1
|
Tang J, Lei D, Yang J, Chen S, Wang X, Huang X, Zhang S, Cai Z, Zhu S, Wan J, Jia G. OsALKBH9-mediated m 6A demethylation regulates tapetal PCD and pollen exine accumulation in rice. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2410-2423. [PMID: 38634166 PMCID: PMC11332222 DOI: 10.1111/pbi.14354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/24/2024] [Accepted: 03/30/2024] [Indexed: 04/19/2024]
Abstract
The N6-methyladenosine (m6A) mRNA modification is crucial for plant development and stress responses. In rice, the male sterility resulting from the deficiency of OsFIP37, a core component of m6A methyltransferase complex, emphasizes the significant role of m6A in male fertility. m6A is reversible and can be removed by m6A demethylases. However, whether mRNA m6A demethylase regulates male fertility in rice has remained unknown. Here, we identify the mRNA m6A demethylase OsALKBH9 and demonstrate its involvement in male fertility regulation. Knockout of OsALKBH9 causes male sterility, dependent on its m6A demethylation activity. Cytological analysis reveals defective tapetal programmed cell death (PCD) and excessive accumulation of microspores exine in Osalkbh9-1. Transcriptome analysis of anthers shows up-regulation of genes involved in tapetum development, sporopollenin synthesis, and transport pathways in Osalkbh9-1. Additionally, we demonstrate that OsALKBH9 demethylates the m6A modification in TDR and GAMYB transcripts, which affects the stability of these mRNAs and ultimately leads to excessive accumulation of pollen exine. Our findings highlight the precise control of mRNA m6A modification and reveal the pivotal roles played by OsALKBH9-mediated m6A demethylation in tapetal PCD and pollen exine accumulation in rice.
Collapse
Affiliation(s)
- Jun Tang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular EngineeringPeking UniversityBeijingChina
- Institute of Animal SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Dekun Lei
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| | - Junbo Yang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular EngineeringPeking UniversityBeijingChina
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural AffairsAgricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural SciencesShenzhenGuangdongChina
| | - Shuyan Chen
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular EngineeringPeking UniversityBeijingChina
| | - Xueping Wang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular EngineeringPeking UniversityBeijingChina
| | - Xiaoxin Huang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular EngineeringPeking UniversityBeijingChina
| | - Shasha Zhang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular EngineeringPeking UniversityBeijingChina
| | - Zhihe Cai
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular EngineeringPeking UniversityBeijingChina
| | - Shanshan Zhu
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| | - Jianmin Wan
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| | - Guifang Jia
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular EngineeringPeking UniversityBeijingChina
- Peking‐Tsinghua Center for Life Sciences, Peking UniversityBeijingChina
- Beijing Advanced Center of RNA BiologyPeking UniversityBeijingChina
| |
Collapse
|
2
|
Li B, Zhou Q, Cai L, Li L, Xie C, Li D, Zhu F, Li X, Zhao X, Liu X, Shen L, Xu T, He C. TMK4-mediated FIP37 phosphorylation regulates auxin-triggered N 6-methyladenosine modification of auxin biosynthetic genes in Arabidopsis. Cell Rep 2024; 43:114597. [PMID: 39106180 DOI: 10.1016/j.celrep.2024.114597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 03/20/2024] [Accepted: 07/23/2024] [Indexed: 08/09/2024] Open
Abstract
The dynamics of N6-methyladenosine (m6A) mRNA modification are tightly controlled by the m6A methyltransferase complex and demethylases. Here, we find that auxin treatment alters m6A modification on auxin-responsive genes. Mechanically, TRANSMEMBRANE KINASE 4 (TMK4), a component of the auxin signaling pathway, interacts with and phosphorylates FKBP12-INTERACTING PROTEIN 37 (FIP37), a core component of the m6A methyltransferase complex, in an auxin-dependent manner. Phosphorylation of FIP37 enhances its interaction with RNA, thereby increasing m6A modification on its target genes, such as NITRILASE 1 (NIT1), a gene involved in indole-3-acetic acid (IAA) biosynthesis. 1-Naphthalacetic acid (NAA) treatment accelerates the mRNA decay of NIT1, in a TMK4- and FIP37-dependent manner, which leads to inhibition of auxin biosynthesis. Our findings identify a regulatory mechanism by which auxin modulates m6A modification through the phosphorylation of FIP37, ultimately affecting mRNA stability and auxin biosynthesis in plants.
Collapse
Affiliation(s)
- Bin Li
- College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, Hunan 410082, China; State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha, Hunan 410082, China
| | - Qiting Zhou
- College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, Hunan 410082, China
| | - Linjun Cai
- College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, Hunan 410082, China
| | - Lan Li
- School of Pharmacy, Xiangnan University, Chenzhou, Hunan 423000, China
| | - Chong Xie
- College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, Hunan 410082, China
| | - Donghao Li
- College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, Hunan 410082, China
| | - Fan Zhu
- College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, Hunan 410082, China
| | - Xiushan Li
- College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, Hunan 410082, China
| | - Xiaoying Zhao
- College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, Hunan 410082, China
| | - Xuanming Liu
- College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, Hunan 410082, China
| | - Lisha Shen
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore
| | - Tongda Xu
- FAFU-Joint Center, Horticulture and Metabolic Biology Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Chongsheng He
- College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, Hunan 410082, China.
| |
Collapse
|
3
|
Fan S, Zhang Y, Zhu S, Shen L. Plant RNA-binding proteins: Phase separation dynamics and functional mechanisms underlying plant development and stress responses. MOLECULAR PLANT 2024; 17:531-551. [PMID: 38419328 DOI: 10.1016/j.molp.2024.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/19/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
RNA-binding proteins (RBPs) accompany RNA from synthesis to decay, mediating every aspect of RNA metabolism and impacting diverse cellular and developmental processes in eukaryotes. Many RBPs undergo phase separation along with their bound RNA to form and function in dynamic membraneless biomolecular condensates for spatiotemporal coordination or regulation of RNA metabolism. Increasing evidence suggests that phase-separating RBPs with RNA-binding domains and intrinsically disordered regions play important roles in plant development and stress adaptation. Here, we summarize the current knowledge about how dynamic partitioning of RBPs into condensates controls plant development and enables sensing of experimental changes to confer growth plasticity under stress conditions, with a focus on the dynamics and functional mechanisms of RBP-rich nuclear condensates and cytoplasmic granules in mediating RNA metabolism. We also discuss roles of multiple factors, such as environmental signals, protein modifications, and N6-methyladenosine RNA methylation, in modulating the phase separation behaviors of RBPs, and highlight the prospects and challenges for future research on phase-separating RBPs in crops.
Collapse
Affiliation(s)
- Sheng Fan
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 1 Research Link, Singapore 117604, Singapore
| | - Yu Zhang
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 1 Research Link, Singapore 117604, Singapore
| | - Shaobo Zhu
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 1 Research Link, Singapore 117604, Singapore
| | - Lisha Shen
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 1 Research Link, Singapore 117604, Singapore; Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore.
| |
Collapse
|
4
|
Lee KP, Liu K, Kim EY, Medina-Puche L, Dong H, Di M, Singh RM, Li M, Qi S, Meng Z, Cho J, Zhang H, Lozano-Duran R, Kim C. The m6A reader ECT1 drives mRNA sequestration to dampen salicylic acid-dependent stress responses in Arabidopsis. THE PLANT CELL 2024; 36:746-763. [PMID: 38041863 PMCID: PMC10896288 DOI: 10.1093/plcell/koad300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 12/04/2023]
Abstract
N 6-methyladenosine (m6A) is a common epitranscriptional mRNA modification in eukaryotes. Thirteen putative m6A readers, mostly annotated as EVOLUTIONARILY CONSERVED C-TERMINAL REGION (ECT) proteins, have been identified in Arabidopsis (Arabidopsis thaliana), but few have been characterized. Here, we show that the Arabidopsis m6A reader ECT1 modulates salicylic acid (SA)-mediated plant stress responses. ECT1 undergoes liquid-liquid phase separation in vitro, and its N-terminal prion-like domain is critical for forming in vivo cytosolic biomolecular condensates in response to SA or bacterial pathogens. Fluorescence-activated particle sorting coupled with quantitative PCR analyses unveiled that ECT1 sequesters SA-induced m6A modification-prone mRNAs through its conserved aromatic cage to facilitate their decay in cytosolic condensates, thereby dampening SA-mediated stress responses. Consistent with this finding, ECT1 overexpression promotes bacterial multiplication in plants. Collectively, our findings unequivocally link ECT1-associated cytosolic condensates to SA-dependent plant stress responses, advancing the current understanding of m6A readers and the SA signaling network.
