1
|
Sousa P, Lopes B, Sousa AC, Coelho A, de Sousa Moreira A, Rêma A, Gonçalves-Maia M, Amorim I, Alvites R, Alves N, Geuna S, Maurício AC. Isolation, Expansion, and Characterization of Rat Hair Follicle Stem Cells and Their Secretome: Insights into Wound Healing Potential. Biomedicines 2024; 12:2854. [PMID: 39767760 PMCID: PMC11672956 DOI: 10.3390/biomedicines12122854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/23/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Stem cells are capable of self-renewal and differentiation into various specialized cells, making them a potential therapeutic option in regenerative medicine. This study establishes a comprehensive methodology for isolating, culturing, and characterizing rat hair follicle stem cells. Methods and Results: Hair follicles were harvested from Sprague-Dawley rats and subjected to two different isolation techniques. Immunohistochemical analysis and real-time PCR confirm the expression of specific surface markers and genes, validating the cells' identity. Growth kinetics, colony formation units (CFU), and tri-differentiation capacity were also assessed. Additionally, the cells' secretome was analyzed, regarding its content in biofactors with wound healing properties. Conclusions: These findings highlight the potential of these cells as a valuable cell source for skin regeneration applications. They contribute to advancing our understanding of stem cell applications in regenerative medicine and hold promise for therapeutic interventions in various clinical contexts, aligning with broader research on the diverse capabilities of hair follicle stem cells.
Collapse
Affiliation(s)
- Patrícia Sousa
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal; (P.S.); (B.L.); (A.C.S.); (A.C.); (A.d.S.M.); (A.R.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Bruna Lopes
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal; (P.S.); (B.L.); (A.C.S.); (A.C.); (A.d.S.M.); (A.R.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Ana Catarina Sousa
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal; (P.S.); (B.L.); (A.C.S.); (A.C.); (A.d.S.M.); (A.R.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - André Coelho
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal; (P.S.); (B.L.); (A.C.S.); (A.C.); (A.d.S.M.); (A.R.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Alícia de Sousa Moreira
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal; (P.S.); (B.L.); (A.C.S.); (A.C.); (A.d.S.M.); (A.R.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Alexandra Rêma
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal; (P.S.); (B.L.); (A.C.S.); (A.C.); (A.d.S.M.); (A.R.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Maria Gonçalves-Maia
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Maia & Muller-Biotech, Rua Alfredo Allen, 455/461, 4200-135 Porto, Portugal
| | - Irina Amorim
- Departamento de Patologia e Imunologia Molecular, ICBAS—School of Medicine and Biomedical Sciences, University of Porto (UP), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;
- Institute for Research and Innovation in Health (i3S), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
| | - Rui Alvites
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal; (P.S.); (B.L.); (A.C.S.); (A.C.); (A.d.S.M.); (A.R.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
- Instituto Universitário de Ciências da Saúde (CESPU), Avenida Central de Gandra 1317, 4585-116 Paredes, Portugal
| | - Nuno Alves
- Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, 2430-028 Marinha Grande, Portugal;
| | - Stefano Geuna
- Department of Clinical and Biological Sciences, Cavalieri Ottolenghi Neuroscience Institute, University of Turin, Ospedale San Luigi, 10043 Turin, Italy;
| | - Ana Colette Maurício
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal; (P.S.); (B.L.); (A.C.S.); (A.C.); (A.d.S.M.); (A.R.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| |
Collapse
|
2
|
Moro-López M, Farré R, Otero J, Sunyer R. Trusting the forces of our cell lines. Cells Dev 2024; 179:203931. [PMID: 38852676 DOI: 10.1016/j.cdev.2024.203931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/03/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
Cells isolated from their native tissues and cultured in vitro face different selection pressures than those cultured in vivo. These pressures induce a profound transformation that reshapes the cell, alters its genome, and transforms the way it senses and generates forces. In this perspective, we focus on the evidence that cells cultured on conventional polystyrene substrates display a fundamentally different mechanobiology than their in vivo counterparts. We explore the role of adhesion reinforcement in this transformation and to what extent it is reversible. We argue that this mechanoadaptation is often understood as a mechanical memory. We propose some strategies to mitigate the effects of on-plastic culture on mechanobiology, such as organoid-inspired protocols or mechanical priming. While isolating cells from their native tissues and culturing them on artificial substrates has revolutionized biomedical research, it has also transformed cellular forces. Only by understanding and controlling them, we can improve their truthfulness and validity.
Collapse
Affiliation(s)
- Marina Moro-López
- Unit of Biophysics and Bioengineering, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Ramon Farré
- Unit of Biophysics and Bioengineering, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-RES), Barcelona, Spain; Institut Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain
| | - Jorge Otero
- Unit of Biophysics and Bioengineering, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-RES), Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Raimon Sunyer
- Unit of Biophysics and Bioengineering, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Bioingeniería (CIBER-BBN), Barcelona, Spain.
| |
Collapse
|
3
|
Jothi D, Kulka LAM. Strategies for modeling aging and age-related diseases. NPJ AGING 2024; 10:32. [PMID: 38987252 PMCID: PMC11237002 DOI: 10.1038/s41514-024-00161-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/18/2024] [Indexed: 07/12/2024]
Abstract
The ability to reprogram patient-derived-somatic cells to IPSCs (Induced Pluripotent Stem Cells) has led to a better understanding of aging and age-related diseases like Parkinson's, and Alzheimer's. The established patient-derived disease models mimic disease pathology and can be used to design drugs for aging and age-related diseases. However, the age and genetic mutations of the donor cells, the employed reprogramming, and the differentiation protocol might often pose challenges in establishing an appropriate disease model. In this review, we will focus on the various strategies for the successful reprogramming and differentiation of patient-derived cells to disease models for aging and age-related diseases, emphasizing the accuracy in the recapitulation of disease pathology and ways to overcome the limitations of its potential application in cell replacement therapy and drug development.
Collapse
Affiliation(s)
- D Jothi
- Department of Biochemistry II, Friedrich Schiller University, Jena, Germany.
| | | |
Collapse
|
4
|
Rodrigues LLV, Oliveira REMD, Attademo FLN, Pereira AF. The Role of Skin-Derived Somatic Cell and Tissue Cryobanks in the Conservation of Aquatic Mammals. Biopreserv Biobank 2024. [PMID: 38957968 DOI: 10.1089/bio.2023.0168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024] Open
Abstract
Anthropogenic actions, especially inadequate waste disposal, cause permanent effects on aquatic fauna, resulting in a significant loss in their population. In this scenario, in situ and ex situ conservation strategies have been developed for these species. Among these strategies is the formation of somatic cell and tissue banks derived from skin collection that act complementarily to other biotechnologies. These banks contain all the information for genomic, genetic, and proteomic analyses. They are useful in the assessment of the toxicity of pollutants on the physiology of the species and regenerative and reproductive biotechnologies. The formation of these cryobanks involves different steps, including cryopreservation, with the optimization of all steps occurring in a species-specific manner. There is a diversity of studies on aquatic mammals; however, a low quantity compared to the number of studies on land mammals, with more than 80% of species still unexplored. This is mainly due to the difficulty of execution and asepsis in collecting skin from aquatic mammals and the in vitro culture, which seems to require more particularities for it to be successful. Therefore, this review aims to address the current scenario and the steps involved in the conservation of somatic cells and tissues derived from aquatic mammal skin, as well as results that have been achieved in recent years and the prospects.
Collapse
Affiliation(s)
- Luanna Lorenna Vieira Rodrigues
- Laboratory of Animal Biotechnology, Department of Biosciences, Universidade Federal Rural do Semi-Árido, Rio Grande do Norte, Brazil
| | - Radan Elvis Matias de Oliveira
- Laboratory of Applied Animal Morphophysiology, Department of Animal Sciences, Universidade Federal Rural do Semi-Árido, Rio Grande do Norte, Brazil
| | | | - Alexsandra Fernandes Pereira
- Laboratory of Animal Biotechnology, Department of Biosciences, Universidade Federal Rural do Semi-Árido, Rio Grande do Norte, Brazil
| |
Collapse
|
5
|
Kwon DH, Gim GM, Yum SY, Jang G. Current status and future of gene engineering in livestock. BMB Rep 2024; 57:50-59. [PMID: 38053297 PMCID: PMC10828428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/23/2023] [Accepted: 12/04/2023] [Indexed: 12/07/2023] Open
Abstract
The application of gene engineering in livestock is necessary for various reasons, such as increasing productivity and producing disease resistance and biomedicine models. Overall, gene engineering provides benefits to the agricultural and research aspects, and humans. In particular, productivity can be increased by producing livestock with enhanced growth and improved feed conversion efficiency. In addition, the application of the disease resistance models prevents the spread of infectious diseases, which reduces the need for treatment, such as the use of antibiotics; consequently, it promotes the overall health of the herd and reduces unexpected economic losses. The application of biomedicine could be a valuable tool for understanding specific livestock diseases and improving human welfare through the development and testing of new vaccines, research on human physiology, such as human metabolism or immune response, and research and development of xenotransplantation models. Gene engineering technology has been evolving, from random, time-consuming, and laborious methods to specific, time-saving, convenient, and stable methods. This paper reviews the overall trend of genetic engineering technologies development and their application for efficient production of genetically engineered livestock, and provides examples of technologies approved by the United States (US) Food and Drug Administration (FDA) for application in humans. [BMB Reports 2024; 57(1): 50-59].
