1
|
Abou Azar S, Tobias J, Applewhite M, Angelos P, Keutgen XM. Medullary Thyroid Cancer: Single Institute Experience Over 3 Decades and Risk Factors for Recurrence. J Clin Endocrinol Metab 2024; 109:2729-2734. [PMID: 38651609 DOI: 10.1210/clinem/dgae279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
CONTEXT Medullary thyroid cancer (MTC) has a historic recurrence rate up to 50%, and surgery remains the only cure. OBJECTIVE This study aims to assess factors related to recurrence and metastatic spread in MTC. METHODS Retrospective chart review was performed from 1990 to 2023 at a single specialized tertiary care referral center. Descriptive analysis and regression models were used for analysis. Sixty-eight patients with MTC, who underwent surgery, were included and the main outcome measure was recurrence. RESULTS Mean age at diagnosis was 54.9 years (42.2-64.1), 65% (n = 44) females. Lymph node and distant metastases were found in 24% (n = 16) and 4% (n = 3), respectively. RET mutations were present in 52% (n = 35): MTC risk levels were highest 6%, high 7%, and moderate 39%. Mean tumor size was 1.9 cm (1.2-3.2) and mean preoperative calcitonin was 504.4 pg/mL (133.2-1833.8). Total thyroidectomy (TT) was performed in 10 patients, TT + central neck dissection (CND) in 28, and TT + CND + lateral neck dissection (LND) in 25. On final pathology, 40% had positive central nodes and 25% had positive lateral nodes. Recurrence was 22%, median follow-up 4.7 years (1.2-28.0). Male gender (hazard ratio [HR] 5.81, P = .021), positive lateral neck nodes (HR 8.10, P = .011), and high/highest MTC risk level RET mutations (HR 8.66, P = .004) were significantly associated with recurrence. Preoperative calcitonin >2175 pg/mL was a strong predictor for distant metastasis (area under the curve [AUC] 0.893) and a good predictor for lateral neck disease (AUC 0.706). Extent of surgery was not significantly associated with recurrence (P = .634). CONCLUSION One of 4 patients undergoing surgery for MTC will recur. Risk factors associated with recurrence are male gender, lateral lymph node metastasis, and high/highest MTC risk level mutations, but not necessarily surgery type. Preoperative calcitonin >2175 pg/mL is suggestive of advanced disease and should prompt further evaluation.
Collapse
Affiliation(s)
- Sara Abou Azar
- Department of Surgery, University of Chicago Medicine, Chicago, IL 60637, USA
| | - Joseph Tobias
- Department of Surgery, University of Chicago Medicine, Chicago, IL 60637, USA
| | - Megan Applewhite
- Department of Surgery, University of Chicago Medicine, Chicago, IL 60637, USA
| | - Peter Angelos
- Department of Surgery, University of Chicago Medicine, Chicago, IL 60637, USA
| | - Xavier M Keutgen
- Department of Surgery, University of Chicago Medicine, Chicago, IL 60637, USA
| |
Collapse
|
2
|
Cao J, Zhao S, Zhang Y, Cai J, Zhang L, Yang L. Pregnancy influences expression of interferon-stimulated genes, progesterone receptor and progesterone-induced blocking factor in ovine thyroid. Anim Biosci 2024; 37:1377-1386. [PMID: 38665088 PMCID: PMC11222854 DOI: 10.5713/ab.23.0508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/12/2024] [Accepted: 02/18/2024] [Indexed: 07/05/2024] Open
Abstract
OBJECTIVE Embryonic interferon-tau (IFNT) and progesterone affect expression of interferonstimulated genes (ISGs), progesterone receptor (PGR) and progesterone-induced blocking factor (PIBF) in the ovine thyroid. METHODS Thyroids of ewes were sampled at day 16 of nonpregnancy, days 13, 16, and 25 of pregnancy, and real-time quantitative polymerase chain reaction assay, western blot and immunohistochemistry were used to detect expression of ISGs, PGR, and PIBF. RESULTS Free ISG15 protein was undetected, but ISG15 conjugated proteins upregulated at day 16 of pregnancy, and expression levels of ISG15 conjugated proteins, PGR isoform (70 kDa), PIBF, interferon-gamma-inducible protein 10 and myxovirusresistance protein 1 peaked, but expression level of signal transducer and activator of transcription 1 was the lowest at day 16 of pregnancy. In addition, the expression levels of PGR isoform (70 kDa) and signal transducer and activator of transcription 1 (STAT1) decreased, but levels of PGR isoform (43 kDa), 2',5'-oligoadenylate synthetase, IP-10 and MX1 increased at day 25 of pregnancy comparing with day 16 of the estrous cycle. CONCLUSION Early pregnancy affects expression of ISGs, PGR, and PIBF in maternal thyroid through IFNT and progesterone, which may regulate thyroid autoimmunity and thyroid hormone secretion in ewes.
Collapse
Affiliation(s)
- Jianhua Cao
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038,
China
| | - Shuxin Zhao
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038,
China
| | - Yaqi Zhang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038,
China
| | - Jiabao Cai
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038,
China
| | - Leying Zhang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038,
China
| | - Ling Yang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038,
China
| |
Collapse
|
3
|
Ni J, Tu P, Ling Y. Gender and tumor size-specific calcitonin cutoff value for diagnosing MTC in 10,618 patients with thyroid nodule surgery. Endocrine 2024:10.1007/s12020-024-03969-z. [PMID: 39037673 DOI: 10.1007/s12020-024-03969-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/13/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND Calcitonin is a sensitive marker for medullary thyroid carcinoma (MTC) diagnosis and postsurgical follow-up. This study aimed to define the gender and tumor size-specific calcitonin cutoff values for diagnosing MTC. METHODS This retrospective study recruited 95 MTC patients and 10,523 non-MTC patients who underwent thyroid nodule surgery at Zhongshan Hospital between January 2015 and June 2023. Receiver operating characteristic (ROC) curves were used to assess calcitonin cutoff values for diagnosing MTC. RESULTS Calcitonin levels in non-MTC patients were influenced by gender, CKD stage and age, with gender being the highest ranked predictor. In MTC patients, calcitonin levels were associated with tumor diameter, lymph node metastasis, and TNM stage. In the entire study population, calcitonin cutoff values to diagnose MTC were 17.75 pg/mL for males (sensitivity: 97.60%, specificity: 99.40%) and 7.15 pg/mL for females (sensitivity: 94.34%, specificity: 99.22%). In patients with a thyroid nodule diameter ≤10 mm, the calcitonin cutoff values to diagnose MTC were 17.50 pg/mL for males (sensitivity: 95.00%, specificity: 99.27%) and 7.15 pg/mL for females (sensitivity: 90.91%, specificity: 99.04%). In patients with a thyroid nodule diameter >10 mm, the calcitonin cutoff values to diagnose MTC were 104.80 pg/mL for males (sensitivity: 100.00%, specificity: 100.00%) and 32.60 pg/mL for females (sensitivity: 96.77%, specificity: 100.00%). CONCLUSION We have identified the gender and tumor size-specific cutoff values for the diagnosis of MTC. Cutoff values based on gender and tumor diameter may help to improve the accuracy of preoperative diagnosis of MTC, which is worth to be verified by future studies.
Collapse
Affiliation(s)
- Jiajia Ni
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Pinghui Tu
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yan Ling
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Lukasiewicz M, Zwara A, Kowalski J, Mika A, Hellmann A. The Role of Lipid Metabolism Disorders in the Development of Thyroid Cancer. Int J Mol Sci 2024; 25:7129. [PMID: 39000236 PMCID: PMC11241618 DOI: 10.3390/ijms25137129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Thyroid cancer (TC) is a neoplasm with an increasing incidence worldwide. Its etiology is complex and based on a multi-layered interplay of factors. Among these, disorders of lipid metabolism have emerged as an important area of investigation. Cancer cells are metabolically reprogrammed to promote their rapid growth, proliferation, and survival. This reprogramming is associated with significant changes at the level of lipids, mainly fatty acids (FA), as they play a critical role in maintaining cell structure, facilitating signaling pathways, and providing energy. These lipid-related changes help cancer cells meet the increased demands of continued growth and division while adapting to the tumor microenvironment. In this review, we examine lipid metabolism at different stages, including synthesis, transport, and oxidation, in the context of TC and the effects of obesity and hormones on TC development. Recent scientific efforts have revealed disturbances in lipid homeostasis that are specific to thyroid cancer, opening up potential avenues for early detection and targeted therapeutic interventions. Understanding the intricate metabolic pathways involved in FA metabolism may provide insights into potential interventions to prevent cancer progression and mitigate its effects on surrounding tissues.
