1
|
Zhang R, Peng J, Zhang Y, Zheng K, Chen Y, Liu L, Li T, Liu J, Li Y, Yang S, Wang M, Cui M, Zhang X, Gao J, Kleeff J, Liao Q, Liu Q. Pancreatic cancer cell-derived migrasomes promote cancer progression by fostering an immunosuppressive tumor microenvironment. Cancer Lett 2024; 605:217289. [PMID: 39389157 DOI: 10.1016/j.canlet.2024.217289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/01/2024] [Accepted: 10/06/2024] [Indexed: 10/12/2024]
Abstract
Pancreatic cancer is distinguished by an immunosuppressive tumor microenvironment (TME) that facilitates cancer progression. The assembly of the TME involves numerous contributing factors. Migrasomes, recently identified as cellular organelles in migrating cells, play a pivotal role in intercellular signaling. However, research into their involvement in cancers remains nascent. Thus far, whether pancreatic cancer cells generate migrasomes and their potential role in TME formation remains unexplored. In this study, it was found that both murine and human pancreatic cancer cells could indeed generate migrasomes, termed pancreatic cancer cell-derived migrasomes (PCDMs), which actively promote cancer progression. Moreover, utilizing chemokine antibody arrays and quantitative mass spectrometry analysis, we observed significant differences between the chemokines, cytokines, and proteins present in PCDMs compared to their originating cell bodies. Notably, PCDMs exhibited an enrichment of immunosuppression-inducing factors. Furthermore, macrophages could directly uptake PCDMs, leading to the expression of high levels of M2-like markers and secretion of tumor-promoting factors. PCDM-induced macrophages played a pivotal role in inhibiting T cell proliferation and activation partially through ARG-1. In summary, this study provides compelling evidence that pancreatic cancer cells generate migrasomes, which play a crucial role in promoting tumor progression by contributing to an immunosuppressive TME. The exploration of migrasomes as a therapeutic target could pave the way for the development of tailored immunotherapies for pancreatic cancer.
Collapse
Affiliation(s)
- Ronghua Zhang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China; Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China; Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Junya Peng
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Yalu Zhang
- Department of General Surgery, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Kexin Zheng
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Yang Chen
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Lulu Liu
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Tong Li
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Shanghai Pancreatic Cancer Institute, Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Jingkai Liu
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Ying Li
- Cryo-EM Facility at Technology Center for Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Sen Yang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mengyi Wang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ming Cui
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiang Zhang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Junyi Gao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jorg Kleeff
- Department of Visceral, Vascular and Endocrine Surgery, Martin-Luther-University Halle-Wittenberg, University Medical Center Halle (Saale), Halle (Saale), Germany
| | - Quan Liao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Qiaofei Liu
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
2
|
Budczies J, Romanovsky E, Kirchner M, Neumann O, Blasi M, Schnorbach J, Shah R, Bozorgmehr F, Savai R, Stiewe T, Peters S, Schirmacher P, Thomas M, Kazdal D, Christopoulos P, Stenzinger A. KRAS and TP53 co-mutation predicts benefit of immune checkpoint blockade in lung adenocarcinoma. Br J Cancer 2024; 131:524-533. [PMID: 38866964 PMCID: PMC11300455 DOI: 10.1038/s41416-024-02746-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Predictive biomarkers in use for immunotherapy in advanced non-small cell lung cancer are of limited sensitivity and specificity. We analysed the potential of activating KRAS and pathogenic TP53 mutations to provide additional predictive information. METHODS The study cohort included 713 consecutive immunotherapy patients with advanced lung adenocarcinomas, negative for actionable genetic alterations. Additionally, two previously published immunotherapy and two surgical patient cohorts were analyzed. Therapy benefit was stratified by KRAS and TP53 mutations. Molecular characteristics underlying KRASmut/TP53mut tumours were revealed by the analysis of TCGA data. RESULTS An interaction between KRAS and TP53 mutations was observed in univariate and multivariate analyses of overall survival (Hazard ratio [HR] = 0.56, p = 0.0044 and HR = 0.53, p = 0.0021) resulting in a stronger benefit for KRASmut/TP53mut tumours (HR = 0.71, CI 0.55-0.92). This observation was confirmed in immunotherapy cohorts but not observed in surgical cohorts. Tumour mutational burden, proliferation, and PD-L1 mRNA were significantly higher in TP53-mutated tumours, regardless of KRAS status. Genome-wide expression analysis revealed 64 genes, including CX3CL1 (fractalkine), as specific transcriptomic characteristic of KRASmut/TP53mut tumours. CONCLUSIONS KRAS/TP53 co-mutation predicts ICI benefit in univariate and multivariate survival analyses and is associated with unique molecular tumour features. Mutation testing of the two genes can be easily implemented using small NGS panels.
Collapse
Affiliation(s)
- Jan Budczies
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany.
- Center for Personalized Medicine (ZPM), Heidelberg, Germany.
- Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Heidelberg, Germany.
| | - Eva Romanovsky
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Martina Kirchner
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Olaf Neumann
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Miriam Blasi
- Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Thoracic Oncology, Thoraxklinik, Heidelberg University Hospital and National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
| | - Johannes Schnorbach
- Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Thoracic Oncology, Thoraxklinik, Heidelberg University Hospital and National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
| | - Rajiv Shah
- Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Thoracic Oncology, Thoraxklinik, Heidelberg University Hospital and National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
| | - Farastuk Bozorgmehr
- Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Thoracic Oncology, Thoraxklinik, Heidelberg University Hospital and National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
| | - Rajkumar Savai
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Thorsten Stiewe
- Institute of Molecular Oncology, Member of the German Center for Lung Research (DZL), Philipps-University, Marburg, Germany
| | - Solange Peters
- Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne University, Lausanne, Switzerland
| | - Peter Schirmacher
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Center for Personalized Medicine (ZPM), Heidelberg, Germany
| | - Michael Thomas
- Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Thoracic Oncology, Thoraxklinik, Heidelberg University Hospital and National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
| | - Daniel Kazdal
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Center for Personalized Medicine (ZPM), Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Petros Christopoulos
- Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Thoracic Oncology, Thoraxklinik, Heidelberg University Hospital and National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
| | - Albrecht Stenzinger
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Center for Personalized Medicine (ZPM), Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| |
Collapse
|
3
|
Salmaninejad A, Layeghi SM, Falakian Z, Golestani S, Kobravi S, Talebi S, Yousefi M. An update to experimental and clinical aspects of tumor-associated macrophages in cancer development: hopes and pitfalls. Clin Exp Med 2024; 24:156. [PMID: 39003350 PMCID: PMC11246281 DOI: 10.1007/s10238-024-01417-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/15/2024]
Abstract
Tumor-associated macrophages (TAMs) represent one of the most abundant tumor-infiltrating stromal cells, and their normal function in tumor microenvironment (TME) is to suppress tumor cells by producing cytokines which trigger both direct cell cytotoxicity and antibody-mediated immune response. However, upon prolonged exposure to TME, the classical function of these so-called M1-type TAMs can be converted to another type, "M2-type," which are recruited by tumor cells so that they promote tumor growth and metastasis. This is the reason why the accumulation of TAMs in TME is correlated with poor prognosis in cancer patients. Both M1- and M2-types have high degree of plasticity, and M2-type cells can be reprogrammed to M1-type for therapeutic purposes. This characteristic introduces TAMs as promising target for developing novel cancer treatments. In addition, inhibition of M2-type cells and blocking their recruitment in TME, as well as their depletion by inducing apoptosis, are other approaches for effective immunotherapy of cancer. In this review, we summarize the potential of TAMs to be targeted for cancer immunotherapy and provide an up-to-date about novel strategies for targeting TAMs.
Collapse
Affiliation(s)
- Arash Salmaninejad
- Department of Medical Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Pediatric Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran.
| | - Sepideh Mehrpour Layeghi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zeinab Falakian
- Department of Laboratory Science, Lahijan Branch, Islamic Azad University, Lahijan, Iran
| | - Shahin Golestani
- Department of Ophthalmology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sepehr Kobravi
- Department of Oral and Maxillofacial Surgery, Tehran Azad University, Tehran, Iran
| | - Samaneh Talebi
- Department of Medical Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Yousefi
- Department of Medical Genetics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
4
|
Wątroba M, Grabowska AD, Szukiewicz D. Chemokine CX3CL1 (Fractalkine) Signaling and Diabetic Encephalopathy. Int J Mol Sci 2024; 25:7527. [PMID: 39062768 PMCID: PMC11277241 DOI: 10.3390/ijms25147527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Diabetes mellitus (DM) is the most common metabolic disease in humans, and its prevalence is increasing worldwide in parallel with the obesity pandemic. A lack of insulin or insulin resistance, and consequently hyperglycemia, leads to many systemic disorders, among which diabetic encephalopathy (DE) is a long-term complication of the central nervous system (CNS), characterized by cognitive impairment and motor dysfunctions. The role of oxidative stress and neuroinflammation in the pathomechanism of DE has been proven. Fractalkine (CX3CL1) has unique properties as an adhesion molecule and chemoattractant, and by acting on its only receptor, CX3CR1, it regulates the activity of microglia in physiological states and neuroinflammation. Depending on the clinical context, CX3CL1-CX3CR1 signaling may have neuroprotective effects by inhibiting the inflammatory process in microglia or, conversely, maintaining/intensifying inflammation and neurotoxicity. This review discusses the evidence supporting that the CX3CL1-CX3CR1 pair is neuroprotective and other evidence that it is neurotoxic. Therefore, interrupting the vicious cycle within neuron-microglia interactions by promoting neuroprotective effects or inhibiting the neurotoxic effects of the CX3CL1-CX3CR1 signaling axis may be a therapeutic goal in DE by limiting the inflammatory response. However, the optimal approach to prevent DE is simply tight glycemic control, because the elimination of dysglycemic states in the CNS abolishes the fundamental mechanisms that induce this vicious cycle.
Collapse
Affiliation(s)
| | | | - Dariusz Szukiewicz
- Laboratory of the Blood-Brain Barrier, Department of Biophysics, Physiology & Pathophysiology, Medical University of Warsaw, Chałubińskiego 5, 02-400 Warsaw, Poland; (M.W.); (A.D.G.)
| |
Collapse
|
5
|
Chang T, Wu Y, Niu X, Guo Z, Gan J, Wang X, Liu Y, Pan Q, Mao Q, Yang Y. The cuproptosis-related signature predicts the prognosis and immune microenvironments of primary diffuse gliomas: a comprehensive analysis. Hum Genomics 2024; 18:74. [PMID: 38956740 PMCID: PMC11220998 DOI: 10.1186/s40246-024-00636-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 06/08/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Evidence has revealed a connection between cuproptosis and the inhibition of tumor angiogenesis. While the efficacy of a model based on cuproptosis-related genes (CRGs) in predicting the prognosis of peripheral organ tumors has been demonstrated, the impact of CRGs on the prognosis and the immunological landscape of gliomas remains unexplored. METHODS We screened CRGs to construct a novel scoring tool and developed a prognostic model for gliomas within the various cohorts. Afterward, a comprehensive exploration of the relationship between the CRG risk signature and the immunological landscape of gliomas was undertaken from multiple perspectives. RESULTS Five genes (NLRP3, ATP7B, SLC31A1, FDX1, and GCSH) were identified to build a CRG scoring system. The nomogram, based on CRG risk and other signatures, demonstrated a superior predictive performance (AUC of 0.89, 0.92, and 0.93 at 1, 2, and 3 years, respectively) in the training cohort. Furthermore, the CRG score was closely associated with various aspects of the immune landscape in gliomas, including immune cell infiltration, tumor mutations, tumor immune dysfunction and exclusion, immune checkpoints, cytotoxic T lymphocyte and immune exhaustion-related markers, as well as cancer signaling pathway biomarkers and cytokines. CONCLUSION The CRG risk signature may serve as a robust biomarker for predicting the prognosis and the potential viability of immunotherapy responses. Moreover, the key candidate CRGs might be promising targets to explore the underlying biological background and novel therapeutic interventions in gliomas.
Collapse
Affiliation(s)
- Tao Chang
- Department of Neurosurgery, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, China
| | - Yihan Wu
- National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaodong Niu
- Department of Neurosurgery, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, China
| | - Zhiwei Guo
- National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiahao Gan
- School of Clinical Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| | - Xiang Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, China
| | - Yanhui Liu
- Department of Neurosurgery, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, China
| | - Qi Pan
- School of Clinical Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China.
- Department of Dermatology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400013, China.
| | - Qing Mao
- Department of Neurosurgery, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, China.
| | - Yuan Yang
- Department of Neurosurgery, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, China.
| |
Collapse
|
6
|
Yan T, Pang X, Liang B, Meng Q, Wei H, Li W, Liu D, Hu Y. Comprehensive bioinformatics analysis of human cytomegalovirus pathway genes in pan-cancer. Hum Genomics 2024; 18:65. [PMID: 38886862 PMCID: PMC11181644 DOI: 10.1186/s40246-024-00633-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 06/05/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Human cytomegalovirus (HCMV) is a herpesvirus that can infect various cell types and modulate host gene expression and immune response. It has been associated with the pathogenesis of various cancers, but its molecular mechanisms remain elusive. METHODS We comprehensively analyzed the expression of HCMV pathway genes across 26 cancer types using the Cancer Genome Atlas (TCGA) and The Genotype-Tissue Expression (GTEx) databases. We also used bioinformatics tools to study immune invasion and tumor microenvironment in pan-cancer. Cox regression and machine learning were used to analyze prognostic genes and their relationship with drug sensitivity. RESULTS We found that HCMV pathway genes are widely expressed in various cancers. Immune infiltration and the tumor microenvironment revealed that HCMV is involved in complex immune processes. We obtained prognostic genes for 25 cancers and significantly found 23 key genes in the HCMV pathway, which are significantly enriched in cellular chemotaxis and synaptic function and may be involved in disease progression. Notably, CaM family genes were up-regulated and AC family genes were down-regulated in most tumors. These hub genes correlate with sensitivity or resistance to various drugs, suggesting their potential as therapeutic targets. CONCLUSIONS Our study has revealed the role of the HCMV pathway in various cancers and provided insights into its molecular mechanism and therapeutic significance. It is worth noting that the key genes of the HCMV pathway may open up new doors for cancer prevention and treatment.
Collapse
Affiliation(s)
- Tengyue Yan
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Xianwu Pang
- Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning, 530028, China
| | - Boying Liang
- Department of Immunology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
| | - Qiuxia Meng
- School of Information and Managent, Guangxi Medical University, Nanning, China
| | - Huilin Wei
- School of Institute of Life Sciences, Guangxi Medical University, Nanning, China
| | - Wen Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Guangxi Medical University, Nanning, China
| | - Dahai Liu
- School of Medicine, Foshan University, Foshan, Guangdong, 528000, People's Republic of China.
| | - Yanling Hu
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi, 530021, China.