Collapse
Affiliation(s)
- Keun Pyo Lee
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Chinese Academy of Sciences, Shanghai 200032, China
| | - Kaiwei Liu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Eun Yu Kim
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Laura Medina-Puche
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Chinese Academy of Sciences, Shanghai 200032, China
| | - Haihong Dong
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Chinese Academy of Sciences, Shanghai 200032, China
| | - Minghui Di
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Rahul Mohan Singh
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Chinese Academy of Sciences, Shanghai 200032, China
| | - Mengping Li
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Chinese Academy of Sciences, Shanghai 200032, China
| | - Shan Qi
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuoling Meng
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jungnam Cho
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- CAS-JIC Centre of Excellence for Plant and Microbial Science, Chinese Academy of Sciences, Shanghai 200032, China
| | - Heng Zhang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Chinese Academy of Sciences, Shanghai 200032, China
| | - Rosa Lozano-Duran
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Chinese Academy of Sciences, Shanghai 200032, China
| | - Chanhong Kim
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
5
|
An H, Ke X, Li L, Liu Y, Yuan S, Wang Q, Hou X, Zhao J. ALBINO EMBRYO AND SEEDLING is required for RNA splicing and chloroplast homeostasis in Arabidopsis. PLANT PHYSIOLOGY 2023; 193:483-501. [PMID: 37311175 DOI: 10.1093/plphys/kiad341] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 05/03/2023] [Accepted: 05/07/2023] [Indexed: 06/15/2023]
Abstract
Pentatricopeptide repeat (PPR) proteins form a large protein family and have diverse functions in plant development. Here, we identified an ALBINO EMBRYO AND SEEDLING (AES) gene that encodes a P-type PPR protein expressed in various tissues, especially the young leaves of Arabidopsis (Arabidopsis thaliana). Its null mutant aes exhibited a collapsed chloroplast membrane system, reduced pigment content and photosynthetic activity, decreased transcript levels of PEP (plastid-encoded polymerase)-dependent chloroplast genes, and defective RNA splicing. Further work revealed that AES could directly bind to psbB-psbT, psbH-petB, rps8-rpl36, clpP, ycf3, and ndhA in vivo and in vitro and that the splicing efficiencies of these genes and the expression levels of ycf3, ndhA, and cis-tron psbB-psbT-psbH-petB-petD decreased dramatically, leading to defective PSI, PSII, and Cyt b6f in aes. Moreover, AES could be transported into the chloroplast stroma via the TOC-TIC channel with the assistance of Tic110 and cpSRP54 and may recruit HCF244, SOT1, and CAF1 to participate in the target RNA process. These findings suggested that AES is an essential protein for the assembly of photosynthetic complexes, providing insights into the splicing of psbB operon (psbB-psbT-psbH-petB-petD), ycf3, and ndhA, as well as maintaining chloroplast homeostasis.
Collapse
Affiliation(s)
- Hongqiang An
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, 430072 Wuhan, China
| | - Xiaolong Ke
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, 430072 Wuhan, China
| | - Lu Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, 430072 Wuhan, China
| | - Yantong Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, 430072 Wuhan, China
| | - Sihui Yuan
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, 430072 Wuhan, China
| | - Qiuyu Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, 430072 Wuhan, China
| | - Xin Hou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, 430072 Wuhan, China
| | - Jie Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, 430072 Wuhan, China
| |
Collapse
|
6
|
Liu K, Lee KP, Duan J, Kim EY, Singh RM, Di M, Meng Z, Kim C. Cooperative role of AtRsmD and AtRimM proteins in modification and maturation of 16S rRNA in plastids. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:310-324. [PMID: 36752655 DOI: 10.1111/tpj.16135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 02/01/2023] [Indexed: 05/10/2023]
Abstract
Chloroplast pre-ribosomal RNA (rRNA) undergoes maturation, which is critical for ribosome assembly. While the central and auxiliary factors in rRNA maturation have been elucidated in bacteria, their mode of action remains largely unexplored in chloroplasts. We now reveal chloroplast-specific factors involved in 16S rRNA maturation, Arabidopsis thaliana orthologs of bacterial RsmD methyltransferase (AtRsmD) and ribosome maturation factor RimM (AtRimM). A forward genetic screen aimed to find suppressors of the Arabidopsis yellow variegated 2 (var2) mutant defective in photosystem II quality control found a causal nonsense mutation in AtRsmD. The substantially impaired 16S rRNA maturation and translation due to the mutation rescued the leaf variegation phenotype by lowering the levels of chloroplast-encoded proteins, including photosystem II core proteins, in var2. The subsequent co-immunoprecipitation coupled with mass spectrometry analyses and bimolecular fluorescence complementation assay found that AtRsmD interacts with AtRimM. Consistent with their interaction, loss of AtRimM also considerably impairs 16S rRNA maturation with decelerated m2 G915 modification in 16S rRNA catalyzed by AtRsmD. The atrimM mutation also rescued var2 mutant phenotypes, corroborating the functional interplay between AtRsmD and AtRimM towards modification and maturation of 16S rRNA and chloroplast proteostasis. The maturation and post-transcriptional modifications of rRNA are critical to assembling ribosomes responsible for protein translation. Here, we revealed that the cooperative regulation of 16S rRNA m2 G915 modifications by AtRsmD methyltransferase and ribosome assembly factor AtRimM contributes to 16S rRNA maturation, ribosome assembly, and proteostasis in chloroplasts.
Collapse
Affiliation(s)
- Kaiwei Liu
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Keun Pyo Lee
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jianli Duan
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Eun Yu Kim
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Chinese Academy of Sciences, Shanghai, 200032, China
| | - Rahul Mohan Singh
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Minghui Di
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhuoling Meng
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Chanhong Kim
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
7
|
Yang J, Li L, Li X, Zhong M, Li X, Qu L, Zhang H, Tang D, Liu X, He C, Zhao X. The blue light receptor CRY1 interacts with FIP37 to promote N 6 -methyladenosine RNA modification and photomorphogenesis in Arabidopsis. THE NEW PHYTOLOGIST 2023; 237:840-854. [PMID: 36305219 DOI: 10.1111/nph.18583] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Light is a particularly important environmental cue that regulates a variety of diverse plant developmental processes, such as photomorphogenesis. Blue light promotes photomorphogenesis mainly through the activation of the photoreceptor cryptochrome 1 (CRY1). However, the mechanism underlying the CRY1-mediated regulation of growth is not fully understood. Here, we found that blue light induced N6 -methyladenosine (m6 A) RNA modification during photomorphogenesis partially via CRY1. Cryptochrome 1 mediates blue light-induced expression of FKBP12-interacting protein 37 (FIP37), which is a component of m6 A writer. Moreover, we showed that CRY1 physically interacted with FIP37 in vitro and in vivo, and mediated blue light activation of FIP37 binding to RNA. Furthermore, CRY1 and FIP37 modulated m6 A on photomorphogenesis-related genes PIF3, PIF4, and PIF5, thereby accelerating the decay of their transcripts. Genetically, FIP37 repressed hypocotyl elongation under blue light, and fip37 mutation could partially rescue the short-hypocotyl phenotype of CRY1-overexpressing plants. Together, our results provide a new insight into CRY1 signal in modulating m6 A methylation and stability of PIFs, and establish an essential molecular link between m6 A modification and determination of photomorphogenesis in plants.
