1
|
Riscado M, Mariano L, Cruz C, Pichon C, Sousa F. Biophysical characterization of microRNA mixtures based on Molecular Beacons. Biochem Biophys Res Commun 2024; 736:150913. [PMID: 39476754 DOI: 10.1016/j.bbrc.2024.150913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/24/2024] [Accepted: 10/26/2024] [Indexed: 11/10/2024]
Abstract
Diverse studies have shown a relationship between dysregulated microRNAs (miRNAs), including miRNA-29b and miRNA-9, and several diseases. So, it is hypothesized that miRNAs can be studied as potential agents to be exploited in biomedical applications, due to their ability to take part in gene expression regulation at a post-transcriptional level. Considering the possibility of using miRNAs, it is important to characterize and validate this bioproduct, structurally and functionally. The goal of this work is to optimize an assay that can detect and biophysically characterize a miRNA sample without interference from the respective precursor form, by using molecular beacons (MB). MBs are hairpin-shaped probes composed of nucleic acid labeled with a quencher at the 3' end and a fluorophore (reporter) at the 5' end. Here, MB loops were designed so MB-9-1 and MB-29-1 would be complementary to the miRNA-9-1-5p and the miRNA-29b-1-3p, respectively. The MBs designed in this work specifically identified each target miRNA, even in artificial mixtures or complex samples, and the obtained fluorescence was directly proportional to miRNA concentration. Even if the precursor forms (pre-miRNAs) were present in the samples, no significant signal was shown, allowing the distinction between both forms. The outcomes of this work confirm the MBs potential to assess and characterize miRNA samples to be exploited in biochemical, biophysical, or biomedical fields.
Collapse
Affiliation(s)
- Micaela Riscado
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Leonor Mariano
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Carla Cruz
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal; Departamento de Química da Faculdade de Ciências da Universidade da Beira Interior, Rua Marquês de Ávila e Bolama, 6201-001, Covilhã, Portugal
| | - Chantal Pichon
- Inserm UMS 55 ART ARNm, LI2RSO, University of Orléans, F-45100, Orléans, France; Institut Universitaire de France, 1 rue Descartes, F-75035, Paris, France
| | - Fani Sousa
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.
| |
Collapse
|
2
|
Chu C, Sun S, Zhang Z, Wu Q, Li H, Liang G, Miao X, Jiang H, Gao Y, Zhang Y, Wang B, Li X. Si-Miao-Yong-An Decoction alleviates thromboangiitis obliterans by regulating miR-548j-5p/IL-17A signaling pathway. Chin J Nat Med 2024; 22:541-553. [PMID: 38906601 DOI: 10.1016/s1875-5364(24)60626-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Indexed: 06/23/2024]
Abstract
Thromboangiitis obliterans (TAO) is a rare, chronic, progressive, and segmental inflammatory disease characterized by a high rate of amputation, significantly compromising the quality of life of patients. Si-Miao-Yong-An decoction (SMYA), a traditional prescription, exhibits anti-inflammatory, anti-thrombotic, and various other pharmacological properties. Clinically, it was fully proved to be effective for TAO therapy, but the specific therapeutic effect of SMYA on TAO has been unknown. Thus, deep unveiling the mechanism of SMYA in TAO for identifying clinical therapeutic targets is extremely important. In this study, we observed elevated levels of IL-17A in the peripheral blood mononuclear cells (PBMCs) of TAO patients, whereas the expression of miR-548j-5p was significantly decreased. A negative correlation between the levels of miR-548j-5p and IL-17A was also demonstrated. In vitro experiments showed that overexpression of miR-548j-5p led to a decrease in IL-17A levels, whereas downregulation of miR-548j-5p showed the opposite effect. Using a dual luciferase assay, we confirmed that miR-548j-5p directly targets IL-17A. Furthermore, serum containing SMYA effectively decreased IL-17A levels by increasing the expression of miR-548j-5p. More importantly, the results of in vivo tests indicated that SMYA mitigated the development of TAO by inhibiting IL-17A through the upregulation of miR-548j-5p in vascular tissues. In conclusion, SMYA significantly enhances the expression of miR-548j-5p, thereby reducing the levels of the target gene IL-17A and alleviating TAO. Our research not only identifies novel targets and pathways for the clinical diagnosis and treatment of TAO but also advances the innovation in traditional Chinese medicine through the elucidation of the SMYA/miR-548j-5p/IL-17A regulatory axis in the pathogenesis of TAO.