Collapse
Affiliation(s)
- Dong-Hyeok Kwon
- Laboratory of Theriogenology, College of Veterinary Medicine, Research Institute for Veterinary Science, BK21 FOUR Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul 08826, Korea
| | | | | | - Goo Jang
- Laboratory of Theriogenology, College of Veterinary Medicine, Research Institute for Veterinary Science, BK21 FOUR Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul 08826, Korea
- LARTBio Inc., Gwangmyeong 14322, Korea
| |
Collapse
|
6
|
Allemann MS, Lee P, Beer JH, Saeedi Saravi SS. Targeting the redox system for cardiovascular regeneration in aging. Aging Cell 2023; 22:e14020. [PMID: 37957823 PMCID: PMC10726899 DOI: 10.1111/acel.14020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 09/09/2023] [Accepted: 10/05/2023] [Indexed: 11/15/2023] Open
Abstract
Cardiovascular aging presents a formidable challenge, as the aging process can lead to reduced cardiac function and heightened susceptibility to cardiovascular diseases. Consequently, there is an escalating, unmet medical need for innovative and effective cardiovascular regeneration strategies aimed at restoring and rejuvenating aging cardiovascular tissues. Altered redox homeostasis and the accumulation of oxidative damage play a pivotal role in detrimental changes to stem cell function and cellular senescence, hampering regenerative capacity in aged cardiovascular system. A mounting body of evidence underscores the significance of targeting redox machinery to restore stem cell self-renewal and enhance their differentiation potential into youthful cardiovascular lineages. Hence, the redox machinery holds promise as a target for optimizing cardiovascular regenerative therapies. In this context, we delve into the current understanding of redox homeostasis in regulating stem cell function and reprogramming processes that impact the regenerative potential of the cardiovascular system. Furthermore, we offer insights into the recent translational and clinical implications of redox-targeting compounds aimed at enhancing current regenerative therapies for aging cardiovascular tissues.
Collapse
Affiliation(s)
- Meret Sarah Allemann
- Center for Molecular CardiologyUniversity of ZurichSchlierenSwitzerland
- Department of Internal MedicineCantonal Hospital BadenBadenSwitzerland
| | - Pratintip Lee
- Center for Molecular CardiologyUniversity of ZurichSchlierenSwitzerland
- Department of Internal MedicineCantonal Hospital BadenBadenSwitzerland
| | - Jürg H. Beer
- Center for Molecular CardiologyUniversity of ZurichSchlierenSwitzerland
- Department of Internal MedicineCantonal Hospital BadenBadenSwitzerland
| | - Seyed Soheil Saeedi Saravi
- Center for Translational and Experimental Cardiology, Department of CardiologyUniversity Hospital Zurich, University of ZurichSchlierenSwitzerland
| |
Collapse
|
7
|
Niyogi U, Jara CP, Carlson MA. Treatment of aged wound healing models with FGF2 and ABT-737 reduces the senescent cell population and increases wound closure rate. Wound Repair Regen 2023; 31:613-626. [PMID: 37462279 DOI: 10.1111/wrr.13106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/30/2023] [Accepted: 04/19/2023] [Indexed: 07/28/2023]
Abstract
Delayed tissue repair in the aged presents a major socio-economic and clinical problem. Age-associated delay in wound healing can be attributed to multiple factors, including an increased presence of senescent cells persisting in the wound. Although the transient presence of senescent cells is physiologic during the resolution phase of normal healing, increased senescent cell accumulation with age can negatively impact tissue repair. The objective of the study was to test interventional strategies that could mitigate the negative effect of senescent cell accumulation and possibly improve the age-associated delay in wound healing. We utilised a 3D in vitro senescent fibroblast populated collagen matrix (FPCM) to study cellular events associated with senescence and delayed healing. Senescent fibroblasts showed an increase in anti-apoptotic B-cell lymphoma 2 (BCL-2) family proteins. We hypothesized that reducing the senescent cell population and promoting non-senescent cell functionality would mitigate the negative effect of senescence and improve healing kinetics. BCL-2 inhibition and mitogen stimulation (FGF2) improved healing in the in vitro senescent models. These results were confirmed with an ex vivo human skin biopsy model. These data suggested that modulation of the senescent cell population with soluble factors improved the healing outcome in our in vitro and ex vivo healing models.
Collapse
Affiliation(s)
- Upasana Niyogi
- Department of Molecular Genetics and Cell Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Carlos Poblete Jara
- Department of Vascular Surgery, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Mark A Carlson
- Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Surgery Department, Omaha VA Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
8
|
Li Y, Li X, Cournoyer P, Choudhuri S, Yu X, Guo L, Chen S. Cannabidiol-induced transcriptomic changes and cellular senescence in human Sertoli cells. Toxicol Sci 2023; 191:227-238. [PMID: 36519830 PMCID: PMC10123764 DOI: 10.1093/toxsci/kfac131] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cannabidiol (CBD), one of the major cannabinoids in the plant Cannabis sativa L., is the active ingredient in a drug approved for the treatment of seizures associated with certain childhood-onset epileptic disorders. CBD has been shown to induce male reproductive toxicity in multiple animal models. We previously reported that CBD inhibits cellular proliferation in the mouse Sertoli cell line TM4 and in primary human Sertoli cells. In this study, using a transcriptomic approach with mRNA-sequencing analysis, we identified molecular mechanisms underlying CBD-induced cytotoxicity in primary human Sertoli cells. Analysis of differentially expressed genes demonstrated that DNA replication, cell cycle, and DNA repair were the most significantly affected pathways. We confirmed the concentration-dependent changes in the expression of key genes in these pathways using real-time PCR. mRNA sequencing showed upregulation of a group of genes tightly associated with the senescence-associated secretory phenotype (SASP) and with the activation of the p53 signaling pathway, a key upstream event in cellular senescence. Prolonged treatment of 10 μM CBD-induced cellular senescence, as evidenced by the stable cessation of proliferation and the activation of senescence-associated β-galactosidase (SA-β-gal), 2 hallmarks of senescence. Additionally, using real-time PCR and Western blotting assays, we observed that CBD treatment increased the expression of p16, an important marker of cellular senescence. Taken together, our results show that CBD exposure disturbs various interrelated signaling pathways and induces cellular senescence in primary human Sertoli cells.
Collapse
Affiliation(s)
- Yuxi Li
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Xilin Li
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | | | - Supratim Choudhuri
- Office of Food Additive Safety, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD 20740, USA
| | - Xiaozhong Yu
- College of Nursing, University of New Mexico, Albuquerque, NM 87131, USA
| | - Lei Guo
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Si Chen
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| |
Collapse
|
9
|
Moustogiannis A, Philippou A, Zevolis E, Taso OS, Giannopoulos A, Chatzigeorgiou A, Koutsilieris M. Effect of Mechanical Loading of Senescent Myoblasts on Their Myogenic Lineage Progression and Survival. Cells 2022; 11:cells11243979. [PMID: 36552743 PMCID: PMC9776690 DOI: 10.3390/cells11243979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/30/2022] [Accepted: 12/03/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND During aging, muscle cell apoptosis increases and myogenesis gradually declines. The impaired myogenic and survival potential of the aged skeletal muscle can be ameliorated by its mechanical loading. However, the molecular responses of aged muscle cells to mechanical loading remain unclear. This study examined the effect of mechanical loading of aged, proliferating, and differentiated myoblasts on the gene expression and signaling responses associated with their myogenic lineage progression and survival. METHODS Control and aged C2C12 cells were cultured on elastic membranes and underwent passive stretching for 12 h at a low frequency (0.25 Hz) and different elongations, varying the strain on days 0 and 10 of myoblast differentiation. Activation of ERK1/2 and Akt, and the expression of focal adhesion kinase (FAK) and key myogenic regulatory factors (MRFs), MyoD and Myogenin, were determined by immunoblotting of the cell lysates derived from stretched and non-stretched myoblasts. Changes in the expression levels of the MRFs, muscle growth, atrophy, and pro-apoptotic factors in response to mechanical loading of the aged and control cells were quantified by real-time qRT-PCR. RESULTS Mechanical stretching applied on myoblasts resulted in the upregulation of FAK both in proliferating (day 0) and differentiated (day 10) cells, as well as in increased phosphorylation of ERK1/2 in both control and aged cells. Moreover, Akt activation and the expression of early differentiation factor MyoD increased significantly after stretching only in the control myoblasts, while the late differentiation factor Myogenin was upregulated in both the control and aged myoblasts. At the transcriptional level, mechanical loading of the proliferating myoblasts led to an increased expression of IGF-1 isoforms and MRFs, and to downregulation of muscle atrophy factors mainly in control cells, as well as in the upregulation of pro-apoptotic factors both in control and aged cells. In differentiated cells, mechanical loading resulted in an increased expression of the IGF-1Ea isoform and Myogenin, and in the downregulation of atrophy and pro-apoptotic factors in both the control and aged cells. CONCLUSIONS This study revealed a diminished beneficial effect of mechanical loading on the myogenic and survival ability of the senescent muscle cells compared with the controls, with a low strain (2%) loading being most effective in upregulating myogenic/anabolic factors and downregulating atrophy and pro-apoptotic genes mainly in the aged myotubes.
Collapse
Affiliation(s)
- Athanasios Moustogiannis
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Micras Asias, 115 27 Athens, Greece
| | - Anastassios Philippou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Micras Asias, 115 27 Athens, Greece
| | - Evangelos Zevolis
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Micras Asias, 115 27 Athens, Greece
| | - Orjona S. Taso
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Micras Asias, 115 27 Athens, Greece
- School of Biological Sciences, Deanery of Biomedical Sciences, Centre for Discovery Brain Sciences, Edinburgh EH8 9JZ, UK
| | - Antonios Giannopoulos
- Department of Surgical and Perioperative Sciences, Faculty of Medicine, Umeå University, 901 87 Umeå, Sweden
| | - Antonios Chatzigeorgiou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Micras Asias, 115 27 Athens, Greece
| | - Michael Koutsilieris
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Micras Asias, 115 27 Athens, Greece
- Correspondence: ; Tel.: +30-210-7462690; Fax: +30-210-7462571
| |
Collapse
|
10
|
Takaya K, Asou T, Kishi K. Cathepsin F is a potential marker for senescent human skin fibroblasts and keratinocytes associated with skin aging. GeroScience 2022; 45:427-437. [PMID: 36057013 PMCID: PMC9886782 DOI: 10.1007/s11357-022-00648-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/21/2022] [Indexed: 02/03/2023] Open
Abstract
Cellular senescence is characterized by cell cycle arrest and the senescence-associated secretory phenotype (SASP) and can be triggered by a variety of stimuli, including deoxyribonucleic acid (DNA) damage, oxidative stress, and telomere exhaustion. Cellular senescence is associated with skin aging, and identification of specific markers of senescent cells is essential for development of targeted therapies. Cathepsin F (CTSF) has been implicated in dermatitis and various cancers and participates in cell immortalization through its association with Bcl family proteins. It is a candidate therapeutic target to specifically label and eliminate human skin fibroblasts and keratinocytes immortalized by aging and achieve skin rejuvenation. In this study, we investigated whether CTSF is associated with senescence in human fibroblasts and keratinocytes. In senescence models, created using replicative aging, ionizing radiation exposure, and the anticancer drug doxorubicin, various senescence markers were observed, such as senescence-associated β-galactosidase (SA-β-gal) activity, increased SASP gene expression, and decreased uptake of the proliferation marker BrdU. Furthermore, CTSF expression was elevated at the gene and protein levels. In addition, CTSF-positive cells were abundant in aged human epidermis and in some parts of the dermis. In the population of senescent cells with arrested division, the number of CTSF-positive cells was significantly higher than that in the proliferating cell population. These results suggest that CTSF is a candidate for therapeutic modalities targeting aging fibroblasts and keratinocytes.