Collapse
Affiliation(s)
- Jiaxin Yang
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan Engineering and Technology Research enter of Hybrid Rapeseed, Hunan University, Changsha, 410082, China
- Shenzhen Institute, Hunan University, Shenzhen, 518057, China
| | - Lan Li
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan Engineering and Technology Research enter of Hybrid Rapeseed, Hunan University, Changsha, 410082, China
| | - Xin Li
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan Engineering and Technology Research enter of Hybrid Rapeseed, Hunan University, Changsha, 410082, China
- Shenzhen Institute, Hunan University, Shenzhen, 518057, China
| | - Ming Zhong
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan Engineering and Technology Research enter of Hybrid Rapeseed, Hunan University, Changsha, 410082, China
- Shenzhen Institute, Hunan University, Shenzhen, 518057, China
| | - Xinmei Li
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan Engineering and Technology Research enter of Hybrid Rapeseed, Hunan University, Changsha, 410082, China
- Shenzhen Institute, Hunan University, Shenzhen, 518057, China
| | - Lina Qu
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan Engineering and Technology Research enter of Hybrid Rapeseed, Hunan University, Changsha, 410082, China
- Shenzhen Institute, Hunan University, Shenzhen, 518057, China
| | - Hui Zhang
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan Engineering and Technology Research enter of Hybrid Rapeseed, Hunan University, Changsha, 410082, China
- Shenzhen Institute, Hunan University, Shenzhen, 518057, China
| | - Dongying Tang
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan Engineering and Technology Research enter of Hybrid Rapeseed, Hunan University, Changsha, 410082, China
| | - Xuanming Liu
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan Engineering and Technology Research enter of Hybrid Rapeseed, Hunan University, Changsha, 410082, China
| | - Chongsheng He
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan Engineering and Technology Research enter of Hybrid Rapeseed, Hunan University, Changsha, 410082, China
| | - Xiaoying Zhao
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan Engineering and Technology Research enter of Hybrid Rapeseed, Hunan University, Changsha, 410082, China
- Shenzhen Institute, Hunan University, Shenzhen, 518057, China
| |
Collapse
|
8
|
Tang J, Yang J, Lu Q, Tang Q, Chen S, Jia G. The RNA N 6 -methyladenosine demethylase ALKBH9B modulates ABA responses in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:2361-2373. [PMID: 36263999 DOI: 10.1111/jipb.13394] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
The mRNA modification N6 -methyladenosine (m6 A) plays vital roles in plant development and biotic and abiotic stress responses. The RNA m6 A demethylase ALKBH9B can remove m6 A in alfalfa mosaic virus RNA and plays roles in alfalfa mosaic virus infection in Arabidopsis. However, it is unknown whether ALKBH9B also exhibits demethylation activity and has a biological role in endogenous plant mRNA. We demonstrated here that mRNA m6 A modification is induced by the phytohormone abscisic acid (ABA) and that ALKBH9B has m6 A demethylation activity on endogenous mRNA. Knocking out ALKBH9B led to hypersensitivity to ABA treatment during seed germination and early seedling development. We further showed that ALKBH9B removes the m6 A modification in the ABA INSENSITIVE 1 (ABI1) and BRI1-EMS-SUPPRESSOR 1 (BES1) transcripts following ABA treatment, affecting the stability of these mRNAs. Furthermore, we determined that ALKBH9B acts genetically upstream of the transcription factors ABI3 and ABI5, and its regulatory function in ABA responses depended on ABI3 and ABI5. Our findings reveal the important roles of the m6 A modification in ABA responses and highlight the role of ALKBH9B-mediated m6 A demethylation in regulating ABA responses post-transcriptionally.
Collapse
Affiliation(s)
- Jun Tang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Junbo Yang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Qiang Lu
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Qian Tang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Shuyan Chen
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Guifang Jia
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Beijing, 100871, China
| |
Collapse
|
9
|
Wang D, Zhang X, Yin L, Liu Q, Yu Z, Xu C, Ma Z, Xia Y, Shi J, Gong Y, Bai F, Cheng Z, Wu W, Lin J, Jin Y. RplI interacts with 5’ UTR of exsA to repress its translation and type III secretion system in Pseudomonas aeruginosa. PLoS Pathog 2022; 18:e1010170. [PMID: 34986198 PMCID: PMC8730436 DOI: 10.1371/journal.ppat.1010170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/04/2021] [Indexed: 11/19/2022] Open
Abstract
Pseudomonas aeruginosa is an important opportunistic pathogen capable of causing variety of infections in humans. The type III secretion system (T3SS) is a critical virulence determinant of P. aeruginosa in the host infections. Expression of the T3SS is regulated by ExsA, a master regulator that activates the expression of all known T3SS genes. Expression of the exsA gene is controlled at both transcriptional and posttranscriptional levels. Here, we screened a P. aeruginosa transposon (Tn5) insertional mutant library and found rplI, a gene coding for the ribosomal large subunit protein L9, to be a repressor for the T3SS gene expression. Combining real-time quantitative PCR (qPCR), western blotting and lacZ fusion assays, we show that RplI controls the expression of exsA at the posttranscriptional level. Further genetic experiments demonstrated that RplI mediated control of the exsA translation involves 5’ untranslated region (5’ UTR). A ribosome immunoprecipitation assay and qPCR revealed higher amounts of a 24 nt fragment from exsA mRNA being associated with ribosomes in the ΔrplI mutant. An interaction between RplI and exsA mRNA harboring its 24 nt, but not 12 nt, 5’ UTR was confirmed by RNA Gel Mobility Shift and Microscale Thermophoresis assays. Overall, this study identifies the ribosomal large subunit protein L9 as a novel T3SS repressor that inhibits ExsA translation in P. aeruginosa. Ribosomes provide all living organisms the capacity to synthesize proteins. The production of many ribosomal proteins is often controlled by an autoregulatory feedback mechanism. P. aeruginosa is an opportunistic human pathogen and its type III secretion system (T3SS) is a critical virulence determinant in host infections. In this study, by screening a Tn5 mutant library, we identified rplI, encoding ribosomal large subunit protein L9, as a novel repressor for the T3SS. Further exploring the regulatory mechanism, we found that the RplI protein interacts with the 5’ UTR (5’ untranslated region) of exsA, a gene coding for transcriptional activator of the T3SS. Such an interaction likely blocks ribosome loading on the exsA 5’ UTR, inhibiting the initiation of exsA translation. The significance of this work is in the identification of a novel repressor for the T3SS and elucidation of its molecular mechanism. Furthermore, this work provides evidence for individual ribosomal protein regulating mRNA translation beyond its autogenous feedback control.
Collapse
Affiliation(s)
- Dan Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Xinxin Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Liwen Yin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Qi Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Zhaoli Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Congjuan Xu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Zhenzhen Ma
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yushan Xia
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Jing Shi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yuehua Gong
- Cancer Institute, the First Affiliated Hospital of China Medical University, Shenyang, China
| | - Fang Bai
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Zhihui Cheng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Weihui Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Jinzhong Lin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yongxin Jin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
- * E-mail:
| |
Collapse
|
10
|
Cheng P, Bao S, Li C, Tong J, Shen L, Yu H. RNA N 6-methyladenosine modification promotes auxin biosynthesis required for male meiosis in rice. Dev Cell 2021; 57:246-259.e4. [PMID: 35026163 DOI: 10.1016/j.devcel.2021.12.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/20/2021] [Accepted: 12/13/2021] [Indexed: 11/19/2022]
Abstract
N6-methyladenosine (m6A) RNA modification confers an essential layer of gene regulation in living organisms, including plants; yet, the underlying mechanisms of its deposition on specific target mRNAs involved in key plant developmental processes are so far unknown. Here, we show that a core component of the rice m6A methyltransferase complex, OsFIP37, is recruited by an RNA-binding protein, OsFIP37-associated protein 1 (OsFAP1), to mediate m6A RNA modification on an auxin biosynthesis gene, OsYUCCA3, during microsporogenesis. This stabilizes OsYUCCA3 mRNA and promotes local auxin biosynthesis in anthers during male meiosis, which is essential for meiotic division and subsequent pollen development in rice. Loss of function of OsFAP1 causes dissociation of OsFIP37 with OsYUCCA3 and the resulting abolished m6A deposition on OsYUCCA3. Our findings reveal that OsFAP1-dependent m6A deposition on OsYUCCA3 by OsFIP37 constitutes a hitherto unknown link between RNA modification and hormonal control of male meiosis in plant reproductive development.
Collapse
Affiliation(s)
- Peng Cheng
- Department of Biological Sciences and Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117543, Singapore; College of Horticulture and Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China
| | - Shengjie Bao
- Department of Biological Sciences and Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117543, Singapore
| | - Chengxiang Li
- Department of Biological Sciences and Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117543, Singapore
| | - Jianhua Tong
- College of Horticulture and Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China
| | - Lisha Shen
- Department of Biological Sciences and Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117543, Singapore.
| | - Hao Yu
- Department of Biological Sciences and Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117543, Singapore.
| |
Collapse
|
11
|
Huang Y, Zheng P, Liu X, Chen H, Tu J. OseIF3h Regulates Plant Growth and Pollen Development at Translational Level Presumably through Interaction with OsMTA2. PLANTS 2021; 10:plants10061101. [PMID: 34070794 PMCID: PMC8228589 DOI: 10.3390/plants10061101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 12/23/2022]
Abstract
The initiation stage of protein biosynthesis is a sophisticated process tightly regulated by numerous initiation factors and their associated components. However, the mechanism underlying translation initiation has not been completely understood in rice. Here, we showed knock-out mutation of the rice eukaryotic translation initiation factor 3 subunit h (OseIF3h) resulted in plant growth retardation and seed-setting rate reduction as compared to the wild type. Further investigation demonstrated an interaction between OseIF3h and OsMTA2 (mRNA adenosine methylase 2), a rice homolog of METTL3 (methyltransferase-like 3) in mammals, which provided new insight into how N6-methyladenosine (m6A) modification of messenger RNA (mRNA) is engaged in the translation initiation process in monocot species. Moreover, the RIP-seq (RNA immunoprecipitation sequencing) data suggested that OseIF3h was involved in multiple biological processes, including photosynthesis, cellular metabolic process, precursor metabolites, and energy generation. Therefore, we infer that OseIF3h interacts with OsMTA2 to target a particular subset of genes at translational level, regulating plant growth and pollen development.