Collapse
Affiliation(s)
- Chu Chu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Shangwen Sun
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan 250012, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 271016, China
| | - Zhen Zhang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Qi Wu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Haoyang Li
- International Business School, Tianjin Foreign Studies University, Tianjin 300204, China
| | - Gang Liang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Xiuming Miao
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Haiqiang Jiang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yan Gao
- Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yunhong Zhang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Bin Wang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Xia Li
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| |
Collapse
|
3
|
Velikic G, Maric DM, Maric DL, Supic G, Puletic M, Dulic O, Vojvodic D. Harnessing the Stem Cell Niche in Regenerative Medicine: Innovative Avenue to Combat Neurodegenerative Diseases. Int J Mol Sci 2024; 25:993. [PMID: 38256066 PMCID: PMC10816024 DOI: 10.3390/ijms25020993] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/30/2023] [Accepted: 12/06/2023] [Indexed: 01/24/2024] Open
Abstract
Regenerative medicine harnesses the body's innate capacity for self-repair to restore malfunctioning tissues and organs. Stem cell therapies represent a key regenerative strategy, but to effectively harness their potential necessitates a nuanced understanding of the stem cell niche. This specialized microenvironment regulates critical stem cell behaviors including quiescence, activation, differentiation, and homing. Emerging research reveals that dysfunction within endogenous neural stem cell niches contributes to neurodegenerative pathologies and impedes regeneration. Strategies such as modifying signaling pathways, or epigenetic interventions to restore niche homeostasis and signaling, hold promise for revitalizing neurogenesis and neural repair in diseases like Alzheimer's and Parkinson's. Comparative studies of highly regenerative species provide evolutionary clues into niche-mediated renewal mechanisms. Leveraging endogenous bioelectric cues and crosstalk between gut, brain, and vascular niches further illuminates promising therapeutic opportunities. Emerging techniques like single-cell transcriptomics, organoids, microfluidics, artificial intelligence, in silico modeling, and transdifferentiation will continue to unravel niche complexity. By providing a comprehensive synthesis integrating diverse views on niche components, developmental transitions, and dynamics, this review unveils new layers of complexity integral to niche behavior and function, which unveil novel prospects to modulate niche function and provide revolutionary treatments for neurodegenerative diseases.
Collapse
Affiliation(s)
- Gordana Velikic
- Department for Research and Development, Clinic Orto MD-Parks Dr. Dragi Hospital, 21000 Novi Sad, Serbia
- Hajim School of Engineering, University of Rochester, Rochester, NY 14627, USA
| | - Dusan M. Maric
- Department for Research and Development, Clinic Orto MD-Parks Dr. Dragi Hospital, 21000 Novi Sad, Serbia
- Faculty of Stomatology Pancevo, University Business Academy, 26000 Pancevo, Serbia;
| | - Dusica L. Maric
- Department of Anatomy, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Gordana Supic
- Institute for Medical Research, Military Medical Academy, 11000 Belgrade, Serbia; (G.S.); (D.V.)
- Medical Faculty of Military Medical Academy, University of Defense, 11000 Belgrade, Serbia
| | - Miljan Puletic
- Faculty of Stomatology Pancevo, University Business Academy, 26000 Pancevo, Serbia;
| | - Oliver Dulic
- Department of Surgery, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia;
| | - Danilo Vojvodic
- Institute for Medical Research, Military Medical Academy, 11000 Belgrade, Serbia; (G.S.); (D.V.)