Collapse
Affiliation(s)
- Kento Takaya
- Department of Plastic and Reconstructive Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Toru Asou
- Department of Plastic and Reconstructive Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan
| | - Kazuo Kishi
- Department of Plastic and Reconstructive Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan
| |
Collapse
|
11
|
Toyama K, Spin JM, Deng AC, Abe Y, Tsao PS, Mogi M. Role of MicroRNAs in acceleration of vascular endothelial senescence. Biochem Biophys Rep 2022; 30:101281. [PMID: 35651952 PMCID: PMC9149016 DOI: 10.1016/j.bbrep.2022.101281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/28/2022] [Accepted: 05/13/2022] [Indexed: 11/26/2022] Open
Abstract
Backgrounds Many factors are involved in cellular aging, and senescence induction requires complex regulation of various signaling networks and processes. Specifically, in the area of aging-related vascular cognitive impairment, laboratory-based findings have not yet yielded agents of practical use for clinical settings. One possible reason is that the physiologic elements of aging have been insufficiently considered. We sought to establish techniques to better model cellular aging using modulation of microRNAs, aiming to identify key microRNAs capable of fine-tuning aging-associated genes, and thereby regulating the senescence of vascular endothelial cells. Methods We utilized expression microRNA arrays to evaluate control and senescent vascular endothelial cells in order to identify testable candidates. Bioinformatic analysis was used to select key microRNAs. These candidates were then modulated in vitro using microRNA mimics and inhibitors in endothelial cells, and senescence-associated gene expression patterns were evaluated by qPCR. Results Seventeen microRNAs were found to be significantly increased more than 2-fold in senescent cells. Of those, bioinformatic analysis concluded that miR-181a-5p, miR-30a-5p, miR-30a-3p, miR-100-5p, miR-21-5p, and miR-382-5p were likely associated with regulation of cellular senescence. We evaluated the potential targets of these six microRNAs by comparing them with cell-cycling and apoptosis-related genes from published mRNA transcriptional array data from aged tissues, and found that miR-181a-5p, miR-30a-5p and miR-30a-3p were enriched in overlapping targets compared with the other candidates. Modulation of these microRNAs in vascular endothelial cells revealed that over-expression of miR-30a-5p, and inhibition of both miR-30a-3p and miR-181a-5p, induced senescence. Conclusion: miR-181a-5p, miR-30a-5p and miR-30a-3p likely contribute to aging-associated vascular endothelial cell senescence. We aimed to identify key microRNAs regulating the senescence of vascular ECs. Bioinformatic analysis indicated miR-181a-5p, miR-30a-5p & 30a-3p as candidates. Overexpression of miR-30a-5p & inhibition of miR-30a-3p/181a-5p induce EC senescence.
Collapse
|
12
|
Higgins-Chen AT, Thrush KL, Wang Y, Minteer CJ, Kuo PL, Wang M, Niimi P, Sturm G, Lin J, Moore AZ, Bandinelli S, Vinkers CH, Vermetten E, Rutten BPF, Geuze E, Okhuijsen-Pfeifer C, van der Horst MZ, Schreiter S, Gutwinski S, Luykx JJ, Picard M, Ferrucci L, Crimmins EM, Boks MP, Hägg S, Hu-Seliger TT, Levine ME. A computational solution for bolstering reliability of epigenetic clocks: Implications for clinical trials and longitudinal tracking. NATURE AGING 2022; 2:644-661. [PMID: 36277076 PMCID: PMC9586209 DOI: 10.1038/s43587-022-00248-2] [Citation(s) in RCA: 145] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 06/08/2022] [Indexed: 01/09/2023]
Abstract
Epigenetic clocks are widely used aging biomarkers calculated from DNA methylation data, but this data can be surprisingly unreliable. Here we show technical noise produces deviations up to 9 years between replicates for six prominent epigenetic clocks, limiting their utility. We present a computational solution to bolster reliability, calculating principal components from CpG-level data as input for biological age prediction. Our retrained principal-component versions of six clocks show agreement between most replicates within 1.5 years, improved detection of clock associations and intervention effects, and reliable longitudinal trajectories in vivo and in vitro. This method entails only one additional step compared to traditional clocks, requires no replicates or prior knowledge of CpG reliabilities for training, and can be applied to any existing or future epigenetic biomarker. The high reliability of principal component-based clocks is critical for applications to personalized medicine, longitudinal tracking, in vitro studies, and clinical trials of aging interventions.
Collapse
Affiliation(s)
- Albert T Higgins-Chen
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- VA Connecticut Healthcare System, West Haven, CT, USA
| | - Kyra L Thrush
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
| | - Yunzhang Wang
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | | | - Pei-Lun Kuo
- Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Meng Wang
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
| | - Peter Niimi
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Gabriel Sturm
- Departments of Psychiatry and Neurology, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, United States
- New York State Psychiatric Institute, New York, NY United States
| | - Jue Lin
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, United States
| | - Ann Zenobia Moore
- Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | | | - Christiaan H Vinkers
- Department of Psychiatry, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Eric Vermetten
- Department Psychiatry, Leiden University Medical Center, Leiden, The Netherlands
| | - Bart P F Rutten
- School for Mental Health and Neuroscience, Department of Psychiatry and Neuropsychology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Elbert Geuze
- Department of Psychiatry, Brain Center University Medical Center Utrecht, Utrecht University, The Netherlands
- Brain Research & Innovation Centre, Ministry of Defence, Utrecht, the Netherlands
| | - Cynthia Okhuijsen-Pfeifer
- Department of Psychiatry, Brain Center University Medical Center Utrecht, Utrecht University, The Netherlands
| | - Marte Z van der Horst
- Department of Psychiatry, Brain Center University Medical Center Utrecht, Utrecht University, The Netherlands
- Second Opinion Outpatient Clinic, GGNet Mental Health, Warnsveld, The Netherlands
| | - Stefanie Schreiter
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Stefan Gutwinski
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jurjen J Luykx
- Department of Psychiatry, Brain Center University Medical Center Utrecht, Utrecht University, The Netherlands
- Second Opinion Outpatient Clinic, GGNet Mental Health, Warnsveld, The Netherlands
| | - Martin Picard
- Departments of Psychiatry and Neurology, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, United States
- New York State Psychiatric Institute, New York, NY United States
| | - Luigi Ferrucci
- Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Eileen M Crimmins
- Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Marco P Boks
- Department of Psychiatry, Brain Center University Medical Center Utrecht, Utrecht University, The Netherlands
| | - Sara Hägg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | | | - Morgan E Levine
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
13
|
CBX4 Regulates Replicative Senescence of WI-38 Fibroblasts. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5503575. [PMID: 35251476 PMCID: PMC8890863 DOI: 10.1155/2022/5503575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/26/2022] [Indexed: 01/10/2023]
Abstract
Cellular senescence is characterized by cell cycle arrest and senescence-associated secretory phenotypes. Cellular senescence can be caused by various stress stimuli such as DNA damage, oxidative stress, and telomere attrition and is related to several chronic diseases, including atherosclerosis, Alzheimer's disease, and osteoarthritis. Chromobox homolog 4 (CBX4) has been shown to alleviate cellular senescence in human mesenchymal stem cells and is considered a possible target for senomorphic treatment. Here, we explored whether CBX4 expression is associated with replicative senescence in WI-38 fibroblasts, a classic human senescence model system. We also examined whether and how regulation of CBX4 modifies the senescence phenotype and functions as an antisenescence target in WI-38. During the serial culture of the WI-38 primary fibroblast cell line to a senescent state, we found increased expression of senescence markers, including senescence β-galactosidase (SA-βgal) activity, protein expression of p16, p21, and DPP4, and decreased proliferation marker EdU; moreover, CBX4 protein expression declined. With knockdown of CBX4, SA-βgal activity and p16 protein expression increased, and EdU decreased. With the activation of CBX4, SA-βgal activity, p16, and DPP4 protein decreased. In addition, CBX4 knockdown increased, while CBX4 activation decreased, gene expression of both CDKN2A (encoding the p16 protein) and DPP4. Genes related to DNA damage and cell cycle pathways were regulated by CBX4. These results demonstrate that CBX4 can regulate replicative senescence in a manner consistent with a senomorphic agent.