Collapse
|
12
|
Arabidopsis Mitochondrial Transcription Termination Factor mTERF2 Promotes Splicing of Group IIB Introns. Cells 2021; 10:cells10020315. [PMID: 33546419 PMCID: PMC7913559 DOI: 10.3390/cells10020315] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 12/21/2022] Open
Abstract
Plastid gene expression (PGE) is essential for chloroplast biogenesis and function and, hence, for plant development. However, many aspects of PGE remain obscure due to the complexity of the process. A hallmark of nuclear-organellar coordination of gene expression is the emergence of nucleus-encoded protein families, including nucleic-acid binding proteins, during the evolution of the green plant lineage. One of these is the mitochondrial transcription termination factor (mTERF) family, the members of which regulate various steps in gene expression in chloroplasts and/or mitochondria. Here, we describe the molecular function of the chloroplast-localized mTERF2 in Arabidopsis thaliana. The complete loss of mTERF2 function results in embryo lethality, whereas directed, microRNA (amiR)-mediated knockdown of MTERF2 is associated with perturbed plant development and reduced chlorophyll content. Moreover, photosynthesis is impaired in amiR-mterf2 plants, as indicated by reduced levels of photosystem subunits, although the levels of the corresponding messenger RNAs are not affected. RNA immunoprecipitation followed by RNA sequencing (RIP-Seq) experiments, combined with whole-genome RNA-Seq, RNA gel-blot, and quantitative RT-PCR analyses, revealed that mTERF2 is required for the splicing of the group IIB introns of ycf3 (intron 1) and rps12.
Collapse
|
13
|
Abstract
The RNA-binding proteome plays a key role in controlling every step in the life of RNA molecules. Through interaction with dedicated sequence motifs, RNA-binding proteins coordinate processing of cohorts of genes. Understanding such posttranscriptional networks controlled by an RNA-binding protein requires a comprehensive identification of its in vivo targets. In Arabidopsis thaliana, RNA immunoprecipitation followed by reverse transcription-PCR has been widely used to test the association of candidate targets with RNA-binding proteins. The detection of unknown target transcripts requires methods operating at the level of the entire transcriptome. Here, we describe a protocol for RNA immunoprecipitation coupled to the generation of libraries from the co-purified RNAs for high-throughput sequencing. This allows determining RNAs associated with RNA-binding proteins in planta at a global scale.
Collapse
Affiliation(s)
- Tino Köster
- Faculty of Biology, RNA Biology and Molecular Physiology, Bielefeld University, Bielefeld, Germany
| | - Dorothee Staiger
- Faculty of Biology, RNA Biology and Molecular Physiology, Bielefeld University, Bielefeld, Germany.
| |
Collapse
|
14
|
Feng L, Zhang J, Sun M, Qiu F, Chen W, Qiu W. Tumor Suppressor LINC02487 Inhibits Oral Squamous Cell Carcinoma Cell Migration and Invasion Through the USP17-SNAI1 Axis. Front Oncol 2020; 10:559808. [PMID: 33194625 PMCID: PMC7658685 DOI: 10.3389/fonc.2020.559808] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022] Open
Abstract
Purpose The aim of this study was to explore the functions and associated mechanisms of long noncoding RNA LINC02487 in oral squamous cell carcinoma (OSCC). Methods The relative expression levels of LINC02487 in OSCC cell lines and tissue samples were examined by RT-qPCR. Intracellular localization was determined using RNA fluorescence in situ hybridization. LINC02487 was cloned into the pCMV-puro vector and then introduced into OSCC cells using lentiviral transfection. Cell processes, such as proliferation, apoptosis, migration, and invasion, were subsequently examined. LINC02487-binding proteins were identified by ChIRP-MS and confirmed by RNA immunoprecipitation. Protein expression was determined by western blotting assay. Results LINC02487 has been reported to be downregulated in OSCC. Here, we confirmed that the expression of LINC02487 was reduced in 6 OSCC cell lines compared with that in immortalized normal oral epithelial cells and in 50 OSCC samples compared with paired adjacent normal tissue in a Chinese population and that LINC02487 expression levels were associated with cancer metastasis. We further identified that LINC02487 was localized to the cytoplasm, aggregated around the nuclear membrane. Functional studies demonstrate that overexpression of LINC02487 significantly suppresses cell migration and invasion and also inhibits cell proliferation. For the mechanism, we reveal that LINC02487 directly binds to USP17, a deubiquitinating enzyme, and regulates cell migration and invasion through the USP17-SNAI1 axis in a process that involves epithelial-mesenchymal transition (EMT). Conclusion Our results confirm that long noncoding RNA LINC02487 is downregulated in OSCC tissue samples and cell lines. We also find that LINC02487 acts as a tumor suppressor through the USP17-SNAI1 axis.
Collapse
Affiliation(s)
- Lu Feng
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Department of Oral and Maxillofacial-Head Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Jianjun Zhang
- Department of Oral and Maxillofacial-Head Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Minglei Sun
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Feng Qiu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wantao Chen
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Department of Oral and Maxillofacial-Head Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Weiliu Qiu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Department of Oral and Maxillofacial-Head Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, China
| |
Collapse
|
15
|
Wang L, Ding Y, He L, Zhang G, Zhu JK, Lozano-Duran R. A virus-encoded protein suppresses methylation of the viral genome through its interaction with AGO4 in the Cajal body. eLife 2020; 9:e55542. [PMID: 33064077 PMCID: PMC7567605 DOI: 10.7554/elife.55542] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 09/23/2020] [Indexed: 12/11/2022] Open
Abstract
In plants, establishment of de novo DNA methylation is regulated by the RNA-directed DNA methylation (RdDM) pathway. RdDM machinery is known to concentrate in the Cajal body, but the biological significance of this localization has remained elusive. Here, we show that the antiviral methylation of the Tomato yellow leaf curl virus (TYLCV) genome requires the Cajal body in Nicotiana benthamiana cells. Methylation of the viral genome is countered by a virus-encoded protein, V2, which interacts with the central RdDM component AGO4, interfering with its binding to the viral DNA; Cajal body localization of the V2-AGO4 interaction is necessary for the viral protein to exert this function. Taken together, our results draw a long sought-after functional connection between RdDM, the Cajal body, and antiviral DNA methylation, paving the way for a deeper understanding of DNA methylation and antiviral defences in plants.
Collapse
Affiliation(s)
- Liping Wang
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of SciencesBeijingChina
- University of the Chinese Academy of SciencesBeijingChina
| | - Yi Ding
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of SciencesBeijingChina
- University of the Chinese Academy of SciencesBeijingChina
| | - Li He
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of SciencesBeijingChina
| | - Guiping Zhang
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of SciencesBeijingChina
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of SciencesBeijingChina
| | - Rosa Lozano-Duran
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of SciencesBeijingChina
| |
Collapse
|
16
|
Plant Individual Nucleotide Resolution Cross-Linking and Immunoprecipitation to Characterize RNA-Protein Complexes. Methods Mol Biol 2020. [PMID: 32710414 DOI: 10.1007/978-1-0716-0712-1_15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
In recent years, it has become increasingly recognized that regulation at the RNA level pervasively shapes the transcriptome in eukaryotic cells. This has fostered an interest in the mode of action of RNA-binding proteins that, via interaction with specific RNA sequence motifs, modulate gene expression. Understanding such posttranscriptional networks controlled by an RNA-binding protein requires a comprehensive identification of its in vivo targets. In metazoans and yeast, methods have been devised to stabilize RNA-protein interactions by UV cross-linking before isolating RNA-protein complexes using antibodies, followed by identification of associated RNAs by next-generation sequencing. These methods are collectively referred to as CLIP-Seq (cross-linking immunoprecipitation-high-throughput sequencing). Here, we present a version of the individual nucleotide resolution cross-linking and immunoprecipitation procedure that is suitable for use in the model plant Arabidopsis thaliana.