- School of Institute of Life Sciences, Guangxi Medical University, Nanning, China.
| |
Collapse
|
7
|
He C, Wu Y, Nan X, Zhang W, Luo Y, Wang H, Li M, Liu C, Liu J, Mou X, Liu Y. Induction of CX3CL1 expression by LPS and its impact on invasion and migration in oral squamous cell carcinoma. Front Cell Dev Biol 2024; 12:1371323. [PMID: 38915444 PMCID: PMC11195639 DOI: 10.3389/fcell.2024.1371323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/15/2024] [Indexed: 06/26/2024] Open
Abstract
Purpose: This study aimed to explore the expression of CX3CL1 induced by lipopolysaccharide (LPS) in oral squamous cell carcinoma (OSCC) and its impact on biological characteristics such as invasion and migration, taking the foundation for new targets for the treatment and prognosis of OSCC. Methods: This study utilized a variety of techniques, including bioinformatics, molecular biology, and cell experiments, to investigate the expression of CX3CL1 and its receptor CX3CR1 in OSCC patients' cancer tissues or OSCC cell lines. Extracting, organizing, and analyzing the TCGA database on the expression of CX3CL1 and its receptor CX3CR1 in cancer tissues and corresponding paracancerous normal tissues of OSCC patients by bioinformatics methods. The expression of CX3CL1 in cancerous and normal tissues of OSCC patients was verified by IHC, and the changes in mRNA and protein expression of CX3CL1 and its receptor CX3CR1 in OSCC cell lines were detected before and after lipopolysaccharide LPS stimulation by RT-PCR, ELISA, and WB. Changes in cell biological behavior by overexpression of CX3CL1 in OSCC cell lines were detected by CCK-8, Transwell, scratch healing assay, and cloning assay. The effects of overexpressing cell lines on the AKT pathway and Epithelial-mesenchymal Transition (EMT)-related protein expression before and after LPS stimulation were detected by Western Blot. Results: (1) CX3CL1 and its receptor CX3CR1 were found to be downregulated in OSCC tissues of patients or OSCC cell lines. (2) After LPS stimulation, CX3CL1 gene expression increased in both OSCC cell lines, while CX3CR1 expression remained unchanged. (3) OSCC cell lines overexpressing CX3CL1 showed changes in cell biological characteristics, including decreased proliferation, invasion, migration, and stemness, which were more pronounced after LPS stimulation. (4) Overexpression of CX3CL1 in OSCC cell lines decreased EMT-related protein expression and AKT phosphorylation. On the contrary were promoted by LPS stimulation. Conclusion: CX3CL1 and CX3CR1 are downregulated in OSCC cancer tissues and cell lines compared to adjacent normal tissues and cells. LPS stimulation increases CX3CL1 expression in OSCC cell lines, suggesting that inflammation may induce CX3CL1 expression and that the CX3CL1 gene may play an important role in OSCC progression. Overexpression of CX3CL1 inhibits OSCC cell proliferation, migration, invasion, and stemness, suggesting that CX3CL1 plays a critical role in suppressing OSCC development. CX3CL1 suppresses OSCC invasion and migration by affecting EMT progression and AKT phosphorylation, and partially reverse the process that LPS causes and affects the development of OSCC.
Collapse
Affiliation(s)
- Chanjuan He
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Changsha Stomatological Hospital, Changsha, China
| | - Yuehan Wu
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, China
| | - Xiaoxu Nan
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, China
| | - Weifang Zhang
- Hunan Prevention and Treatment Institute for Occupational Diseases, Changsha, China
| | - Yu Luo
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, China
| | - Honglan Wang
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, China
| | - Mengqi Li
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, China
| | - Changyue Liu
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, China
| | - Jiaming Liu
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, China
| | - Xuelin Mou
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, China
| | - Ying Liu
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, China
| |
Collapse
|
8
|
Kocher D, Cao L, Guiho R, Langhammer M, Lai YL, Becker P, Hamdi H, Friedel D, Selt F, Vonhören D, Zaman J, Valinciute G, Herter S, Picard D, Rettenmeier J, Maass KK, Pajtler KW, Remke M, von Deimling A, Pusch S, Pfister SM, Oehme I, Jones DTW, Halbach S, Brummer T, Martinez-Barbera JP, Witt O, Milde T, Sigaud R. Rebound growth of BRAF mutant pediatric glioma cells after MAPKi withdrawal is associated with MAPK reactivation and secretion of microglia-recruiting cytokines. J Neurooncol 2024; 168:317-332. [PMID: 38630384 PMCID: PMC11147834 DOI: 10.1007/s11060-024-04672-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 03/28/2024] [Indexed: 06/04/2024]
Abstract
INTRODUCTION Patients with pediatric low-grade gliomas (pLGGs), the most common primary brain tumors in children, can often benefit from MAPK inhibitor (MAPKi) treatment. However, rapid tumor regrowth, also referred to as rebound growth, may occur once treatment is stopped, constituting a significant clinical challenge. METHODS Four patient-derived pediatric glioma models were investigated to model rebound growth in vitro based on viable cell counts in response to MAPKi treatment and withdrawal. A multi-omics dataset (RNA sequencing and LC-MS/MS based phospho-/proteomics) was generated to investigate possible rebound-driving mechanisms. Following in vitro validation, putative rebound-driving mechanisms were validated in vivo using the BT-40 orthotopic xenograft model. RESULTS Of the tested models, only a BRAFV600E-driven model (BT-40, with additional CDKN2A/Bdel) showed rebound growth upon MAPKi withdrawal. Using this model, we identified a rapid reactivation of the MAPK pathway upon MAPKi withdrawal in vitro, also confirmed in vivo. Furthermore, transient overactivation of key MAPK molecules at transcriptional (e.g. FOS) and phosphorylation (e.g. pMEK) levels, was observed in vitro. Additionally, we detected increased expression and secretion of cytokines (CCL2, CX3CL1, CXCL10 and CCL7) upon MAPKi treatment, maintained during early withdrawal. While increased cytokine expression did not have tumor cell intrinsic effects, presence of these cytokines in conditioned media led to increased attraction of microglia cells in vitro. CONCLUSION Taken together, these data indicate rapid MAPK reactivation upon MAPKi withdrawal as a tumor cell intrinsic rebound-driving mechanism. Furthermore, increased secretion of microglia-recruiting cytokines may play a role in treatment response and rebound growth upon withdrawal, warranting further evaluation.
Collapse
Affiliation(s)
- Daniela Kocher
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Research Center (DKFZ) Heidelberg, Clinical Cooperation Unit Pediatric Oncology, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Lei Cao
- Developmental Biology and Cancer Programme, Birth Defects Research Centre, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, WC1N 1EH, London, UK
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Romain Guiho
- Developmental Biology and Cancer Programme, Birth Defects Research Centre, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, WC1N 1EH, London, UK
- Nantes Université, Oniris, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France
| | - Melanie Langhammer
- Institute of Molecular Medicine and Cell Research (IMMZ), Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Yun-Lu Lai
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Research Center (DKFZ) Heidelberg, Clinical Cooperation Unit Pediatric Oncology, Heidelberg, Germany
| | - Pauline Becker
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Research Center (DKFZ) Heidelberg, Clinical Cooperation Unit Pediatric Oncology, Heidelberg, Germany
- Faculty of Medicine, Heidelberg University, Heidelberg, Germany
| | - Hiba Hamdi
- Developmental Biology and Cancer Programme, Birth Defects Research Centre, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, WC1N 1EH, London, UK
| | - Dennis Friedel
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Clinical Cooperation Unit Neuropathology, Heidelberg, Germany
| | - Florian Selt
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Research Center (DKFZ) Heidelberg, Clinical Cooperation Unit Pediatric Oncology, Heidelberg, Germany
- KiTZ Clinical Trial Unit (ZIPO), Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - David Vonhören
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Clinical Cooperation Unit Neuropathology, Heidelberg, Germany
| | - Julia Zaman
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Clinical Cooperation Unit Neuropathology, Heidelberg, Germany
| | - Gintvile Valinciute
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Research Center (DKFZ) Heidelberg, Clinical Cooperation Unit Pediatric Oncology, Heidelberg, Germany
| | - Sonja Herter
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Research Center (DKFZ) Heidelberg, Clinical Cooperation Unit Pediatric Oncology, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Daniel Picard
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
- German Cancer Consortium (DKTK), Partner site Essen/Düsseldorf, Düsseldorf, Germany
- Institute of Neuropathology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Johanna Rettenmeier
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- Faculty of Medicine, Heidelberg University, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Division of Pediatric Neurooncology, Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
| | - Kendra K Maass
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Division of Pediatric Neurooncology, Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
| | - Kristian W Pajtler
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- KiTZ Clinical Trial Unit (ZIPO), Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Division of Pediatric Neurooncology, Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
| | - Marc Remke
- Pediatric Hematology and Oncology, University Children's Hospital, Saarland University, Homburg, Germany
| | - Andreas von Deimling
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Clinical Cooperation Unit Neuropathology, Heidelberg, Germany
| | - Stefan Pusch
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Clinical Cooperation Unit Neuropathology, Heidelberg, Germany
| | - Stefan M Pfister
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- KiTZ Clinical Trial Unit (ZIPO), Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Division of Pediatric Neurooncology, Heidelberg, Germany
| | - Ina Oehme
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Research Center (DKFZ) Heidelberg, Clinical Cooperation Unit Pediatric Oncology, Heidelberg, Germany
| | - David T W Jones
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Research Center (DKFZ) Heidelberg, Division of Pediatric Glioma Research, Heidelberg, Germany
| | - Sebastian Halbach
- Institute of Molecular Medicine and Cell Research (IMMZ), Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Consortium for Translational Cancer Research (DKTK), Freiburg, Germany, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tilman Brummer
- Institute of Molecular Medicine and Cell Research (IMMZ), Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Consortium for Translational Cancer Research (DKTK), Freiburg, Germany, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Centre for Biological Signaling Studies BIOSS, University of Freiburg, Freiburg, Germany
| | - Juan Pedro Martinez-Barbera
- Developmental Biology and Cancer Programme, Birth Defects Research Centre, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, WC1N 1EH, London, UK
| | - Olaf Witt
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Research Center (DKFZ) Heidelberg, Clinical Cooperation Unit Pediatric Oncology, Heidelberg, Germany
- KiTZ Clinical Trial Unit (ZIPO), Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Till Milde
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany.
- German Cancer Research Center (DKFZ) Heidelberg, Clinical Cooperation Unit Pediatric Oncology, Heidelberg, Germany.
- KiTZ Clinical Trial Unit (ZIPO), Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany.
| | - Romain Sigaud
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany.
- German Cancer Research Center (DKFZ) Heidelberg, Clinical Cooperation Unit Pediatric Oncology, Heidelberg, Germany.
| |
Collapse
|
9
|
Ebott J, McAdams J, Kim C, Jansen C, Woodman M, De La Cruz P, Schrol C, Ribeiro J, James N. Enhanced amphiregulin exposure promotes modulation of the high grade serous ovarian cancer tumor immune microenvironment. Front Pharmacol 2024; 15:1375421. [PMID: 38831884 PMCID: PMC11144882 DOI: 10.3389/fphar.2024.1375421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/24/2024] [Indexed: 06/05/2024] Open
Abstract
High grade serous ovarian cancer (HGSOC) is a lethal gynecologic malignancy in which chemoresistant recurrence rates remain high. Furthermore, HGSOC patients have demonstrated overall low response rates to clinically available immunotherapies. Amphiregulin (AREG), a low affinity epidermal growth factor receptor ligand is known to be significantly upregulated in HGSOC patient tumors following neoadjuvant chemotherapy exposure. While much is known about AREG's role in oncogenesis and classical immunity, it is function in tumor immunology has been comparatively understudied. Therefore, the objective of this present study was to elucidate how increased AREG exposure impacts the ovarian tumor immune microenvironment (OTIME). Using NanoString IO 360 and protein analysis, it was revealed that treatment with recombinant AREG led to prominent upregulation of genes associated with ovarian pathogenesis and immune evasion (CXCL8, CXCL1, CXCL2) along with increased STAT3 activation in HGSOC cells. In vitro co-culture assays consisting of HGSOC cells and peripheral blood mononuclear cells (PBMCs) stimulated with recombinant AREG (rAREG) led to significantly enhanced tumor cell viability. Moreover, PBMCs stimulated with rAREG exhibited significantly lower levels of IFNy and IL-2. In vivo rAREG treatment promoted significant reductions in circulating levels of IL-2 and IL-5. Intratumoral analysis of rAREG treated mice revealed a significant reduction in CD8+ T cells coupled with an upregulation of PD-L1. Finally, combinatorial treatment with an AREG neutralizing antibody and carboplatin led to a synergistic reduction of cell viability in HGSOC cell lines OVCAR8 and PEA2. Overall, this study demonstrates AREG's ability to modulate cytotoxic responses within the OTIME and highlights its role as a novel HGSOC immune target.
Collapse
Affiliation(s)
- Jasmine Ebott
- Women and Infants Hospital, Department of Obstetrics and Gynecology, Program in Women’s Oncology, Providence, RI, United States
- Department of Obstetrics and Gynecology, Warren-Alpert Medical School of Brown University, Providence, RI, United States
| | - Julia McAdams
- Women and Infants Hospital, Department of Obstetrics and Gynecology, Program in Women’s Oncology, Providence, RI, United States
| | - Chloe Kim
- School of Public Health, Brown University, Providence, RI, United States
| | - Corrine Jansen
- Women and Infants Hospital, Department of Obstetrics and Gynecology, Program in Women’s Oncology, Providence, RI, United States
- Department of Obstetrics and Gynecology, Warren-Alpert Medical School of Brown University, Providence, RI, United States
| | - Morgan Woodman
- Women and Infants Hospital, Department of Obstetrics and Gynecology, Program in Women’s Oncology, Providence, RI, United States
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States
| | - Payton De La Cruz
- Pathobiology Graduate Program, Brown University, Providence, RI, United States
| | - Christoph Schrol
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States
| | - Jennifer Ribeiro
- Women and Infants Hospital, Department of Obstetrics and Gynecology, Program in Women’s Oncology, Providence, RI, United States
- Department of Obstetrics and Gynecology, Warren-Alpert Medical School of Brown University, Providence, RI, United States
| | - Nicole James
- Women and Infants Hospital, Department of Obstetrics and Gynecology, Program in Women’s Oncology, Providence, RI, United States
- Department of Obstetrics and Gynecology, Warren-Alpert Medical School of Brown University, Providence, RI, United States
| |
Collapse
|
10
|
Szukiewicz D. CX3CL1 (Fractalkine)-CX3CR1 Axis in Inflammation-Induced Angiogenesis and Tumorigenesis. Int J Mol Sci 2024; 25:4679. [PMID: 38731899 PMCID: PMC11083509 DOI: 10.3390/ijms25094679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
The chemotactic cytokine fractalkine (FKN, chemokine CX3CL1) has unique properties resulting from the combination of chemoattractants and adhesion molecules. The soluble form (sFKN) has chemotactic properties and strongly attracts T cells and monocytes. The membrane-bound form (mFKN) facilitates diapedesis and is responsible for cell-to-cell adhesion, especially by promoting the strong adhesion of leukocytes (monocytes) to activated endothelial cells with the subsequent formation of an extracellular matrix and angiogenesis. FKN signaling occurs via CX3CR1, which is the only known member of the CX3C chemokine receptor subfamily. Signaling within the FKN-CX3CR1 axis plays an important role in many processes related to inflammation and the immune response, which often occur simultaneously and overlap. FKN is strongly upregulated by hypoxia and/or inflammation-induced inflammatory cytokine release, and it may act locally as a key angiogenic factor in the highly hypoxic tumor microenvironment. The importance of the FKN/CX3CR1 signaling pathway in tumorigenesis and cancer metastasis results from its influence on cell adhesion, apoptosis, and cell migration. This review presents the role of the FKN signaling pathway in the context of angiogenesis in inflammation and cancer. The mechanisms determining the pro- or anti-tumor effects are presented, which are the cause of the seemingly contradictory results that create confusion regarding the therapeutic goals.