Collapse
Affiliation(s)
- Martyna Lukasiewicz
- Department of General, Endocrine and Transplant Surgery, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland
| | - Agata Zwara
- Department of Environmental Analytics, Faculty of Chemistry, University of Gdansk, 80-309 Gdansk, Poland
| | - Jacek Kowalski
- Department of Pathomorphology, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland
- International Centre for Cancer Vaccine Science, University of Gdansk, 80-309 Gdansk, Poland
| | - Adriana Mika
- Department of Environmental Analytics, Faculty of Chemistry, University of Gdansk, 80-309 Gdansk, Poland
- Department of Pharmaceutical Biochemistry, Medical University of Gdansk, 80-211 Gdansk, Poland
| | - Andrzej Hellmann
- Department of General, Endocrine and Transplant Surgery, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland
| |
Collapse
|
5
|
Norollahi SE, Vahidi S, Shams S, Keymoradzdeh A, Soleymanpour A, Solymanmanesh N, Mirzajani E, Jamkhaneh VB, Samadani AA. Analytical and therapeutic profiles of DNA methylation alterations in cancer; an overview of changes in chromatin arrangement and alterations in histone surfaces. Horm Mol Biol Clin Investig 2023; 44:337-356. [PMID: 36799246 DOI: 10.1515/hmbci-2022-0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 01/24/2023] [Indexed: 02/18/2023]
Abstract
DNA methylation is the most important epigenetic element that activates the inhibition of gene transcription and is included in the pathogenesis of all types of malignancies. Remarkably, the effectors of DNA methylation are DNMTs (DNA methyltransferases) that catalyze de novo or keep methylation of hemimethylated DNA after the DNA replication process. DNA methylation structures in cancer are altered, with three procedures by which DNA methylation helps cancer development which are including direct mutagenesis, hypomethylation of the cancer genome, and also focal hypermethylation of the promoters of TSGs (tumor suppressor genes). Conspicuously, DNA methylation, nucleosome remodeling, RNA-mediated targeting, and histone modification balance modulate many biological activities that are essential and indispensable to the genesis of cancer and also can impact many epigenetic changes including DNA methylation and histone modifications as well as adjusting of non-coding miRNAs expression in prevention and treatment of many cancers. Epigenetics points to heritable modifications in gene expression that do not comprise alterations in the DNA sequence. The nucleosome is the basic unit of chromatin, consisting of 147 base pairs (bp) of DNA bound around a histone octamer comprised of one H3/H4 tetramer and two H2A/H2B dimers. DNA methylation is preferentially distributed over nucleosome regions and is less increased over flanking nucleosome-depleted DNA, implying a connection between nucleosome positioning and DNA methylation. In carcinogenesis, aberrations in the epigenome may also include in the progression of drug resistance. In this report, we report the rudimentary notes behind these epigenetic signaling pathways and emphasize the proofs recommending that their misregulation can conclude in cancer. These findings in conjunction with the promising preclinical and clinical consequences observed with epigenetic drugs against chromatin regulators, confirm the important role of epigenetics in cancer therapy.
Collapse
Affiliation(s)
- Seyedeh Elham Norollahi
- Cancer Research Center and Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Sogand Vahidi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shima Shams
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Arman Keymoradzdeh
- Department of Neurosurgery, School of Medicine, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Armin Soleymanpour
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Nazanin Solymanmanesh
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Ebrahim Mirzajani
- Department of Biochemistry and Biophysics, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Vida Baloui Jamkhaneh
- Department of Veterinary Medicine, Islamic Azad University of Babol Branch, Babol, Iran
| | - Ali Akbar Samadani
- Guilan Road Trauma Research Center, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
6
|
Non-Apoptotic Programmed Cell Death in Thyroid Diseases. Pharmaceuticals (Basel) 2022; 15:ph15121565. [PMID: 36559016 PMCID: PMC9788139 DOI: 10.3390/ph15121565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Thyroid disorders are among the most common endocrinological conditions. As the prevalence of thyroid diseases increases annually, the exploration of thyroid disease mechanisms and the development of treatments are also gradually improving. With the gradual advancement of therapies, non-apoptotic programmed cell death (NAPCD) has immense potential in inflammatory and neoplastic diseases. Autophagy, pyroptosis, ferroptosis, and immunogenic cell death are all classical NAPCD. In this paper, we have compiled the recent mechanistic investigations of thyroid diseases and established the considerable progress by NAPCD in thyroid diseases. Furthermore, we have elucidated the role of various types of NAPCD in different thyroid disorders. This will help us to better understand the pathophysiology of thyroid-related disorders and identify new targets and mechanisms of drug resistance, which may facilitate the development of novel diagnostic and therapeutic strategies for patients with thyroid diseases. Here, we have reviewed the advances in the role of NAPCD in the occurrence, progression, and prognosis of thyroid diseases, and highlighted future research prospects in this area.
Collapse
|
7
|
Rajabi S, Alix-Panabières C, Alaei AS, Abooshahab R, Shakib H, Ashrafi MR. Looking at Thyroid Cancer from the Tumor-Suppressor Genes Point of View. Cancers (Basel) 2022; 14:2461. [PMID: 35626065 PMCID: PMC9139614 DOI: 10.3390/cancers14102461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 11/17/2022] Open
Abstract
Thyroid cancer is the most frequent endocrine malignancy and accounts for approximately 1% of all diagnosed cancers. A variety of mechanisms are involved in the transformation of a normal tissue into a malignant one. Loss of tumor-suppressor gene (TSG) function is one of these mechanisms. The normal functions of TSGs include cell proliferation and differentiation control, genomic integrity maintenance, DNA damage repair, and signaling pathway regulation. TSGs are generally classified into three subclasses: (i) gatekeepers that encode proteins involved in cell cycle and apoptosis control; (ii) caretakers that produce proteins implicated in the genomic stability maintenance; and (iii) landscapers that, when mutated, create a suitable environment for malignant cell growth. Several possible mechanisms have been implicated in TSG inactivation. Reviewing the various TSG alteration types detected in thyroid cancers may help researchers to better understand the TSG defects implicated in the development/progression of this cancer type and to find potential targets for prognostic, predictive, diagnostic, and therapeutic purposes. Hence, the main purposes of this review article are to describe the various TSG inactivation mechanisms and alterations in human thyroid cancer, and the current therapeutic options for targeting TSGs in thyroid cancer.
Collapse
Affiliation(s)
- Sadegh Rajabi
- Traditional Medicine and Materia Medica Research Center, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran;
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran
| | - Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, CEDEX 5, 34093 Montpellier, France
- Centre for Ecological and Evolutionary Cancer Research (CREEC), Unité Mixte de Recherches, Institut de Recherche pour le Développement (IRD) 224–Centre National de Recherche Scientifique (CNRS) 5290–University of Montpellier, 34000 Montpellier, France
| | - Arshia Sharbatdar Alaei
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran;
| | | | - Heewa Shakib
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran 19857-17443, Iran;
| | - Mohammad Reza Ashrafi
- Department of Biochemistry, Afzalipoor Faculty of Medicine, Kerman University of Medical Sciences, Kerman 76169-13555, Iran;
| |
Collapse
|
8
|
Kiriakopoulos A, Dimopoulou A, Nastos C, Dimopoulou D, Dimopoulou K, Menenakos E, Zavras N. Medullary thyroid carcinoma in children: current state of the art and future perspectives. J Pediatr Endocrinol Metab 2022; 35:1-10. [PMID: 34592078 DOI: 10.1515/jpem-2021-0502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/20/2021] [Indexed: 11/15/2022]
Abstract
Medullary thyroid carcinoma (MTC) is a distinct type of malignant thyroid tumor in cell origin, biological behavior, and natural history. It accounts for 1.6% of all thyroid cancers and presents either sporadically or as a hereditary disease, the latter occurring as a part of multiple endocrine neoplasia (MEN) 2A and MEN2B syndromes or as a familial MTC disease with no other manifestations. The gene responsible for the hereditary form is the rearranged during transfection (RET) gene, a proto-oncogene located to human chromosome 10. Most pediatric MTC cases have been discovered after genetic testing investigations, leading to the concept of prophylactic surgery in presymptomatic patients. Therefore, the genetic status of the child, along with serum calcitonin levels and ultrasonographic findings, determine the appropriate age for prophylactic surgical intervention. Nevertheless, a diagnosis at an early stage of MTC warrants total thyroidectomy and central lymph node dissection with the addition of lateral/contralateral lymph node dissection depending on the tumor size, ultrasonographic evidence of neck disease, or calcitonin levels. Conversely, locally advanced/unresectable or metastatic MTC is primarily treated with multikinase inhibitors, while more specific RET inhibitors are being tested in clinical trials with promising results.
Collapse
Affiliation(s)
- Andreas Kiriakopoulos
- Fifth Department of Surgery, "Evgenidion Hospital", National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| | - Anastasia Dimopoulou
- Department of Pediatric Surgery, University General Hospital "ATTIKON", National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| | - Constantinos Nastos
- Third Department of Surgery, University General Hospital "ATTIKON", National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| | - Dimitra Dimopoulou
- Second Department of Pediatrics, "P & A Kyriakou" Children's Hospital, National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| | | | - Evangelos Menenakos
- Fifth Department of Surgery, "Evgenidion Hospital", National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| | - Nikolaos Zavras
- Department of Pediatric Surgery, University General Hospital "ATTIKON", National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| |
Collapse
|
9
|
Amaro A, Sugimoto D, Wharton S. Efficacy and safety of semaglutide for weight management: evidence from the STEP program. Postgrad Med 2022; 134:5-17. [PMID: 36691309 DOI: 10.1080/00325481.2022.2147326] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Obesity is a global health challenge. It is a multifactorial, complex, and progressive disease associated with various health complications and increased mortality. Lifestyle modifications are central to weight management but may be insufficient to maintain clinically meaningful weight loss. Pharmacotherapies are recommended as an adjunct to lifestyle interventions to induce and sustain clinically meaningful weight loss and reduce the risk of comorbidities in appropriate patients. Glucagon-like peptide-1 is an incretin metabolic hormone responsible for a range of physiological effects, including glucose and appetite regulation. Several glucagon-like peptide-1 receptor agonists (GLP-1RAs) have been approved for the treatment of type 2 diabetes since 2005 including exenatide (short- and extended-release), lixisenatide, liraglutide, dulaglutide, albiglutide, and semaglutide. Of these, semaglutide (subcutaneous) and liraglutide are currently US Food and Drug Administration (FDA)-approved for chronic weight management in patients with or without diabetes. The phase 3 Semaglutide Treatment Effect in People with obesity (STEP) program was designed to investigate the effect of semaglutide versus placebo on weight loss, safety, and tolerability in adults with overweight or obesity. Following the submission of the results of the STEP 1-4 trials, the FDA approved once-weekly subcutaneous semaglutide 2.4 mg for chronic weight management in people with overweight or obesity in April 2021. Data from the program demonstrated that semaglutide (2.4 mg once weekly) achieved significant and sustained weight loss, together with improvements in cardiometabolic risk factors compared with placebo, and was generally well tolerated, with a safety profile consistent with other GLP-1RAs. The most common adverse events reported in STEP 1-5 were gastrointestinal events, which were transient, mild-to-moderate in severity, and typically resolved without permanent treatment discontinuation. This article reviews the data from STEP 1-5 and highlights clinically relevant findings for primary care providers.