Collapse
|
17
|
PABPC1-induced stabilization of BDNF-AS inhibits malignant progression of glioblastoma cells through STAU1-mediated decay. Cell Death Dis 2020; 11:81. [PMID: 32015336 PMCID: PMC6997171 DOI: 10.1038/s41419-020-2267-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 12/29/2022]
Abstract
Glioblastoma is the most common and malignant form of primary central nervous tumor in adults. Long noncoding RNAs (lncRNAs) have been reported to play a pivotal role in modulating gene expression and regulating human tumor’s malignant behaviors. In this study, we confirmed that lncRNA brain-derived neurotrophic factor antisense (BDNF-AS) was downregulated in glioblastoma tissues and cells, interacted and stabilized by polyadenylate-binding protein cytoplasmic 1 (PABPC1). Overexpression of BDNF-AS inhibited the proliferation, migration, and invasion, as well as induced the apoptosis of glioblastoma cells. In the in vivo study, PABPC1 overexpression combined with BDNF-AS overexpression produced the smallest tumor and the longest survival. Moreover, BDNF-AS could elicit retina and anterior neural fold homeobox 2 (RAX2) mRNA decay through STAU1-mediated decay (SMD), and thereby regulated the malignant behaviors glioblastoma cells. Knockdown of RAX2 produced tumor-suppressive function in glioblastoma cells and increased the expression of discs large homolog 5 (DLG5), leading to the activation of the Hippo pathway. In general, this study elucidated that the PABPC1-BDNF-AS-RAX2-DLG5 mechanism may contribute to the anticancer potential of glioma cells and may provide potential therapeutic targets for human glioma.
Collapse
|
18
|
Lee KC, Chung KS, Lee HT, Park JH, Lee JH, Kim JK. Role of Arabidopsis Splicing factor SF1 in Temperature-Responsive Alternative Splicing of FLM pre-mRNA. FRONTIERS IN PLANT SCIENCE 2020; 11:596354. [PMID: 33335535 PMCID: PMC7735993 DOI: 10.3389/fpls.2020.596354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/11/2020] [Indexed: 05/04/2023]
Abstract
Small changes in temperature affect plant ecological and physiological factors that impact agricultural production. Hence, understanding how temperature affects flowering is crucial for decreasing the effects of climate change on crop yields. Recent reports have shown that FLM-β, the major spliced isoform of FLOWERING LOCUS M (FLM)-a flowering time gene, contributes to temperature-responsive flowering in Arabidopsis thaliana. However, the molecular mechanism linking pre-mRNA processing and temperature-responsive flowering is not well understood. Genetic and molecular analyses identified the role of an Arabidopsis splicing factor SF1 homolog, AtSF1, in regulating temperature-responsive flowering. The loss-of-function AtSF1 mutant shows temperature insensitivity at different temperatures and very low levels of FLM-β transcript, but a significantly increased transcript level of the alternative splicing (AS) isoform, FLM-δ. An RNA immunoprecipitation (RIP) assay revealed that AtSF1 is responsible for ambient temperature-dependent AS of FLM pre-mRNA, resulting in the temperature-dependent production of functional FLM-β transcripts. Moreover, alterations in other splicing factors such as ABA HYPERSENSITIVE1/CBP80 (ABH1/CBP80) and STABILIZED1 (STA1) did not impact the FLM-β/FLM-δ ratio at different temperatures. Taken together, our data suggest that a temperature-dependent interaction between AtSF1 and FLM pre-mRNA controls flowering time in response to temperature fluctuations.
Collapse
Affiliation(s)
- Keh Chien Lee
- Division of Life Sciences, Korea University, Seoul, South Korea
| | - Kyung Sook Chung
- Division of Life Sciences, Jeonbuk National University, Jeonju, South Korea
| | - Hee Tae Lee
- Division of Life Sciences, Korea University, Seoul, South Korea
| | - Jae-Hyeok Park
- Division of Life Sciences, Jeonbuk National University, Jeonju, South Korea
| | - Jeong Hwan Lee
- Division of Life Sciences, Jeonbuk National University, Jeonju, South Korea
- *Correspondence: Jeong-Hwan Lee,
| | - Jeong-Kook Kim
- Division of Life Sciences, Korea University, Seoul, South Korea
- Jeong-Kook Kim,
| |
Collapse
|
19
|
Lee K, Park SJ, Colas des Francs-Small C, Whitby M, Small I, Kang H. The coordinated action of PPR4 and EMB2654 on each intron half mediates trans-splicing of rps12 transcripts in plant chloroplasts. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:1193-1207. [PMID: 31442349 DOI: 10.1111/tpj.14509] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/24/2019] [Accepted: 08/12/2019] [Indexed: 05/21/2023]
Abstract
The pentatricopeptide repeat proteins PPR4 and EMB2654 have been shown to be required for the trans-splicing of plastid rps12 transcripts in Zea mays (maize) and Arabidopsis, respectively, but their roles in this process are not well understood. We investigated the functions of the Arabidopsis and Oryza sativa (rice) orthologs of PPR4, designated AtPPR4 (At5g04810) and OsPPR4 (Os4g58780). Arabidopsis atppr4 and rice osppr4 mutants are embryo-lethal and seedling-lethal 3 weeks after germination, respectively, showing that PPR4 is essential in the development of both dicot and monocot plants. Artificial microRNA-mediated mutants of AtPPR4 displayed a specific defect in rps12 trans-splicing, with pale-green, yellowish or albino phenotypes, according to the degree of knock-down of AtPPR4 expression. Comparison of RNA footprints in atppr4 and emb2654 mutants showed a similar concordant loss of extensive footprints at the 3' end of intron 1a and at the 5' end of intron 1b in both cases. EMB2654 is known to bind within the footprint region in intron 1a and we show that AtPPR4 binds to the footprint region in intron 1b, via its PPR motifs. Binding of both PPR4 and EMB2654 is essential to juxtapose the two intron halves and to maintain the RNAs in a splicing-competent structure for the efficient trans-splicing of rps12 intron 1, which is crucial for chloroplast biogenesis and plant development. The similarity of EMB2654 and PPR4 orthologs and their respective binding sites across land plant phylogeny indicates that their coordinate function in rps12 trans-splicing has probably been conserved for 500 million years.
Collapse
Affiliation(s)
- Kwanuk Lee
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Korea
| | - Su Jung Park
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Korea
| | - Catherine Colas des Francs-Small
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Michael Whitby
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Ian Small
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Hunseung Kang
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Korea
- AgriBio Institute of Climate Change Management, Chonnam National University, Gwangju, 61186, Korea
| |
Collapse
|
20
|
Steffen A, Elgner M, Staiger D. Regulation of Flowering Time by the RNA-Binding Proteins AtGRP7 and AtGRP8. PLANT & CELL PHYSIOLOGY 2019; 60:2040-2050. [PMID: 31241165 DOI: 10.1093/pcp/pcz124] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/18/2019] [Indexed: 05/20/2023]
Abstract
The timing of floral initiation is a tightly controlled process in plants. The circadian clock regulated glycine-rich RNA-binding protein (RBP) AtGRP7, a known regulator of splicing, was previously shown to regulate flowering time mainly by affecting the MADS-box repressor FLOWERING LOCUS C (FLC). Loss of AtGRP7 leads to elevated FLC expression and late flowering in the atgrp7-1 mutant. Here, we analyze genetic interactions of AtGRP7 with key regulators of the autonomous and the thermosensory pathway of floral induction. RNA interference- mediated reduction of the level of the paralogous AtGRP8 in atgrp7-1 further delays floral transition compared of with atgrp7-1. AtGRP7 acts in parallel to FCA, FPA and FLK in the branch of the autonomous pathway (AP) comprised of RBPs. It acts in the same branch as FLOWERING LOCUS D, and AtGRP7 loss-of-function mutants show elevated levels of dimethylated lysine 4 of histone H3, a mark for active transcription. In addition to its role in the AP, AtGRP7 acts in the thermosensory pathway of flowering time control by regulating alternative splicing of the floral repressor FLOWERING LOCUS M (FLM). Overexpression of AtGRP7 selectively favors the formation of the repressive isoform FLM-β. Our results suggest that the RBPs AtGRP7 and AtGRP8 influence MADS-Box transcription factors in at least two different pathways of flowering time control. This highlights the importance of RBPs to fine-tune the integration of varying cues into flowering time control and further strengthens the view that the different pathways, although genetically separable, constitute a tightly interwoven network to ensure plant reproductive success under changing environmental conditions.