Collapse
Affiliation(s)
- Dariusz Szukiewicz
- Department of Biophysics, Physiology & Pathophysiology, Faculty of Health Sciences, Medical University of Warsaw, 02-004 Warsaw, Poland
| |
Collapse
|
11
|
Wolf MM, Madden MZ, Arner EN, Bader JE, Ye X, Vlach L, Tigue ML, Landis MD, Jonker PB, Hatem Z, Steiner KK, Gaines DK, Reinfeld BI, Hathaway ES, Xin F, Tantawy MN, Haake SM, Jonasch E, Muir A, Weiss VL, Beckermann KE, Rathmell WK, Rathmell JC. VHL loss reprograms the immune landscape to promote an inflammatory myeloid microenvironment in renal tumorigenesis. J Clin Invest 2024; 134:e173934. [PMID: 38618956 PMCID: PMC11014672 DOI: 10.1172/jci173934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 02/24/2024] [Indexed: 04/16/2024] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is characterized by dysregulated hypoxia signaling and a tumor microenvironment (TME) highly enriched in myeloid and lymphoid cells. Loss of the von Hippel Lindau (VHL) gene is a critical early event in ccRCC pathogenesis and promotes stabilization of HIF. Whether VHL loss in cancer cells affects immune cells in the TME remains unclear. Using Vhl WT and Vhl-KO in vivo murine kidney cancer Renca models, we found that Vhl-KO tumors were more infiltrated by immune cells. Tumor-associated macrophages (TAMs) from Vhl-deficient tumors demonstrated enhanced in vivo glucose consumption, phagocytosis, and inflammatory transcriptional signatures, whereas lymphocytes from Vhl-KO tumors showed reduced activation and a lower response to anti-programmed cell death 1 (anti-PD-1) therapy in vivo. The chemokine CX3CL1 was highly expressed in human ccRCC tumors and was associated with Vhl deficiency. Deletion of Cx3cl1 in cancer cells decreased myeloid cell infiltration associated with Vhl loss to provide a mechanism by which Vhl loss may have contributed to the altered immune landscape. Here, we identify cancer cell-specific genetic features that drove environmental reprogramming and shaped the tumor immune landscape, with therapeutic implications for the treatment of ccRCC.
Collapse
Affiliation(s)
- Melissa M. Wolf
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville (VUMC), Tennessee, USA
- Graduate Program in Cancer Biology and
| | - Matthew Z. Madden
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville (VUMC), Tennessee, USA
- Medical Scientist Training Program, Vanderbilt University, Nashville, Tennessee, USA
| | - Emily N. Arner
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville (VUMC), Tennessee, USA
| | - Jackie E. Bader
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville (VUMC), Tennessee, USA
| | - Xiang Ye
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville (VUMC), Tennessee, USA
| | - Logan Vlach
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville (VUMC), Tennessee, USA
- Graduate Program in Cancer Biology and
| | - Megan L. Tigue
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville (VUMC), Tennessee, USA
- Graduate Program in Cancer Biology and
- Medical Scientist Training Program, Vanderbilt University, Nashville, Tennessee, USA
| | | | - Patrick B. Jonker
- Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois, USA
| | - Zaid Hatem
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville (VUMC), Tennessee, USA
| | - KayLee K. Steiner
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville (VUMC), Tennessee, USA
- Graduate Program in Cancer Biology and
| | - Dakim K. Gaines
- Department of Radiation Oncology
- Vanderbilt-Ingram Cancer Center
| | - Bradley I. Reinfeld
- Graduate Program in Cancer Biology and
- Medical Scientist Training Program, Vanderbilt University, Nashville, Tennessee, USA
- Department of Medicine, VUMC, Nashville, Tennessee, USA
| | - Emma S. Hathaway
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville (VUMC), Tennessee, USA
- Graduate Program in Cancer Biology and
| | - Fuxue Xin
- Department of Radiology and Radiological Sciences, and
- Vanderbilt University Institute of Imaging Science, VUMC, Nashville, Tennessee, USA
| | - M. Noor Tantawy
- Department of Radiology and Radiological Sciences, and
- Vanderbilt University Institute of Imaging Science, VUMC, Nashville, Tennessee, USA
| | - Scott M. Haake
- Department of Medicine, VUMC, Nashville, Tennessee, USA
- Vanderbilt-Ingram Cancer Center
| | - Eric Jonasch
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Alexander Muir
- Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois, USA
| | - Vivian L. Weiss
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville (VUMC), Tennessee, USA
- Vanderbilt-Ingram Cancer Center
| | - Kathryn E. Beckermann
- Department of Medicine, VUMC, Nashville, Tennessee, USA
- Vanderbilt-Ingram Cancer Center
| | - W. Kimryn Rathmell
- Department of Medicine, VUMC, Nashville, Tennessee, USA
- Vanderbilt-Ingram Cancer Center
- Vanderbilt Center for Immunobiology, VUMC, Nashville, Tennessee, USA
| | - Jeffrey C. Rathmell
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville (VUMC), Tennessee, USA
- Vanderbilt-Ingram Cancer Center
- Vanderbilt Center for Immunobiology, VUMC, Nashville, Tennessee, USA
| |
Collapse
|
12
|
De Clercq J, De Scheerder MA, Mortier V, Verhofstede C, Vandecasteele SJ, Allard SD, Necsoi C, De Wit S, Gerlo S, Vandekerckhove L. Longitudinal patterns of inflammatory mediators after acute HIV infection correlate to intact and total reservoir. Front Immunol 2024; 14:1337316. [PMID: 38250083 PMCID: PMC10796502 DOI: 10.3389/fimmu.2023.1337316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 12/11/2023] [Indexed: 01/23/2024] Open
Abstract
Background Despite the beneficial effects of antiretroviral therapy (ART) initiation during acute HIV infection (AHI), residual immune activation remains a hallmark of treated HIV infection. Methods Plasma concentrations of 40 mediators were measured longitudinally in 39 early treated participants of a Belgian AHI cohort (HIV+) and in 21 HIV-negative controls (HIV-). We investigated the association of the inflammatory profile with clinical presentation, plasma viral load, immunological parameters, and in-depth characterization of the HIV reservoir. Results While levels of most soluble mediators normalized with suppressive ART, we demonstrated the persistence of a pro-inflammatory signature in early treated HIV+ participants in comparison to HIV- controls. Examination of these mediators demonstrated a correlation with their levels during AHI, which seemed to be viremia-driven, and suggested involvement of an activated myeloid compartment, IFN-γ-signaling, and inflammasome-related pathways. Interestingly, some of these pro-inflammatory mediators correlated with a larger reservoir size and slower reservoir decay. In contrast, we also identified soluble mediators which were associated with favorable effects on immunovirological outcomes and reservoir, both during and after AHI. Conclusion These data highlight how the persistent pro-inflammatory profile observed in early ART treated individuals is shaped during AHI and is intertwined with viral dynamics.
Collapse
Affiliation(s)
- Jozefien De Clercq
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Department of General Internal Medicine, Ghent University Hospital, Ghent, Belgium
| | | | - Virginie Mortier
- Department of Diagnostic Sciences, Aids Reference Laboratory, Ghent University, Ghent, Belgium
| | - Chris Verhofstede
- Department of Diagnostic Sciences, Aids Reference Laboratory, Ghent University, Ghent, Belgium
| | | | - Sabine D Allard
- Department of Internal Medicine, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Coca Necsoi
- Department of Infectious Diseases, Saint-Pierre University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Stéphane De Wit
- Department of Infectious Diseases, Saint-Pierre University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Sarah Gerlo
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Linos Vandekerckhove
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Department of General Internal Medicine, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
13
|
Zhu W, Wu C, Hu S, Liu S, Zhao S, Zhang D, Qiu G, Cheng X, Huang J. Chemokine- and chemokine receptor-based signature predicts immunotherapy response in female colorectal adenocarcinoma patients. Sci Rep 2023; 13:21358. [PMID: 38049474 PMCID: PMC10695967 DOI: 10.1038/s41598-023-48623-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023] Open
Abstract
The clinical significance and comprehensive characteristics of chemokines and chemokine receptors in female patients with advanced colorectal adenocarcinoma have not ever been reported. Our study explored the expression profiles of chemokines and chemokine receptors and constructed a chemokine- and chemokine receptor-based signature in female patients with advanced colorectal adenocarcinoma. Four independent cohorts containing 1335 patients were enrolled in our study. Univariate Cox regression and least absolute shrinkage and selection operator (LASSO) analyses were performed to construct the signature. CIBERSORT was used to evaluate the landscape of immune cell infiltration. Thirty-two pairs of tissue specimens of female advanced colorectal cancer (CRC) patients and two CRC cell lines were used to validate the signature in vitro. Quantitative real-time PCR and western blotting were performed to validate the mRNA and protein expression levels of signature genes. EdU and colony formation assays were performed to examine proliferative ability. Transwell and wound healing assays were used to evaluate cell invasion and migration capacity. During the signature construction and validation process, we found that the signature was more applicable to female patients with advanced colorectal adenocarcinoma. Hence, the subsequent study mainly focused on the particular subgroup. Enrichment analyses revealed that the signature was closely related to immunity. The landscape of immune cell infiltration presented that the signature was significantly associated with T cells CD8 and neutrophils. Gene set enrichment analysis (GSEA) confirmed that the high-risk group was chiefly enriched in the tumor-promoting related pathways and biological processes, whereas the low-risk group was mainly enriched in anti-tumor immune response pathways and biological processes. The signature was closely correlated with CTLA4, PDL1, PDL2, TMB, MSI, and TIDE, indicating that our signature could serve as a robust biomarker for immunotherapy and chemotherapy response. ROC curves verified that our signature had more robust prognostic power than all immune checkpoints and immunotherapy-related biomarkers. Finally, we used 32 pairs of tissue specimens and 2 CRC cell lines to validate our signature in vitro. We first provided a robust prognostic chemokine- and chemokine receptor-based signature, which could serve as a novel biomarker for immunotherapy and chemotherapy response to guide individualized treatment for female patients with advanced colorectal adenocarcinoma.
Collapse
Affiliation(s)
- Wenjie Zhu
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Molecular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Changlei Wu
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Molecular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Shiqi Hu
- Queen Mary College, Medical Department, Nanchang University, Nanchang, Jiangxi, China
| | - Sicheng Liu
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Molecular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Shimin Zhao
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Molecular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Dongdong Zhang
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Molecular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Guisheng Qiu
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiufeng Cheng
- Department of Critical Care Medicine, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jun Huang
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
14
|
Cheng D, Wang J, Wang Y, Xue Y, Yang Q, Yang Q, Zhao H, Huang J, Peng X. Chemokines: Function and therapeutic potential in bone metastasis of lung cancer. Cytokine 2023; 172:156403. [PMID: 37871366 DOI: 10.1016/j.cyto.2023.156403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 10/25/2023]
Abstract
Lung cancer is a rapidly progressing disease with a poor prognosis. Bone metastasis is commonly found in 40.6% of advanced-stage patients. The mortality rate of lung cancer patients with bone metastasis can be significantly decreased by implementing novel diagnostic techniques, improved staging and classification systems, precise surgical interventions, and advanced treatment modalities. However, it is important to note that there is currently a lack of radical procedures available for these patients due to the development of drug resistance. Consequently, palliative care approaches are commonly employed in clinical practice. Therefore, new understandings of the process of bone metastasis of lung cancer are critical for developing better treatment strategies to improve patient's clinical cure rate and quality of life. Chemokines are cell-secreted small signaling proteins in cancer occurrence, proliferation, invasion, and metastasis. In this study, we review the development of bone metastasis in lung cancer and discuss the mechanisms of specific chemokine families (CC, CXC, CX3C, and XC) in regulating the biological activities of tumors and promoting bone metastasis. We also highlight some preclinical studies and clinical trials on chemokines for lung cancer and bone metastasis.
Collapse
Affiliation(s)
- Dezhou Cheng
- Department of Medical Imaging, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Jiancheng Wang
- Department of Radiology, The Second People's Hospital of Jingzhou, China
| | - Yiling Wang
- Department of Medical Imaging, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Yanfang Xue
- Department of Medical Imaging, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Qing Yang
- Department of Medical Imaging, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Qun Yang
- Department of Medical Imaging, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Huichuan Zhao
- Department of Pathology of the First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Jinbai Huang
- Department of Medical Imaging, Health Science Center, Yangtze University, Jingzhou, Hubei, China; Department of Medical Imaging, the First Affiliated Hospital of Yangtze University, and School of Medicine of Yangtze University, Jingzhou, Hubei, China.
| | - Xiaochun Peng
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China.
| |
Collapse
|
15
|
Qiao X, Cheng Z, Xue K, Xiong C, Zheng Z, Jin X, Li J. Tumor-associated macrophage-derived exosomes LINC01592 induce the immune escape of esophageal cancer by decreasing MHC-I surface expression. J Exp Clin Cancer Res 2023; 42:289. [PMID: 37915049 PMCID: PMC10621170 DOI: 10.1186/s13046-023-02871-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/21/2023] [Indexed: 11/03/2023] Open
Abstract
BACKGROUND TAMs (tumor-associated macrophages) infiltration promotes the progression of esophageal cancer (EC). However, the underlying mechanisms remain unclear. METHODS Abnormal expression of LINC01592 from EC microarrays of the TCGA database was analyzed. LINC01592 expression level was validated in both EC cell lines and tissues. Stable LINC01592 knockdown and overexpression of EC cell lines were established. In vitro and in vivo trials were conducted to test the impact of LINC01592 knockdown and overexpression on EC cells. RNA binding protein immunoprecipitation (RIP), RNA pulldown assays, and Immunofluorescence (IF) were used to verify the combination of E2F6 and LINC01592. The combination of E2F6 and NBR1 was verified through the utilization of ChIP and dual luciferase reporter assays. RESULTS LINC01592 is carried and transferred by exosomes secreted by M2-TAMs to tumor cells. The molecular mechanism underlying the promotion of NBR1 transcription involves the direct binding of LINC01592 to E2F6, which facilitates the nuclear entry of E2F6. The collaborative action of LINC01592 and E2F6 results in improved NBR1 transcription. The elevation of NBR1 binding to the ubiquitinated protein MHC-I via the ubiquitin domain caused a higher degradation of MHC-I in autophagolysosomes and a reduction in MHC-I expression on the exterior of cancerous cell. Consequently, this caused cancerous cells to escape from CD8+ CTL immune attack. The tumor-promoting impacts of LINC01592, as well as the growth of M2-type macrophage-driven tumors, were significantly suppressed by the interruption of E2F6/NBR1/MHC-I signaling through the effect of siRNA or the corresponding antibody blockade. Significantly, the suppression of LINC01592 resulted in an upregulation of MHC-I expression on the tumor cell membrane, thereby enhancing the efficacy of CD8+ T cell reinfusion therapy. CONCLUSIONS The investigation conducted has revealed a significant molecular interaction between TAMs and EC via the LINC01592/E2F6/NBR1/MHC-I axis, which facilitates the progression of malignant tumors. This suggests that a therapeutic intervention targeting this axis may hold promise for the treatment of the disease.