Collapse
Affiliation(s)
- Anastassia Amaro
- Penn Metabolic Medicine, Division of Endocrinology, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Sean Wharton
- York University, McMaster University and Wharton Weight Management Clinic, Toronto, Ontario, Canada
| |
Collapse
|
10
|
Dabravolski SA, Nikiforov NG, Zhuravlev AD, Orekhov NA, Mikhaleva LM, Orekhov AN. The Role of Altered Mitochondrial Metabolism in Thyroid Cancer Development and Mitochondria-Targeted Thyroid Cancer Treatment. Int J Mol Sci 2021; 23:ijms23010460. [PMID: 35008887 PMCID: PMC8745127 DOI: 10.3390/ijms23010460] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 01/02/2023] Open
Abstract
Thyroid cancer (TC) is the most common type of endocrine malignancy. Tumour formation, progression, and metastasis greatly depend on the efficacy of mitochondria-primarily, the regulation of mitochondria-mediated apoptosis, Ca2+ homeostasis, dynamics, energy production, and associated reactive oxygen species generation. Recent studies have successfully confirmed the mitochondrial aetiology of thyroid carcinogenesis. In this review, we focus on the recent progress in understanding the molecular mechanisms of thyroid cancer relating to altered mitochondrial metabolism. We also discuss the repurposing of known drugs and the induction of mitochondria-mediated apoptosis as a new trend in the development of anti-TC therapy.
Collapse
Affiliation(s)
- Siarhei A. Dabravolski
- Department of Clinical Diagnostics, Vitebsk State Academy of Veterinary Medicine [UO VGAVM], 7/11 Dovatora Street, 210026 Vitebsk, Belarus
- Correspondence:
| | - Nikita G. Nikiforov
- AP Avtsyn Research Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia; (N.G.N.); (A.D.Z.); (L.M.M.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova Street, 119334 Moscow, Russia
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia
| | - Alexander D. Zhuravlev
- AP Avtsyn Research Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia; (N.G.N.); (A.D.Z.); (L.M.M.)
| | - Nikolay A. Orekhov
- Institute for Atherosclerosis Research, Osennyaya Street 4-1-207, 121609 Moscow, Russia; (N.A.O.); (A.N.O.)
| | - Liudmila M. Mikhaleva
- AP Avtsyn Research Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia; (N.G.N.); (A.D.Z.); (L.M.M.)
| | - Alexander N. Orekhov
- Institute for Atherosclerosis Research, Osennyaya Street 4-1-207, 121609 Moscow, Russia; (N.A.O.); (A.N.O.)
| |
Collapse
|
11
|
Abu-Bonsrah KD, Newgreen DF, Dottori M. Development of Functional Thyroid C Cell-like Cells from Human Pluripotent Cells in 2D and in 3D Scaffolds. Cells 2021; 10:cells10112897. [PMID: 34831120 PMCID: PMC8616516 DOI: 10.3390/cells10112897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 11/19/2022] Open
Abstract
Medullary thyroid carcinoma contributes to about 3–4% of thyroid cancers and affects C cells rather than follicular cells. Thyroid C cell differentiation from human pluripotent stem cells has not been reported. We report the stepwise differentiation of human embryonic stem cells into thyroid C cell-like cells through definitive endoderm and anterior foregut endoderm and ultimobranchial body-like intermediates in monolayer and 3D Matrigel culture conditions. The protocol involved sequential treatment with interferon/transferrin/selenium/pyruvate, foetal bovine serum, and activin A, then IGF-1 (Insulin-like growth factor 1), on the basis of embryonic thyroid developmental sequence. As well as expressing C cell lineage relative to follicular-lineage markers by qPCR (quantitative polymerase chain reaction) and immunolabelling, these cells by ELISA (enzyme-linked immunoassay) exhibited functional properties in vitro of calcitonin storage and release of calcitonin on calcium challenge. This method will contribute to developmental studies of the human thyroid gland and facilitate in vitro modelling of medullary thyroid carcinoma and provide a valuable platform for drug screening.
Collapse
Affiliation(s)
- Kwaku Dad Abu-Bonsrah
- The Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3010, Australia
- Correspondence: (K.D.A.-B.); (D.F.N.); (M.D.)
| | - Donald F. Newgreen
- The Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, VIC 3052, Australia
- Correspondence: (K.D.A.-B.); (D.F.N.); (M.D.)
| | - Mirella Dottori
- Department of Biomedical Engineering, Department of Anatomy and Neurosciences, University of Melbourne, Parkville, VIC 3010, Australia
- Illawarra Health and Medical Research Institute, School of Medicine, Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
- Correspondence: (K.D.A.-B.); (D.F.N.); (M.D.)
| |
Collapse
|
12
|
Williams MD, Ma J, Grubbs EG, Gagel RF, Bagheri-Yarmand R. ATF4 loss of heterozygosity is associated with poor overall survival in medullary thyroid carcinoma. Am J Cancer Res 2021; 11:3227-3239. [PMID: 34249457 PMCID: PMC8263636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/01/2021] [Indexed: 06/13/2023] Open
Abstract
Activating transcription factor 4 (ATF4) is a crucial mediator of the integrated stress response and a negative regulator of RET tyrosine kinase receptor in medullary thyroid carcinoma (MTC). However, the impact of genomic abnormalities in the ATF4 locus on MTC pathogenesis and response to tyrosine kinase inhibitor therapy remains unknown. Here, we evaluated ATF4 copy number variation and protein levels, with overall survival and response to TKIs in a clinical cohort of fifty-nine sporadic primary MTC. We assessed the somatic RETM918T mutation by sequencing, ATF4 copy number by a real-time polymerase chain reaction, and ATF4 protein levels using immunohistochemistry. This MTC cohort comprised 45 (76%) stage IV patients with a median follow-up of 100 months (interquartile range: 58-134 months). Somatic RETM918T was present in 23/57 (40%) tumors. Mono-allelic (36%; 21/59) and bi-allelic (5%; 3/59) loss of ATF4 was identified and was associated with low ATF4 protein expression (0-20%). Kaplan-Meier curves highlight low ATF4 protein or ATF4 loss alone had a significant negative impact on median survival compared to high protein expression (P<0.001) or diploid ATF4 (P=0.011), respectively. The combination of somatic RETM918T and low ATF4 protein levels further decreased overall survival. Both allelic loss and protein reduction were associated with worse overall survival (HR=3.79, 4.06 +RETM918T , and HR=10.64, 11.66 +RETM918T , respectively). Additionally, all 4 of the 11 patients treated with TKIs with a progressive disease by RECIST had low tumor ATF4 protein, with the two partial responder's tumors having high ATF4 protein. These findings suggest that ATF4 may predict response to tyrosine kinase inhibitors, serve as a prognostic marker for personalized care, and a therapeutic target in MTC.
Collapse
Affiliation(s)
- Michelle D Williams
- Department of Pathology, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
| | - Junsheng Ma
- Department of Biostatistics, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
| | - Elizabeth G Grubbs
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
| | - Robert F Gagel
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
| | - Rozita Bagheri-Yarmand
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
| |
Collapse
|
13
|
Leimbach RD, Hoang TD, Shakir MKM. Diagnostic Challenges of Medullary Thyroid Carcinoma. Oncology 2021; 99:422-432. [PMID: 33878761 DOI: 10.1159/000515373] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 02/17/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Medullary thyroid carcinoma (MTC) comprises 1-2% of all thyroid cancers, yet 15% of all thyroid cancer-related deaths. While up to 20% of cases may be predicted due to autosomal dominant germline mutations, 80% of cases are sporadic. However, due to non-specific presenting symptoms and diagnostic imaging, prompt diagnosis and treatment has remained elusive. This article will further investigate the limitations of MTC diagnosis and look into future areas for diagnostic improvement. METHODS Relevant articles were identified using a systematic PubMed and Google Scholar search. RESULTS Prophylactic total thyroidectomy for the 20% of MTC cases that are present in autosomal dominant disorder provides definitive treatment. Serum calcitonin (Ctn) screening has several technical limitations due to population variability and laboratory assay interference, but advances in laboratory technology and combined use with fine needle aspiration increase its sensitivity. Other serum assays such as carcinoembryonic antigen and procalcitonin have limited applicability. Thyroid ultrasound remains the gold standard for the initial diagnostic planning, with limited application for CT, MRI, and PET imaging. CONCLUSION With complete surgical resection the only definitive treatment, early MTC diagnosis has presented an elusive challenge, mainly due to its relative rarity and difficulty in finding an economic screening strategy. Careful family history combined with fine needle aspiration with serum Ctn analysis can improve diagnostic sensitivity and specificity to greater than 95%.