Collapse
Affiliation(s)
- Alexander Steffen
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, Universit�tsstrasse 25, D-33615 Bielefeld, Germany
| | - Mareike Elgner
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, Universit�tsstrasse 25, D-33615 Bielefeld, Germany
| | - Dorothee Staiger
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, Universit�tsstrasse 25, D-33615 Bielefeld, Germany
| |
Collapse
|
21
|
PA5470 Counteracts Antimicrobial Effect of Azithromycin by Releasing Stalled Ribosome in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2018; 62:AAC.01867-17. [PMID: 29203495 DOI: 10.1128/aac.01867-17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 11/23/2017] [Indexed: 12/21/2022] Open
Abstract
Pseudomonas aeruginosa causes various acute and chronic infections in humans. Treatment with azithromycin (AZM) has been shown to benefit patients with chronic P. aeruginosa infections. By binding to the exit tunnel of the 50S ribosome, AZM causes ribosome stalling and depletion of the intracellular tRNA pool. It has been shown that AZM is able to kill stationary-phase P. aeruginosa cells and repress quorum sensing-regulated virulence factors as well as swarming motility. In P. aeruginosa, the PA5470 gene encodes a putative peptide chain release factor whose expression is highly induced by macrolide antibiotics. However, its function remains unknown. Here, we found that overexpression of PA5470 increased bacterial tolerance against AZM and alleviated the repression of swarming motility. Ribosome pulldown assays revealed that PA5470 contributes to the release of ribosome stalled by AZM. We further demonstrate that overexpression of PA5470 counteracts AZM-mediated repression of the translation of the quorum sensing regulator RhlR. Overall, our results revealed a novel role of PA5470 in the bacterial response to AZM.
Collapse
|
22
|
Marmisolle FE, García ML, Reyes CA. RNA-binding protein immunoprecipitation as a tool to investigate plant miRNA processing interference by regulatory proteins of diverse origin. PLANT METHODS 2018; 14:9. [PMID: 29422942 PMCID: PMC5791195 DOI: 10.1186/s13007-018-0276-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 01/15/2018] [Indexed: 05/21/2023]
Abstract
BACKGROUND Due to the nature of viral RNA genomes, RNA viruses depend on many RNA-binding proteins (RBP) of viral and host origin for replication, dissemination and evasion of host RNA degradation pathways. Some viruses interfere with the microRNA (miRNA) pathway to generate better fitness. The development of an adjusted, reliable and sensitive ribonucleoprotein immunoprecipitation (RIP) assay is needed to study the interaction between RBP of different origin (including viral origin) and miRNA precursors. The method could be further applied to transiently expressed heterologous proteins in different plant species. RESULTS Here we describe a modified RIP assay applied to nuclear epitope-tagged proteins of heterologous origin and transiently expressed in Nicotiana benthamiana. The assay includes a combination of optimized steps as well as the careful selection of control samples and rigorous data analysis. It has proven efficient to detect and quantify miRNA processing intermediates associated with regulatory proteins. CONCLUSIONS The RIP method described here provides a reliable tool to study the interaction of RBPs, such as transiently expressed regulatory proteins with lowly represented host RNA, as is the case of miRNA precursors. This modified method was efficiently adjusted to recover nuclear proteins and reduce unspecific background. The purification scheme optimized here for GFP-tagged proteins can be applied to a wide array of RBPs. The subsequent application of next-generation sequencing technologies will permit to sequence and characterize all RNA species bound in vivo by a given RBP.
Collapse
Affiliation(s)
- F. E. Marmisolle
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata, CONICET - UNLP, calles 47 y 115, 1900, La Plata, Buenos Aires Argentina
| | - M. L. García
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata, CONICET - UNLP, calles 47 y 115, 1900, La Plata, Buenos Aires Argentina
| | - C. A. Reyes
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata, CONICET - UNLP, calles 47 y 115, 1900, La Plata, Buenos Aires Argentina
| |
Collapse
|
23
|
Abstract
Yeast-hybrid methods have been successfully applied for screening interacting partners of DNAs or proteins. A yeast-based method, the yeast three-hybrid system, using a chimeric protein of a DNA-binding domain (LexA or GAL4BD) with a protein (MS2 coat protein or HIV Rev. M10) having a hybrid RNA at the 3' end of a target RNA sequence, has been developed for screening RNA-binding proteins. When the target RNA interacts with RNA-binding proteins fused with an activation domain (AD), yeast cells having all the interacting components can survive on selection media, and interacting reporters, HIS3 and LacZ, are activated. Based on this selection, interaction can be easily monitored and detected by simple biochemical assays. The in vivo screening strategy has been widely applied for characterizing and evaluating specific interactions between target RNAs and RNA-binding proteins. Here, we describe a library screening strategy for isolating RNA-binding proteins of select target RNAs using the yeast three-hybrid method. We also describe strategies to verify binding specificity using both a yeast-dependent reporter system and a yeast-independent method, in vivo RNA immunoprecipitation (RIP).
Collapse
Affiliation(s)
- Sung Ki Cho
- The Department of Biochemistry, Cellular, and Molecular Biology, University of Tennessee, Knoxville, TN, USA
| | | |
Collapse
|
24
|
Systems Approaches to Map In Vivo RNA–Protein Interactions in Arabidopsis thaliana. RNA TECHNOLOGIES 2018. [PMCID: PMC7122672 DOI: 10.1007/978-3-319-92967-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Proteins that specifically interact with mRNAs orchestrate mRNA processing steps all the way from transcription to decay. Thus, these RNA-binding proteins represent an important control mechanism to double check which proportion of nascent pre-mRNAs is ultimately available for translation into distinct proteins. Here, we discuss recent progress to obtain a systems-level understanding of in vivo RNA–protein interactions in the reference plant Arabidopsis thaliana using protein-centric and RNA-centric methods as well as combined protein binding site and structure probing.
Collapse
|
25
|
Meyer K, Köster T, Nolte C, Weinholdt C, Lewinski M, Grosse I, Staiger D. Adaptation of iCLIP to plants determines the binding landscape of the clock-regulated RNA-binding protein AtGRP7. Genome Biol 2017; 18:204. [PMID: 29084609 PMCID: PMC5663106 DOI: 10.1186/s13059-017-1332-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 09/29/2017] [Indexed: 12/11/2022] Open
Abstract
Background Functions for RNA-binding proteins in orchestrating plant development and environmental responses are well established. However, the lack of a genome-wide view of their in vivo binding targets and binding landscapes represents a gap in understanding the mode of action of plant RNA-binding proteins. Here, we adapt individual nucleotide resolution crosslinking and immunoprecipitation (iCLIP) genome-wide to determine the binding repertoire of the circadian clock-regulated Arabidopsis thaliana glycine-rich RNA-binding protein AtGRP7. Results iCLIP identifies 858 transcripts with significantly enriched crosslink sites in plants expressing AtGRP7-GFP that are absent in plants expressing an RNA-binding-dead AtGRP7 variant or GFP alone. To independently validate the targets, we performed RNA immunoprecipitation (RIP)-sequencing of AtGRP7-GFP plants subjected to formaldehyde fixation. Of the iCLIP targets, 452 were also identified by RIP-seq and represent a set of high-confidence binders. AtGRP7 can bind to all transcript regions, with a preference for 3′ untranslated regions. In the vicinity of crosslink sites, U/C-rich motifs are overrepresented. Cross-referencing the targets against transcriptome changes in AtGRP7 loss-of-function mutants or AtGRP7-overexpressing plants reveals a predominantly negative effect of AtGRP7 on its targets. In particular, elevated AtGRP7 levels lead to damping of circadian oscillations of transcripts, including DORMANCY/AUXIN ASSOCIATED FAMILY PROTEIN2 and CCR-LIKE. Furthermore, several targets show changes in alternative splicing or polyadenylation in response to altered AtGRP7 levels. Conclusions We have established iCLIP for plants to identify target transcripts of the RNA-binding protein AtGRP7. This paves the way to investigate the dynamics of posttranscriptional networks in response to exogenous and endogenous cues. Electronic supplementary material The online version of this article (doi:10.1186/s13059-017-1332-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Katja Meyer
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Tino Köster
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Christine Nolte
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Claus Weinholdt
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Martin Lewinski
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Ivo Grosse
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Dorothee Staiger
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, Bielefeld, Germany.