- Medical Faculty of Military Medical Academy, University of Defense, 11000 Belgrade, Serbia
| |
Collapse
|
4
|
Poisson LM, Kaur N, Felicella MM, Singh J. System-based integrated metabolomics and microRNA analysis identifies potential molecular alterations in human X-linked cerebral adrenoleukodystrophy brain. Hum Mol Genet 2023; 32:3249-3262. [PMID: 37656183 PMCID: PMC10656705 DOI: 10.1093/hmg/ddad144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/24/2023] [Indexed: 09/02/2023] Open
Abstract
X-linked adrenoleukodystrophy is a severe demyelinating neurodegenerative disease mainly affecting males. The severe cerebral adrenoleukodystrophy (cALD) phenotype has a poor prognosis and underlying mechanism of onset and progression of neuropathology remains poorly understood. In this study we aim to integrate metabolomic and microRNA (miRNA) datasets to identify variances associated with cALD. Postmortem brain tissue samples from five healthy controls (CTL) and five cALD patients were utilized in this study. White matter from ALD patients was obtained from normal-appearing areas, away from lesions (NLA) and from the periphery of lesions- plaque shadow (PLS). Metabolomics was performed by gas chromatography coupled with time-of-flight mass spectrometry and miRNA expression analysis was performed by next generation sequencing (RNAseq). Principal component analysis revealed that among the three sample groups (CTL, NLA and PLS) there were 19 miRNA, including several novel miRNA, of which 17 were increased with disease severity and 2 were decreased. Untargeted metabolomics revealed 13 metabolites with disease severity-related patterns with 7 increased and 6 decreased with disease severity. Ingenuity pathway analysis of differentially altered metabolites and miRNA comparing CTL with NLA and NLA with PLS, identified several hubs of metabolite and signaling molecules and their upstream regulation by miRNA. The transomic approach to map the crosstalk between miRNA and metabolomics suggests involvement of specific molecular and metabolic pathways in cALD and offers opportunity to understand the complex underlying mechanism of disease severity in cALD.
Collapse
Affiliation(s)
- Laila M Poisson
- Department of Public Health Science, Henry Ford Hospital, 2799 West Grand Blvd, Detroit, Michigan 48202, United States
| | - Navtej Kaur
- Department of Neurology, Henry Ford Hospital, 2799 West Grand Blvd, Detroit, Michigan 48202, United States
| | - Michelle M Felicella
- Department of Pathology, Henry Ford Hospital, 2799 West Grand Blvd, Detroit, Michigan 48202, United States
| | - Jaspreet Singh
- Department of Neurology, Henry Ford Hospital, 2799 West Grand Blvd, Detroit, Michigan 48202, United States
| |
Collapse
|
5
|
Rather MA, Khan A, Wang L, Jahan S, Rehman MU, Makeen HA, Mohan S. TRP channels: Role in neurodegenerative diseases and therapeutic targets. Heliyon 2023; 9:e16910. [PMID: 37332910 PMCID: PMC10272313 DOI: 10.1016/j.heliyon.2023.e16910] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/09/2023] [Accepted: 05/31/2023] [Indexed: 06/20/2023] Open
Abstract
TRP (Transient receptor potential) channels are integral membrane proteins consisting of a superfamily of cation channels that allow permeability of both monovalent and divalent cations. TRP channels are subdivided into six subfamilies: TRPC, TRPV, TRPM, TRPP, TRPML, and TRPA, and are expressed in almost every cell and tissue. TRPs play an instrumental role in the regulation of various physiological processes. TRP channels are extensively represented in brain tissues and are present in both prokaryotes and eukaryotes, exhibiting responses to several mechanisms, including physical, chemical, and thermal stimuli. TRP channels are involved in the perturbation of Ca2+ homeostasis in intracellular calcium stores, both in neuronal and non-neuronal cells, and its discrepancy leads to several neuronal disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and Amyotrophic lateral sclerosis (ALS). TRPs participate in neurite outgrowth, receptor signaling, and excitotoxic cell death in the central nervous system. Understanding the mechanism of TRP channels in neurodegenerative diseases may extend to developing novel therapies. Thus, this review articulates TRP channels' physiological and pathological role in exploring new therapeutic interventions in neurodegenerative diseases.