Collapse
Affiliation(s)
- Robert D Leimbach
- Division of Endocrinology, Department of Medicine, Walter Reed National Military Medical Center, Bethesda, Maryland, USA.,Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Thanh D Hoang
- Division of Endocrinology, Department of Medicine, Walter Reed National Military Medical Center, Bethesda, Maryland, USA.,Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Mohamed K M Shakir
- Division of Endocrinology, Department of Medicine, Walter Reed National Military Medical Center, Bethesda, Maryland, USA.,Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| |
Collapse
|
14
|
Bagheri-Yarmand R, Dadu R, Ye L, Shiny Jebaraj Y, Martinez JA, Ma J, Tarapore RS, Allen JE, Sherman SI, Williams MD, Gagel RF. ONC201 Shows Potent Anticancer Activity Against Medullary Thyroid Cancer via Transcriptional Inhibition of RET, VEGFR2, and IGFBP2. Mol Cancer Ther 2021; 20:665-675. [PMID: 33536187 DOI: 10.1158/1535-7163.mct-20-0386] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/14/2020] [Accepted: 01/26/2021] [Indexed: 11/16/2022]
Abstract
Gain-of-function point mutations in the receptor tyrosine kinase RET, a driver oncogene in medullary thyroid carcinoma (MTC), prevent apoptosis through inhibition of ATF4, a critical transcriptional regulator of endoplasmic reticulum stress. However, the critical regulatory mechanisms driving RET-dependent oncogenesis remain elusive, and there is a clinical need to identify a transcriptional RET inhibitor. Here, we found that RET depletion decreased IGFBP2 and VEGFR2 mRNA and protein expression in MTC cells. IGFBP2 knockdown decreased cell survival and migration of MTC cells. In patients, IGFBP2 expression increased in metastatic MTC, and high IGFBP2 associated with poor overall survival. VEGFR2 protein levels were positively associated with RET expression in primary tumors, and VEGF-mediated increased cell viability was RET dependent. The small-molecule ONC201 treatment of MTC cells caused apoptotic cell death, decreased transcription of RET, VEGFR2, IGFBP2, increased mRNA levels of ATF4, and ATF4 target genes including DDIT3, BBC3, DUSP8, MKNK2, KLF9, LZTFL1, and SESN2 Moreover, IGFBP2 depletion increased ONC201-induced cell death. ONC201 inhibited tumor growth at a well-tolerated dose of 120 mg/kg/week administered by oral gavage and decreased MTC xenograft cell proliferation and angiogenesis. The protein levels of RET, IGFBP2, and VEGFR2 were decreased in ONC201-treated xenografts. Our study uncovered a novel ONC201 mechanism of action through regulation of RET and its targets, VEGFR2 and IGFBP2; this mechanism could be translated into the clinic and represent a promising strategy for the treatment of all patients with MTC, including those with TKI-refractory disease and other cancer with RET abnormalities.
Collapse
Affiliation(s)
- Rozita Bagheri-Yarmand
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Ramona Dadu
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lei Ye
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yaashmin Shiny Jebaraj
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jade A Martinez
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Junsheng Ma
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | | - Steven I Sherman
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michelle D Williams
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Robert F Gagel
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
15
|
Wu K, Chen YC, Lin SM, Chang CH. In vitro and in vivo effectiveness of a novel injectable calcitonin-loaded collagen/ceramic bone substitute. J Biomater Appl 2021; 35:1355-1365. [PMID: 33522363 DOI: 10.1177/0885328221989984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
This study aimed to evaluate the effectiveness of a novel calcitonin-loaded calcium phosphate composite bone cement in vitro and in vivo. The novel composite bone cements were composed of NuROs injectable bone graft substitute, type I collagen, and/or salmon calcitonin. The setting time, porosity, wettability, compressive strength, compressive modulus, and crystallographic structures of cement specimens were determined. Degradation rate, calcitonin release rate, and osteoinductivity were assessed in vitro. In addition, osteogenic effect was examined in a rabbit model of femoral defect. The results revealed that addition of collagen/calcitonin did not substantially alter physical properties and degradation rate of bone cement specimens. Calcitonin was released into culture medium in a two-phase manner. Osteogenic effect of conditioned medium derived from calcitonin containing bone cement was observed. Finally, de novo bone growth and bone mineralization across the bone defect area were observed in rabbits after implantation of composite bone cement specimens. In conclusion, this novel calcitonin-loaded composite calcium phosphate bone cement exhibits biocompatibility, bioresorbability, osteoinductivity, and osteoconductivity, which may be suitable for clinical use.
Collapse
Affiliation(s)
- Karl Wu
- Department of Orthopedic Surgery, Far Eastern Memorial Hospital, New Taipei City, Taiwan.,Department of Materials and Textiles, Oriental Institute of Technology, New Taipei City, Taiwan
| | - Yu-Chun Chen
- Department of Orthopedic Surgery, Far Eastern Memorial Hospital, New Taipei City, Taiwan.,College of General Studies, Yuan Ze University, Taoyuan City, Taiwan
| | - Shang M Lin
- Department of Materials and Textiles, Oriental Institute of Technology, New Taipei City, Taiwan
| | - Chih-Hung Chang
- Department of Orthopedic Surgery, Far Eastern Memorial Hospital, New Taipei City, Taiwan.,Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan City, Taiwan
| |
Collapse
|
16
|
Durmaz A, Henderson TAD, Bebek G. Frequent Subgraph Mining of Functional Interaction Patterns Across Multiple Cancers. PACIFIC SYMPOSIUM ON BIOCOMPUTING. PACIFIC SYMPOSIUM ON BIOCOMPUTING 2021; 26:261-272. [PMID: 33691023 PMCID: PMC7958985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Molecular mechanisms characterizing cancer development and progression are complex and process through thousands of interacting elements in the cell. Understanding the underlying structure of interactions requires the integration of cellular networks with extensive combinations of dysregulation patterns. Recent pan-cancer studies focused on identifying common dysregulation patterns in a confined set of pathways or targeting a manually curated set of genes. However, the complex nature of the disease presents a challenge for finding pathways that would constitute a basis for tumor progression and requires evaluation of subnetworks with functional interactions. Uncovering these relationships is critical for translational medicine and the identification of future therapeutics. We present a frequent subgraph mining algorithm to find functional dysregulation patterns across the cancer spectrum. We mined frequent subgraphs coupled with biased random walks utilizing genomic alterations, gene expression profiles, and protein-protein interaction networks. In this unsupervised approach, we have recovered expert-curated pathways previously reported for explaining the underlying biology of cancer progression in multiple cancer types. Furthermore, we have clustered the genes identified in the frequent subgraphs into highly connected networks using a greedy approach and evaluated biological significance through pathway enrichment analysis. Gene clusters further elaborated on the inherent heterogeneity of cancer samples by both suggesting specific mechanisms for cancer type and common dysregulation patterns across different cancer types. Survival analysis of sample level clusters also revealed significant differences among cancer types (p < 0.001). These results could extend the current understanding of disease etiology by identifying biologically relevant interactions.Supplementary Information: Supplementary methods, figures, tables and code are available at https://github.com/bebeklab/FSM_Pancancer.
