB, ST8SiaIV-IB and luciferase in the rhabdomyosarcoma cell line TE671 reduced cell surface expression of polySia and delayed tumor growth if cells were xenografted into C57BL/6 J RAG-2 mice. Conclusion Data obtained strongly indicate that αST8SiaII-IB and αST8SiaIV-IB are promising experimental tools to analyze the individual role of the two enzymes during brain development and during migration and proliferation of tumor cells. Electronic supplementary material The online version of this article (doi:10.1186/s12896-017-0360-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stefan Somplatzki
- Helmholtz Centre for Infection Research, Structural and Functional Protein Research, Inhoffenstraße 7, D-38124, Braunschweig, Germany
| | - Martina Mühlenhoff
- Institute of Cellular Chemistry, Hannover Medical School, D-30625, Hannover, Germany
| | - Andrea Kröger
- Helmholtz Centre for Infection Research, Group Innate Immunity and Infection, Inhoffenstraße 7, D-38124, Braunschweig, Germany
| | - Rita Gerardy-Schahn
- Institute of Cellular Chemistry, Hannover Medical School, D-30625, Hannover, Germany
| | - Thomas Böldicke
- Helmholtz Centre for Infection Research, Structural and Functional Protein Research, Inhoffenstraße 7, D-38124, Braunschweig, Germany.
| |
Collapse
|
14
|
Chan SK, Rahumatullah A, Lai JY, Lim TS. Naïve Human Antibody Libraries for Infectious Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1053:35-59. [PMID: 29549634 PMCID: PMC7120739 DOI: 10.1007/978-3-319-72077-7_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Many countries are facing an uphill battle in combating the spread of infectious diseases. The constant evolution of microorganisms magnifies the problem as it facilitates the re-emergence of old infectious diseases as well as promote the introduction of new and more deadly variants. Evidently, infectious diseases have contributed to an alarming rate of mortality worldwide making it a growing concern. Historically, antibodies have been used successfully to prevent and treat infectious diseases since the nineteenth century using antisera collected from immunized animals. The inherent ability of antibodies to trigger effector mechanisms aids the immune system to fight off pathogens that invades the host. Immune libraries have always been an important source of antibodies for infectious diseases due to the skewed repertoire generated post infection. Even so, the role and ability of naïve antibody libraries should not be underestimated. The naïve repertoire has its own unique advantages in generating antibodies against target antigens. This chapter will highlight the concept, advantages and application of human naïve libraries as a source to isolate antibodies against infectious disease target antigens.
Collapse
Affiliation(s)
- Soo Khim Chan
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Anizah Rahumatullah
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Jing Yi Lai
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Minden, Penang, Malaysia.
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia, Minden, 11800, Penang, Malaysia.
| |
Collapse
|
15
|
Gray A, Sidhu S, Chandrasekera P, Hendriksen C, Borrebaeck C. Animal-Friendly Affinity Reagents: Replacing the Needless in the Haystack. Trends Biotechnol 2016; 34:960-969. [DOI: 10.1016/j.tibtech.2016.05.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 05/26/2016] [Accepted: 05/31/2016] [Indexed: 10/21/2022]
|
16
|
Marschall ALJ, Dübel S, Böldicke T. Specific in vivo knockdown of protein function by intrabodies. MAbs 2015; 7:1010-35. [PMID: 26252565 PMCID: PMC4966517 DOI: 10.1080/19420862.2015.1076601] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 07/19/2015] [Accepted: 07/20/2015] [Indexed: 01/02/2023] Open
Abstract
Intracellular antibodies (intrabodies) are recombinant antibody fragments that bind to target proteins expressed inside of the same living cell producing the antibodies. The molecules are commonly used to study the function of the target proteins (i.e., their antigens). The intrabody technology is an attractive alternative to the generation of gene-targeted knockout animals, and complements knockdown techniques such as RNAi, miRNA and small molecule inhibitors, by-passing various limitations and disadvantages of these methods. The advantages of intrabodies include very high specificity for the target, the possibility to knock down several protein isoforms by one intrabody and targeting of specific splice variants or even post-translational modifications. Different types of intrabodies must be designed to target proteins at different locations, typically either in the cytoplasm, in the nucleus or in the endoplasmic reticulum (ER). Most straightforward is the use of intrabodies retained in the ER (ER intrabodies) to knock down the function of proteins passing the ER, which disturbs the function of members of the membrane or plasma proteomes. More effort is needed to functionally knock down cytoplasmic or nuclear proteins because in this case antibodies need to provide an inhibitory effect and must be able to fold in the reducing milieu of the cytoplasm. In this review, we present a broad overview of intrabody technology, as well as applications both of ER and cytoplasmic intrabodies, which have yielded valuable insights in the biology of many targets relevant for drug development, including α-synuclein, TAU, BCR-ABL, ErbB-2, EGFR, HIV gp120, CCR5, IL-2, IL-6, β-amyloid protein and p75NTR. Strategies for the generation of intrabodies and various designs of their applications are also reviewed.