Collapse
Affiliation(s)
- Xinwei Qiao
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China
| | - Zaixing Cheng
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China
| | - Kaming Xue
- Department of Traditional Chinese Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China
| | - Cui Xiong
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China
| | - Zhikun Zheng
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China
| | - Xin Jin
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Jinsong Li
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China.
| |
Collapse
|
16
|
Gao H, Zou Q, Ma L, Cai K, Sun Y, Lu L, Ren D, Hu B. Unveiling mitophagy-mediated molecular heterogeneity and development of a risk signature model for colorectal cancer by integrated scRNA-seq and bulk RNA-seq analysis. Gastroenterol Rep (Oxf) 2023; 11:goad066. [PMID: 37886241 PMCID: PMC10598840 DOI: 10.1093/gastro/goad066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/03/2023] [Accepted: 09/22/2023] [Indexed: 10/28/2023] Open
Abstract
Background Accumulating researchers have recognized mitophagy as a key player in tumors, but few studies have investigated its role in the tumor microenvironment (TME). Advances in the technology of single-cell RNA sequencing (scRNA-seq) have allowed unveiling the concealed features of the TME at cellular resolution. This study aimed to elucidate the role of mitophagy within the TME of colorectal cancer (CRC) and to establish a mitophagy-mediated risk model. Methods We assessed mitophagy-related pathway activities at both single-cell and tissue levels. Subsequently, an unsupervised clustering algorithm was employed to identify mitophagy-mediated subtypes. Furthermore, we developed a mitophagy-mediated risk signature (MMRS) using least absolute shrinkage and selection operator (LASSO) Cox analysis and constructed a MMRS model incorporating the risk score and clinical variables. Subsequently, we used quantitative reverse transcription polymerase chain reaction analysis to verify the expression of the screened genes. Results We retrieved and annotated a total of 14,719 cells from eight samples in the scRNA-seq GSE132465 data set. The activities of mitophagy-related pathways were uniformly upregulated in cancer cells. Integrating with bulk RNA-seq data, we identified two mitophagy-mediated clusters (C1 and C2) with distinct characteristics and prognoses. C2 was identified as a mitophagy-high cluster. Then, we developed a five-gene MMRS via LASSO Cox analysis in The Cancer Genome Atlas (TCGA) cohort. We utilized the GSE39582 cohort to validate the efficacy of our model. The expression of CX3CL1 and INHBB was upregulated in CRC tissues. Conclusions The present study identified two mitophagy-mediated CRC subtypes with distinct features. Our MMRS may provide potential therapeutic strategies for CRC. The findings of our work offer novel insights into the involvement of mitophagy in CRC.
Collapse
Affiliation(s)
- Han Gao
- Department of General Surgery (Coloproctology), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Qi Zou
- Department of General Surgery (Coloproctology), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Linyun Ma
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Keyu Cai
- Department of General Surgery (Coloproctology), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Yi Sun
- Department of Pathology, Kingmed Pathology Center, Guangzhou, Guangdong, P. R. China
| | - Li Lu
- Department of General Surgery (Coloproctology), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Donglin Ren
- Department of General Surgery (Coloproctology), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Bang Hu
- Department of General Surgery (Coloproctology), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| |
Collapse
|
17
|
Ji X, Huang X, Li C, Guan N, Pan T, Dong J, Li L. Effect of tumor-associated macrophages on the pyroptosis of breast cancer tumor cells. Cell Commun Signal 2023; 21:197. [PMID: 37542283 PMCID: PMC10401873 DOI: 10.1186/s12964-023-01208-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/26/2023] [Indexed: 08/06/2023] Open
Abstract
Macrophages are immune cells with high plasticity that are widely distributed in all tissues and organs of the body. Under the influence of the immune microenvironment of breast tumors, macrophages differentiate into various germline lineages. They exert pro-tumor or tumor-suppressive effects by secreting various cytokines. Pyroptosis is mediated by Gasdermin family proteins, which form holes in cell membranes and cause a violent inflammatory response and cell death. This is an important way for the body to fight off infections. Tumor cell pyroptosis can activate anti-tumor immunity and inhibit tumor growth. At the same time, it releases inflammatory mediators and recruits tumor-associated macrophages (TAMs) for accumulation. Macrophages act as "mediators" of cytokine interactions and indirectly influence the pyroptosis pathway. This paper describes the mechanism of action on the part of TAM in affecting the pyroptosis process of breast tumor cells, as well as its key role in the tumor microenvironment. Additionally, it provides the basis for in-depth research on how to use immune cells to affect breast tumors and guide anti-tumor trends, with important implications for the prevention and treatment of breast tumors. Video Abstract.
Collapse
Affiliation(s)
- XuLing Ji
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xiaoxia Huang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, China
| | - Chao Li
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, China
| | - Ningning Guan
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, China
| | - Tingting Pan
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, China
| | - Jing Dong
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China.
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Lin Li
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China.
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
18
|
Sivanesan E, Sanchez KR, Zhang C, He SQ, Linderoth B, Stephens KE, Raja SN, Guan Y. Spinal Cord Stimulation Increases Chemoefficacy and Prevents Paclitaxel-Induced Pain via CX3CL1. Neuromodulation 2023; 26:938-949. [PMID: 37045646 PMCID: PMC10330336 DOI: 10.1016/j.neurom.2023.03.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/19/2023] [Accepted: 03/13/2023] [Indexed: 04/14/2023]
Abstract
INTRODUCTION Despite increasing utilization of spinal cord stimulation (SCS), its effects on chemoefficacy, cancer progression, and chemotherapy-induced peripheral neuropathy (CIPN) pain remain unclear. Up to 30% of adults who are cancer survivors may suffer from CIPN, and there are currently no effective preventative treatments. MATERIALS AND METHODS Through a combination of bioluminescent imaging, behavioral, biochemical, and immunohistochemical approaches, we investigated the role of SCS and paclitaxel (PTX) on tumor growth and PTX-induced peripheral neuropathy (PIPN) pain development in T-cell-deficient male rats (Crl:NIH-Foxn1rnu) with xenograft human non-small cell lung cancer. We hypothesized that SCS can prevent CIPN pain and enhance chemoefficacy partially by modulating macrophages, fractalkine (CX3CL1), and inflammatory cytokines. RESULTS We show that preemptive SCS enhanced the antitumor efficacy of PTX and prevented PIPN pain. Without SCS, rats with and without tumors developed robust PIPN pain-related mechanical hypersensitivity, but only those with tumors developed cold hypersensitivity, suggesting T-cell dependence for different PIPN pain modalities. SCS increased soluble CX3CL1 and macrophages and decreased neuronal and nonneuronal insoluble CX3CL1 expression and inflammation in dorsal root ganglia. CONCLUSION Collectively, our findings suggest that preemptive SCS is a promising strategy to increase chemoefficacy and prevent PIPN pain via CX3CL1-macrophage modulation.
Collapse
Affiliation(s)
- Eellan Sivanesan
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| | - Karla R Sanchez
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Chi Zhang
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Shao-Qiu He
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Bengt Linderoth
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Kimberly E Stephens
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Arkansas Children's Research Institute, Little Rock, AR, USA
| | - Srinivasa N Raja
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Yun Guan
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA; Department of Neurological Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
19
|
Bruss C, Kellner K, Albert V, Hutchinson JA, Seitz S, Ortmann O, Brockhoff G, Wege AK. Immune Checkpoint Profiling in Humanized Breast Cancer Mice Revealed Cell-Specific LAG-3/PD-1/TIM-3 Co-Expression and Elevated PD-1/TIM-3 Secretion. Cancers (Basel) 2023; 15:cancers15092615. [PMID: 37174080 PMCID: PMC10177290 DOI: 10.3390/cancers15092615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/25/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Checkpoint blockade is particularly based on PD-1/PD-L1-inhibiting antibodies. However, an efficient immunological tumor defense can be blocked not only by PD-(L)1 but also by the presence of additional immune checkpoint molecules. Here, we investigated the co-expression of several immune checkpoint proteins and the soluble forms thereof (e.g., PD-1, TIM-3, LAG-3, PD-L1, PD-L2 and others) in humanized tumor mice (HTM) simultaneously harboring cell line-derived (JIMT-1, MDA-MB-231, MCF-7) or patient-derived breast cancer and a functional human immune system. We identified tumor-infiltrating T cells with a triple-positive PD-1, LAG-3 and TIM-3 phenotype. While PD-1 expression was increased in both the CD4 and CD8 T cells, TIM-3 was found to be upregulated particularly in the cytotoxic T cells in the MDA-MB-231-based HTM model. High levels of soluble TIM-3 and galectin-9 (a TIM-3 ligand) were detected in the serum. Surprisingly, soluble PD-L2, but only low levels of sPD-L1, were found in mice harboring PD-L1-positive tumors. Analysis of a dataset containing 3039 primary breast cancer samples on the R2 Genomics Analysis Platform revealed increased TIM-3, galectin-9 and LAG-3 expression, not only in triple-negative breast cancer but also in the HER2+ and hormone receptor-positive breast cancer subtypes. These data indicate that LAG-3 and TIM-3 represent additional key molecules within the breast cancer anti-immunity landscape.
Collapse
Affiliation(s)
- Christina Bruss
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, 93053 Regensburg, Germany
| | - Kerstin Kellner
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, 93053 Regensburg, Germany
| | - Veruschka Albert
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, 93053 Regensburg, Germany
| | - James A Hutchinson
- Department of Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Stephan Seitz
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, 93053 Regensburg, Germany
| | - Olaf Ortmann
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, 93053 Regensburg, Germany
| | - Gero Brockhoff
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, 93053 Regensburg, Germany
| | - Anja K Wege
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
20
|
Wu CY, Peng PW, Renn TY, Lee CJ, Chang TM, Wei AIC, Liu JF. CX3CL1 induces cell migration and invasion through ICAM-1 expression in oral squamous cell carcinoma cells. J Cell Mol Med 2023. [PMID: 37082943 DOI: 10.1111/jcmm.17750] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 02/23/2023] [Accepted: 04/05/2023] [Indexed: 04/22/2023] Open
Abstract
Human oral squamous cell carcinoma (OSCC) has been associated with a relatively low survival rate over the years and is characterized by a poor prognosis. C-X3-C motif chemokine ligand 1 (CX3CL1) has been involved in advanced migratory cells. Overexpressed CX3CL1 promotes several cellular responses related to cancer metastasis, including cell movement, migration and invasion in tumour cells. However, CX3CL1 controls the migration ability, and its molecular mechanism in OSCC remains unknown. The present study confirmed that CX3CL1 increased cell movement, migration and invasion. The CX3CL1-induced cell motility is upregulated through intercellular adhesion molecule-1 (ICAM-1) expression in OSCC cells. These effects were significantly suppressed when OSCC cells were pre-treated with CX3CR1 monoclonal antibody (mAb) and small-interfering RNA (siRNA). The CX3CL1-CX3CR1 axis activates promoted PLCβ/PKCα/c-Src phosphorylation. Furthermore, CX3CL1 enhanced activator protein-1 (AP-1) activity. The CX3CR1 mAb and PLCβ, PKCα, c-Src inhibitors reduced CX3CL1-induced c-Jun phosphorylation, c-Jun translocation into the nucleus and c-Jun binding to the ICAM-1 promoter. The present results reveal that CX3CL1 induces the migration of OSCC cells by promoting ICAM-1 expression through the CX3CR1 and the PLCβ/PKCα/c-Src signal pathway, suggesting that CX3CL1-CX3CR1-mediated signalling is correlated with tumour motility and appealed to be a precursor for prognosis in human OSCC.
Collapse
Affiliation(s)
- Chia-Yu Wu
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei City, Taiwan
- Division of Oral and Maxillofacial Surgery, Department of Dentistry, Taipei Medical University Hospital, Taipei City, Taiwan
| | - Pei-Wen Peng
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei City, Taiwan
| | - Ting-Yi Renn
- Department of Oral and Maxillofacial Pathobiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Chia-Jung Lee
- Department of Otolaryngology Head and Neck Surgery, Shin-Kong Wu-Ho-Su Memorial Hospital, Taipei City, Taiwan
- School of Medicine, Fu-Jen Catholic University, Taipei City, Taiwan
| | - Tsung-Ming Chang
- Institute of Physiology, School of Medicine, National Yang Ming Chiao Tung University, Taipei City, Taiwan
| | - Augusta I-Chin Wei
- Translational Medicine Center, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei City, Taiwan
| | - Ju-Fang Liu
- Translational Medicine Center, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei City, Taiwan
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei City, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung City, Taiwan
| |
Collapse
|
21
|
Immune Phenotypic Characterization of a TRAIL-Knockout Mouse. Cancers (Basel) 2023; 15:cancers15051475. [PMID: 36900266 PMCID: PMC10000729 DOI: 10.3390/cancers15051475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/17/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
The TNF-superfamily member TRAIL is known to mediate selective apoptosis in tumor cells suggesting this protein as a potential antitumor drug target. However, initial successful pr-clinical results could not be translated into the clinic. Reasons for the ineffectiveness of TRAIL-targeting in tumor therapies could include acquired TRAIL resistance. A tumor cell acquires TRAIL resistance, for example, by upregulation of antiapoptotic proteins. In addition, TRAIL can also influence the immune system and thus, tumor growth. We were able to show in our previous work that TRAIL-/- mice show improved survival in a mouse model of pancreatic carcinoma. Therefore, in this study we aimed to immunologically characterize the TRAIL-/- mice. We observed no significant differences in the distribution of CD3+, CD4+, CD8+ T-cells, Tregs, and central memory CD4+ and CD8+ cells. However, we provide evidence for relevant differences in the distribution of effector memory T-cells and CD8+CD122+ cells but also in dendritic cells. Our findings suggest that T-lymphocytes of TRAIL-/- mice proliferate at a lower rate, and that the administration of recombinant TRAIL significantly increases their proliferation, while regulatory T-cells (Tregs) from TRAIL-/- mice are less suppressive. Regarding the dendritic cells, we found more type-2 conventional dendritic cells (DC2s) in the TRAIL-/- mice. For the first time (to the best of our knowledge), we provide a comprehensive characterization of the immunological landscape of TRAIL-deficient mice. This will establish an experimental basis for future investigations of TRAIL-mediated immunology.