Collapse
Affiliation(s)
- Arda Durmaz
- Systems Biology and Bioinformatics Graduate Program, Case Western Reserve University, 10900 Euclid Ave., Cleveland OH 44106, USA5The Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH 44195, USA,
| | | | | |
Collapse
|
17
|
A phenome-wide association study of 26 mendelian genes reveals phenotypic expressivity of common and rare variants within the general population. PLoS Genet 2020; 16:e1008802. [PMID: 33226994 PMCID: PMC7735621 DOI: 10.1371/journal.pgen.1008802] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/14/2020] [Accepted: 04/27/2020] [Indexed: 02/06/2023] Open
Abstract
The clinical evaluation of a genetic syndrome relies upon recognition of a characteristic pattern of signs or symptoms to guide targeted genetic testing for confirmation of the diagnosis. However, individuals displaying a single phenotype of a complex syndrome may not meet criteria for clinical diagnosis or genetic testing. Here, we present a phenome-wide association study (PheWAS) approach to systematically explore the phenotypic expressivity of common and rare alleles in genes associated with four well-described syndromic diseases (Alagille (AS), Marfan (MS), DiGeorge (DS), and Noonan (NS) syndromes) in the general population. Using human phenotype ontology (HPO) terms, we systematically mapped 60 phenotypes related to AS, MS, DS and NS in 337,198 unrelated white British from the UK Biobank (UKBB) based on their hospital admission records, self-administrated questionnaires, and physiological measurements. We performed logistic regression adjusting for age, sex, and the first 5 genetic principal components, for each phenotype and each variant in the target genes (JAG1, NOTCH2 FBN1, PTPN1 and RAS-opathy genes, and genes in the 22q11.2 locus) and performed a gene burden test. Overall, we observed multiple phenotype-genotype correlations, such as the association between variation in JAG1, FBN1, PTPN11 and SOS2 with diastolic and systolic blood pressure; and pleiotropy among multiple variants in syndromic genes. For example, rs11066309 in PTPN11 was significantly associated with a lower body mass index, an increased risk of hypothyroidism and a smaller size for gestational age, all in concordance with NS-related phenotypes. Similarly, rs589668 in FBN1 was associated with an increase in body height and blood pressure, and a reduced body fat percentage as observed in Marfan syndrome. Our findings suggest that the spectrum of associations of common and rare variants in genes involved in syndromic diseases can be extended to individual phenotypes within the general population. Standard medical evaluation of genetic syndromes relies upon recognizing a characteristic pattern of signs or symptoms to guide targeted genetic testing for confirmation of the diagnosis. This may lead to missing diagnoses in patients with silent or a low expressed form of the syndrome. Here we take advantage of a rich electronic health record, various phenotypic measurements, and genetic information in 337,198 unrelated white British from the UKBB, to study the relation between single syndromic disease phenotypes and genes related to syndromic disease. We show multiple phenotype-genotype associations in concordance with phenotypes variations found in syndromic diseases. For example, we show that a commonly found variant in FBN1 was associated with high standing/sitting height ratio and reduced body fat percentage as observed in individuals with Marfan syndrome. Our findings suggest that common and rare alleles in syndromic disease genes are causative of individual component phenotypes present in a general population; further research is needed to characterize the pleiotropic effect of alleles in syndromic genes in persons without the syndromic disease.
Collapse
|
18
|
Parekh PA, Garcia TX, Hofmann MC. Regulation of GDNF expression in Sertoli cells. Reproduction 2020; 157:R95-R107. [PMID: 30620720 DOI: 10.1530/rep-18-0239] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 01/08/2019] [Indexed: 12/15/2022]
Abstract
Sertoli cells regulate male germ cell proliferation and differentiation and are a critical component of the spermatogonial stem cell (SSC) niche, where homeostasis is maintained by the interplay of several signaling pathways and growth factors. These factors are secreted by Sertoli cells located within the seminiferous epithelium, and by interstitial cells residing between the seminiferous tubules. Sertoli cells and peritubular myoid cells produce glial cell line-derived neurotrophic factor (GDNF), which binds to the RET/GFRA1 receptor complex at the surface of undifferentiated spermatogonia. GDNF is known for its ability to drive SSC self-renewal and proliferation of their direct cell progeny. Even though the effects of GDNF are well studied, our understanding of the regulation its expression is still limited. The purpose of this review is to discuss how GDNF expression in Sertoli cells is modulated within the niche, and how these mechanisms impact germ cell homeostasis.
Collapse
Affiliation(s)
- Parag A Parekh
- Department of Endocrine Neoplasia, UT MD Anderson Cancer Center, Houston, Texas, USA
| | - Thomas X Garcia
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA.,Department of Biological and Environmental Sciences, University of Houston-Clear Lake, Houston, Texas, USA
| | - Marie-Claude Hofmann
- Department of Endocrine Neoplasia, UT MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
19
|
Hou Y, He X, Chute DJ. Paraganglioma-like medullary thyroid carcinoma: A case report and literature review. Diagn Cytopathol 2020; 48:559-563. [PMID: 32125784 DOI: 10.1002/dc.24403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/11/2020] [Accepted: 02/20/2020] [Indexed: 12/26/2022]
Abstract
Medullary thyroid carcinoma (MTC) accounts for 3%-5% of all thyroid malignancies. Most MTC can be diagnosed by their typical cytologic and histologic morphology and immunohistochemical features. However, some rare variants of MTC may pose diagnostic difficulties on both cytology and histology. Paraganglioma-like MTC (PLMTC) is a rare, but widely recognized variant of MTC. PLMTC is known to share morphological and architectural similarities with paraganglioma, hyalinizing trabecular tumor, and carcinomas of thyroid follicular cell origin, such as follicular carcinoma and follicular variant of papillary thyroid carcinoma. The combination of clinicopathologic features and a battery of immunohistochemical markers is essential for making a correct diagnosis. Herein, we report one case of PLMTC with both cytologic and histologic features and review the clinicopathologic features of previously reported cases.
Collapse
Affiliation(s)
- Yanjun Hou
- Department of Pathology, Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Xin He
- Department of Pathology, Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Deborah J Chute
- Department of Pathology, Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
20
|
Novel use of a Clinical Laboratory Improvements Amendments (CLIA)-certified Cyclin-Dependent Kinase N2C (CDKN2C) loss assay in sporadic medullary thyroid carcinoma. Surgery 2020; 167:80-86. [DOI: 10.1016/j.surg.2019.03.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/14/2019] [Accepted: 03/18/2019] [Indexed: 12/17/2022]
|
21
|
Sato TS, Handa A, Priya S, Watal P, Becker RM, Sato Y. Neurocristopathies: Enigmatic Appearances of Neural Crest Cell–derived Abnormalities. Radiographics 2019; 39:2085-2102. [DOI: 10.1148/rg.2019190086] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- T. Shawn Sato
- From the Department of Radiology, Stead Family Children’s Hospital, University of Iowa, University of Iowa Hospitals and Clinics, 200 Hawkins Dr, 3889 JPP, Iowa City, IA 52242
| | - Atsuhiko Handa
- From the Department of Radiology, Stead Family Children’s Hospital, University of Iowa, University of Iowa Hospitals and Clinics, 200 Hawkins Dr, 3889 JPP, Iowa City, IA 52242
| | - Sarv Priya
- From the Department of Radiology, Stead Family Children’s Hospital, University of Iowa, University of Iowa Hospitals and Clinics, 200 Hawkins Dr, 3889 JPP, Iowa City, IA 52242
| | - Pankaj Watal
- From the Department of Radiology, Stead Family Children’s Hospital, University of Iowa, University of Iowa Hospitals and Clinics, 200 Hawkins Dr, 3889 JPP, Iowa City, IA 52242
| | - Robert M. Becker
- From the Department of Radiology, Stead Family Children’s Hospital, University of Iowa, University of Iowa Hospitals and Clinics, 200 Hawkins Dr, 3889 JPP, Iowa City, IA 52242
| | - Yutaka Sato
- From the Department of Radiology, Stead Family Children’s Hospital, University of Iowa, University of Iowa Hospitals and Clinics, 200 Hawkins Dr, 3889 JPP, Iowa City, IA 52242
| |
Collapse
|
22
|
Crivellente F, Hart A, Hernandez-Jerez AF, Hougaard Bennekou S, Pedersen R, Terron A, Wolterink G, Mohimont L. Establishment of cumulative assessment groups of pesticides for their effects on the thyroid. EFSA J 2019; 17:e05801. [PMID: 32626429 PMCID: PMC7009157 DOI: 10.2903/j.efsa.2019.5801] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Cumulative assessment groups of pesticides have been established for two specific effects on the thyroid: firstly hypothyroidism, and secondly parafollicular cell (C-cell) hypertrophy, hyperplasia and neoplasia. Sources of uncertainties resulting from the methodological approach and from the limitations in available data and scientific knowledge have been identified and considered. This report supports the publication of a scientific report on cumulative risk assessment to pesticides affecting the thyroid, in which all uncertainties identified for either the exposure assessment or the establishment of the cumulative assessment groups are incorporated into a consolidated risk characterisation.
Collapse
|
23
|
Valenciaga A, Saji M, Yu L, Zhang X, Bumrah C, Yilmaz AS, Knippler CM, Miles W, Giordano TJ, Cote GJ, Ringel MD. Transcriptional targeting of oncogene addiction in medullary thyroid cancer. JCI Insight 2018; 3:122225. [PMID: 30135308 DOI: 10.1172/jci.insight.122225] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/10/2018] [Indexed: 12/21/2022] Open
Abstract
Metastatic medullary thyroid cancer (MTC) is incurable and FDA-approved kinase inhibitors that include oncogenic RET as a target do not result in complete responses. Association studies of human MTCs and murine models suggest that the CDK/RB pathway may be an alternative target. The objective of this study was to determine if CDKs represent therapeutic targets for MTC and to define mechanisms of activity. Using human MTC cells that are either sensitive or resistant to vandetanib, we demonstrate that palbociclib (CDK4/6 inhibitor) is not cytotoxic to MTC cells but that they are highly sensitive to dinaciclib (CDK1/2/5/9 inhibitor) accompanied by reduced CDK9 and RET protein and mRNA levels. CDK9 protein was highly expressed in 83 of 83 human MTCs and array-comparative genomic hybridization had copy number gain in 11 of 30 tumors. RNA sequencing demonstrated that RNA polymerase II-dependent transcription was markedly reduced by dinaciclib. The CDK7 inhibitor THZ1 also demonstrated high potency and reduced RET and CDK9 levels. ChIP-sequencing using H3K27Ac antibody identified a superenhancer in intron 1 of RET. Finally, combined inhibition of dinaciclib with a RET kinase inhibitor was synergistic. In summary, we have identified what we believe is a novel mechanism of RET transcription regulation that potentially can be exploited to improve RET therapeutic targeting.