Collapse
|
14
|
Freyter BM, Abd Al-razaq MA, Isermann A, Dietz A, Azimzadeh O, Hekking L, Gomolka M, Rübe CE. Nuclear Fragility in Radiation-Induced Senescence: Blebs and Tubes Visualized by 3D Electron Microscopy. Cells 2022; 11:cells11020273. [PMID: 35053389 PMCID: PMC8774169 DOI: 10.3390/cells11020273] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/19/2021] [Accepted: 01/12/2022] [Indexed: 12/10/2022] Open
Abstract
Irreparable DNA damage following ionizing radiation (IR) triggers prolonged DNA damage response and induces premature senescence. Cellular senescence is a permanent state of cell-cycle arrest characterized by chromatin restructuring, altered nuclear morphology and acquisition of secretory phenotype, which contributes to senescence-related inflammation. However, the mechanistic connections for radiation-induced DNA damage that trigger these senescence-associated hallmarks are poorly understood. In our in vitro model of radiation-induced senescence, mass spectrometry-based proteomics was combined with high-resolution imaging techniques to investigate the interrelations between altered chromatin compaction, nuclear envelope destabilization and nucleo-cytoplasmic chromatin blebbing. Our findings confirm the general pathophysiology of the senescence-response, with disruption of nuclear lamin organization leading to extensive chromatin restructuring and destabilization of the nuclear membrane with release of chromatin fragments into the cytosol, thereby activating cGAS-STING-dependent interferon signaling. By serial block-face scanning electron microscopy (SBF-SEM) whole-cell datasets were acquired to investigate the morphological organization of senescent fibroblasts. High-resolution 3-dimensional (3D) reconstruction of the complex nuclear shape allows us to precisely visualize the segregation of nuclear blebs from the main nucleus and their fusion with lysosomes. By multi-view 3D electron microscopy, we identified nanotubular channels formed in lamin-perturbed nuclei of senescent fibroblasts; the potential role of these nucleo-cytoplasmic nanotubes for expulsion of damaged chromatin has to be examined.
Collapse
Affiliation(s)
- Benjamin M. Freyter
- Department of Radiation Oncology, Saarland University Medical Center, Kirrbergerstrasse Building 6.5, 66421 Homburg, Germany; (B.M.F.); (M.A.A.A.-r.); (A.I.)
| | - Mutaz A. Abd Al-razaq
- Department of Radiation Oncology, Saarland University Medical Center, Kirrbergerstrasse Building 6.5, 66421 Homburg, Germany; (B.M.F.); (M.A.A.A.-r.); (A.I.)
| | - Anna Isermann
- Department of Radiation Oncology, Saarland University Medical Center, Kirrbergerstrasse Building 6.5, 66421 Homburg, Germany; (B.M.F.); (M.A.A.A.-r.); (A.I.)
| | - Anne Dietz
- Department of Effects and Risks of Ionising & Non-Ionising Radiation, Federal Office for Radiation Protection, 85764 Oberschleißheim, Germany; (A.D.); (O.A.); (M.G.)
| | - Omid Azimzadeh
- Department of Effects and Risks of Ionising & Non-Ionising Radiation, Federal Office for Radiation Protection, 85764 Oberschleißheim, Germany; (A.D.); (O.A.); (M.G.)
| | | | - Maria Gomolka
- Department of Effects and Risks of Ionising & Non-Ionising Radiation, Federal Office for Radiation Protection, 85764 Oberschleißheim, Germany; (A.D.); (O.A.); (M.G.)
| | - Claudia E. Rübe
- Department of Radiation Oncology, Saarland University Medical Center, Kirrbergerstrasse Building 6.5, 66421 Homburg, Germany; (B.M.F.); (M.A.A.A.-r.); (A.I.)
- Correspondence: ; Tel.: +49-6841-1634614; Fax: +49-6841-1624699
| |
Collapse
|
15
|
Echeagaray O, Kim T, Casillas A, Monsanto M, Sussman M. Transcriptional features of biological age maintained in human cultured cardiac interstitial cells. Genomics 2021; 113:3705-3717. [PMID: 34509618 DOI: 10.1016/j.ygeno.2021.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 02/03/2023]
Abstract
Ex vivo expansion of cells is necessary in regenerative medicine to generate large populations for therapeutic use. Adaptation to culture conditions prompt an increase in transcriptome diversity and decreased population heterogeneity in cKit+ cardiac interstitial cells (cCICs). The "transcriptional memory" influenced by cellular origin remained unexplored and is likely to differ between neonatal versus senescent input cells undergoing culture expansion. Transcriptional profiles derived from single cell RNASEQ platforms characterized human cCIC derived from neonatal and adult source tissue. Bioinformatic analysis revealed contrasting imprint of age influencing targets of 1) cell cycle, 2) senescence associated secretory phenotype (SASP), 3) RNA transport, and 4) ECM-receptor/fibrosis. A small subset of cCICs exist in a transcriptional continuum between "youthful" phenotype and the damaged microenvironment of LVAD tissue in which they were embedded. The connate transcriptional phenotypes offer fundamental biological insight and highlights cellular input as a consideration in culture expansion and adoptive transfer protocols.
Collapse
Affiliation(s)
- Oscar Echeagaray
- San Diego Heart Research Institute and Integrated Regenerative Research Institute, San Diego State University, San Diego, CA 92182-4650, USA
| | - Taeyong Kim
- San Diego Heart Research Institute and Integrated Regenerative Research Institute, San Diego State University, San Diego, CA 92182-4650, USA
| | - Alex Casillas
- San Diego Heart Research Institute and Integrated Regenerative Research Institute, San Diego State University, San Diego, CA 92182-4650, USA
| | - Megan Monsanto
- San Diego Heart Research Institute and Integrated Regenerative Research Institute, San Diego State University, San Diego, CA 92182-4650, USA
| | - Mark Sussman
- San Diego Heart Research Institute and Integrated Regenerative Research Institute, San Diego State University, San Diego, CA 92182-4650, USA.
| |
Collapse
|
16
|
Pokrywczynska M, Maj M, Kloskowski T, Buhl M, Balcerczyk D, Jundziłł A, Szeliski K, Rasmus M, Drewa T. Molecular Aspects of Adipose-Derived Stromal Cell Senescence in a Long-Term Culture: A Potential Role of Inflammatory Pathways. Cell Transplant 2021; 29:963689720917341. [PMID: 32314614 PMCID: PMC7586277 DOI: 10.1177/0963689720917341] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Long-term culture of mesenchymal stromal/stem cells in vitro leads to their senescence. It is very important to define the maximal passage to which the mesenchymal stromal/stem cells maintain their regenerative properties and can be used for cellular therapies and construction of neo-organs for clinical application. Adipose-derived stromal/stem cells were isolated from porcine adipose tissue. Immunophenotype, population doubling time, viability using bromodeoxyuridine assay, MTT assay, clonogencity, β-galactosidase activity, specific senescence-associated gene expression, apoptosis, and cell cycle of adipose-derived mesenchymal stromal/stem cells (AD-MSCs) were analyzed. All analyses were performed through 12 passages (P). Decreasing viability and proliferative potential of AD-MSCs with subsequent passages together with prolonged population doubling time were observed. Expression of β-galactosidase gradually increased after P6. Differentiation potential of AD-MSCs into adipogenic, chondrogenic, and osteogenic lineages decreased at the end of culture (P10). No changes in the cell cycle, the number of apoptotic cells and expression of specific AD-MSC markers during the long-term culture were revealed. Molecular analysis showed increased expression of genes involved in activation of inflammatory response. AD-MSCs can be cultured for in vivo applications without loss of their properties up to P6.
Collapse
Affiliation(s)
- Marta Pokrywczynska
- Department of Regenerative Medicine, Cell and Tissue Bank, Chair of Urology, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland.,Both the authors contributed equally to this article
| | - Małgorzata Maj
- Department of Regenerative Medicine, Cell and Tissue Bank, Chair of Urology, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland.,Department of Tissue Engineering, Department of Regenerative Medicine, Cell and Tissue Bank, Chair of Urology, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland.,Both the authors contributed equally to this article
| | - Tomasz Kloskowski
- Department of Regenerative Medicine, Cell and Tissue Bank, Chair of Urology, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Monika Buhl
- Department of Regenerative Medicine, Cell and Tissue Bank, Chair of Urology, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Daria Balcerczyk
- Department of Regenerative Medicine, Cell and Tissue Bank, Chair of Urology, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Arkadiusz Jundziłł
- Department of Regenerative Medicine, Cell and Tissue Bank, Chair of Urology, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland.,Department of Plastic, Reconstructive and Aesthetic Surgery, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Kamil Szeliski
- Department of Regenerative Medicine, Cell and Tissue Bank, Chair of Urology, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Marta Rasmus
- Department of Regenerative Medicine, Cell and Tissue Bank, Chair of Urology, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Tomasz Drewa
- Department of Regenerative Medicine, Cell and Tissue Bank, Chair of Urology, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland.,Department of Tissue Engineering, Department of Regenerative Medicine, Cell and Tissue Bank, Chair of Urology, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| |
Collapse
|
17
|
Miwa T, Wei FY, Tomizawa K. Cdk5 regulatory subunit-associated protein 1 knockout mice show hearing loss phenotypically similar to age-related hearing loss. Mol Brain 2021; 14:82. [PMID: 34001214 PMCID: PMC8130336 DOI: 10.1186/s13041-021-00791-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/12/2021] [Indexed: 11/10/2022] Open
Abstract
Mitochondrial dysfunction is associated with aging and age-related hearing loss (AHL). However, the precise mechanisms underlying the pathophysiology of hearing loss remain unclear. Cdk5 regulatory subunit-associated protein 1 (CDK5RAP1) enables efficient intramitochondrial translation by catalyzing the deposition of 2-methylthio modifications on mitochondrial tRNAs. Here we investigated the effect of defective mitochondrial protein translation on hearing and AHL in a Cdk5rap1 deficiency C57BL/6 mouse model. Compared to control C57BL/6 mice, Cdk5rap1-knockout female mice displayed hearing loss phenotypically similar to AHL from an early age. The premature hearing loss in Cdk5rap1-knockout mice was associated with the degeneration of the spiral ligament and reduction of endocochlear potentials following the loss of auditory sensory cells. Furthermore, cultured primary mouse embryonic fibroblasts displayed early onset of cellular senescence associated with high oxidative stress and cell death. These results indicate that the CDK5RAP1 deficiency-induced defective mitochondrial translation might cause early hearing loss through the induction of cellular senescence and cochlear dysfunction in the inner ear. Our results suggest that the accumulation of dysfunctional mitochondria might promote AHL progression. Furthermore, our findings suggest that mitochondrial dysfunction and dysregulated mitochondrial tRNA modifications mechanistically cause AHL. Understanding the mechanisms underlying AHL will guide future clinical investigations and interventions in the attempt to mitigate the consequences of AHL.