Collapse
Affiliation(s)
- Andrea LJ Marschall
- Technische Universität Braunschweig, Institute of Biochemistry, Biotechnology and Bioinformatics; Braunschweig, Germany
| | - Stefan Dübel
- Technische Universität Braunschweig, Institute of Biochemistry, Biotechnology and Bioinformatics; Braunschweig, Germany
| | - Thomas Böldicke
- Helmholtz Centre for Infection Research, Recombinant Protein Expression/Intrabody Unit, Helmholtz Centre for Infection Research; Braunschweig, Germany
| |
Collapse
|
17
|
Putelli A, Kiefer JD, Zadory M, Matasci M, Neri D. A fibrin-specific monoclonal antibody from a designed phage display library inhibits clot formation and localizes to tumors in vivo. J Mol Biol 2014; 426:3606-18. [PMID: 25073100 DOI: 10.1016/j.jmb.2014.07.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 07/02/2014] [Accepted: 07/16/2014] [Indexed: 11/28/2022]
Abstract
Fibrin formation from fibrinogen is a rare process in the healthy organism but is a pathological feature of thrombotic events, cancer and a wide range of inflammatory conditions. We have designed and constructed an antibody phage display library (containing 13 billion clones) for the selective recognition of the N-terminal peptide of fibrin alpha chain. The key structural feature for selective fibrin binding was a K94E mutation in the VH domain. From this library, an antibody was isolated (termed AP2), which recognizes the five N-terminal amino acids of fibrin with high affinity (Kd=44nM), but does not bind to fibrinogen. The AP2 antibody could be expressed in various formats (scFv, small immune protein and IgG) and inhibited fibrin clot formation in a concentration-dependent manner. Moreover, the AP2 antibody stained the fibrin-rich provisional stroma in solid tumors but did not exhibit any detectable staining toward normal tissues. Using a radioiodinated antibody preparation and quantitative biodistribution studies in tumor-bearing mice, AP2 was shown to selectively localize to fibrin-rich F9 murine teratocarcinomas, but not to SKRC-52 human kidney cancer xenografts. Collectively, the experiments indicate that the AP2 antibody recognizes fibrin in vitro and in vivo. The antibody may facilitate the development of fibrin-specific therapeutic agents.
Collapse
Affiliation(s)
- Alessia Putelli
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland.
| | - Jonathan D Kiefer
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland.
| | - Matthias Zadory
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland.
| | - Mattia Matasci
- Philochem AG, Libernstrasse 3, CH-8112 Otelfingen, Switzerland.
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland.
| |
Collapse
|
18
|
D'Onofrio N, Caraglia M, Grimaldi A, Marfella R, Servillo L, Paolisso G, Balestrieri ML. Vascular-homing peptides for targeted drug delivery and molecular imaging: meeting the clinical challenges. Biochim Biophys Acta Rev Cancer 2014; 1846:1-12. [PMID: 24704283 DOI: 10.1016/j.bbcan.2014.03.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 03/20/2014] [Accepted: 03/22/2014] [Indexed: 12/12/2022]
Abstract
The vasculature of each organ expresses distinct molecular signatures critically influenced by the pathological status. The heterogeneous profile of the vascular beds has been successfully unveiled by the in vivo phage display, a high-throughput tool for mapping normal, diseased, and tumor vasculature. Specific challenges of this growing field are targeted therapies against cancer and cardiovascular diseases, as well as novel bioimaging diagnostic tools. Tumor vasculature-homing peptides have been extensively evaluated in several preclinical and clinical studies both as targeted-therapy and diagnosis. To date, results from several Phase I and II trials have been reported and many other trials are currently ongoing or recruiting patients. In this review, advances in the identification of novel peptide ligands and their corresponding receptors on tumor endothelium through the in vivo phage display technology are discussed. Emphasis is given to recent findings in the clinical setting of vascular-homing peptides selected by in vivo phage display for the treatment of advanced malignancies and their altered vascular beds.