Collapse
Affiliation(s)
- Anisley Valenciaga
- Division of Endocrinology, Diabetes, and Metabolism, The Ohio State University Wexner Medical Center and Arthur G. James Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Motoyasu Saji
- Division of Endocrinology, Diabetes, and Metabolism, The Ohio State University Wexner Medical Center and Arthur G. James Comprehensive Cancer Center, Columbus, Ohio, USA
| | | | | | | | | | - Christina M Knippler
- Division of Endocrinology, Diabetes, and Metabolism, The Ohio State University Wexner Medical Center and Arthur G. James Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Wayne Miles
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, USA
| | - Thomas J Giordano
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Gilbert J Cote
- Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Matthew D Ringel
- Division of Endocrinology, Diabetes, and Metabolism, The Ohio State University Wexner Medical Center and Arthur G. James Comprehensive Cancer Center, Columbus, Ohio, USA
| |
Collapse
|
24
|
Langen B, Rudqvist N, Spetz J, Helou K, Forssell-Aronsson E. Deconvolution of expression microarray data reveals 131I-induced responses otherwise undetected in thyroid tissue. PLoS One 2018; 13:e0197911. [PMID: 30001320 PMCID: PMC6042689 DOI: 10.1371/journal.pone.0197911] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 05/10/2018] [Indexed: 01/19/2023] Open
Abstract
High-throughput gene expression analysis is increasingly used in radiation research for discovery of damage-related or absorbed dose-dependent biomarkers. In tissue samples, cell type-specific responses can be masked in expression data due to mixed cell populations which can preclude biomarker discovery. In this study, we deconvolved microarray data from thyroid tissue in order to assess possible bias from mixed cell type data. Transcript expression data [GSE66303] from mouse thyroid that received 5.9 Gy from 131I over 24 h (or 0 Gy from mock treatment) were deconvolved by cell frequency of follicular cells and C-cells using csSAM and R and processed with Nexus Expression. Literature-based signature genes were used to assess the relative impact from ionizing radiation (IR) or thyroid hormones (TH). Regulation of cellular functions was inferred by enriched biological processes according to Gene Ontology terms. We found that deconvolution increased the detection rate of significantly regulated transcripts including the biomarker candidate family of kallikrein transcripts. Detection of IR-associated and TH-responding signature genes was also increased in deconvolved data, while the dominating trend of TH-responding genes was reproduced. Importantly, responses in biological processes for DNA integrity, gene expression integrity, and cellular stress were not detected in convoluted data–which was in disagreement with expected dose-response relationships–but upon deconvolution in follicular cells and C-cells. In conclusion, previously reported trends of 131I-induced transcriptional responses in thyroid were reproduced with deconvolved data and usually with a higher detection rate. Deconvolution also resolved an issue with detecting damage and stress responses in enriched data, and may reduce false negatives in other contexts as well. These findings indicate that deconvolution can optimize microarray data analysis of heterogeneous sample material for biomarker screening or other clinical applications.
Collapse
Affiliation(s)
- Britta Langen
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at the University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Applied Physics, Chalmers University of Technology, Gothenburg, Sweden
- * E-mail:
| | - Nils Rudqvist
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at the University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Johan Spetz
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at the University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Khalil Helou
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at the University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Eva Forssell-Aronsson
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at the University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
25
|
Jakobs L. Medullary Thyroid Cancer: Overview and Case Study of a Rare Cancer. Clin J Oncol Nurs 2018; 22:E37-E43. [PMID: 29547606 DOI: 10.1188/18.cjon.e37-e43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Medullary thyroid cancer (MTC) is a rare cancer that has historically been managed by endocrinologists. In 2011, the first of several multi- targeted tyrosine kinase inhibitors was approved as treatment for MTC. These drugs have changed the management of MTC to teams that include oncologists and oncology nurses. OBJECTIVES This article illustrates MTC diagnostics, surveillance, management of adverse drug reactions, and disease progression through a case study. METHODS An overview of MTC is offered, followed by an in-depth case study that examines MTC from the patient's perspective. FINDINGS Oncology nurses can influence patient outcomes through the provision of patient education, support, and management of disease and treatment complications.
Collapse
|
26
|
Smith A, Galli M, Piga I, Denti V, Stella M, Chinello C, Fusco N, Leni D, Manzoni M, Roversi G, Garancini M, Pincelli AI, Cimino V, Capitoli G, Magni F, Pagni F. Molecular signatures of medullary thyroid carcinoma by matrix-assisted laser desorption/ionisation mass spectrometry imaging. J Proteomics 2018; 191:114-123. [PMID: 29581064 DOI: 10.1016/j.jprot.2018.03.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 03/06/2018] [Accepted: 03/19/2018] [Indexed: 12/17/2022]
Abstract
The main aim of the study was to assess the feasibility of matrix-assisted laser desorption/ionisation mass spectrometry imaging (MALDI-MSI) in the pathological investigation of Medullary Thyroid Carcinoma (MTC). Formalin-fixed paraffin-embedded (FFPE) samples from seven MTC patients were analysed by MALDI-MSI in order to detect proteomic alterations within tumour lesions and to define the molecular profiles of specific findings, such as amyloid deposition and C cell hyperplasia (CCH). nLC-ESI MS/MS was employed for the identification of amyloid components and to select alternative proteomic markers of MTC pathogenesis. Results highlighted the potential of MALDI-MSI to confirm the classic immunohistochemical methods employed for the diagnosis of MTC, with good sensitivity and specificity. Intratumoural amyloid components were also detected and identified, and were characterised by calcitonin, apolipoprotein E, apolipoprotein IV, and vitronectin. The tryptic peptide profiles representative of MTC and CCH were distinctly different, with four alternative markers for MTC being detected; K1C18, and three histones (H2A, H3C, and H4). Finally, a further 115 proteins were identified through the nLC-ESI-MS/MS analysis alone, with moesin, veriscan, and lumican being selected due to their potential involvement in MTC pathogenesis. This approach represents a complimentary strategy that could be employed to detect new proteomic markers of MTC. STATEMENT OF SIGNIFICANCE: Medullary thyroid carcinoma (MTC) is a rare endocrine malignancy that originates from the parafollicular C-cells of the thyroid. The diagnosis is typically established using a combination of fine-needle aspiration biopsy (FNAB) of a suspicious nodule along with the demonstrable elevation of serum biomarkers, such as calcitonin and carcinoembryonic antigen (CEA). Unfortunately, this combination is often associated with a high degree of false-positive results and this can lead to misdiagnosis and avoidable total thyroidectomy. The current study presents the potential role of MALDI-MSI in the search for new proteomic markers of MTC with diagnostic and prognostic significance. MALDI-MSI was capable of detecting the classic immunohistochemical markers employed for the diagnosis of MTC, with good sensitivity and specificity. Furthermore, the complementary combination of MALDI-MSI and nLC-ESI-MS/MS analysis, using a single tissue section, enabled further potential markers to be identified and their spatial localisation visualised within tumoural regions. Such findings could be a valuable starting point for further studies focused on confirming the data presented here using thyroid FNABs, with the final objective being to provide complimentary assistance for the detection of MTC during the pre-operative phase.
Collapse
Affiliation(s)
- Andrew Smith
- Department of Medicine and Surgery, University of Milano-Bicocca, Clinical Proteomics and Metabolomics Unit, Vedano al Lambro, Italy.
| | - Manuel Galli
- Department of Medicine and Surgery, University of Milano-Bicocca, Clinical Proteomics and Metabolomics Unit, Vedano al Lambro, Italy.
| | - Isabella Piga
- Department of Medicine and Surgery, University of Milano-Bicocca, Clinical Proteomics and Metabolomics Unit, Vedano al Lambro, Italy; Department of Medicine and Surgery, University of Milano-Bicocca, Section of Pathology, Monza, Italy.
| | - Vanna Denti
- Department of Medicine and Surgery, University of Milano-Bicocca, Clinical Proteomics and Metabolomics Unit, Vedano al Lambro, Italy.
| | - Martina Stella
- Department of Medicine and Surgery, University of Milano-Bicocca, Clinical Proteomics and Metabolomics Unit, Vedano al Lambro, Italy.
| | - Clizia Chinello
- Department of Medicine and Surgery, University of Milano-Bicocca, Clinical Proteomics and Metabolomics Unit, Vedano al Lambro, Italy.
| | - Nicola Fusco
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - Davide Leni
- Department of Radiology, San Gerardo Hospital, Monza, Italy
| | - Marco Manzoni
- Department of Medicine and Surgery, University of Milano-Bicocca, Section of Pathology, Monza, Italy
| | - Gaia Roversi
- Department of Medicine and Surgery, University of Milano-Bicocca, Section of Genomics, Monza, Italy.
| | | | | | - Vincenzo Cimino
- Department of Endocrinology, San Gerardo Hospital, Monza, Italy
| | - Giulia Capitoli
- Department of Medicine and Surgery, University of Milano-Bicocca, Section of Biostatistics, Monza, Italy.
| | - Fulvio Magni
- Department of Medicine and Surgery, University of Milano-Bicocca, Clinical Proteomics and Metabolomics Unit, Vedano al Lambro, Italy.
| | - Fabio Pagni
- Department of Medicine and Surgery, University of Milano-Bicocca, Section of Pathology, Monza, Italy.
| |
Collapse
|
27
|
Abstract
Medullary thyroid cancer (MTC) is a relatively uncommon yet prognostically significant thyroid cancer. Several recent advances in the biology and current or potential treatment of MTC are notable. These include a new understanding of the developmental biology of the thyroid C cell, which heretofore was thought to develop from the neural crest. RET, encoded by the most common driver gene in MTC, has been shown to be a dual function kinase, thus expanding its potential substrate repertoire. Promising new therapeutic developments are occurring; many have recently progressed to clinical development. There are new insights into RET inhibitor therapy for MTC. New strategies are being developed to inhibit the RAS proteins, which are potential therapeutic targets in MTC. Potential emerging immunotherapies for MTC are discussed. However, gaps in our knowledge of the basic biology of the C cell, its transformation to MTC, and the mechanisms of resistance to therapy impede progress; further research in these areas would have a substantial impact on the field.