Collapse
|
22
|
Hiatt JB, Sandborg H, Garrison SM, Arnold HU, Liao SY, Norton JP, Friesen TJ, Wu F, Sutherland KD, Rienhoff HY, Martins R, Houghton AM, Srivastava S, MacPherson D. Inhibition of LSD1 with Bomedemstat Sensitizes Small Cell Lung Cancer to Immune Checkpoint Blockade and T-Cell Killing. Clin Cancer Res 2022; 28:4551-4564. [PMID: 35920742 PMCID: PMC9844673 DOI: 10.1158/1078-0432.ccr-22-1128] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/24/2022] [Accepted: 07/28/2022] [Indexed: 01/19/2023]
Abstract
PURPOSE The addition of immune checkpoint blockade (ICB) to platinum/etoposide chemotherapy changed the standard of care for small cell lung cancer (SCLC) treatment. However, ICB addition only modestly improved clinical outcomes, likely reflecting the high prevalence of an immunologically "cold" tumor microenvironment in SCLC, despite high mutational burden. Nevertheless, some patients clearly benefit from ICB and recent reports have associated clinical responses to ICB in SCLC with (i) decreased neuroendocrine characteristics and (ii) activation of NOTCH signaling. We previously showed that inhibition of the lysine-specific demethylase 1a (LSD1) demethylase activates NOTCH and suppresses neuroendocrine features of SCLC, leading us to investigate whether LSD1 inhibition would enhance the response to PD-1 inhibition in SCLC. EXPERIMENTAL DESIGN We employed a syngeneic immunocompetent model of SCLC, derived from a genetically engineered mouse model harboring Rb1/Trp53 inactivation, to investigate combining the LSD1 inhibitor bomedemstat with anti-PD-1 therapy. In vivo experiments were complemented by cell-based studies in murine and human models. RESULTS Bomedemstat potentiated responses to PD-1 inhibition in a syngeneic model of SCLC, resulting in increased CD8+ T-cell infiltration and strong tumor growth inhibition. Bomedemstat increased MHC class I expression in mouse SCLC tumor cells in vivo and augmented MHC-I induction by IFNγ and increased killing by tumor-specific T cells in cell culture. CONCLUSIONS LSD1 inhibition increased MHC-I expression and enhanced responses to PD-1 inhibition in vivo, supporting a new clinical trial to combine bomedemstat with standard-of-care PD-1 axis inhibition in SCLC.
Collapse
Affiliation(s)
- Joseph B. Hiatt
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA,Veterans Affairs Puget Sound Healthcare System - Seattle Branch, Seattle, Washington 98108, USA,Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, Washington 98109, USA
| | - Holly Sandborg
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Sarah M. Garrison
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Henry U. Arnold
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Sheng-You Liao
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Justin P. Norton
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Travis J. Friesen
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Feinan Wu
- Genomics and Bioinformatics Shared Resource, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Kate D. Sutherland
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia,Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3052, Australia
| | | | - Renato Martins
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, Washington 98109, USA
| | - A. McGarry Houghton
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA,Pulmonary and Critical Care Division, University of Washington, Seattle, Washington, USA
| | - Shivani Srivastava
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - David MacPherson
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA,Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA,Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
23
|
Luo L, Deng S, Tang W, Hu X, Yin F, Ge H, Tang J, Liao Z, Feng J, Li X, Mo B. Monocytes subtypes from pleural effusion reveal biomarker candidates for the diagnosis of tuberculosis and malignancy. J Clin Lab Anal 2022; 36:e24579. [PMID: 35819097 PMCID: PMC9396188 DOI: 10.1002/jcla.24579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/08/2022] [Accepted: 06/18/2022] [Indexed: 11/22/2022] Open
Abstract
Background Pleural effusion is a common clinical condition caused by several respiratory diseases, including tuberculosis and malignancy. However, rapid and accurate diagnoses of tuberculous pleural effusion (TPE) and malignant pleural effusion (MPE) remain challenging. Although monocytes have been confirmed as an important immune cell in tuberculosis and malignancy, little is known about the role of monocytes subpopulations in the diagnosis of pleural effusion. Methods Pleural effusion samples and peripheral blood samples were collected from 40 TPE patients, 40 MPE patients, and 24 transudate pleural effusion patients, respectively. Chemokines (CCL2, CCL7, and CX3CL1) and cytokines (IL‐1β, IL‐17, IL‐27, and IFN‐γ) were measured by ELISA. The monocytes phenotypes were analyzed by flow cytometry. The chemokines receptors (CCR2 and CX3CR1) and cytokines above in different monocytes subsets were analyzed by real‐time PCR. Receiver operating characteristic curve analysis was performed for displaying differentiating power of intermediate and nonclassical subsets between tuberculous and malignant pleural effusions. Results CCL7 and CX3CL1 levels in TPE were significantly elevated in TPE compared with MPE and transudate pleural effusion. Cytokines, such as IL‐1β, IL‐17, IL‐27, and IFN‐γ, in TPE were much higher than in other pleural effusions. Moreover, CD14+CD16++ nonclassical subset frequency in TPE was remarkably higher than that in MPE, while CD14++CD16+ intermediate subset proportion in MPE was found elevated. Furthermore, CX3CL1‐CX3CR1 axis‐mediated infiltration of nonclassical monocytes in TPE was related to CX3CL1 and IFN‐γ expression in TPE. Higher expression of cytokines (IL‐1β, IL‐17, IL‐27, and IFN‐γ) were found in nonclassical monocytes compared with other subsets. Additionally, the proportions of intermediate and nonclassical monocytes in pleural effusion have the power in discriminating tuberculosis from malignant pleural effusion. Conclusions CD14 and CD16 markers on monocytes could be potentially used as novel diagnostic markers for diagnosing TPE and MPE.
Collapse
Affiliation(s)
- Lisha Luo
- Department of Respiratory Medicine, Key Cite of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China
| | - Shuanglinzi Deng
- Department of Respiratory Medicine, Key Cite of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Tang
- Department of Respiratory Medicine, Key Cite of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China
| | - Xinyue Hu
- Department of Respiratory Medicine, Key Cite of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China
| | - Feifei Yin
- Department of Respiratory Medicine, Key Cite of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China
| | - Huan Ge
- Department of Respiratory Medicine, Key Cite of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China
| | - Jiale Tang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhonghua Liao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Juntao Feng
- Department of Respiratory Medicine, Key Cite of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaozhao Li
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Biwen Mo
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, China.,Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, Guilin, China
| |
Collapse
|
24
|
Hughes CHK, Mezera MA, Wiltbank MC, Pate JL. Insights from two independent transcriptomic studies of the bovine corpus luteum during pregnancy. J Anim Sci 2022; 100:skac115. [PMID: 35772758 PMCID: PMC9246655 DOI: 10.1093/jas/skac115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 04/07/2022] [Indexed: 12/30/2022] Open
Abstract
Several recent studies have used transcriptomics to investigate luteal changes during the maternal recognition of the pregnancy period in ruminants. Although these studies have contributed to our understanding of luteal function during early pregnancy, few attempts have been made to integrate information across these studies and distinguish key luteal transcripts or functions that are repeatably identified across multiple studies. Therefore, in this study, two independent studies of the luteal transcriptome during early pregnancy were combined and compared. In the first study, corpora lutea (CL) from day 20 of pregnancy were compared with CL collected on day 14 of pregnancy, prior to embryonic signaling. The cattle were nonlactating. In the second study, CL from day 20 of pregnancy were compared with CL collected from day 20 cyclic cattle that had been confirmed as not yet undergoing luteal regression. These were lactating cattle. Three methods were used to compare these two datasets, to identify key luteal regulators. In the first method, all transcripts with Benjamini-Hochberg-adjusted P-value (Q value) < 0.05 in both datasets were considered. This yielded 22 transcripts, including several classical interferon-stimulated genes, as well as regulators of transforming growth factor-beta (TGFB) and latent TGFB-binding proteins (LTBP)1 and 2. In the second, less conservative method, all transcripts with P < 0.01 and changed in the same direction in both datasets were considered. This yielded an additional 20 transcripts that were not identified in the first analysis, for a total of 42 common transcripts. These transcripts were regulators of functions such as inflammatory balance and matrix remodeling. In the third method, transcripts with Q < 0.10 were subject to pathway analysis, and common pathways were identified. Retinoic acid signaling and classical interferon signaling pathways were identified with this method. Finally, regulation by interferon tau (IFNT) was investigated. Among the 42 transcripts identified, 32 were regulated by IFNT in cultured luteal cells (Q < 0.05). Among those not regulated by IFNT were LTBP1 and 2, which are TGFB-binding proteins. In summary, common transcripts from two studies of the luteal transcriptome during early pregnancy were combined and shared changes were identified. This not only generated a list of potential key luteal regulators, which were mostly IFNT regulated, but also included transcripts not regulated by IFNT, including LTBP1 and 2.
Collapse
Affiliation(s)
- Camilla H K Hughes
- Center for Reproductive Biology and Health, Department of Animal Science, Penn State University, University Park, PA 16802, USA
| | - Megan A Mezera
- Endocrinology and Reproductive Physiology Program and Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Milo C Wiltbank
- Endocrinology and Reproductive Physiology Program and Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Joy L Pate
- Center for Reproductive Biology and Health, Department of Animal Science, Penn State University, University Park, PA 16802, USA
| |
Collapse
|
25
|
Chen L, Liu X, Li Z, Wang J, Tian R, Zhang H. Integrated Analysis of Transcriptome mRNA and miRNA Profiles Reveals Self-Protective Mechanism of Bovine MECs Induced by LPS. Front Vet Sci 2022; 9:890043. [PMID: 35812870 PMCID: PMC9260119 DOI: 10.3389/fvets.2022.890043] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 05/04/2022] [Indexed: 12/29/2022] Open
Abstract
Many studies have investigated the molecular crosstalk between mastitis-pathogens and cows by either miRNA or mRNA profiles. Here, we employed both miRNA and mRNA profiles to understand the mechanisms of the response of bovine mammary epithelial cells (bMECs) to lipopolysaccharide (LPS) by RNA-Seq. The total expression level of miRNAs increased while mRNAs reduced after LPS treatment. About 41 differentially expressed mRNAs and 45 differentially expressed miRNAs involved in inflammation were screened out. We found the NFκB-dependent chemokine, CXCL1, CXCL3, CXCL6, IL8, and CX3CL1 to be strongly induced. The anti-apoptosis was active because BCL2A1 and BIRC3 significantly increased with a higher expression. The effects of anti-microbe and inflammation were weakly activated because TNF, IL1, CCL20, CFB, S100A, MMP9, and NOS2A significantly increased but with a low expression, IL6 and β-defensin decreased. These activities were supervised by the NFKBIA to avoid excessive damage to bMECs. The bta-let-7a-5p, bta-miR-30a-5p, bta-miR-125b, and bta-miR-100 were essential to regulate infection process in bMECs after LPS induction. Moreover, the lactation potential of bMECs was undermined due to significantly downregulated SOSTDC1, WNT7B, MSX1, and bta-miR-2425-5p. In summary, bMECs may not be good at going head-to-head with the pathogens; they seem to be mainly charged with sending out signals for help and anti-apoptosis for maintaining lives after LPS induction.
Collapse
Affiliation(s)
- Ling Chen
- School of Modern Agriculture and Biotechnology, Ankang University, Ankang, China
| | - Xiaolin Liu
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
- *Correspondence: Xiaolin Liu
| | - Zhixiong Li
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu, China
| | - Jian Wang
- School of Modern Agriculture and Biotechnology, Ankang University, Ankang, China
| | - Rongfu Tian
- School of Modern Agriculture and Biotechnology, Ankang University, Ankang, China
| | - Huilin Zhang
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| |
Collapse
|
26
|
SNAP25 is a potential prognostic biomarker for prostate cancer. Cancer Cell Int 2022; 22:144. [PMID: 35392903 PMCID: PMC8991690 DOI: 10.1186/s12935-022-02558-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 03/22/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Prostate cancer (PCa) is one of the most lethal cancers in male individuals. The synaptosome associated protein 25 (SNAP25) gene is a key mediator of multiple biological functions in tumors. However, its significant impact on the prognosis in PCa remains to be elucidated. METHODS We performed a comprehensive analysis of the Cancer Genome Atlas dataset (TCGA) to identify the differentially expressed genes between PCa and normal prostate tissue. We subjected the differentially expressed genes to gene ontology analysis and Kyoto Encyclopedia of Genes and Genomes functional analysis, and constructed a protein-protein interaction network. We then screened for pivotal genes to identify the hub genes of prognostic significance by performing Cox regression analysis. We identified SNAP25 as one such gene and analyzed the relationship between its expression in PCa to poor prognosis using GEPIA interactive web server. RESULTS TCGA database demonstrated that SNAP25 was significantly downregulated in PCa. The progressive decrease in SNAP25 expression with the increase in the clinical staging and grading of PCa demonstrates that reduced SNAP25 expression considerably exacerbates the clinical presentation. Our findings confirm that SNAP25 expression strongly correlates with overall survival, which was determined using the Gleason score. We also validated the role of SNAP25 expression in the prognosis of patients with PCa. We used Gene Set Enrichment and Gene Ontology analyses to evaluate the function of SNAP25 and further explored the association between SNAP25 expression and tumor-infiltrating immune cells using the Tumor Immune Assessment Resource database. We found for the first time that SNAP25 is involved in the activation, differentiation, and migration of immune cells in PCa. Its expression was positively correlated with immune cell infiltration, including B cells, CD8+ T cells, CD4+ T cells, neutrophils, dendritic cells, macrophages, and natural killer cells. SNAP25 expression also positively correlated with chemokines/chemokine receptors, suggesting that SNAP25 may regulate the migration of immune cells. In addition, our experimental results verified the low expression of SNAP25 in PCa cells. CONCLUSION Our findings indicate a relationship between SNAP25 expression and PCa, demonstrating that SNAP25 is a potential prognostic biomarker due to its vital role in immune infiltration.