| |
Collapse
|
26
|
Lee K, Han JH, Park YI, Colas des Francs-Small C, Small I, Kang H. The mitochondrial pentatricopeptide repeat protein PPR19 is involved in the stabilization of NADH dehydrogenase 1 transcripts and is crucial for mitochondrial function and Arabidopsis thaliana development. THE NEW PHYTOLOGIST 2017; 215:202-216. [PMID: 28332713 DOI: 10.1111/nph.14528] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 02/19/2017] [Indexed: 05/06/2023]
Abstract
Despite the importance of pentatricopeptide repeat (PPR) proteins in organellar RNA metabolism and plant development, the functions of many PPR proteins remain unknown. Here, we determined the role of a mitochondrial PPR protein (At1g52620) comprising 19 PPR motifs, thus named PPR19, in Arabidopsis thaliana. The ppr19 mutant displayed abnormal seed development, reduced seed yield, delayed seed germination, and retarded growth, indicating that PPR19 is indispensable for normal growth and development of Arabidopsis thaliana. Splicing pattern analysis of mitochondrial genes revealed that PPR19 specifically binds to the specific sequence in the 3'-terminus of the NADH dehydrogenase 1 (nad1) transcript and stabilizes transcripts containing the second and third exons of nad1. Loss of these transcripts in ppr19 leads to multiple secondary effects on accumulation and splicing of other nad1 transcripts, from which we can infer the order in which cis- and trans-spliced nad1 transcripts are normally processed. Improper splicing of nad1 transcripts leads to the absence of mitochondrial complex I and alteration of the nuclear transcriptome, notably influencing the alternative splicing of a variety of nuclear genes. Our results indicate that the mitochondrial PPR19 is an essential component in the splicing of nad1 transcripts, which is crucial for mitochondrial function and plant development.
Collapse
Affiliation(s)
- Kwanuk Lee
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Korea
| | - Ji Hoon Han
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Korea
| | - Youn-Il Park
- Department of Biological Sciences, Chungnam National University, Daejeon, 306-764, Korea
| | - Catherine Colas des Francs-Small
- ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Ian Small
- ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Hunseung Kang
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Korea
| |
Collapse
|
27
|
Wang G, Zhong M, Shuai B, Song J, Zhang J, Han L, Ling H, Tang Y, Wang G, Song R. E+ subgroup PPR protein defective kernel 36 is required for multiple mitochondrial transcripts editing and seed development in maize and Arabidopsis. THE NEW PHYTOLOGIST 2017; 214:1563-1578. [PMID: 28277611 DOI: 10.1111/nph.14507] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 01/30/2017] [Indexed: 05/02/2023]
Abstract
Mitochondria are semi-autonomous organelles that are the powerhouse of the cells. Plant mitochondrial RNA editing guided by pentatricopeptide repeat (PPR) proteins is essential for energy production. We identify a maize defective kernel mutant dek36, which produces small and collapsed kernels, leading to embryos and/or seedlings lethality. Seed filling in dek36 is drastically impaired, in line with the defects observed in the organization of endosperm transfer tissue. Positional cloning reveals that DEK36, encoding a mitochondria-targeted E+ subgroup PPR protein, is required for mitochondrial RNA editing at atp4-59, nad7-383 and ccmFN -302, thus resulting in decreased activities of mitochondrial complex I, complex III and complex IV in dek36. Loss-of-function of its Arabidopsis ortholog At DEK36 causes arrested embryo and endosperm development, leading to embryo lethality. At_dek36 also has RNA editing defects in atp4, nad7, ccmFN1 and ccmFN2 , but at the nonconserved sites. Importantly, efficiency of all editing sites in ccmFN1 , ccmFN2 and rps12 is severely decreased in At_dek36, probably caused by the impairment of their RNA stabilization. These results suggest that the DEK36 orthologue pair are essential for embryo and endosperm development in both maize and Arabidopsis, but through divergent function in regulating RNA metabolism of their mitochondrial targets.
Collapse
Affiliation(s)
- Gang Wang
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Mingyu Zhong
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Bilian Shuai
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Jiandong Song
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Jie Zhang
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Liang Han
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Huiling Ling
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Yuanping Tang
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Guifeng Wang
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Rentao Song
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China
- National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
28
|
Shen L, Liang Z, Gu X, Chen Y, Teo ZWN, Hou X, Cai WM, Dedon PC, Liu L, Yu H. N(6)-Methyladenosine RNA Modification Regulates Shoot Stem Cell Fate in Arabidopsis. Dev Cell 2016; 38:186-200. [PMID: 27396363 DOI: 10.1016/j.devcel.2016.06.008] [Citation(s) in RCA: 260] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 04/28/2016] [Accepted: 06/07/2016] [Indexed: 01/07/2023]
Abstract
N(6)-Methyladenosine (m(6)A) represents the most prevalent internal modification on mRNA and requires a multicomponent m(6)A methyltransferase complex in mammals. How their plant counterparts determine the global m(6)A modification landscape and its molecular link to plant development remain unknown. Here we show that FKBP12 INTERACTING PROTEIN 37 KD (FIP37) is a core component of the m(6)A methyltransferase complex, which underlies control of shoot stem cell fate in Arabidopsis. The mutants lacking FIP37 exhibit massive overproliferation of shoot meristems and a transcriptome-wide loss of m(6)A RNA modifications. We further demonstrate that FIP37 mediates m(6)A RNA modification on key shoot meristem genes inversely correlated with their mRNA stability, thus confining their transcript levels to prevent shoot meristem overproliferation. Our results suggest an indispensable role of FIP37 in mediating m(6)A mRNA modification, which is required for maintaining the shoot meristem as a renewable source for continuously producing all aerial organs in plants.
Collapse
Affiliation(s)
- Lisha Shen
- Temasek Life Sciences Laboratory and Department of Biological Sciences, National University of Singapore, 10 Science Drive 4, Singapore 117543, Singapore
| | - Zhe Liang
- Temasek Life Sciences Laboratory and Department of Biological Sciences, National University of Singapore, 10 Science Drive 4, Singapore 117543, Singapore
| | - Xiaofeng Gu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ying Chen
- Temasek Life Sciences Laboratory and Department of Biological Sciences, National University of Singapore, 10 Science Drive 4, Singapore 117543, Singapore
| | - Zhi Wei Norman Teo
- Temasek Life Sciences Laboratory and Department of Biological Sciences, National University of Singapore, 10 Science Drive 4, Singapore 117543, Singapore
| | - Xingliang Hou
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Weiling Maggie Cai
- Singapore-MIT Alliance for Research and Technology, Campus for Research Excellence and Technical Enterprise (CREATE), Singapore 138602, Singapore
| | - Peter C Dedon
- Singapore-MIT Alliance for Research and Technology, Campus for Research Excellence and Technical Enterprise (CREATE), Singapore 138602, Singapore
| | - Lu Liu
- Temasek Life Sciences Laboratory and Department of Biological Sciences, National University of Singapore, 10 Science Drive 4, Singapore 117543, Singapore
| | - Hao Yu
- Temasek Life Sciences Laboratory and Department of Biological Sciences, National University of Singapore, 10 Science Drive 4, Singapore 117543, Singapore.
| |
Collapse
|
29
|
Cho SK, Sharma P, Butler NM, Kang IH, Shah S, Rao AG, Hannapel DJ. Polypyrimidine tract-binding proteins of potato mediate tuberization through an interaction with StBEL5 RNA. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:6835-47. [PMID: 26283046 PMCID: PMC4623692 DOI: 10.1093/jxb/erv389] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Polypyrimidine tract-binding (PTB) proteins are a family of RNA-binding proteins that function in a wide range of RNA metabolic processes by binding to motifs rich in uracils and cytosines. A PTB protein of pumpkin was identified as the core protein of an RNA-protein complex that trafficks RNA. The biological function of the PTB-RNA complex, however, has not been demonstrated. In potato, six PTB proteins have been identified, and two, designated StPTB1 and StPTB6, are similar to the phloem-mobile pumpkin type. RNA binding assays confirmed the interaction of StPTB1 and StPTB6 with discrete pyrimidine-rich sequences of the 3'-untranslated regions of the phloem-mobile mRNA, StBEL5. The promoter of StPTB1 was active in companion cells of phloem in both stem and petioles. Expression of both types was evident in phloem cells of roots and in stolons during tuber formation. RNA accumulation of both PTB proteins was induced by short days in leaves in correlation with enhanced accumulation of StBEL5 RNA. StPTB suppression lines exhibited reduced tuber yields and decreased StBEL5 RNA accumulation, whereas StPTB overexpression lines displayed an increase in tuber production correlated with the enhanced production in stolons of steady-state levels of StBEL5 transcripts and RNA of key tuber identity genes. In StPTB overexpression lines, both the stability and long-distance transport of StBEL5 transcripts were enhanced, whereas in suppression lines stability and transport decreased. Using a transgenic approach, it is shown that the StPTB family of RNA-binding proteins regulate specific stages of development through an interaction with phloem-mobile transcripts of StBEL5.