Collapse
Affiliation(s)
- Mashoque Ahmad Rather
- Department of Molecular Pharmacology & Physiology, Bryd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, United States
| | - Andleeb Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Lianchun Wang
- Department of Molecular Pharmacology & Physiology, Bryd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, United States
| | - Sadaf Jahan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majma'ah, 11952, Saudi Arabia
| | - Muneeb U. Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Hafiz A. Makeen
- Pharmacy Practice Research Unit, Department of Pharmacy Practice, College of Pharmacy, Jazan University, 45142, Saudi Arabia
| | - Syam Mohan
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, India
| |
Collapse
|
6
|
Zhu D, Zhang J, Gao F, Hu M, Hashem J, Chen C. Augmentation of 2-arachidonoylglycerol signaling in astrocytes maintains synaptic functionality by regulation of miRNA-30b. Exp Neurol 2023; 361:114292. [PMID: 36481187 PMCID: PMC9892245 DOI: 10.1016/j.expneurol.2022.114292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/08/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022]
Abstract
2-Arachidonoylglycerol (2-AG), the most abundant endocannabinoid, displays anti-inflammatory and neuroprotective properties. Inhibition of 2-AG degradation by inactivation of monoacylglycerol lipase (MAGL), a key enzyme degrading 2-AG in the brain, alleviates neuropathology and improves synaptic and cognitive functions in animal models of neurodegenerative diseases. In particular, global inactivation of MAGL by genetic deletion of mgll enhances hippocampal long-term potentiation (LTP) and hippocampus-dependent learning and memory. However, our understanding of the molecular mechanisms by which chronic inactivation of MAGL enhances synaptic activity is still limited. Here, we provide evidence that pharmacological inactivation of MAGL suppresses hippocampal expression of miR-30b, a small non-coding microRNA, and upregulates expression of its targets, including ephrin type-B receptor 2 (ephB2), sirtuin1 (sirt1), and glutamate ionotropic receptor AMPA type subunit 2 (GluA2). Importantly, suppression of miR-30b and increase of its targets by inactivation of MAGL result primarily from inhibition of 2-AG metabolism in astrocytes, rather than in neurons. Inactivation of MAGL in astrocytes prevents miR-30b overexpression-induced impairments in synaptic transmission and long-term potentiation (LTP) in the hippocampus. Suppression of miR-30b expression by inactivation of MAGL is apparently associated with augmentation of 2-AG signaling, as 2-AG induces a dose-dependent decrease in expression of miR-30b. 2-AG- or MAGL inactivation-suppressed expression of miR-30b is not mediated via CB1R, but by peroxisome proliferator-activated receptor γ (PPARγ). This is further supported by the results showing that MAGL inactivation-induced downregulation of miR-30b and upregulation of its targets are attenuated by antagonism of PPARγ, but mimicked by PPARγ agonists. In addition, we observed that 2-AG-induced reduction of miR-30b expression is mediated via NF-kB signaling. Our study provides evidence that 2-AG signaling in astrocytes plays an important role in maintaining the functional integrity of synapses in the hippocampus by regulation of miR-30b expression.
Collapse
Affiliation(s)
- Dexiao Zhu
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Jian Zhang
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Fei Gao
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Mei Hu
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Jack Hashem
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Chu Chen
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Center for Biomedical Neuroscience, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
7
|
Maier S, Barcutean L, Andone S, Manu D, Sarmasan E, Bajko Z, Balasa R. Recent Progress in the Identification of Early Transition Biomarkers from Relapsing-Remitting to Progressive Multiple Sclerosis. Int J Mol Sci 2023; 24:4375. [PMID: 36901807 PMCID: PMC10002756 DOI: 10.3390/ijms24054375] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/12/2023] [Accepted: 02/15/2023] [Indexed: 02/25/2023] Open
Abstract
Despite extensive research into the pathophysiology of multiple sclerosis (MS) and recent developments in potent disease-modifying therapies (DMTs), two-thirds of relapsing-remitting MS patients transition to progressive MS (PMS). The main pathogenic mechanism in PMS is represented not by inflammation but by neurodegeneration, which leads to irreversible neurological disability. For this reason, this transition represents a critical factor for the long-term prognosis. Currently, the diagnosis of PMS can only be established retrospectively based on the progressive worsening of the disability over a period of at least 6 months. In some cases, the diagnosis of PMS is delayed for up to 3 years. With the approval of highly effective DMTs, some with proven effects on neurodegeneration, there is an urgent need for reliable biomarkers to identify this transition phase early and to select patients at a high risk of conversion to PMS. The purpose of this review is to discuss the progress made in the last decade in an attempt to find such a biomarker in the molecular field (serum and cerebrospinal fluid) between the magnetic resonance imaging parameters and optical coherence tomography measures.