Collapse
Affiliation(s)
- Toru Miwa
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 6068507, Japan.
- Department of Otolaryngology-Head and Neck Surgery, Kitano Hospital, Tazuke Kofukai Medical Research Institute, 2-4-20 Ougimaci, Kita-ku, Osaka, 5308480, Japan.
| | - Fan-Yan Wei
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, 1-1-1- Honjo, Chuo-ku, Kumamoto, 8608556, Japan
- Department of Modomics Biology and Medicine, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo, Aoba-ku, Sendai, Miyagi, 9808575, Japan
| | - Kazuhito Tomizawa
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, 1-1-1- Honjo, Chuo-ku, Kumamoto, 8608556, Japan
| |
Collapse
|
18
|
Wei Z, Hao C, Huangfu J, Srinivasagan R, Zhang X, Fan X. Aging lens epithelium is susceptible to ferroptosis. Free Radic Biol Med 2021; 167:94-108. [PMID: 33722625 PMCID: PMC8096685 DOI: 10.1016/j.freeradbiomed.2021.02.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/29/2021] [Accepted: 02/07/2021] [Indexed: 12/11/2022]
Abstract
Age-related cataracts (ARC) are the primary cause of blindness worldwide, and oxidative stress is considered the central pathogenesis of age-related cataractogenesis. Interestingly, ample evidence suggests that there is no remarkable apoptosis present in aged and cataractous human lenses despite the profound disruption of redox homeostasis, raising an essential question regarding the existence of other cell death mechanisms. Here we sought to explore the lens epithelial cell's (LEC) susceptibility to ferroptosis after documentation has concluded that aged and cataractous human lenses manifest with increased reactive oxygen species (ROS) formation, elevated lipid peroxidation, and accumulative intracellular redox-active iron, constituting the three hallmarks of ferroptosis during aging and cataractogenesis. Here we show that very low concentrations of system Xc- inhibitor Erastin (0.5 μM) and glutathione peroxidase 4 (GPX4) inhibitor RSL3 (0.1 μM) can drastically induce human LEC (FHL124) ferroptosis in vitro and mouse lens epithelium ferroptosis ex vivo. Depletion of intracellular glutathione (GSH) in human LECs and mouse lens epithelium significantly sensitizes ferroptosis, particularly under RSL3 challenge. Intriguingly, both human LECs and the mouse lens epithelium demonstrate an age-related sensitization of ferroptosis. Transcriptome analysis indicates that clusters of genes are up-or down-regulated in aged LECs, impacting cellular redox and iron homeostases, such as downregulation of both cystine/glutamate antiporter subunits SLC7A11 and SLC3A2 and iron exporter ferroportin (SLC40A1). Here, for the first time, we are suggesting that LECs are highly susceptible to ferroptosis. Moreover, aged and cataractous human lenses may possess more pro-ferroptotic criteria than any other organ in the human body.
Collapse
Affiliation(s)
- Zongbo Wei
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Caili Hao
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Jingru Huangfu
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia; Department of Ophthalmology, Chongqing Medical University, Chongqing, China
| | - Ramkumar Srinivasagan
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, United States
| | - Xiang Zhang
- Genomics, Epigenomics and Sequencing Core, Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - Xingjun Fan
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia.
| |
Collapse
|
19
|
Chee WY, Kurahashi Y, Kim J, Miura K, Okuzaki D, Ishitani T, Kajiwara K, Nada S, Okano H, Okada M. β-catenin-promoted cholesterol metabolism protects against cellular senescence in naked mole-rat cells. Commun Biol 2021; 4:357. [PMID: 33742113 PMCID: PMC7979689 DOI: 10.1038/s42003-021-01879-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 02/19/2021] [Indexed: 02/01/2023] Open
Abstract
The naked mole-rat (NMR; Heterocephalus glaber) exhibits cancer resistance and an exceptionally long lifespan of approximately 30 years, but the mechanism(s) underlying increased longevity in NMRs remains unclear. In the present study, we report unique mechanisms underlying cholesterol metabolism in NMR cells, which may be responsible for their anti-senescent properties. NMR fibroblasts expressed β-catenin abundantly; this high expression was linked to increased accumulation of cholesterol-enriched lipid droplets. Ablation of β-catenin or inhibition of cholesterol synthesis abolished lipid droplet formation and induced senescence-like phenotypes accompanied by increased oxidative stress. β-catenin ablation downregulated apolipoprotein F and the LXR/RXR pathway, which are involved in cholesterol transport and biogenesis. Apolipoprotein F ablation also suppressed lipid droplet accumulation and promoted cellular senescence, indicating that apolipoprotein F mediates β-catenin signaling in NMR cells. Thus, we suggest that β-catenin in NMRs functions to offset senescence by regulating cholesterol metabolism, which may contribute to increased longevity in NMRs.
Collapse
Affiliation(s)
- Woei-Yaw Chee
- grid.136593.b0000 0004 0373 3971Department of Oncogene Research, Research for Microbial Disease, Osaka University, Suita, Osaka Japan
| | - Yuriko Kurahashi
- grid.136593.b0000 0004 0373 3971Department of Oncogene Research, Research for Microbial Disease, Osaka University, Suita, Osaka Japan
| | - Junhyeong Kim
- grid.136593.b0000 0004 0373 3971Department of Oncogene Research, Research for Microbial Disease, Osaka University, Suita, Osaka Japan
| | - Kyoko Miura
- grid.274841.c0000 0001 0660 6749Department of Aging and Longevity Research, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Daisuke Okuzaki
- grid.136593.b0000 0004 0373 3971Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan ,grid.136593.b0000 0004 0373 3971Human Immunology Lab, WPI Immunology Frontier Research Center, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
| | - Tohru Ishitani
- grid.136593.b0000 0004 0373 3971Department of Homeostatic Regulation, Research for Microbial Disease, Osaka University, Suita, Osaka Japan
| | - Kentaro Kajiwara
- grid.136593.b0000 0004 0373 3971Department of Oncogene Research, Research for Microbial Disease, Osaka University, Suita, Osaka Japan
| | - Shigeyuki Nada
- grid.136593.b0000 0004 0373 3971Department of Oncogene Research, Research for Microbial Disease, Osaka University, Suita, Osaka Japan
| | - Hideyuki Okano
- grid.26091.3c0000 0004 1936 9959Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo Japan
| | - Masato Okada
- grid.136593.b0000 0004 0373 3971Department of Oncogene Research, Research for Microbial Disease, Osaka University, Suita, Osaka Japan
| |
Collapse
|
20
|
Joo HJ, Ma DJ, Hwang JS, Shin YJ. SIRT1 Activation Using CRISPR/dCas9 Promotes Regeneration of Human Corneal Endothelial Cells through Inhibiting Senescence. Antioxidants (Basel) 2020; 9:antiox9111085. [PMID: 33158256 PMCID: PMC7694272 DOI: 10.3390/antiox9111085] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/29/2020] [Accepted: 11/03/2020] [Indexed: 02/07/2023] Open
Abstract
Human corneal endothelial cells (hCECs) are restricted in proliferative capacity in vivo. Reduction in the number of hCEC leads to persistent corneal edema requiring corneal transplantation. This study demonstrates the functions of SIRT1 in hCECs and its potential for corneal endothelial regeneration. Cell morphology, cell growth rates and proliferation-associated proteins were compared in normal and senescent hCECs. SIRT1 was activated using the CRISPR/dCas9 activation system (SIRT1a). The plasmids were transfected into CECs of six-week-old Sprague–Dawley rats using electroporation and cryoinjury was performed. Senescent cells were larger, elongated and showed lower proliferation rates and lower SIRT1 levels. SIRT1 activation promoted the wound healing of CECs. In vivo transfection of SIRT1a promoted the regeneration of CECs. The proportion of the S-phase cells was lower in senescent cells and elevated upon SIRT1a activation. SIRT1 regulated cell proliferation, proliferation-associated proteins, mitochondrial membrane potential, and oxidative stress levels. In conclusion, corneal endothelial senescence is related with a decreased SIRT1 level. SIRT1a promotes the regeneration of CECs by inhibiting cytokine-induced cell death and senescence. Gene function activation therapy using SIRT1a may serve as a novel treatment strategy for hCEC diseases.
Collapse
|
21
|
Singh BK, Tripathi M, Sandireddy R, Tikno K, Zhou J, Yen PM. Decreased autophagy and fuel switching occur in a senescent hepatic cell model system. Aging (Albany NY) 2020; 12:13958-13978. [PMID: 32712601 PMCID: PMC7425478 DOI: 10.18632/aging.103740] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/18/2020] [Indexed: 02/05/2023]
Abstract
Although aging in the liver contributes to the development of chronic liver diseases such as NAFLD and insulin resistance, little is known about the molecular and metabolic details of aging in hepatic cells. To examine these issues, we used sequential oxidative stress with hydrogen peroxide to induce premature senescence in AML12 hepatic cells. The senescent cells exhibited molecular and metabolic signatures, increased SA-βGal and γH2A.X staining, and elevated senescence and pro-inflammatory gene expression that resembled livers from aged mice. Metabolic phenotyping showed fuel switching towards glycolysis and mitochondrial glutamine oxidation as well as impaired energy production. The senescent AML12 cells also had increased mTOR signaling and decreased autophagy which likely contributed to the fuel switching from β-oxidation that occurred in normal AML12 cells. Additionally, senescence-associated secretory phenotype (SASP) proteins from conditioned media of senescent cells sensitized normal AML12 cells to palmitate-induced toxicity, a known pathological effect of hepatic aging. In summary, we have generated senescent AML12 cells which displayed the molecular hallmarks of aging and also exhibited the aberrant metabolic phenotype, mitochondrial function, and cell signaling that occur in the aged liver.