Collapse
|
27
|
Mylod E, Lysaght J, Conroy MJ. Natural killer cell therapy: A new frontier for obesity-associated cancer. Cancer Lett 2022; 535:215620. [PMID: 35283210 DOI: 10.1016/j.canlet.2022.215620] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/16/2022] [Accepted: 03/03/2022] [Indexed: 02/09/2023]
Abstract
Natural killer (NK) cell infiltration of solid tumours is associated with better outcomes, placing augmentation of NK cell abundance in tumours as an attractive immunotherapeutic approach. The unique ability of NK cells to target cancer cells without antigen specificity increases their versatility and applicability as an immunotherapeutic tool. However, successful utilisation of NK cell-based therapies in solid tumours is still at an early stage. Obesity has become a global health epidemic, and the prevalence of obesity-associated cancers has significantly increased. Obesity-associated malignancies provide a unique challenge for the successful application of cell-based immunotherapies including NK cell-based therapies because significant numbers of NK and T cells are recruited to the visceral adipose tissue at the expense of successful tumour infiltration and eradication. As such, immunotherapy efficacy has been disappointing for obesity-associated malignancies such as oesophageal and gastric adenocarcinoma. Therefore, immunotherapies for obesity-associated cancers warrant our further attention. Indeed, it is becoming ever more obvious that more innovative approaches are needed to re-invigorate anti-tumour immunity and overcome immune exclusion in such tumours. In this review, we briefly summarise the dysfunctionality of NK cells in obesity-associated cancer. We outline the NK cell-based immunotherapeutic approaches which hold promise as effective treatments in this disease space, including CAR-NK cells. Furthermore, we suggest future avenues which possess the potential to transform immunotherapy and specifically NK cell therapy efficacy for obesity-associated cancer.
Collapse
Affiliation(s)
- Eimear Mylod
- Cancer Immunology and Immunotherapy Group, Department of Surgery, Trinity Translational Medicine Institute and Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin, 8, Ireland
| | - Joanne Lysaght
- Cancer Immunology and Immunotherapy Group, Department of Surgery, Trinity Translational Medicine Institute and Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin, 8, Ireland
| | - Melissa J Conroy
- Cancer Immunology and Immunotherapy Group, Department of Surgery, Trinity Translational Medicine Institute and Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin, 8, Ireland; Cancer Immunology Research Group, Department of Physiology, School of Medicine, Trinity College Dublin, Dublin, 2, Ireland.
| |
Collapse
|
28
|
Li J, Shi H, Yuan Z, Wu Z, Li H, Liu Y, Lu M, Lu M. The role of SPI1-TYROBP-FCER1G network in oncogenesis and prognosis of osteosarcoma, and its association with immune infiltration. BMC Cancer 2022; 22:108. [PMID: 35078433 PMCID: PMC8790913 DOI: 10.1186/s12885-022-09216-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/20/2022] [Indexed: 12/27/2022] Open
Abstract
Osteosarcoma is an aggressive malignant bone sarcoma worldwide. A causal gene network with specific functions underlying both the development and progression of OS was still unclear. Here we firstly identified the differentially expressed genes (DEGs) between control and OS samples, and then defined the hub genes and top clusters in the protein–protein interaction (PPI) network of these DEGs. By focusing on the hub gene TYROBP in the top 1 cluster, a conserved TYROBP co-expression network was identified. Then the effect of the network on OS overall survival was analyzed. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses and Gene Set Enrichment Analysis (GSEA) were used to explore the functions of the network. XCell platform and ssGSEA algorithm were conducted to estimate the status of immune infiltration. ChEA3 platform, GSEA enrichment analysis, and Drug Pair Seeker (DPS) were used to predict the key transcription factor and its upstream signal. We identified the downregulated SPI1-TYROBP-FCER1G network in OS, which were significantly enriched in immune-related functions. We also defined a two-gene signature (SPI1/FCER1G) that can predict poorer OS overall survival and the attenuated immune infiltration when downregulated. The SPI1-TYROBP-FCER1G network were potentially initiated by transcription factor SPI1 and would lead to the upregulated CD86, MHC-II, CCL4/CXCL10/CX3CL1 and hence increased immune infiltrations. With this study, we could better explore the mechanism of OS oncogenesis and metastasis for developing new therapies.
Collapse
|
29
|
Yue Y, Zhang Q, Sun Z. CX3CR1 Acts as a Protective Biomarker in the Tumor Microenvironment of Colorectal Cancer. Front Immunol 2022; 12:758040. [PMID: 35140706 PMCID: PMC8818863 DOI: 10.3389/fimmu.2021.758040] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/28/2021] [Indexed: 12/12/2022] Open
Abstract
The tumor microenvironment (TME) plays an important role in the pathogenesis of many cancers. We aimed to screen the TME-related hub genes of colorectal adenoma (CRAD) and identify possible prognostic biomarkers. The gene expression profiles and clinical data of 464 CRAD patients in The Cancer Genome Atlas (TCGA) database were downloaded. The Estimation of STromal and Immune cells in MAlignant Tumours using Expression data (ESTIMATE) algorithm was performed to calculate the ImmuneScore, StromalScore, and EstimateScore. Thereafter, differentially expressed genes (DEGs) were screened. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, and protein–protein interaction (PPI) analysis were performed to explore the roles of DEGs. Furthermore, univariate and multivariate Cox analyses were accomplished to identify independent prognostic factors of CRAD. CX3CR1 was selected as a hub gene, and the expression was confirmed in colorectal cancer (CRC) patients and cell lines. The correlations between CX3CR1 and tumor-infiltrating immune cells were estimated by Tumor IMmune Estimation Resource database (TIMER) and CIBERSORT analysis. Besides, we investigated the effects of coculture with THP-1-derived macrophages with HCT8 cells with low CX3CR1 expression on immune marker expression, cell viability, and migration. There were significant differences in the ImmuneScore and EstimateScore among different stages. Patients with low scores presented significantly lower lifetimes than those in the high-score group. Moreover, we recognized 1,578 intersection genes in ImmuneScore and StromalScore, and these genes were mainly enriched in numerous immune-related biological processes. CX3CR1 was found to be associated with immune cell infiltration levels, immune marker expression, and macrophage polarization. Simultaneous silencing of CX3CR1 and coculture with THP-1 cells further regulated macrophage polarization and promoted the cell proliferation and migration of CRC cells. CX3CR1 was decreased in CRAD tissues and cell lines and was related to T and N stages, tumor differentiation, and prognosis. Our results suggest that CX3CR1 contributes to the recruitment and regulation of immune-infiltrating cells and macrophage polarization in CRC and TAM-induced CRC progression. CX3CR1 may act as a prognostic biomarker in CRC.
Collapse
Affiliation(s)
- Yuanyi Yue
- Department of Gastroenterology Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qiang Zhang
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhengrong Sun
- BioBank, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Zhengrong Sun,
| |
Collapse
|
30
|
Mylod E, O’Connell F, Donlon NE, Butler C, Reynolds JV, Lysaght J, Conroy MJ. The Omentum in Obesity-Associated Cancer: A Hindrance to Effective Natural Killer Cell Migration towards Tumour Which Can Be Overcome by CX3CR1 Antagonism. Cancers (Basel) 2021; 14:cancers14010064. [PMID: 35008227 PMCID: PMC8750072 DOI: 10.3390/cancers14010064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/15/2021] [Accepted: 12/21/2021] [Indexed: 01/16/2023] Open
Abstract
Simple Summary Oesophagogastric adenocarcinomas (OAC) are cancers of the food pipe and stomach which have a strong link with obesity. Natural killer (NK) cells are assassins of the immune system and are crucial for eliminating cancer. We have shown previously that NK cells are pulled into fat in OAC patients by a signalling protein called fractalkine (CX3CL1). Once in fat, NK cells die or are profoundly altered. This diminishes their ability to kill the tumour. We report that exposure to fat can reduce movement of NK cells towards the tumour. However, if a drug called a CX3CR1 antagonist is used to antagonise the receptor for fractalkine, we can restore NK cell movement towards the tumour. When we activate NK cells with a protein called IL-15, fractalkine can reduce its effect on NK cells. This provides further evidence for using CX3CR1 antagonists to reduce NK cell migration to fat and boost NK cell movement to the tumour. Abstract Oesophagogastric adenocarcinomas (OAC) are obesity-associated malignancies, underpinned by severe immune dysregulation. We have previously shown that natural killer (NK) cells preferentially migrate to OAC omentum, where they undergo phenotypic and functional alterations and apoptosis. Furthermore, we have identified the CX3CR1:fractalkine (CX3CL1) pathway as pivotal in their recruitment to omentum. Here, we elucidate whether exposure to the soluble microenvironment of OAC omentum, and in particular fractalkine and IL-15 affects NK cell homing capacity towards oesophageal tumour. Our data uncover diminished NK cell migration towards OAC tumour tissue conditioned media (TCM) following exposure to omental adipose tissue conditioned media (ACM) and reveal that this migration can be rescued with CX3CR1 antagonist E6130. Furthermore, we show that fractalkine has opposing effects on NK cell migration towards TCM, when used alone or in combination with IL-15 and uncover its inhibitory effects on IL-15-mediated stimulation of death receptor ligand expression. Interestingly, treatment with fractalkine and/or IL-15 do not significantly affect NK cell adhesion to MAdCAM-1, despite changes they elicit to the expression of integrin α4β7. This study provides further evidence that CX3CR1 antagonism has therapeutic utility in rescuing NK cells from the deleterious effects of the omentum and fractalkine in OAC, thus limiting their dysfunction.
Collapse
Affiliation(s)
- Eimear Mylod
- Cancer Immunology and Immunotherapy Group, Department of Surgery, Trinity Translational Medicine Institute, Trinity College Dublin, St James’s Hospital, Dublin 8, Ireland; (E.M.); (N.E.D.); (J.L.)
| | - Fiona O’Connell
- Department of Surgery, Trinity St. James’s Cancer Institute, Trinity College Dublin, St James’s Hospital, Dublin 8, Ireland; (F.O.); (C.B.)
| | - Noel E. Donlon
- Cancer Immunology and Immunotherapy Group, Department of Surgery, Trinity Translational Medicine Institute, Trinity College Dublin, St James’s Hospital, Dublin 8, Ireland; (E.M.); (N.E.D.); (J.L.)
| | - Christine Butler
- Department of Surgery, Trinity St. James’s Cancer Institute, Trinity College Dublin, St James’s Hospital, Dublin 8, Ireland; (F.O.); (C.B.)
| | - John V. Reynolds
- Gastro-Intestinal Medicine and Surgery, St. James’s Hospital, Dublin 8, Ireland;
| | - Joanne Lysaght
- Cancer Immunology and Immunotherapy Group, Department of Surgery, Trinity Translational Medicine Institute, Trinity College Dublin, St James’s Hospital, Dublin 8, Ireland; (E.M.); (N.E.D.); (J.L.)
| | - Melissa J. Conroy
- Cancer Immunology and Immunotherapy Group, Department of Surgery, Trinity Translational Medicine Institute, Trinity College Dublin, St James’s Hospital, Dublin 8, Ireland; (E.M.); (N.E.D.); (J.L.)
- Cancer Immunology Research Group, Department of Physiology, School of Medicine, Trinity College Dublin, Dublin 2, Ireland
- Correspondence:
| |
Collapse
|
31
|
López-Cortés R, Vázquez-Estévez S, Fernández JÁ, Núñez C. Proteomics as a Complementary Technique to Characterize Bladder Cancer. Cancers (Basel) 2021; 13:cancers13215537. [PMID: 34771699 PMCID: PMC8582709 DOI: 10.3390/cancers13215537] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Although immunohistochemistry is a routine technique in clinics, and genomics has been rapidly incorporated, proteomics is a step behind. This general situation is also the norm in bladder cancer research. This review shows the contributions of proteomics to the molecular classification of bladder cancer, and to the study of histopathology due to tissue insults caused by tumors. Furthermore, the importance of proteomics for understanding the cellular and molecular changes as a consequence of the therapy of bladder cancer cannot be neglected. Abstract Bladder cancer (BC) is the most common tumor of the urinary tract and is conventionally classified as either non-muscle invasive or muscle invasive. In addition, histological variants exist, as organized by the WHO-2016 classification. However, innovations in next-generation sequencing have led to molecular classifications of BC. These innovations have also allowed for the tracing of major tumorigenic pathways and, therefore, are positioned as strong supporters of precision medicine. In parallel, immunohistochemistry is still the clinical reference to discriminate histological layers and to stage BC. Key contributions have been made to enlarge the panel of protein immunomarkers. Moreover, the analysis of proteins in liquid biopsy has also provided potential markers. Notwithstanding, their clinical adoption is still low, with very few approved tests. In this context, mass spectrometry-based proteomics has remained a step behind; hence, we aimed to develop them in the community. Herein, the authors introduce the epidemiology and the conventional classifications to review the molecular classification of BC, highlighting the contributions of proteomics. Then, the advances in mass spectrometry techniques focusing on maintaining the integrity of the biological structures are presented, a milestone for the emergence of histoproteomics. Within this field, the review then discusses selected proteins for the comprehension of the pathophysiological mechanisms of BC. Finally, because there is still insufficient knowledge, this review considers proteomics as an important source for the development of BC therapies.
Collapse
Affiliation(s)
- Rubén López-Cortés
- Research Unit, Hospital Universitario Lucus Augusti (HULA), Servizo Galego de Saúde (SERGAS), 27002 Lugo, Spain;
| | - Sergio Vázquez-Estévez
- Oncology Division, Hospital Universitario Lucus Augusti (HULA), Servizo Galego de Saúde (SERGAS), 27002 Lugo, Spain; (S.V.-E.); (J.Á.F.)
| | - Javier Álvarez Fernández
- Oncology Division, Hospital Universitario Lucus Augusti (HULA), Servizo Galego de Saúde (SERGAS), 27002 Lugo, Spain; (S.V.-E.); (J.Á.F.)
| | - Cristina Núñez
- Research Unit, Hospital Universitario Lucus Augusti (HULA), Servizo Galego de Saúde (SERGAS), 27002 Lugo, Spain;
- Correspondence:
| |
Collapse
|
32
|
Mylod E, Melo AM, Donlon NE, Davern M, Bhardwaj A, Reynolds JV, Lysaght J, Conroy MJ. Fractalkine Elicits Chemotactic, Phenotypic, and Functional Effects on CX3CR1 +CD27 - NK Cells in Obesity-Associated Cancer. THE JOURNAL OF IMMUNOLOGY 2021; 207:1200-1210. [PMID: 34321227 DOI: 10.4049/jimmunol.2000987] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 05/30/2021] [Indexed: 01/22/2023]
Abstract
Esophagogastric adenocarcinomas (EAC) are obesity-associated malignancies underpinned by severe immune dysregulation and inflammation. Our previous work indicates that NK cells migrate to EAC omentum, where they undergo phenotypic and functional alterations and apoptosis. In this study, we investigate whether such erroneous chemotaxis to omentum is paralleled by compromised NK cell infiltration of EAC patient tumor and examine the role of the inflammatory chemokine fractalkine in shaping the NK cell-mediated response. Our data show diminished NK cell frequencies in EAC tumor compared with those in the circulation and reveal that intratumoral NK cell frequencies decline as visceral obesity increases in EAC patients. Our in vitro findings demonstrate that antagonism of fractalkine receptor CX3CR1 significantly reduces NK cell migration to EAC patient-derived, omental adipose tissue-conditioned media, but not toward tumor-conditioned media. These data suggest fractalkine is a key driver of NK cell chemotaxis to omentum but has a lesser role in NK cell homing to tumor in EAC. We propose that this may offer a novel therapeutic strategy to limit NK cell depletion in the omentum of obese EAC patients, and our data suggest the optimal timing for CX3CR1 antagonism is after neoadjuvant chemoradiotherapy. Our functional studies demonstrate that fractalkine induces the conversion from CX3CR1+CD27- to CX3CR1-CD27+ NK cells and increases their IFN-γ and TNF-α production, indicative of its role in shaping the dominant NK cell phenotype in EAC omentum. This study uncovers crucial and potentially druggable pathways underpinning NK cell dysfunction in obesity-associated cancer and provides compelling insights into fractalkine's diverse biological functions.