Collapse
Affiliation(s)
- Smaranda Maier
- Ist Neurology Clinic, Emergency Clinical County Hospital Targu Mures, 540136 Targu Mures, Romania
- Department of Neurology, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540136 Targu Mures, Romania
| | - Laura Barcutean
- Ist Neurology Clinic, Emergency Clinical County Hospital Targu Mures, 540136 Targu Mures, Romania
- Department of Neurology, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540136 Targu Mures, Romania
| | - Sebastian Andone
- Ist Neurology Clinic, Emergency Clinical County Hospital Targu Mures, 540136 Targu Mures, Romania
- Department of Neurology, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540136 Targu Mures, Romania
- Doctoral School, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Doina Manu
- Center for Advanced Medical and Pharmaceutical Research, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540136 Targu Mures, Romania
| | - Emanuela Sarmasan
- Ist Neurology Clinic, Emergency Clinical County Hospital Targu Mures, 540136 Targu Mures, Romania
| | - Zoltan Bajko
- Ist Neurology Clinic, Emergency Clinical County Hospital Targu Mures, 540136 Targu Mures, Romania
- Department of Neurology, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540136 Targu Mures, Romania
| | - Rodica Balasa
- Ist Neurology Clinic, Emergency Clinical County Hospital Targu Mures, 540136 Targu Mures, Romania
- Department of Neurology, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540136 Targu Mures, Romania
- Doctoral School, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
| |
Collapse
|
8
|
Zhang C, Talifu Z, Xu X, Liu W, Ke H, Pan Y, Li Y, Bai F, Jing Y, Li Z, Li Z, Yang D, Gao F, Du L, Li J, Yu Y. MicroRNAs in spinal cord injury: A narrative review. Front Mol Neurosci 2023; 16:1099256. [PMID: 36818651 PMCID: PMC9931912 DOI: 10.3389/fnmol.2023.1099256] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/12/2023] [Indexed: 02/05/2023] Open
Abstract
Spinal cord injury (SCI) is a global medical problem with high disability and mortality rates. At present, the diagnosis and treatment of SCI are still lacking. Spinal cord injury has a complex etiology, lack of diagnostic methods, poor treatment effect and other problems, which lead to the difficulty of spinal cord regeneration and repair, and poor functional recovery. Recent studies have shown that gene expression plays an important role in the regulation of SCI repair. MicroRNAs (miRNAs) are non-coding RNA molecules that target mRNA expression in order to silence, translate, or interfere with protein synthesis. Secondary damage, such as oxidative stress, apoptosis, autophagy, and inflammation, occurs after SCI, and differentially expressed miRNAs contribute to these events. This article reviews the pathophysiological mechanism of miRNAs in secondary injury after SCI, focusing on the mechanism of miRNAs in secondary neuroinflammation after SCI, so as to provide new ideas and basis for the clinical diagnosis and treatment of miRNAs in SCI. The mechanisms of miRNAs in neurological diseases may also make them potential biomarkers and therapeutic targets for spinal cord injuries.
Collapse
Affiliation(s)
- Chunjia Zhang
- School of Rehabilitation, Capital Medical University, Beijing, China,,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China,China Rehabilitation Science Institute, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Zuliyaer Talifu
- School of Rehabilitation, Capital Medical University, Beijing, China,,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China,China Rehabilitation Science Institute, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China,School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, Shandong Province, China
| | - Xin Xu
- School of Rehabilitation, Capital Medical University, Beijing, China,,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China,China Rehabilitation Science Institute, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Wubo Liu
- School of Rehabilitation, Capital Medical University, Beijing, China,,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China,China Rehabilitation Science Institute, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China,Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China,Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Han Ke
- School of Rehabilitation, Capital Medical University, Beijing, China,,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China,China Rehabilitation Science Institute, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China,Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China,Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Yunzhu Pan
- School of Rehabilitation, Capital Medical University, Beijing, China,,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China,China Rehabilitation Science Institute, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China,School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, Shandong Province, China