Collapse
Affiliation(s)
- Barry Nelkin
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans Street, Baltimore, MD, 21287, USA
| |
Collapse
|
28
|
Valenciaga A, Grubbs EG, Porter K, Wakely PE, Williams MD, Cote GJ, Vasko VV, Saji M, Ringel MD. Reduced Retinoblastoma Protein Expression Is Associated with Decreased Patient Survival in Medullary Thyroid Cancer. Thyroid 2017; 27:1523-1533. [PMID: 29105562 PMCID: PMC5734142 DOI: 10.1089/thy.2017.0113] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND The retinoblastoma (RB) transcriptional corepressor 1 protein functions to slow cell-cycle progression. Inactivation of RB by reduced expression and/or hyperphosphorylation allow for enhanced progression through the cell cycle. Murine models develop medullary thyroid carcinoma (MTC) after generalized loss of RB. However, RB expression in MTC has only been evaluated in a small number of tumors, with differing results. The objective of this study was to determine whether reduced expression of RB and/or overexpression of hyperphosphorylated RB predict MTC aggressive behavior. METHODS Formalin-fixed, paraffin-embedded primary thyroid tumors and lymph node metastases from MTC patients were evaluated for calcitonin, RB, and phosphorylated RB (pRB) expression by immunohistochemistry. Two expert pathologists evaluated the slides in a blinded manner, and the immunohistochemistry results were compared to disease-specific survival as a primary endpoint. RESULTS Seventy-four MTC samples from 56 patients were analyzed in this study, including 51 primary tumors and 23 lymph node metastases. The median follow-up time was 6.75 years after surgery (range 0.64-24.30 years), and the median primary tumor size was 30 mm (range 6-96 mm). Sixty-six percent of cases were classified as stage IV. RB nuclear expression was diffusely present in 88% of primary tumors and 78% of lymph node metastases. Nuclear pRB expression was present in 22% of primary tumors and 22% of lymph node metastases. On univariate analysis, reduced RB (<75% tumor cell staining) trended with lower MTC-specific survival for primary tumor and metastatic nodes (primary tumor hazard ratio = 3.54 [confidence interval 0.81-15.47], p = 0.08; and lymph node hazard ratio = 4.35 [confidence interval 0.87-21.83], p = 0.05). For primary tumors, multivariable analysis showed that low nuclear RB expression was independently associated with worse disease-specific (p = 0.01) and overall (p = 0.02) survival. pRB levels were not associated with survival for either primary tumor or lymph node metastases. CONCLUSIONS Reduced RB expression is associated with decreased patient survival in univariate and multivariable analyses, independent from patient age at surgery or advanced TNM stage. Future studies involving larger MTC patient populations are warranted to determine if lower RB expression levels may serve as a biomarker for aggressive disease in patients with MTC.
Collapse
Affiliation(s)
- Anisley Valenciaga
- Division of Endocrinology, Diabetes, and Metabolism, The Ohio State University Wexner Medical Center and Arthur G. James Comprehensive Cancer Center, Columbus, Ohio
| | - Elizabeth G. Grubbs
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kyle Porter
- Center for Biostatistics, The Ohio State University, Columbus, Ohio
| | - Paul E. Wakely
- Department of Pathology, The Ohio State University, Columbus, Ohio
| | - Michelle D. Williams
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gilbert J. Cote
- Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Vasyl V. Vasko
- Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Motoyasu Saji
- Division of Endocrinology, Diabetes, and Metabolism, The Ohio State University Wexner Medical Center and Arthur G. James Comprehensive Cancer Center, Columbus, Ohio
| | - Matthew D. Ringel
- Division of Endocrinology, Diabetes, and Metabolism, The Ohio State University Wexner Medical Center and Arthur G. James Comprehensive Cancer Center, Columbus, Ohio
| |
Collapse
|
29
|
Zaballos MA, Santisteban P. Key signaling pathways in thyroid cancer. J Endocrinol 2017; 235:R43-R61. [PMID: 28838947 DOI: 10.1530/joe-17-0266] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 08/04/2017] [Indexed: 12/16/2022]
Abstract
Whole genome sequencing approaches have provided unprecedented insights into the genetic lesions responsible for the onset, progression and dedifferentiation of various types of thyroid carcinomas. Through these efforts, the MAPK and PI3K signaling cascades have emerged as the main activation pathways implicated in thyroid tumorigenesis. The nature of these essential pathways is highly complex, with hundreds of components, multiple points of crosstalk, different subcellular localizations and with the ability to potentially regulate many cellular processes. Small-molecule inhibitors targeting key kinases of these pathways hold great promise as novel therapeutics and several have reached clinical trials. However, while some remarkable responses have been reported, the development of resistance remains a matter of concern and limits the benefit for patients. In this review, we discuss the latest findings on the major components of the MAPK and PI3K pathways, including their mechanisms of activation in physiological and pathological contexts, their genetic alterations with respect to the different types of thyroid carcinomas and the more relevant drugs designed to block their activity.
Collapse
Affiliation(s)
- Miguel A Zaballos
- Instituto de Investigaciones Biomédicas 'Alberto Sols'Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Pilar Santisteban
- Instituto de Investigaciones Biomédicas 'Alberto Sols'Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
30
|
Cote GJ, Evers C, Hu MI, Grubbs EG, Williams MD, Hai T, Duose DY, Houston MR, Bui JH, Mehrotra M, Waguespack SG, Busaidy NL, Cabanillas ME, Habra MA, Luthra R, Sherman SI. Prognostic Significance of Circulating RET M918T Mutated Tumor DNA in Patients With Advanced Medullary Thyroid Carcinoma. J Clin Endocrinol Metab 2017; 102:3591-3599. [PMID: 28911154 PMCID: PMC5587058 DOI: 10.1210/jc.2017-01039] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 07/17/2017] [Indexed: 12/17/2022]
Abstract
CONTEXT Interpretation of calcitonin measurement to predict the prognosis of medullary thyroid carcinoma (MTC) requires multiple measurements over an extended time period, making it an imperfect biomarker for evaluating prognosis or disease behavior. Single circulating cell-free DNA (cfDNA) values have been shown to be a valuable prognostic marker for several solid tumors. OBJECTIVE We tested the hypothesis that cfDNA containing the RET M918T mutation could be detected in the blood of patients with advanced MTC whose tumor harbored an M918T mutation and would be able to predict overall survival more reliably than calcitonin. DESIGN The level of cfDNA containing RET M918T mutation was measured in the plasma of patients with MTC via droplet digital polymerase chain reaction. PATIENTS Patients had a confirmed sporadic MTC diagnosis, a serum calcitonin measurement >100 pg/mL, and tumor tissue biopsy results providing RET M918T mutation status. There were 75 patients included in this study, 50 of whom harbored an RET M918T mutation by tissue biopsy. RESULTS RET M918T cfDNA was detected in 16 of 50 patients (32%) with a positive tissue biopsy. The detection of RET M918T cfDNA strongly correlated with worse overall survival and more accurately predicted a worse outcome than calcitonin doubling time. CONCLUSIONS Liquid biopsy is able to detect RET M918T mutations in patient plasma with high specificity but low sensitivity. In patients with established somatic RET M918T mutations, the allelic fraction of circulating tumor DNA is prognostic for overall survival and may play a role in monitoring response to treatment.