Collapse
Affiliation(s)
- Eimear Mylod
- Cancer Immunology and Immunotherapy Group, Department of Surgery, Trinity Translational Medicine Institute and the Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland
| | - Ashanty M Melo
- Cancer Immunology and Immunotherapy Group, Department of Surgery, Trinity Translational Medicine Institute and the Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland
| | - Noel E Donlon
- Cancer Immunology and Immunotherapy Group, Department of Surgery, Trinity Translational Medicine Institute and the Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland.,Gastro-intestinal Medicine and Surgery, St. James's Hospital, Dublin, Ireland; and
| | - Maria Davern
- Cancer Immunology and Immunotherapy Group, Department of Surgery, Trinity Translational Medicine Institute and the Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland
| | - Anshul Bhardwaj
- Department of Surgery, Trinity College Dublin and St. James's Hospital, Dublin, Ireland
| | - John V Reynolds
- Gastro-intestinal Medicine and Surgery, St. James's Hospital, Dublin, Ireland; and
| | - Joanne Lysaght
- Cancer Immunology and Immunotherapy Group, Department of Surgery, Trinity Translational Medicine Institute and the Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland
| | - Melissa J Conroy
- Cancer Immunology and Immunotherapy Group, Department of Surgery, Trinity Translational Medicine Institute and the Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland;
| |
Collapse
|
33
|
Ramachandran S, Verma AK, Dev K, Goyal Y, Bhatt D, Alsahli MA, Rahmani AH, Almatroudi A, Almatroodi SA, Alrumaihi F, Khan NA. Role of Cytokines and Chemokines in NSCLC Immune Navigation and Proliferation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5563746. [PMID: 34336101 PMCID: PMC8313354 DOI: 10.1155/2021/5563746] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/23/2021] [Accepted: 06/28/2021] [Indexed: 12/14/2022]
Abstract
With over a million deaths every year around the world, lung cancer is found to be the most recurrent cancer among all types. Nonsmall cell lung carcinoma (NSCLC) amounts to about 85% of the entire cases. The other 15% owes it to small cell lung carcinoma (SCLC). Despite decades of research, the prognosis for NSCLC patients is poorly understood with treatment options limited. First, this article emphasises on the part that tumour microenvironment (TME) and its constituents play in lung cancer progression. This review also highlights the inflammatory (pro- or anti-) roles of different cytokines (ILs, TGF-β, and TNF-α) and chemokine (CC, CXC, C, and CX3C) families in the lung TME, provoking tumour growth and subsequent metastasis. The write-up also pinpoints recent developments in the field of chemokine biology. Additionally, it covers the role of extracellular vesicles (EVs), as alternate carriers of cytokines and chemokines. This allows the cytokines/chemokines to modulate the EVs for their secretion, trafficking, and aid in cancer proliferation. In the end, this review also stresses on the role of these factors as prognostic biomarkers for lung immunotherapy, apart from focusing on inflammatory actions of these chemoattractants.
Collapse
Affiliation(s)
- Sowmya Ramachandran
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Main Campus, Penang, Malaysia
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Amit K Verma
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Kapil Dev
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Yamini Goyal
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Deepti Bhatt
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Mohammed A Alsahli
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraidah, Saudi Arabia
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraidah, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraidah, Saudi Arabia
| | - Saleh A Almatroodi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraidah, Saudi Arabia
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraidah, Saudi Arabia
| | - Naushad Ahmad Khan
- Department of Biochemistry, Faculty of Medical Sciences, Alatoo International University, Bishkek, Kyrgyzstan
- Department of Trauma and Surgery, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
34
|
Wu J, Li L, Zhang H, Zhao Y, Zhang H, Wu S, Xu B. A risk model developed based on tumor microenvironment predicts overall survival and associates with tumor immunity of patients with lung adenocarcinoma. Oncogene 2021; 40:4413-4424. [PMID: 34108619 DOI: 10.1038/s41388-021-01853-y] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/10/2021] [Accepted: 05/21/2021] [Indexed: 12/24/2022]
Abstract
Tumor microenvironment (TME) has been reported to exhibit a crucial effect in lung cancer. Therefore, this study was aimed to investigate the genes associated with TME and develop a risk score to predict the overall survival (OS) of patients with lung adenocarcinoma (LUAD) based on these genes. The immune and stromal scores were generated by the ESTIMATE algorithm for LUAD patients in The Cancer Genome Atlas (TCGA) database. Differentially expressed gene and weighted gene co-expression network analyses were used to derive immune- and stromal-related genes. The Least Absolute Shrinkage and Selection Operator (LASSO)-Cox regression was applied for further selection and the selected genes were inputted into stepwise regression to develop TME-related risk score (TMErisk) which was further validated in Gene Expression Omnibus (GEO) datasets. TMErisk-related biological phenotypes were analyzed in function enrichment, tumor immune signature, and tumor mutation signature. The patient's response to immunotherapy was inferred by the tumor immune dysfunction and exclusion (TIDE) score and immunophenoscore (IPS). According to our results, TMErisk was developed based on SERPINE1, CX3CR1, CD200R1, GBP1, IRF1, STAP1, LOX, and OR7E47P. Furthermore, high TMErisk was identified as a poor factor for OS in TCGA and GEO datasets, as well as in subgroup analysis with different gender, smoking status, age, race, anatomic site, therapies, and tumor-node-metastasis (TNM) stages. Higher TMErisk is also associated negatively with the abundance of B cells, CD4+ T cells, CD8+ T cells, neutrophils, macrophages, and other stromal or immune cells. Several genes of the human leukocyte antigen (HLA) family and immune checkpoints were less expressed in the high-TMErisk group. Mutations of 19 genes occurred more frequently in the high-TMErisk group. These mutations may be associated with TME change and indicate patients' response to immunotherapy. According to our analyses, a lower TMErisk score may indicate better response and OS outcome of immunotherapy.
Collapse
Affiliation(s)
- Jie Wu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lan Li
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Huibo Zhang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yaqi Zhao
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Haohan Zhang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Siyi Wu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bin Xu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
35
|
Delprat V, Michiels C. A bi-directional dialog between vascular cells and monocytes/macrophages regulates tumor progression. Cancer Metastasis Rev 2021; 40:477-500. [PMID: 33783686 PMCID: PMC8213675 DOI: 10.1007/s10555-021-09958-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/23/2021] [Indexed: 02/06/2023]
Abstract
Cancer progression largely depends on tumor blood vessels as well on immune cell infiltration. In various tumors, vascular cells, namely endothelial cells (ECs) and pericytes, strongly regulate leukocyte infiltration into tumors and immune cell activation, hence the immune response to cancers. Recently, a lot of compelling studies unraveled the molecular mechanisms by which tumor vascular cells regulate monocyte and tumor-associated macrophage (TAM) recruitment and phenotype, and consequently tumor progression. Reciprocally, TAMs and monocytes strongly modulate tumor blood vessel and tumor lymphatic vessel formation by exerting pro-angiogenic and lymphangiogenic effects, respectively. Finally, the interaction between monocytes/TAMs and vascular cells is also impacting several steps of the spread of cancer cells throughout the body, a process called metastasis. In this review, the impact of the bi-directional dialog between blood vascular cells and monocytes/TAMs in the regulation of tumor progression is discussed. All together, these data led to the design of combinations of anti-angiogenic and immunotherapy targeting TAMs/monocyte whose effects are briefly discussed in the last part of this review.
Collapse
Affiliation(s)
- Victor Delprat
- Biochemistry and Cellular Biology Research Unit (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 61 Rue de Bruxelles, B-5000, Namur, Belgium
| | - Carine Michiels
- Biochemistry and Cellular Biology Research Unit (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 61 Rue de Bruxelles, B-5000, Namur, Belgium.
| |
Collapse
|
36
|
Saxena S, Singh RK. Chemokines orchestrate tumor cells and the microenvironment to achieve metastatic heterogeneity. Cancer Metastasis Rev 2021; 40:447-476. [PMID: 33959849 PMCID: PMC9863248 DOI: 10.1007/s10555-021-09970-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/22/2021] [Indexed: 01/26/2023]
Abstract
Chemokines, a subfamily of the cell cytokines, are low molecular weight proteins known to induce chemotaxis in leukocytes in response to inflammatory and pathogenic signals. A plethora of literature demonstrates that chemokines and their receptors regulate tumor progression and metastasis. With these diverse functionalities, chemokines act as a fundamental link between the tumor cells and their microenvironment. Recent studies demonstrate that the biology of chemokines and their receptor in metastasis is complex as numerous chemokines are involved in regulating site-specific tumor growth and metastasis. Successful treatment of disseminated cancer is a significant challenge. The most crucial problem for treating metastatic cancer is developing therapy regimes capable of overcoming heterogeneity problems within primary tumors and among metastases and within metastases (intralesional). This heterogeneity of malignant tumor cells can be related to metastatic potential, response to chemotherapy or specific immunotherapy, and many other factors. In this review, we have emphasized the role of chemokines in the process of metastasis and metastatic heterogeneity. Individual chemokines may not express the full potential to address metastatic heterogeneity, but chemokine networks need exploration. Understanding the interplay between chemokine-chemokine receptor networks between the tumor cells and their microenvironment is a novel approach to overcome the problem of metastatic heterogeneity. Recent advances in the understanding of chemokine networks pave the way for developing a potential targeted therapeutic strategy to treat metastatic cancer.
Collapse
Affiliation(s)
- Sugandha Saxena
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, NE, 68198-5900, USA
| | - Rakesh K Singh
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, NE, 68198-5900, USA.
| |
Collapse
|
37
|
Wege AK, Dreyer TF, Teoman A, Ortmann O, Brockhoff G, Bronger H. CX3CL1 Overexpression Prevents the Formation of Lung Metastases in Trastuzumab-Treated MDA-MB-453-Based Humanized Tumor Mice (HTM). Cancers (Basel) 2021; 13:cancers13102459. [PMID: 34070094 PMCID: PMC8158361 DOI: 10.3390/cancers13102459] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 12/23/2022] Open
Abstract
Simple Summary In about 15–18% of breast cancers the HER2 gene is amplified, which allows an anti-HER2 treatment. However, about 50% of HER2-positive patients experience de novo or acquired resistance to the antibody-based therapy with trastuzumab. Therefore, the identification of predictive markers for therapy success and novel combination strategies is needed. Here we explored the impact of CX3CL1 on trastuzumab treatment efficiency and immunological mechanism involved in a humanized tumor mouse model. Trastuzumab treatment showed pronounced efficiency in CX3CL1 overexpressing cancer cells compared to low expressing cells preventing lung metastasis, while the administration of CX3CL1 shedding inhibition did not cause an enhanced treatment effect. Moreover, the application of shedding inhibitors to CX3CL1 overexpression tumors resulted in a slightly enhanced tumor growth. Therefore, the presence of CX3CL1 might predict a pronounced response to trastuzumab therapy in patients and should be investigated in a large cohort of HER2+ patients. Abstract CX3CL1 is a multifunctional chemokine that is involved in numerous biological processes, such as immune cell attraction and enhanced tumor immune cell interaction, but also in enhancing tumor cell proliferation and metastasis. The multifarious activity is partially determined by two CX3CL1 isoforms, a membrane-bound and a soluble version generated by proteolytic cleavage through proteases. Here, we investigated the impact of CX3CL1 overexpression in MDA-MB-453 and SK-BR-3 breast cancer cells. Moreover, we evaluated the therapeutic capacity of Matrix-Metalloproteinases-inhibitors TMI-1 and GI254023X in combination with the anti-HER2 antibody trastuzumab in vitro and in vivo. TMI-1 and GI254023X caused a reduced shedding of CX3CL1 and of HER2 in vitro but without effects on tumor cell proliferation or viability. In addition, trastuzumab treatment did not retard MDA-MB-453 cell expansion in vitro unless CX3CL1 was overexpressed upon transfection (MDA-MB-453CX3CL1). In humanized tumor mice, which show a coexistence of human tumor and human immune system, CX3CL1 overexpression resulted in a slightly enhanced tumor growth. However, trastuzumab treatment attenuated tumor growth of both MDA-MB-453CX3CL1 and empty vector transfected MDA-MB-453 transplanted mice but showed enhanced efficiency especially in preventing lung metastases in CX3CL1 overexpressing cancer cells. However, TMI-1 did not further enhance the trastuzumab treatment efficacy.
Collapse
Affiliation(s)
- Anja Kathrin Wege
- Department of Gynecology and Obstetrics, University Cancer Center Regensburg, 93053 Regensburg, Germany; (A.T.); (O.O.); (G.B.)