| | - Yan Li
- China Rehabilitation Science Institute, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Fan Bai
- China Rehabilitation Science Institute, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Yingli Jing
- China Rehabilitation Science Institute, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Zihan Li
- China Rehabilitation Science Institute, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Zehui Li
- School of Rehabilitation, Capital Medical University, Beijing, China,,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China,China Rehabilitation Science Institute, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Degang Yang
- School of Rehabilitation, Capital Medical University, Beijing, China,,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China,China Rehabilitation Science Institute, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Feng Gao
- School of Rehabilitation, Capital Medical University, Beijing, China,,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China,China Rehabilitation Science Institute, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Liangjie Du
- School of Rehabilitation, Capital Medical University, Beijing, China,,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China,China Rehabilitation Science Institute, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Jianjun Li
- School of Rehabilitation, Capital Medical University, Beijing, China,,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China,China Rehabilitation Science Institute, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China,School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, Shandong Province, China,Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China,*Correspondence: Jianjun Li,
| | - Yan Yu
- School of Rehabilitation, Capital Medical University, Beijing, China,,China Rehabilitation Science Institute, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China,Yan Yu,
| |
Collapse
|
9
|
Elangovan A, Venkatesan D, Selvaraj P, Pasha MY, Babu HWS, Iyer M, Narayanasamy A, Subramaniam MD, Valsala Gopalakrishnan A, Kumar NS, Vellingiri B. miRNA in Parkinson's disease: From pathogenesis to theranostic approaches. J Cell Physiol 2023; 238:329-354. [PMID: 36502506 DOI: 10.1002/jcp.30932] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/22/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022]
Abstract
Parkinson's disease (PD) is an age associated neurological disorder which is specified by cardinal motor symptoms such as tremor, stiffness, bradykinesia, postural instability, and non-motor symptoms. Dopaminergic neurons degradation in substantia nigra region and aggregation of αSyn are the classic signs of molecular defects noticed in PD pathogenesis. The discovery of microRNAs (miRNA) predicted to have a pivotal part in various processes regarding regularizing the cellular functions. Studies on dysregulation of miRNA in PD pathogenesis has recently gained the concern where our review unravels the role of miRNA expression in PD and its necessity in clinical validation for therapeutic development in PD. Here, we discussed how miRNA associated with ageing process in PD through molecular mechanistic approach of miRNAs on sirtuins, tumor necrosis factor-alpha and interleukin-6, dopamine loss, oxidative stress and autophagic dysregulation. Further we have also conferred the expression of miRNAs affected by SNCA gene expression, neuronal differentiation and its therapeutic potential with PD. In conclusion, we suggest more rigorous studies should be conducted on understanding the mechanisms and functions of miRNA in PD which will eventually lead to discovery of novel and promising therapeutics for PD.
Collapse
Affiliation(s)
- Ajay Elangovan
- Department of Human Genetics and Molecular Biology, Human Molecular Cytogenetics and Stem Cell Laboratory, Bharathiar University, Tamil Nadu, Coimbatore, India
| | - Dhivya Venkatesan
- Department of Human Genetics and Molecular Biology, Human Molecular Cytogenetics and Stem Cell Laboratory, Bharathiar University, Tamil Nadu, Coimbatore, India
| | - Priyanka Selvaraj
- Department of Human Genetics and Molecular Biology, Human Molecular Cytogenetics and Stem Cell Laboratory, Bharathiar University, Tamil Nadu, Coimbatore, India
| | - Md Younus Pasha
- Department of Human Genetics and Molecular Biology, Human Molecular Cytogenetics and Stem Cell Laboratory, Bharathiar University, Tamil Nadu, Coimbatore, India
| | - Harysh Winster Suresh Babu
- Department of Human Genetics and Molecular Biology, Human Molecular Cytogenetics and Stem Cell Laboratory, Bharathiar University, Tamil Nadu, Coimbatore, India.,Department of Zoology, Disease Proteomics Laboratory, Bharathiar University, Tamil Nadu, Coimbatore, India
| | - Mahalaxmi Iyer
- Livestock Farming, & Bioresources Technology, Tamil Nadu, India
| | - Arul Narayanasamy