Collapse
Affiliation(s)
- Nunzia D'Onofrio
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, via L. de Crecchio 7, 80138 Naples, Italy
| | - Michele Caraglia
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, via L. de Crecchio 7, 80138 Naples, Italy
| | - Anna Grimaldi
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, via L. de Crecchio 7, 80138 Naples, Italy
| | - Raffaele Marfella
- Department of Geriatrics and Metabolic Diseases, Second University of Naples, Piazza Miraglia 2, 80138 Naples, Italy
| | - Luigi Servillo
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, via L. de Crecchio 7, 80138 Naples, Italy
| | - Giuseppe Paolisso
- Department of Geriatrics and Metabolic Diseases, Second University of Naples, Piazza Miraglia 2, 80138 Naples, Italy
| | - Maria Luisa Balestrieri
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, via L. de Crecchio 7, 80138 Naples, Italy.
| |
Collapse
|
19
|
Klibanov AL. Ultrasound contrast materials in cardiovascular medicine: from perfusion assessment to molecular imaging. J Cardiovasc Transl Res 2013; 6:729-39. [PMID: 23913363 DOI: 10.1007/s12265-013-9501-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 07/08/2013] [Indexed: 11/26/2022]
Abstract
Ultrasound imaging is widely used in cardiovascular diagnostics. Contrast agents expand the range of tasks that ultrasound can perform. In the clinic in the USA, endocardial border delineation and left ventricle opacification have been an approved indication for more than a decade. However, myocardial perfusion contrast ultrasound studies are still at the clinical trials stage. Blood pool contrast and perfusion in other tissues might be an easier indication to achieve: general blood pool ultrasound contrast is in wider use in Europe, Canada, Japan, and China. Targeted (molecular) contrast microbubbles will be the next generation of ultrasound imaging probes, capable of specific delineation of the areas of disease by adherence to molecular targets. The shell of targeted microbubbles (currently in the preclinical research and early stage clinical trials) is decorated with the ligands (antibodies, peptides or mimetics, hormones, and carbohydrates) that ensure firm binding to the molecular markers of disease.
Collapse
Affiliation(s)
- Alexander L Klibanov
- Division of Cardiovascular Medicine and Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA,
| |
Collapse
|
20
|
Bábíčková J, Tóthová Ľ, Boor P, Celec P. In vivo phage display--a discovery tool in molecular biomedicine. Biotechnol Adv 2013; 31:1247-59. [PMID: 23623852 DOI: 10.1016/j.biotechadv.2013.04.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 04/15/2013] [Accepted: 04/15/2013] [Indexed: 12/13/2022]
Abstract
In vivo phage display is a high-throughput method for identifying target ligands specific for different vascular beds. Targeting is possible due to the heterogeneous expression of receptors and other antigens in a particular vascular bed. Such expression is additionally influenced by the physiological or pathological status of the vasculature. In vivo phage display represents a technique that is usable in both, vascular mapping and targeted drug development. In this review, several important methodological aspects of in vivo phage display experiments are discussed. These include choosing an appropriate phage library, an appropriate animal model and the route of phage library administration. In addition, peptides or antibodies identified by in vivo phage display homing to specific types of vascular beds, including the altered vasculature present in several types of diseases are summarized. Still, confirmation in independent experiments and reproduction of identified sequences are needed for enhancing the clinical applicability of in vivo phage display research.
Collapse
Affiliation(s)
- Janka Bábíčková
- Institute of Molecular Biomedicine, Comenius University, Bratislava, Slovakia; Division of Nephrology, RWTH University, Aachen, Germany
| | | | | | | |
Collapse
|