Collapse
Affiliation(s)
- Brijesh Kumar Singh
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Madhulika Tripathi
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Reddemma Sandireddy
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Keziah Tikno
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Jin Zhou
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Paul Michael Yen
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore 169857, Singapore.,Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
22
|
Yaghoobi MM, Sheikoleslami M, Ebrahimi M. Effects of hydrogen peroxide, doxorubicin and ultraviolet irradiation on senescence of human dental pulp stem cells. Arch Oral Biol 2020; 117:104819. [PMID: 32592933 DOI: 10.1016/j.archoralbio.2020.104819] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/19/2020] [Accepted: 06/11/2020] [Indexed: 12/22/2022]
Abstract
OBJECTIVE The objective of this study was to evaluate the ability of three distinct agents on the induction of senescence in human dental pulp stem cells (DPSCs). DESIGN DPSCs from three separate donors were treated with H2O2, doxorubicin and ultraviolet (UV) irradiation. The response of the cells to the three agents was assayed by specific staining for SA-βGal, RT-qPCR and flow cytometry. RESULTS The results showed that incubation with 100 μM H2O2 and 20 nM Doxorubicin for seven days led to senescence in all donors' cells equally. Interestingly, UV irradiation for just one minute was sufficient to induce senescence in the cells. The SA-βGal positive senescent cells were arrested in G1 phase and their S phase was significantly reduced as analyzed by flow cytometry. Significant increment in p21 and BTG1 expression and decrement in CCND1 expression also confirmed the cells have been arrested and get senescent via p53-p21 pathway. CONCLUSION All three agents successfully triggered senescence in the cells. There was no significant difference in the capacity of the three donor's cells for senescence. To avoid premature senescence in stem cell in vitro, it is recommended to avoid unnecessary exposure of the cell to fluorescent and UV light. Moreover, to prevent ROS production, we recommend using a separate incubator with low oxygen content for cell culture, if possible.
Collapse
Affiliation(s)
- Mohammad Mehdi Yaghoobi
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran.
| | - Mozhgan Sheikoleslami
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Maryam Ebrahimi
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| |
Collapse
|
23
|
Alvites RD, Branquinho MV, Caseiro AR, Amorim I, Santos Pedrosa S, Rêma A, Faria F, Porto B, Oliveira C, Teixeira P, Magalhães R, Geuna S, Varejão ASP, Maurício AC. Rat Olfactory Mucosa Mesenchymal Stem/Stromal Cells (OM-MSCs): A Characterization Study. Int J Cell Biol 2020; 2020:2938258. [PMID: 32411249 PMCID: PMC7212324 DOI: 10.1155/2020/2938258] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/28/2019] [Indexed: 02/07/2023] Open
Abstract
Stem/stromal cell-based therapies are a branch of regenerative medicine and stand as an attractive option to promote the repair of damaged or dysfunctional tissues and organs. Olfactory mucosa mesenchymal stem/stromal cells have been regarded as a promising tool in regenerative therapies because of their several favorable properties such as multipotency, high proliferation rate, helpful location, and few associated ethical issues. These cells are easily accessible in the nasal cavity of most mammals, including the rat, can be easily applied in autologous treatments, and do not cope with most of the obstacles associated with the use of other stem cells. Despite this, its application in preclinical trials and in both human and animal patients is still limited because of the small number of studies performed so far and to the nonexistence of a standard and unambiguous protocol for collection, isolation, and therapeutic application. In the present work a validation of a protocol for isolation, culture, expansion, freezing, and thawing of olfactory mucosa mesenchymal stem/stromal cells was performed, applied to the rat model, as well as a biological characterization of these cells. To investigate the therapeutic potential of OM-MSCs and their eventual safe application in preclinical trials, the main characteristics of OMSC stemness were addressed.
Collapse
Affiliation(s)
- Rui D. Alvites
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
| | - Mariana V. Branquinho
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
| | - Ana R. Caseiro
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- REQUIMTE/LAQV – U. Porto – Porto/Portugal, Departamento de Engenharia Metalúrgica e Materiais, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
- Escola Universitária Vasco da Gama (EUVG), Avenida José R. Sousa Fernandes, nº 197 Lordemão, 3020-210 Coimbra, Portugal
| | - Irina Amorim
- Departamento de Patologia e Imunologia Molecular, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, R. Alfredo Allen, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-465 Porto, Portugal
| | - Sílvia Santos Pedrosa
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
| | - Alexandra Rêma
- Departamento de Patologia e Imunologia Molecular, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| | - Fátima Faria
- Departamento de Patologia e Imunologia Molecular, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| | - Beatriz Porto
- Laboratório de Citogenética, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| | - Cláudia Oliveira
- Laboratório de Citogenética, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| | - Paula Teixeira
- Universidade Católica Portuguesa, CBQF – Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital 172, 4200-374 Porto, Portugal
| | - Rui Magalhães
- Universidade Católica Portuguesa, CBQF – Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital 172, 4200-374 Porto, Portugal
| | - Stefano Geuna
- Department of Clinical and Biological Sciences, and Cavalieri Ottolenghi Neuroscience Institute, University of Turin, Ospedale San Luigi, 10043 Orbassano, Turin, Italy
| | - Artur S. P. Varejão
- Departamento de Ciências Veterinárias, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
- CECAV, Centro de Ciência Animal e Veterinária, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
| | - Ana C. Maurício
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
| |
Collapse
|
24
|
Anti-Inflammatory and Anti-Aging Evaluation of Pigment-Protein Complex Extracted from Chlorella Pyrenoidosa. Mar Drugs 2019; 17:md17100586. [PMID: 31623220 PMCID: PMC6836285 DOI: 10.3390/md17100586] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 10/11/2019] [Accepted: 10/14/2019] [Indexed: 12/22/2022] Open
Abstract
Oxidative stress contributes to chronic inflammatory processes implicated in aging, referred to as “inflamm-aging.” In this study, the potential anti-inflammatory and anti-aging effects of a pigment–protein complex (PPC) from Chlorella pyrenoidosa were investigated using lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages and D-galactose (D-gal)-induced aging in a murine model. Results indicated that PPC inhibits the production of the inflammatory cytokines TNF-α and IL-6, and the inflammatory mediator nitric oxide (NO) in LPS-stimulated RAW 264.7 cells. It also protected mice from D-gal induced informatory aging by increasing the activity of the antioxidant enzyme, such as superoxide dismutase (SOD), inhibiting D-gal-induced NF-κB upregulation, and increasing PPARs expression in the brain and gut. The findings indicated that PPC has favorable anti-inflammatory and anti-aging properties, and could be useful in the treatment of acute inflammation and senescence diseases.
Collapse
|
25
|
Son HN, Chi HNQ, Chung DC, Long LT. Morphological changes during replicative senescence in bovine ovarian granulosa cells. Cell Cycle 2019; 18:1490-1497. [PMID: 31131697 DOI: 10.1080/15384101.2019.1624108] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The objective of this study was to evaluate replicative senescence of bovine granulosa cells (bGCs) during in vitro long-term culture. WST-1 assay analysis showed that bGCs proliferation was reduced from primary culture to 14th passage. The several bGCs from the 3rd passage and 7th passage exposed the weak activity of beta-galactosidase, while a strongly positive staining of beta-galactosidase was observed in bGCs from 14th passage. Flow cytometry analysis showed that bGCs were induced to cell cycle arrest at G0/G1 phase through in vitro expansion. TERT transcript expression of bGCs was downregulated from primary culture to 14th passage. The cell and nuclear area of bGCs were dramatically increased from 14th passage to 25th passage. The nucleocytoplasmic ratio of bGCs was dramatically reduced in 22th passage (4.32%) and 25th passage (2.45%), comparing to previous passages: primary culture (10.67%), 7th passage (9.21%), or 14th passage (10.33%). The number of microfilament bundle of bGCs was increased in 22nd passage (67.42 ± 17.76) and 25th passage (56.31 ± 22.45). The diameter of microfilament bundle of bGCs in 25th passage was dramatically increased to 1.88 ± 0.32 µm comparing to the primary culture (1.15 ± 0.03 µm). In this study, we also assessed the nuclear form factor which illustrates the level of nuclear circular form. A reduction of nuclear form factor was observed in bGCs during long-term in vitro expansion. The changes of nuclear form factor were correlated to other senescent characteristics, especially the nucleocytoplasmic ratio.