- Department of Zoology, Disease Proteomics Laboratory, Bharathiar University, Tamil Nadu, Coimbatore, India
| | - Mohana Devi Subramaniam
- Department of Genetics and Molecular Biology, Vision Research Foundation, Tamil Nadu, Chennai, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bioscience and Technology, Vellore Institute of Technology (VIT), Tamil Nadu, Vellore, India
| | | | - Balachandar Vellingiri
- Department of Human Genetics and Molecular Biology, Human Molecular Cytogenetics and Stem Cell Laboratory, Bharathiar University, Tamil Nadu, Coimbatore, India.,Stem cell and Regenerative Medicine/Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab, Punjab, Bathinda, India
| |
Collapse
|
10
|
Wu ZD, Feng Y, Ma ZX, Liu Z, Xiong HH, Zhou ZP, Ouyang LS, Xie FK, Tang YM. MicroRNAs: protective regulators for neuron growth and development. Neural Regen Res 2023; 18:734-745. [DOI: 10.4103/1673-5374.353481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
11
|
Cattane N, Courtin C, Mombelli E, Maj C, Mora C, Etain B, Bellivier F, Marie-Claire C, Cattaneo A. Transcriptomics and miRNomics data integration in lymphoblastoid cells highlights the key role of immune-related functions in lithium treatment response in Bipolar disorder. BMC Psychiatry 2022; 22:665. [PMID: 36303132 PMCID: PMC9615157 DOI: 10.1186/s12888-022-04286-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 09/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bipolar Disorder (BD) is a complex mental disease characterized by recurrent episodes of mania and depression. Lithium (Li) represents the mainstay of BD pharmacotherapy, despite the narrow therapeutic index and the high variability in treatment response. However, although several studies have been conducted, the molecular mechanisms underlying Li therapeutic effects remain unclear. METHODS In order to identify molecular signatures and biological pathways associated with Li treatment response, we conducted transcriptome and miRNome microarray analyses on lymphoblastoid cell lines (LCLs) from 20 patients diagnosed with BD classified as Li responders (n = 11) or non-responders (n = 9). RESULTS We found 335 mRNAs and 77 microRNAs (miRNAs) significantly modulated in BD responders versus non-responders. Interestingly, pathway and network analyses on these differentially expressed molecules suggested a modulatory effect of Li on several immune-related functions. Indeed, among the functional molecular nodes, we found NF-κB and TNF. Moreover, networks related to these molecules resulted overall inhibited in BD responder patients, suggesting anti-inflammatory properties of Li. From the integrative analysis between transcriptomics and miRNomics data carried out using miRComb R package on the same samples from patients diagnosed with BD, we found 97 significantly and negatively correlated mRNA-miRNA pairs, mainly involved in inflammatory/immune response. CONCLUSIONS Our results highlight that Li exerts modulatory effects on immune-related functions and that epigenetic mechanisms, especially miRNAs, can influence the modulation of different genes and pathways involved in Li response. Moreover, our data suggest the potentiality to integrate data coming from different high-throughput approaches as a tool to prioritize genes and pathways.
Collapse
Affiliation(s)
- Nadia Cattane
- grid.419422.8Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Cindie Courtin
- grid.7429.80000000121866389Université Paris Cité, INSERM UMR-S 1144, Optimisation Thérapeutique en Neurospsychopharmacologie, OTeN, F-75006 Paris, France
| | - Elisa Mombelli
- grid.419422.8Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Carlo Maj
- grid.411097.a0000 0000 8852 305XInstitute for Genomic Statistics and Bioinformatics, University Hospital, Bonn, Germany
| | - Cristina Mora
- grid.419422.8Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Bruno Etain
- grid.7429.80000000121866389Université Paris Cité, INSERM UMR-S 1144, Optimisation Thérapeutique en Neurospsychopharmacologie, OTeN, F-75006 Paris, France ,Département de Psychiatrie et de Médecine Addictologique, Hôpitaux Lariboisière-Fernand Widal, GHU APHP Nord_Université Paris Cité, F-75010 Paris, France ,grid.484137.d0000 0005 0389 9389Fondation FondaMental, Créteil, France
| | - Frank Bellivier
- grid.7429.80000000121866389Université Paris Cité, INSERM UMR-S 1144, Optimisation Thérapeutique en Neurospsychopharmacologie, OTeN, F-75006 Paris, France ,Département de Psychiatrie et de Médecine Addictologique, Hôpitaux Lariboisière-Fernand Widal, GHU APHP Nord_Université Paris Cité, F-75010 Paris, France ,grid.484137.d0000 0005 0389 9389Fondation FondaMental, Créteil, France
| | - Cynthia Marie-Claire
- grid.7429.80000000121866389Université Paris Cité, INSERM UMR-S 1144, Optimisation Thérapeutique en Neurospsychopharmacologie, OTeN, F-75006 Paris, France
| | - Annamaria Cattaneo
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy. .,Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy.