Collapse
Affiliation(s)
- Gilbert J. Cote
- Endocrine Neoplasia and Hormonal Disorders, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Caitlin Evers
- Endocrine Neoplasia and Hormonal Disorders, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
- School of Health Professions, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Mimi I. Hu
- Endocrine Neoplasia and Hormonal Disorders, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Elizabeth G. Grubbs
- Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | | | - Tao Hai
- Endocrine Neoplasia and Hormonal Disorders, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Dzifa Y. Duose
- Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Michal R. Houston
- Endocrine Neoplasia and Hormonal Disorders, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Jacquelin H. Bui
- Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Meenakshi Mehrotra
- Hematopathology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Steven G. Waguespack
- Endocrine Neoplasia and Hormonal Disorders, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Naifa L. Busaidy
- Endocrine Neoplasia and Hormonal Disorders, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Maria E. Cabanillas
- Endocrine Neoplasia and Hormonal Disorders, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Mouhammed Amir Habra
- Endocrine Neoplasia and Hormonal Disorders, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Rajyalakshmi Luthra
- Hematopathology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Steven I. Sherman
- Endocrine Neoplasia and Hormonal Disorders, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| |
Collapse
|
31
|
Bagheri-Yarmand R, Williams MD, Grubbs EG, Gagel RF. ATF4 Targets RET for Degradation and Is a Candidate Tumor Suppressor Gene in Medullary Thyroid Cancer. J Clin Endocrinol Metab 2017; 102:933-941. [PMID: 27935748 PMCID: PMC5460684 DOI: 10.1210/jc.2016-2878] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 12/08/2016] [Indexed: 12/20/2022]
Abstract
CONTEXT Medullary thyroid cancer (MTC) is an aggressive tumor that harbors activating mutations of the RET proto-oncogene. We previously reported that RET inhibits transcriptional activity of ATF4, the master regulator of the stress response pathway, to prevent cell death. OBJECTIVE We hypothesized that loss of function of ATF4 plays a role in initiation of MTC. DESIGN Targeted deletion of Atf4 in mice was used to assess ATF4 function in the thyroid gland. ATF4 overexpression was achieved by adenoviral and lentiviral vectors. We used immunohistochemical analysis and western blotting of MTC tumors to determine protein levels of RET and ATF4 and the Kaplan-Meier method to determine their association with clinical outcome. RESULTS Targeted deletion of Atf4 in mice causes C-cell hyperplasia, a precancerous lesion for MTC. Forced ATF4 expression decreased survival of MTC cells and blocked the activation of RET downstream signaling pathways (phosphorylated ERK, phosphorylated AKT, and p70S6K). ATF4 knockdown decreased sensitivity to tyrosine kinase inhibitor-induced apoptosis. Moreover, ATF4 expression decreased RET protein levels by promoting RET ubiquitination. We found decreased or loss of ATF4 in 52% of MTC tumors (n = 39) compared with normal thyroid follicle cells. A negative correlation was observed between RET and ATF4 protein levels in MTC tumors, and low ATF4 expression was associated with poor overall survival in patients with MTC. CONCLUSIONS ATF4 was identified as a negative regulator of RET, a candidate tumor suppressor gene, and may be a molecular marker that distinguishes patients at high risk of MTC from those with a longer survival prognosis.
Collapse
Affiliation(s)
| | | | - Elizabeth G. Grubbs
- Surgical Oncology, The University of Texas, Maryland Anderson Cancer Center, Houston, Texas 77030
| | | |
Collapse
|
32
|
Vitale G, Gaudenzi G, Circelli L, Manzoni MF, Bassi A, Fioritti N, Faggiano A, Colao A. Animal models of medullary thyroid cancer: state of the art and view to the future. Endocr Relat Cancer 2017; 24:R1-R12. [PMID: 27799362 DOI: 10.1530/erc-16-0399] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 10/24/2016] [Indexed: 12/16/2022]
Abstract
Medullary thyroid carcinoma is a neuroendocrine tumour originating from parafollicular C cells accounting for 5-10% of thyroid cancers. Increased understanding of disease-specific molecular targets of therapy has led to the regulatory approval of two drugs (vandetanib and cabozantinib) for the treatment of medullary thyroid carcinoma. These drugs increase progression-free survival; however, they are often poorly tolerated and most treatment responses are transient. Animal models are indispensable tools for investigating the pathogenesis, mechanisms for tumour invasion and metastasis and new therapeutic approaches for cancer. Unfortunately, only few models are available for medullary thyroid carcinoma. This review provides an overview of the state of the art of animal models in medullary thyroid carcinoma and highlights future developments in this field, with the aim of addressing salient features and clinical relevance.
Collapse
Affiliation(s)
- Giovanni Vitale
- Department of Clinical Sciences and Community Health (DISCCO)University of Milan, Milan, Italy
- Laboratory of Endocrine and Metabolic ResearchIstituto Auxologico Italiano IRCCS, Milan, Italy
| | - Germano Gaudenzi
- Department of Clinical Sciences and Community Health (DISCCO)University of Milan, Milan, Italy
| | - Luisa Circelli
- Department of Experimental OncologyLaboratory of Molecular Biology and Viral Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori, 'Fondazione Pascale' - IRCCS, Naples, Italy
| | - Marco F Manzoni
- Department of Endocrinology and Internal MedicineEndocrine Tumors Unit, San Raffaele Hospital Vita-Salute San Raffaele University, Milan, Italy
| | - Andrea Bassi
- Department of PhysicsPolitecnico di Milano, Milan, Italy
| | | | - Antongiulio Faggiano
- Thyroid and Parathyroid Surgery UnitIstituto Nazionale per lo Studio e la Cura dei Tumori 'Fondazione G. Pascale' - IRCCS, Naples, Italy
| | - Annamaria Colao
- Department of Clinical Medicine and SurgerySection of Endocrinology, 'Federico II' University of Naples, Naples, Italy
| | | |
Collapse
|
33
|
Grubbs EG, Williams MD, Scheet P, Vattathil S, Perrier ND, Lee JE, Gagel RF, Hai T, Feng L, Cabanillas ME, Cote GJ. Role of CDKN2C Copy Number in Sporadic Medullary Thyroid Carcinoma. Thyroid 2016; 26:1553-1562. [PMID: 27610696 PMCID: PMC6453497 DOI: 10.1089/thy.2016.0224] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND The cyclin-dependent-kinase inhibitors (CDKN)/retinoblastoma (RB1) pathway has been implicated as having a role in medullary thyroid carcinoma (MTC) tumorigenesis. CDKN2C loss has been associated with RET-mediated MTC in humans but with minimal phenotypic correlation provided. The objective of this study was to evaluate the association between tumor RET mutation status, CDKN2C loss, and aggressiveness of MTC in a cohort of patients with sporadic disease. METHODS Tumors from patients with sporadic MTC treated at a single institution were evaluated for somatic RETM918T mutation and CDKN2C copy number loss. These variables were compared to patient demographics, pathology detail, clinical course, and disease-specific and overall survival. RESULTS Sixty-two MTC cases with an initial surgery date ranging from 1983 to 2009 met the inclusion criteria, of whom 36 (58%) were male. The median age at initial surgery was 53 years (range 22-81 years). The median tumor size was 30 mm (range 6-145 mm) with 29 (57%) possessing extrathyroidal extension. Nodal and/or distant metastasis at presentation was found in 47/60 (78%) and 12/61 (20%) patients, respectively. Median follow-up time was 10.5 years (range 1.1-27.8 years) for the censored observations. The presence of CDKN2C loss was associated with worse M stage and overall AJCC stage. Median overall survival of patients with versus without CDKN2C loss was 4.14 [confidence interval (CI) 1.93-NA] versus 18.27 [CI 17.24-NA] years (p < 0.0001). Median overall survival of patients with a combined somatic RETM918T mutation and CDKN2C loss versus no somatic RETM918T mutation and CDKN2C loss versus somatic RETM918T mutation and CDKN2C 2N versus no somatic RETM918T mutation and CDKN2C 2N was 2.38 [CI 1.67-NA] years versus 10.81 [CI 2.46-NA] versus 17.24 [CI 9.82-NA] versus not reached [CI 13.46-NA] years (p < 0.0001). CONCLUSIONS The detection of somatic CDKN2C loss is associated with the presence of distant metastasis at presentation as well decreased overall survival, a relationship enhanced by concomitant RETM918T mutation. Further defining the genes involved in the progression of metastatic MTC will be an important step toward identifying pathways of disease progression and new therapeutic targets.
Collapse
Affiliation(s)
- Elizabeth G. Grubbs
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michelle D. Williams
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Paul Scheet
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Selina Vattathil
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Nancy D. Perrier
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jeffrey E. Lee
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Robert F. Gagel
- Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Tao Hai
- Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lei Feng
- Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Maria E. Cabanillas
- Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gilbert J. Cote
- Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
34
|
Nozhat Z, Hedayati M, Pourhassan H. Signaling pathways in medullary thyroid carcinoma: therapeutic implications. INTERNATIONAL JOURNAL OF ENDOCRINE ONCOLOGY 2016. [DOI: 10.2217/ije-2016-0014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Medullary thyroid cancer (MTC) is the third most frequent thyroid cancer arising from thyroid parafollicular cells. Surgery is the first-line strategy in treatment of MTC but disease relapse and patient's death have been observed in approximately two out of three of MTC cases. Identification of molecular mechanisms and different signaling pathways has offered new insights for disease treatment. The development of tyrosine kinase inhibitors targeting these pathways has provided a promising landscape for prevention of progression in patients with advanced metastatic MTC. In this review article different altered molecular pathways implicated in the development of MTC and the therapeutic strategies based on targeting the identified signaling pathways have been summarized.
Collapse
Affiliation(s)
- Zahra Nozhat
- Cellular & Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Biotechnology Department, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Hedayati
- Cellular & Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hoda Pourhassan
- Clinical Instructor Faculty, School of Medicine, University of California Riverside, Riverside, CA 92521, USA
| |
Collapse
|
35
|
Abstract
MicroRNAs (miRNAs) are small non-coding RNA comprising approximately 19-25 nucleotides. miRNAs can act as tumour suppressors or oncogenes, and aberrant expression of miRNAs has been reported in several human cancers and has been associated with cancer initiation and progression. Recent evidence suggests that miRNAs play a major role in thyroid carcinogenesis. In this review, we summarize the role of miRNAs in thyroid cancer and describe the oncogenic or tumour suppressor function of miRNAs as well as their clinical utility as prognostic or diagnostic markers in thyroid cancer.
Collapse
Affiliation(s)
- Myriem Boufraqech
- Endocrine Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joanna Klubo-Gwiezdzinska
- Metabolic Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Electron Kebebew
- Endocrine Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|