Collapse
Affiliation(s)
- Hoang Nghia Son
- a Animal Biotechnology Department , Institute of Tropical Biology, Vietnam Academy of Science and Technology , Ho Chi Minh City , Vietnam.,b Biotechnology Department , Graduate University of Science and Technology, Vietnam Academy of Science and Technology , Ha Noi , Vietnam
| | - Ho Nguyen Quynh Chi
- a Animal Biotechnology Department , Institute of Tropical Biology, Vietnam Academy of Science and Technology , Ho Chi Minh City , Vietnam.,b Biotechnology Department , Graduate University of Science and Technology, Vietnam Academy of Science and Technology , Ha Noi , Vietnam
| | - Doan Chinh Chung
- a Animal Biotechnology Department , Institute of Tropical Biology, Vietnam Academy of Science and Technology , Ho Chi Minh City , Vietnam.,b Biotechnology Department , Graduate University of Science and Technology, Vietnam Academy of Science and Technology , Ha Noi , Vietnam
| | - Le Thanh Long
- a Animal Biotechnology Department , Institute of Tropical Biology, Vietnam Academy of Science and Technology , Ho Chi Minh City , Vietnam.,b Biotechnology Department , Graduate University of Science and Technology, Vietnam Academy of Science and Technology , Ha Noi , Vietnam
| |
Collapse
|
26
|
RYR1 Sequence Variants in Myopathies: Expression and Functional Studies in Two Families. BIOMED RESEARCH INTERNATIONAL 2019; 2019:7638946. [PMID: 31165076 PMCID: PMC6500691 DOI: 10.1155/2019/7638946] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/19/2019] [Indexed: 12/26/2022]
Abstract
The skeletal muscle ryanodine receptor (RyR1), i.e., the Ca2+ channel of the sarco/endoplasmic reticulum (S/ER), and the voltage-dependent calcium channel Cav1.1 are the principal channels involved in excitation-contraction coupling in skeletal muscle. RYR1 gene variants are linked to distinct skeletal muscle disorders, including malignant hyperthermia susceptibility and central core disease (CCD), mainly with autosomal dominant inheritance, and autosomal recessive myopathies with a broad phenotypic and histopathological spectrum. The age at onset of RYR1-related myopathies varies from infancy to adulthood. We report the identification of four RYR1 variants in two Italian families: one with myopathy and variants c.4003C>T (p.R1335C) and c.7035C>A (p.S2345R), and another with CCD and variants c.9293G>T (p.S3098I) and c.14771_14772insTAGACAGGGTGTTGCTCTGTTGCCCTTCTT (p.F4924_V4925insRQGVALLPFF). We demonstrate that, in patient-specific lymphoblastoid cells, the c.4003C>T (p.R1335C) variant is not expressed and the in-frame 30-nucleotide insertion variant is expressed at a low level. Moreover, Ca2+ release in response to the RyR1 agonist 4-chloro-m-cresol and to thapsigargin showed that the c.7035C>A (p.S2345R) variant causes depletion of S/ER Ca2+ stores and that the compound heterozygosity for variant c.9293G>T (p.S3098I) and the 30-nucleotide insertion increases RyR1-dependent Ca2+ release without affecting ER Ca2+ stores. In conclusion, we detected and functionally characterized disease-causing variants of the RyR1 channel in patient-specific lymphoblastoid cells. This paper is dedicated to the memory and contribution of Luigi Del Vecchio.
Collapse
|
27
|
Furuya K, Kumasawa K, Nakamura H, Nishimori K, Kimura T. Novel biomarker profiles in experimental aged maternal mice with hypertensive disorders of pregnancy. Hypertens Res 2018; 42:29-39. [PMID: 30214030 DOI: 10.1038/s41440-018-0092-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 02/26/2018] [Accepted: 03/14/2018] [Indexed: 01/29/2023]
Abstract
Recently, advanced maternal age (AMA) has increased in Western countries because of late marriage and advances in assisted reproductive technology. One major complication of AMA is hypertensive disorders of pregnancy (HDP). While clinical investigations into human AMA have been reported, there has been limited information obtained from basic research. In this investigation, we established the AMA mouse model using aged pregnant ICR mice. We demonstrated that the phenotypes of aged pregnant ICR mice reflect the same characteristics as human AMA. The significant findings of our investigation are as follows: (1) The AMA mouse model manifested the same complication phenotypes of human AMA, including maternal obesity, declining fertility, small for gestational age, and a higher rate of intrauterine fetal death; (2) The AMA mouse model exhibited an increasing systolic blood pressure at late gestation (108.2 ± 7.7 vs. 92.7 ± 5.7 mmHg, P < 0.01) that normalized after delivery similar to human HDP patients; and (3) While HDP and placental dysfunction are complicated, AMA mice and human HDP AMA patients manifested a low serum soluble fms-like tyrosine kinase-1 (sFlt-1) level in late gestation (AMA group vs. control group, mice, 16800.0 ± 10709.5 vs. 26611.9 ± 8702.0 pg/mL, respectively, P < 0.01; human, 8507.6 ± 3298.7 vs. 14816.9 ± 5413.5 pg/mL, respectively, P < 0.05). In conclusion, the aged pregnant mouse model resembled human AMA. The AMA mouse model was complicated with HDP despite the low serum sFlt-1 level. Our findings provide evidence that the serum sFlt-1 level does not necessarily reflect the conventional pathogenesis of HDP in aged human and murine pregnancies and may contribute to the future management of HDP in AMA.
Collapse
Affiliation(s)
- Kiichiro Furuya
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Keiichi Kumasawa
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan.
| | - Hitomi Nakamura
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Katsuhiko Nishimori
- Department of Molecular and Cell Biology, Graduate School of Agricultural Science, Tohoku University, Tohoku, Japan
| | - Tadashi Kimura
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
28
|
Ferro T, Santhagunam A, Madeira C, Salgueiro JB, Silva CL, Cabral JMS. Successful isolation and ex vivo expansion of human mesenchymal stem/stromal cells obtained from different synovial tissue‐derived (biopsy) samples. J Cell Physiol 2018; 234:3973-3984. [DOI: 10.1002/jcp.27202] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 07/13/2018] [Indexed: 12/30/2022]
Affiliation(s)
- Tiago Ferro
- Department of Bioengineering and iBB‐Institute for Bioengineering and Biosciences Instituto Superior Técnico, Universidade de Lisboa Lisboa Portugal
- CEDOC Chronic Diseases FCM NOVA
- NOVA Medical School, Universidade NOVA de Lisboa Lisboa Portugal
| | - Aruna Santhagunam
- Department of Bioengineering and iBB‐Institute for Bioengineering and Biosciences Instituto Superior Técnico, Universidade de Lisboa Lisboa Portugal
| | - Catarina Madeira
- Department of Bioengineering and iBB‐Institute for Bioengineering and Biosciences Instituto Superior Técnico, Universidade de Lisboa Lisboa Portugal
- CEDOC Chronic Diseases FCM NOVA
- NOVA Medical School, Universidade NOVA de Lisboa Lisboa Portugal
| | - João B. Salgueiro
- Centro Hospitalar de Lisboa Ocidental (CHLO)—Hospital S. Francisco Xavier Lisboa Portugal
| | - Cláudia L. Silva
- Department of Bioengineering and iBB‐Institute for Bioengineering and Biosciences Instituto Superior Técnico, Universidade de Lisboa Lisboa Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Instituto Superior Técnico, Universidade de Lisboa Lisboa Portugal
| | - Joaquim M. S. Cabral
- Department of Bioengineering and iBB‐Institute for Bioengineering and Biosciences Instituto Superior Técnico, Universidade de Lisboa Lisboa Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Instituto Superior Técnico, Universidade de Lisboa Lisboa Portugal
| |
Collapse
|
29
|
Abstract
As aging involves oxidant injury, we examined the role of the recently described Na/K-ATPase oxidant amplification loop (NKAL). First, C57Bl6 old mice were given a western diet to stimulate oxidant injury or pNaKtide to antagonize the NKAL. The western diet accelerated functional and morphological evidence for aging whereas pNaKtide attenuated these changes. Next, human dermal fibroblasts (HDFs) were exposed to different types of oxidant stress in vitro each of which increased expression of senescence markers, cell-injury, and apoptosis as well as stimulated the NKAL. Further stimulation of the NKAL with ouabain augmented cellular senescence whereas treatment with pNaKtide attenuated it. Although N-Acetyl Cysteine and Vitamin E also ameliorated overall oxidant stress to a similar degree as pNaKtide, the pNaKtide produced protection against senescence that was substantially greater than that seen with either antioxidant. In particular, pNaKtide appeared to specifically ameliorate nuclear oxidant stress to a greater degree. These data demonstrate that the NKAL is intimately involved in the aging process and may serve as a target for anti-aging interventions.
Collapse
|
30
|
Heo SJ, Szczesny SE, Kim DH, Saleh KS, Mauck RL. Expansion of mesenchymal stem cells on electrospun scaffolds maintains stemness, mechano-responsivity, and differentiation potential. J Orthop Res 2018; 36:808-815. [PMID: 29027711 PMCID: PMC5839953 DOI: 10.1002/jor.23772] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 10/06/2017] [Indexed: 02/04/2023]
Abstract
Mesenchymal stem cells (MSCs) hold great promise for regenerative therapies and tissue engineering applications given their multipotential differentiation capacity. However, MSC isolation and expansion are typically performed on super-physiologically stiff tissue culture plastic (TCP), which may alter their behavior and lead to unintended consequences upon implantation. In contrast, electrospun nanofibrous scaffolds possess physical and mechanical properties that are similar to that of native tissue. In this study, we investigated whether isolation and expansion of juvenile bovine MSCs directly onto electrospun nanofibrous scaffolds better preserves MSC phenotype and stemness compared to TCP. Our data show that culture of MSCs on electrospun scaffolds reduces proliferation, decreases cellular senescence, and better maintains stemness compared to cells isolated and expanded on TCP, likely due to a reduction in cell contractility. Furthermore, in contrast to electrospun scaffolds, TCP biased MSCs towards a fibrotic phenotype that persisted even after the cells were reseeded onto a different substrate. Cells pre-cultured on electrospun scaffolds exhibited a heightened response to mechanical stimuli and greater chondrogenesis in methacrylated hyaluronic acid hydrogels. These data suggest that alternative substrates that better approximate the native cell environment should be used to preserve endogenous MSC behavior and may improve their success in tissue engineering applications. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:808-815, 2018.
Collapse
Affiliation(s)
- Su-Jin Heo
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA,Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
| | - Spencer E. Szczesny
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA,Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
| | - Dong Hwa Kim
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA,Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
| | - Kamiel S. Saleh
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert L. Mauck
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA,Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA,Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA,Address for Correspondence: Robert L. Mauck, Ph.D., Mary Black Ralston Professor of Orthopaedic Surgery, Professor of Bioengineering, McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 36 Street and Hamilton Walk, Philadelphia, PA 19104, Phone: (215) 898-3294, Fax: (215) 573-2133,
| |
Collapse
|
31
|
Onofre I, Mendonça N, Lopes S, Nobre R, de Melo JB, Carreira IM, Januário C, Gonçalves AF, de Almeida LP. Fibroblasts of Machado Joseph Disease patients reveal autophagy impairment. Sci Rep 2016; 6:28220. [PMID: 27328712 PMCID: PMC4916410 DOI: 10.1038/srep28220] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 05/24/2016] [Indexed: 12/19/2022] Open
Abstract
Machado Joseph Disease (MJD) is the most frequent autosomal dominantly inherited cerebellar ataxia caused by the over-repetition of a CAG trinucleotide in the ATXN3 gene. This expansion translates into a polyglutamine tract within the ataxin-3 protein that confers a toxic gain-of-function to the mutant protein ataxin-3, contributing to protein misfolding and intracellular accumulation of aggregates and neuronal degeneration. Autophagy impairment has been shown to be one of the mechanisms that contribute for the MJD phenotype. Here we investigated whether this phenotype was present in patient-derived fibroblasts, a common somatic cell type used in the derivation of induced pluripotent stem cells and subsequent differentiation into neurons, for in vitro disease modeling. We generated and studied adult dermal fibroblasts from 5 MJD patients and 4 healthy individuals and we found that early passage MJD fibroblasts exhibited autophagy impairment with an underlying mechanism of decreased autophagosome production. The overexpression of beclin-1 on MJD fibroblasts reverted partially autophagy impairment by increasing the autophagic flux but failed to increase the levels of autophagosome production. Overall, our results provide a well-characterized MJD fibroblast resource for neurodegenerative disease research and contribute for the understanding of mutant ataxin-3 biology and its molecular consequences.