Collapse
Affiliation(s)
- Sung Ki Cho
- Plant Biology Major, Iowa State University, Ames, IA 50011-1100, USA
| | - Pooja Sharma
- Plant Biology Major, Iowa State University, Ames, IA 50011-1100, USA
| | | | - Il-Ho Kang
- Plant Biology Major, Iowa State University, Ames, IA 50011-1100, USA
| | - Shweta Shah
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - A Gururaj Rao
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - David J Hannapel
- Plant Biology Major, Iowa State University, Ames, IA 50011-1100, USA
| |
Collapse
|
30
|
Shi J, Jin Y, Bian T, Li K, Sun Z, Cheng Z, Jin S, Wu W. SuhB is a novel ribosome associated protein that regulates expression of MexXY by modulating ribosome stalling inPseudomonas aeruginosa. Mol Microbiol 2015; 98:370-83. [DOI: 10.1111/mmi.13126] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2015] [Indexed: 01/14/2023]
Affiliation(s)
- Jing Shi
- State Key Laboratory of Medicinal Chemical Biology; Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education; Department of Microbiology; College of Life Sciences; Nankai University; Tianjin 300071 China
| | - Yongxin Jin
- State Key Laboratory of Medicinal Chemical Biology; Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education; Department of Microbiology; College of Life Sciences; Nankai University; Tianjin 300071 China
| | - Ting Bian
- State Key Laboratory of Medicinal Chemical Biology; Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education; Department of Microbiology; College of Life Sciences; Nankai University; Tianjin 300071 China
| | - Kewei Li
- State Key Laboratory of Medicinal Chemical Biology; Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education; Department of Microbiology; College of Life Sciences; Nankai University; Tianjin 300071 China
| | - Ziyu Sun
- State Key Laboratory of Medicinal Chemical Biology; Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education; Department of Microbiology; College of Life Sciences; Nankai University; Tianjin 300071 China
| | - Zhihui Cheng
- State Key Laboratory of Medicinal Chemical Biology; Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education; Department of Microbiology; College of Life Sciences; Nankai University; Tianjin 300071 China
| | - Shouguang Jin
- State Key Laboratory of Medicinal Chemical Biology; Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education; Department of Microbiology; College of Life Sciences; Nankai University; Tianjin 300071 China
- Department of Molecular Genetics and Microbiology; College of Medicine; University of Florida; Gainesville FL 32610 USA
| | - Weihui Wu
- State Key Laboratory of Medicinal Chemical Biology; Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education; Department of Microbiology; College of Life Sciences; Nankai University; Tianjin 300071 China
| |
Collapse
|
31
|
Sorenson R, Bailey-Serres J. Rapid immunopurification of ribonucleoprotein complexes of plants. Methods Mol Biol 2015; 1284:209-19. [PMID: 25757774 DOI: 10.1007/978-1-4939-2444-8_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Hundreds of RNA binding proteins posttranscriptionally regulate gene expression, but relatively few have been characterized in plants. One successful approach to determine protein function has been to identify interacting molecules and the conditions of their association. The ribonucleoprotein immunopurification (RIP) assay facilitates the identification and quantitative comparison of RNA association to specific proteins under different experimental conditions. A variety of molecular techniques can be used to analyze the enriched RNAs, whether few as in the case of highly specific interactions, or many. Identification of associated RNAs can inform hypothesis generation about the processes or pathways regulated by the target protein. Downstream analysis of associated RNA sequences can lead to the identification of candidate motifs or features that mediate the protein-RNA interaction. We present a rapid method for RIP from tissues of plants that is suitable for experiments that require immediate tissue cryopreservation, such as monitoring a rapid response to an environmental stimulus.
Collapse
Affiliation(s)
- Reed Sorenson
- Center for Plant Cell Biology, University of California, Riverside, CA, 92521, USA
| | | |
Collapse
|
32
|
Köster T, Meyer K, Weinholdt C, Smith LM, Lummer M, Speth C, Grosse I, Weigel D, Staiger D. Regulation of pri-miRNA processing by the hnRNP-like protein AtGRP7 in Arabidopsis. Nucleic Acids Res 2014; 42:9925-36. [PMID: 25104024 PMCID: PMC4150807 DOI: 10.1093/nar/gku716] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The hnRNP-like glycine-rich RNA-binding protein AtGRP7 regulates pre-mRNA splicing in Arabidopsis. Here we used small RNA-seq to show that AtGRP7 also affects the miRNA inventory. AtGRP7 overexpression caused a significant reduction in the level of 30 miRNAs and an increase for 14 miRNAs with a minimum log2 fold change of ± 0.5. Overaccumulation of several pri-miRNAs including pri-miR398b, pri-miR398c, pri-miR172b, pri-miR159a and pri-miR390 at the expense of the mature miRNAs suggested that AtGRP7 affects pri-miRNA processing. Indeed, RNA immunoprecipitation revealed that AtGRP7 interacts with these pri-miRNAs in vivo. Mutation of an arginine in the RNA recognition motif abrogated in vivo binding and the effect on miRNA and pri-miRNA levels, indicating that AtGRP7 inhibits processing of these pri-miRNAs by direct binding. In contrast, pri-miRNAs of selected miRNAs that were elevated or not changed in response to high AtGRP7 levels were not bound in vivo. Reduced accumulation of miR390, an initiator of trans-acting small interfering RNA (ta-siRNA) formation, also led to lower TAS3 ta-siRNA levels and increased mRNA expression of the target AUXIN RESPONSE FACTOR4. Furthermore, AtGRP7 affected splicing of pri-miR172b and pri-miR162a. Thus, AtGRP7 is an hnRNP-like protein with a role in processing of pri-miRNAs in addition to its role in pre-mRNA splicing.
Collapse
Affiliation(s)
- Tino Köster
- Molecular Cell Physiology, Bielefeld University
| | - Katja Meyer
- Molecular Cell Physiology, Bielefeld University
| | - Claus Weinholdt
- Institute of Computer Science, Martin-Luther-University Halle-Wittenberg, Germany
| | - Lisa M Smith
- Max Planck Institute for Developmental Biology, Tuebingen, Germany Department of Animal & Plant Sciences, University of Sheffield, UK
| | | | - Corinna Speth
- Max Planck Institute for Developmental Biology, Tuebingen, Germany Center for Plant Molecular Biology, University of Tuebingen Chemical Genomics Centre of the Max Planck Society, Dortmund, Germany
| | - Ivo Grosse
- Institute of Computer Science, Martin-Luther-University Halle-Wittenberg, Germany German Centre for Integrative Biodiversity Research Halle-Jena-Leipzig, Germany
| | - Detlef Weigel
- Max Planck Institute for Developmental Biology, Tuebingen, Germany
| | - Dorothee Staiger
- Molecular Cell Physiology, Bielefeld University Institute for Genome Research & Systems Biology, CeBiTec, Bielefeld, Germany
| |
Collapse
|
33
|
Köster T, Haas M, Staiger D. The RIPper case: identification of RNA-binding protein targets by RNA immunoprecipitation. Methods Mol Biol 2014; 1158:107-121. [PMID: 24792047 DOI: 10.1007/978-1-4939-0700-7_7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Control at the posttranscriptional level emerges as an important layer of regulation in the circadian timing system. RNA-binding proteins that specifically interact with cis-regulatory motifs within pre-mRNAs are key elements of this regulation. While the ability to interact with RNA in vitro has been demonstrated for numerous Arabidopsis RNA-binding proteins, a full understanding of posttranscriptional networks controlled by an RNA-binding protein requires the identification of its immediate in vivo targets. Here we describe differential RNA immunoprecipitation in transgenic Arabidopsis thaliana plants expressing RNA-binding protein variants epitope-tagged with green fluorescent protein. To control for RNAs that nonspecifically co-purify with the RNA-binding protein, transgenic plants are generated with a mutated version of the RNA-binding protein that is not capable of binding to its target RNAs. The RNA-binding protein variants are expressed under the control of their authentic promoter and cis-regulatory motifs. Incubation of the plants with formaldehyde in vivo cross-links the proteins to their RNA targets. A whole-cell extract is then prepared and subjected to immunoprecipitation with an antibody against the GFP tag and to mock precipitation with an antibody against the unrelated red fluorescent protein. The RNAs coprecipitating with the proteins are eluted from the immunoprecipitate and identified via reverse transcription-PCR.
Collapse
Affiliation(s)
- Tino Köster
- Department of Molecular Cell Physiology, University of Bielefeld, Universitätsstraße 25, 33615, Bielefeld, Germany
| | | | | |
Collapse
|