- Correspondence: ; Tel.: +(49)-(0)941-944-8913
| | - Tobias F. Dreyer
- Department of Gynecology and Obstetrics, Technical University of Munich, 81675 Munich, Germany; (T.F.D.); (H.B.)
| | - Attila Teoman
- Department of Gynecology and Obstetrics, University Cancer Center Regensburg, 93053 Regensburg, Germany; (A.T.); (O.O.); (G.B.)
| | - Olaf Ortmann
- Department of Gynecology and Obstetrics, University Cancer Center Regensburg, 93053 Regensburg, Germany; (A.T.); (O.O.); (G.B.)
| | - Gero Brockhoff
- Department of Gynecology and Obstetrics, University Cancer Center Regensburg, 93053 Regensburg, Germany; (A.T.); (O.O.); (G.B.)
| | - Holger Bronger
- Department of Gynecology and Obstetrics, Technical University of Munich, 81675 Munich, Germany; (T.F.D.); (H.B.)
| |
Collapse
|
38
|
Li ZR, Han YS, Liu Z, Zhao HQ, Liu J, Yang H, Wang YH. GR/NF-κB signaling pathway regulates hippocampal inflammatory responses in diabetic rats with chronic unpredictable mild stress. Eur J Pharmacol 2021; 895:173861. [PMID: 33465356 DOI: 10.1016/j.ejphar.2021.173861] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 12/23/2020] [Accepted: 01/07/2021] [Indexed: 12/19/2022]
Abstract
Clinical studies have shown that diabetes can present with underlying depression, and a combination of the two can lead to emotional, memory and cognitive disorders, closely associated with hippocampal neuroinflammation. However, the mechanism underlying the development of hippocampal neuroinflammation under the above condition remains elusive. The aims of this study were to explore the pathogenesis of diabetes combined with depression, and the effect of dexamethasone (Dex), a glucocorticoid receptor (GR) agonist, on hippocampal neuroinflammation in diabetic rats with chronic unpredictable mild stress (CUMS). Therefore, rats were intragastrically fed on a high-fat diet (10% cholesterol 10 ml/kg) for 14 days and thereafter injected with 38 mg/kg of streptozotocin on the 15th day to induce diabetes. Dex treatment of the diabetic and CUMS rats ameliorated the depression-associated behavior in the respective rats. Apart from enhanced depressive behavior, diabetes-depressed condition also up-regulated the expression of hippocampus microglia chemokine Ⅰ receptor (CX3CR1) and secretion of several pro-inflammatory factors, in particular, interleukin 1β (IL-1β), interleukin-6 (IL-6), interleukin-8 (IL-8) and tumor necrosis factor - α (TNF-α). Hematoxylin-eosin staining revealed inflammatory damages in the hippocampus. Western blot analysis further revealed repression of GR proteins converse to the nuclear factor kappa-B (NF-κB) proteins, which were up-regulated. Intriguingly, Dex reversed the above events by inhibiting inflammatory reactions in the hippocampus. Consequently, played an antidepressant effect in diabetic and CUMS model rats. Overall, findings of this research suggest that the physiopathology of diabetes with stress cormobity are mediated by inflammatory reactions in the hippocampus. In particular, the responses are associated with regulation of GR/NF-κB signaling pathway.
Collapse
MESH Headings
- Animals
- Antidepressive Agents/pharmacology
- Behavior, Animal
- Blood Glucose/metabolism
- Chronic Disease
- Cytokines/metabolism
- Depression/metabolism
- Depression/physiopathology
- Depression/prevention & control
- Depression/psychology
- Dexamethasone/pharmacology
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/physiopathology
- Glucocorticoids/pharmacology
- Hippocampus/drug effects
- Hippocampus/metabolism
- Hippocampus/physiopathology
- Inflammation/metabolism
- Inflammation/physiopathology
- Inflammation/prevention & control
- Inflammation/psychology
- Inflammation Mediators/metabolism
- Lipids/blood
- Morris Water Maze Test
- NF-kappa B/metabolism
- Open Field Test
- Rats, Sprague-Dawley
- Receptors, Glucocorticoid/agonists
- Receptors, Glucocorticoid/metabolism
- Signal Transduction
- Stress, Psychological/drug therapy
- Stress, Psychological/metabolism
- Stress, Psychological/physiopathology
- Stress, Psychological/psychology
- Rats
Collapse
Affiliation(s)
- Zi-Rong Li
- State Key Laboratory of Chinese Medicine Powder and Medicine Innovation in Hunan (incubation), Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yuan-Shan Han
- Department of Experimental Center for Medical Innovation, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Zhuo Liu
- Department of Education and Science, Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha, China.
| | - Hong-Qing Zhao
- State Key Laboratory of Chinese Medicine Powder and Medicine Innovation in Hunan (incubation), Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jian Liu
- Department of Experimental Center for Medical Innovation, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Hui Yang
- Department of Experimental Center for Medical Innovation, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yu-Hong Wang
- State Key Laboratory of Chinese Medicine Powder and Medicine Innovation in Hunan (incubation), Hunan University of Chinese Medicine, Changsha, Hunan, China.
| |
Collapse
|
39
|
Ligand-competent fractalkine receptor is expressed on exosomes. Biochem Biophys Rep 2021; 26:100932. [PMID: 33553692 PMCID: PMC7859287 DOI: 10.1016/j.bbrep.2021.100932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/18/2020] [Accepted: 01/11/2021] [Indexed: 11/28/2022] Open
Abstract
Expression of chemokine receptor CX3CR1 is reportedly restricted to several cell types including natural killer cells, cytotoxic T cells, monocytes, and macrophages. However, its expression and function on exosomes, which are nanosized extracellular vesicles known to act as mediators of intercellular communications, remain unclear. Here, we investigated CX3CR1 expression on exosomes isolated from various cell types. Although we found that all the exosomes tested in our study highly expressed CX3CR1, this chemokine receptor was expressed only inside, but barely on, their source cells. Moreover, exosomal CX3CR1 was capable of binding soluble CX3CL1. Therefore, our study suggests that CX3CR1 is a novel and ligand-competent exosome receptor. CX3CR1 is highly expressed by exosomes. Expression of CX3CR1 is restricted within, but not on, the cells. Exosomal CX3CR1 is capable of binding soluble CX3CL1. CX3CL1 binding of exosomes may deprive their source cells of the chance to bind this chemokine.
Collapse
|
40
|
Xu L, Qiao Y, Zheng Q. Identification of an autophagy-related gene expression signature for colorectal cancer. ALL LIFE 2021. [DOI: 10.1080/26895293.2021.1872716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Lijun Xu
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Yuqi Qiao
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Qing Zheng
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| |
Collapse
|
41
|
巩 奇, 姜 艳, 卢 俊, 尤 燕. [Fractalkine inhibits lipopolysaccharide-induced M1 polarization of macrophages by activating Wnt/β-catenin signaling pathway]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2020; 40:1726-1731. [PMID: 33380403 PMCID: PMC7835690 DOI: 10.12122/j.issn.1673-4254.2020.12.05] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To explore the mechanism by which fractalkine (CX3CL1; FKN) inhibits lipopolysaccharide (LPS)-induced immunological response in RAW264.7 cells. METHODS A RAW264.7 cell model overexpressing FKN was established by transfection with the lentiviral vector CX3CL1. The effects of LPS, ICG-001 (a Wnt/β-catenin signaling pathway inhibitor), either alone or in combination, on M1 polarization of na?ve and FKN-overexpressing RAW264.7 cells were evaluated by detecting of intereukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) using ELISA. The protein expressions of the inflammatory factors (iNOS, TNF-α, and IL-6), FKN, Wnt-4, and β-catenin were detected by Western blotting. The subcellular localization of IL-6 in the cells was detected by immunofluorescence assay. RESULTS The RAW264.7 cell model of FKN overexpression was successfully established. In na?ve RAW264.7 cells, treatment with both ICG-001 and LPS, as compared with LPS alone, significant promoted TNF-α and IL-6 secretions, increased intracellular levels of TNF-α, IL-6 and iNOS (P < 0.05), and reduced intracellular FKN, Wnt-4 and β-catenin levels (P < 0.01). In FKN-overexpressing RAW264.7 cells, LPS treatment significantly reduced the secretion of TNF-α and IL-6 and intracellular levels of TNF-α, IL-6 and iNOS (P < 0.01), increased intracellular FKN, Wnt-4 and β-catenin protein contents (P < 0.01), and inhibited IL-6 localization in the cytoplasm; compared with LPS, the combined treatment with ICG-001 and LPS obviously enhanced IL-6 localization in the cytoplasm of the cells. CONCLUSIONS FKN overexpression suppresses LPS-induced M1 type polarization of RAW264.7 cells by activating Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- 奇明 巩
- 右江民族医学院附属医院肾内科,广西 百色 533000Department of Nephrology, Affiliated Hospital, Youjiang Medical University for Nationalities, Baise 533000, China
| | - 艳 姜
- 右江民族医学院科学实验中心,广西 百色 533000Science Laboratory Center, Youjiang Medical University for Nationalities, Baise 533000, China
| | - 俊玲 卢
- 右江民族医学院附属医院肾内科,广西 百色 533000Department of Nephrology, Affiliated Hospital, Youjiang Medical University for Nationalities, Baise 533000, China
| | - 燕舞 尤
- 右江民族医学院附属医院肾内科,广西 百色 533000Department of Nephrology, Affiliated Hospital, Youjiang Medical University for Nationalities, Baise 533000, China
| |
Collapse
|
42
|
Tezcan G, Garanina EE, Zhuravleva MN, Hamza S, Rizvanov AA, Khaiboullina SF. Rab GTPase Mediating Regulation of NALP3 in Colorectal Cancer. Molecules 2020; 25:molecules25204834. [PMID: 33092247 PMCID: PMC7587934 DOI: 10.3390/molecules25204834] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 02/06/2023] Open
Abstract
The NALP3 inflammasome signaling contributes to inflammation within tumor tissues. This inflammation may be promoted by the vesicle trafficking of inflammasome components and cytokines. Rab5, Rab7 and Rab11 regulate vesicle trafficking. However, the role of these proteins in the regulation of inflammasomes remains largely unknown. To elucidate the role of these Rab proteins in inflammasome regulation, HCT-116, a colorectal cancer (CRC) cell line expressing pDsRed-Rab5 wild type (WT), pDsRed-Rab5 dominant-negative (DN), pDsRed-Rab7 WT, pDsRed-Rab7 DN, pDsRed-Rab11 WT and pDsRed-Rab11 DN were treated with lipopolysaccharide (LPS)/nigericin. Inflammasome activation was analyzed by measuring the mRNA expression of NLRP3, Pro-CASP1, RAB39A and Pro-IL-1β, conducting immunofluorescence imaging and western blotting of caspase-1 and analysing the secretion levels of IL-1β using enzyme-linked immunosorbent assay (ELISA). The effects of Rabs on cytokine release were evaluated using MILLIPLEX MAP Human Cytokine/Chemokine Magnetic Bead Panel-Premixed 41 Plex. The findings showed that LPS/nigericin-treated cells expressing Rab5-WT indicated increased NALP3 expression and secretion of the IL-1β as compared to Rab5-DN cells. Caspase-1 was localized in the nucleus and cytosol of Rab5-WT cells but was localized in the cytosol in Rab5-DN cells. There were no any effects of Rab7 and Rab11 expression on the regulation of inflammasomes. Our results suggest that Rab5 may be a potential target for the regulation of NALP3 in the treatment of the CRC inflammation.
Collapse
Affiliation(s)
- Gülçin Tezcan
- Institution of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (G.T.); (E.E.G.); (M.N.Z.); (S.H.); (A.A.R.)
- Faculty of Dentistry, Department of Fundamental Sciences, Bursa Uludag University, Bursa 16240, Turkey
| | - Ekaterina E. Garanina
- Institution of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (G.T.); (E.E.G.); (M.N.Z.); (S.H.); (A.A.R.)
| | - Margarita N. Zhuravleva
- Institution of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (G.T.); (E.E.G.); (M.N.Z.); (S.H.); (A.A.R.)
| | - Shaimaa Hamza
- Institution of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (G.T.); (E.E.G.); (M.N.Z.); (S.H.); (A.A.R.)
| | - Albert A. Rizvanov
- Institution of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (G.T.); (E.E.G.); (M.N.Z.); (S.H.); (A.A.R.)
| | - Svetlana F. Khaiboullina
- Institution of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (G.T.); (E.E.G.); (M.N.Z.); (S.H.); (A.A.R.)
- Department of Microbiology and Immunology, University of Nevada, Reno, NV 89557, USA
- Correspondence: ; Fax: +1-775682-8258
| |
Collapse
|
43
|
Zhang SY, Song XY, Li Y, Ye LL, Zhou Q, Yang WB. Tumor-associated macrophages: A promising target for a cancer immunotherapeutic strategy. Pharmacol Res 2020; 161:105111. [PMID: 33065284 DOI: 10.1016/j.phrs.2020.105111] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/18/2020] [Accepted: 07/22/2020] [Indexed: 12/13/2022]
Abstract
Macrophages, a type of myeloid immune cell, play essential roles in fighting against pathogenic invasion and activating T cell-mediated adaptive immune responses. As a major constituent of the tumor microenvironment (TME), macrophages play a complex role in tumorigenesis and tumor progression. They can inhibit tumor growth by releasing proinflammatory cytokines and exerting cytotoxic activities but principally contribute to tumor progression by promoting tumor proliferation, angiogenesis, and metastasis. The tumor-promoting hallmarks of macrophages have aroused widespread interest in targeting tumor-associated macrophages (TAMs) for cancer immunotherapy. Increasing preclinical and clinical studies suggest that TAMs are a promising target for cancer immunotherapy. To date, TAM-targeted therapeutic strategies have mainly been divided into two kinds: inhibiting pro-tumor TAMs and activating anti-tumor TAMs. We reviewed the heterogeneous and plastic characteristics of macrophages in the TME and the feasible strategies to target TAMs in cancer immunotherapy and summarized the complementary effect of TAM-targeted therapy with traditional treatments or other immunotherapies.
Collapse
Affiliation(s)
- Si-Yu Zhang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China.
| | - Xin-Yu Song
- Department of Respiratory Medicine, Yichang Central People's Hospital, The First College of Clinical Medical Science, China Three Gorges University, Yichang, 443000, China.
| | - Yang Li
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China.
| | - Lin-Lin Ye
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China.
| | - Qiong Zhou
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China.
| | - Wei-Bing Yang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China.
| |
Collapse
|
44
|
Caligiuri A, Pastore M, Lori G, Raggi C, Di Maira G, Marra F, Gentilini A. Role of Chemokines in the Biology of Cholangiocarcinoma. Cancers (Basel) 2020; 12:cancers12082215. [PMID: 32784743 PMCID: PMC7463556 DOI: 10.3390/cancers12082215] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023] Open
Abstract
Cholangiocarcinoma (CCA), a heterogeneous tumor with poor prognosis, can arise at any level in the biliary tree. It may derive from epithelial cells in the biliary tracts and peribiliary glands and possibly from progenitor cells or even hepatocytes. Several risk factors are responsible for CCA onset, however an inflammatory milieu nearby the biliary tree represents the most common condition favoring CCA development. Chemokines play a key role in driving the immunological response upon liver injury and may sustain tumor initiation and development. Chemokine receptor-dependent pathways influence the interplay among various cellular components, resulting in remodeling of the hepatic microenvironment towards a pro-inflammatory, pro-fibrogenic, pro-angiogenic and pre-neoplastic setting. Moreover, once tumor develops, chemokine signaling may influence its progression. Here we review the role of chemokines in the regulation of CCA development and progression, and the modulation of angiogenesis, metastasis and immune control. The potential role of chemokines and their receptors as possible biomarkers and/or therapeutic targets for hepatobiliary cancer is also discussed.
Collapse
Affiliation(s)
| | | | | | | | | | - Fabio Marra
- Correspondence: (F.M.); (A.G.); Tel.: +39-055-2758095 or +39-055-2758498 or +39-055-2758499 (F.M.); +39-055-2751801 (A.G.)
| | - Alessandra Gentilini
- Correspondence: (F.M.); (A.G.); Tel.: +39-055-2758095 or +39-055-2758498 or +39-055-2758499 (F.M.); +39-055-2751801 (A.G.)
| |
Collapse
|