Collapse
Affiliation(s)
- Isabel Onofre
- CNC-Center for Neuroscience and Cell Biology, Coimbra, Portugal.,Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Nuno Mendonça
- CNC-Center for Neuroscience and Cell Biology, Coimbra, Portugal.,Neurology Department, Coimbra University Hospital Center, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Portugal
| | - Sara Lopes
- CNC-Center for Neuroscience and Cell Biology, Coimbra, Portugal.,IIIUC- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Rui Nobre
- CNC-Center for Neuroscience and Cell Biology, Coimbra, Portugal.,IIIUC- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Joana Barbosa de Melo
- CNC-Center for Neuroscience and Cell Biology, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Portugal.,Cytogenetics and Genomics Laboratory, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Isabel Marques Carreira
- CNC-Center for Neuroscience and Cell Biology, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Portugal.,Cytogenetics and Genomics Laboratory, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Cristina Januário
- Neurology Department, Coimbra University Hospital Center, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Portugal
| | - António Freire Gonçalves
- Neurology Department, Coimbra University Hospital Center, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Portugal
| | - Luis Pereira de Almeida
- CNC-Center for Neuroscience and Cell Biology, Coimbra, Portugal.,Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
32
|
Khan S, Shukla S, Sinha S, Meeran SM. Centchroman altered the expressions of tumor-related genes through active chromatin modifications in mammary cancer. Mol Carcinog 2015; 55:1747-1760. [DOI: 10.1002/mc.22424] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 09/03/2015] [Accepted: 10/02/2015] [Indexed: 12/25/2022]
Affiliation(s)
- Sajid Khan
- Division of Endocrinology; Laboratory of Cancer Epigenetics; CSIR-Central Drug Research Institute; Lucknow India
| | - Samriddhi Shukla
- Division of Endocrinology; Laboratory of Cancer Epigenetics; CSIR-Central Drug Research Institute; Lucknow India
| | - Sonam Sinha
- Division of Endocrinology; Laboratory of Cancer Epigenetics; CSIR-Central Drug Research Institute; Lucknow India
| | - Syed Musthapa Meeran
- Division of Endocrinology; Laboratory of Cancer Epigenetics; CSIR-Central Drug Research Institute; Lucknow India
| |
Collapse
|
33
|
Scandolera A, Rabenoelina F, Chaintreuil C, Rusciani A, Maurice P, Blaise S, Romier-Crouzet B, El Btaouri H, Martiny L, Debelle L, Duca L. Uncoupling of Elastin Complex Receptor during In Vitro Aging Is Related to Modifications in Its Intrinsic Sialidase Activity and the Subsequent Lactosylceramide Production. PLoS One 2015; 10:e0129994. [PMID: 26086247 PMCID: PMC4473072 DOI: 10.1371/journal.pone.0129994] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 05/15/2015] [Indexed: 12/16/2022] Open
Abstract
Degradation of elastin leads to the production of elastin-derived peptides (EDP), which exhibit several biological effects, such as cell proliferation or protease secretion. Binding of EDP on the elastin receptor complex (ERC) triggers lactosylceramide (LacCer) production and ERK1/2 activation following ERC Neu-1 subunit activation. The ability for ERC to transduce signals is lost during aging, but the mechanism involved is still unknown. In this study, we characterized an in vitro model of aging by subculturing human dermal fibroblasts. This model was used to understand the loss of EDP biological activities during aging. Our results show that ERC uncoupling does not rely on Neu-1 or PPCA mRNA or protein level changes. Furthermore, we observe that the membrane targeting of these subunits is not affected with aging. However, we evidence that Neu-1 activity and LacCer production are altered. Basal Neu-1 catalytic activity is strongly increased in aged cells. Consequently, EDP fail to promote Neu-1 catalytic activity and LacCer production in these cells. In conclusion, we propose, for the first time, an explanation for ERC uncoupling based on the age-related alterations of Neu-1 activity and LacCer production that may explain the loss of EDP-mediated effects occurring during aging.
Collapse
Affiliation(s)
- Amandine Scandolera
- Laboratoire Signalisation et Récepteurs Matriciels (SiRMa), UMR CNRS/URCA 7369, SFR CAP Santé, Université de Reims Champagne Ardenne, Faculté des Sciences, Reims, France
| | - Fanja Rabenoelina
- Laboratoire Signalisation et Récepteurs Matriciels (SiRMa), UMR CNRS/URCA 7369, SFR CAP Santé, Université de Reims Champagne Ardenne, Faculté des Sciences, Reims, France
| | - Carine Chaintreuil
- Laboratoire Signalisation et Récepteurs Matriciels (SiRMa), UMR CNRS/URCA 7369, SFR CAP Santé, Université de Reims Champagne Ardenne, Faculté des Sciences, Reims, France
| | - Anthony Rusciani
- Laboratoire Signalisation et Récepteurs Matriciels (SiRMa), UMR CNRS/URCA 7369, SFR CAP Santé, Université de Reims Champagne Ardenne, Faculté des Sciences, Reims, France
| | - Pascal Maurice
- Laboratoire Signalisation et Récepteurs Matriciels (SiRMa), UMR CNRS/URCA 7369, SFR CAP Santé, Université de Reims Champagne Ardenne, Faculté des Sciences, Reims, France
| | - Sébastien Blaise
- Laboratoire Signalisation et Récepteurs Matriciels (SiRMa), UMR CNRS/URCA 7369, SFR CAP Santé, Université de Reims Champagne Ardenne, Faculté des Sciences, Reims, France
| | - Béatrice Romier-Crouzet
- Laboratoire Signalisation et Récepteurs Matriciels (SiRMa), UMR CNRS/URCA 7369, SFR CAP Santé, Université de Reims Champagne Ardenne, Faculté des Sciences, Reims, France
| | - Hassan El Btaouri
- Laboratoire Signalisation et Récepteurs Matriciels (SiRMa), UMR CNRS/URCA 7369, SFR CAP Santé, Université de Reims Champagne Ardenne, Faculté des Sciences, Reims, France
| | - Laurent Martiny
- Laboratoire Signalisation et Récepteurs Matriciels (SiRMa), UMR CNRS/URCA 7369, SFR CAP Santé, Université de Reims Champagne Ardenne, Faculté des Sciences, Reims, France
| | - Laurent Debelle
- Laboratoire Signalisation et Récepteurs Matriciels (SiRMa), UMR CNRS/URCA 7369, SFR CAP Santé, Université de Reims Champagne Ardenne, Faculté des Sciences, Reims, France
| | - Laurent Duca
- Laboratoire Signalisation et Récepteurs Matriciels (SiRMa), UMR CNRS/URCA 7369, SFR CAP Santé, Université de Reims Champagne Ardenne, Faculté des Sciences, Reims, France
- * E-mail:
| |
Collapse
|
34
|
Liu J, Jia DY, Cai SZ, Li CP, Zhang MS, Zhang YY, Yan CH, Wang YP. Mitochondria defects are involved in lead-acetate-induced adult hematopoietic stem cell decline. Toxicol Lett 2015; 235:37-44. [PMID: 25800560 DOI: 10.1016/j.toxlet.2015.03.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 03/05/2015] [Accepted: 03/19/2015] [Indexed: 12/27/2022]
Abstract
Occupational high-grade lead exposure has been reduced in recent decades as a result of increased regulation. However, environmental lead exposure remains widespread, and is associated with severe toxicity implicated in human diseases. We performed oral intragastric administration of various dose lead acetate to adult Sprague Dawley rats to define the role of lead exposure in hematopoietic stem cells (HSCs) function, and to clarify its underlying mechanism. Lead acetate-exposed rats exhibited developmental abnormalities in myeloid and lymphoid lineages, and a significant decline in immune functions. It also showed HSCs functional decline associated with senescent phenotype with low grade lead acetate exposure or apoptotic phenotype with relative higher grade dose exposure. Mechanistic exploration showed a significant increase in reactive oxygen species (ROS) in the lead acetate-exposed CD90(+)CD45(-) compartment, which correlated with functional defects in cellular mitochondria. Furthermore, in vivo treatment with the antioxidant vitamin C led to reversion of the CD90(+)CD45(-) compartment functional decline. These results indicate that lead acetate perturbs the hematopoietic balance of adult HSCs, associated with cellular mitochondria defects, increased intracellular ROS generation.
Collapse
Affiliation(s)
- Jun Liu
- Chengdu Research Institute of Reproduction and Infertility, Chengdu Women and Children's Central Hospital, Chongqing Medical University, Chengdu, Sichuan 610091, China.
| | - Dao-Yong Jia
- Institute of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China.
| | - Shi-Zhong Cai
- Department of Neonatology, The Children's Hospital of Soochow University, No. 303 Jingde Rd., Suzhou, Jiangsu 215003, China.
| | - Cheng-Peng Li
- Institute of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China.
| | - Meng-Si Zhang
- Institute of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China.
| | - Yan-Yan Zhang
- Institute of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China.
| | - Chong-Huai Yan
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| | - Ya-Ping Wang
- Institute of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|