| |
Collapse
|
12
|
Pandey SK, Singh RK. Recent developments in nucleic acid-based therapies for Parkinson's disease: Current status, clinical potential, and future strategies. Front Pharmacol 2022; 13:986668. [PMID: 36339626 PMCID: PMC9632735 DOI: 10.3389/fphar.2022.986668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/06/2022] [Indexed: 11/23/2022] Open
Abstract
Parkinson's disease is the second most common progressive neurodegenerative disease diagnosed mainly based on clinical symptoms caused by loss of nigrostriatal dopaminergic neurons. Although currently available pharmacological therapies provide symptomatic relief, however, the disease continues to progress eventually leading to severe motor and cognitive decline and reduced quality of life. The hallmark pathology of Parkinson's disease includes intraneuronal inclusions known as Lewy bodies and Lewy neurites, including fibrillar α-synuclein aggregates. These aggregates can progressively spread across synaptically connected brain regions leading to emergence of disease symptoms with time. The α-synuclein level is considered important in its fibrillization and aggregation. Nucleic acid therapeutics have recently been shown to be effective in treating various neurological diseases, raising the possibility of developing innovative molecular therapies for Parkinson's disease. In this review, we have described the advancements in genetic dysregulations in Parkinson's disease along with the disease-modifying strategies involved in genetic regulation with particular focus on downregulation of α-synuclein gene using various novel technologies, notably antisense oligonucleotides, microRNA, short interfering RNA, short hairpin RNAs, DNA aptamers, and gene therapy of vector-assisted delivery system-based therapeutics. In addition, the current status of preclinical and clinical development for nucleic acid-based therapies for Parkinson's disease have also been discussed along with their limitations and opportunities.
Collapse
Affiliation(s)
| | - Rakesh Kumar Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli, Uttar Pradesh, India
| |
Collapse
|
13
|
Abdolahi S, Zare-Chahoki A, Noorbakhsh F, Gorji A. A Review of Molecular Interplay between Neurotrophins and miRNAs in Neuropsychological Disorders. Mol Neurobiol 2022; 59:6260-6280. [PMID: 35916975 PMCID: PMC9463196 DOI: 10.1007/s12035-022-02966-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/17/2022] [Indexed: 01/10/2023]
Abstract
Various neurotrophins (NTs), including nerve growth factor, brain-derived neurotrophic factor, neurotrophin-3, and neurotrophin-4, promote cellular differentiation, survival, and maintenance, as well as synaptic plasticity, in the peripheral and central nervous system. The function of microRNAs (miRNAs) and other small non-coding RNAs, as regulators of gene expression, is pivotal for the appropriate control of cell growth and differentiation. There are positive and negative loops between NTs and miRNAs, which exert modulatory effects on different signaling pathways. The interplay between NTs and miRNAs plays a crucial role in the regulation of several physiological and pathological brain procedures. Emerging evidence suggests the diagnostic and therapeutic roles of the interactions between NTs and miRNAs in several neuropsychological disorders, including epilepsy, multiple sclerosis, Alzheimer's disease, Huntington's disease, amyotrophic lateral sclerosis, schizophrenia, anxiety disorders, depression, post-traumatic stress disorder, bipolar disorder, and drug abuse. Here, we review current data regarding the regulatory interactions between NTs and miRNAs in neuropsychological disorders, for which novel diagnostic and/or therapeutic strategies are emerging. Targeting NTs-miRNAs interactions for diagnostic or therapeutic approaches needs to be validated by future clinical studies.
Collapse
Affiliation(s)
- Sara Abdolahi
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | - Ameneh Zare-Chahoki
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Farshid Noorbakhsh
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Gorji
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Neurosurgery, Westfälische Wilhelms-Universität, Münster, Germany.
- Department of Neurology and Institute for Translational Neurology, Westfälische Wilhelms-Universität, Münster, Germany.
- Epilepsy Research Center, Westfälische Wilhelms-Universität, 48149, Münster, Germany.
| |
Collapse
|
14
|
Electroacupuncture Enhances Cognitive Deficits in a Rat Model of Rapid Eye Movement Sleep Deprivation via Targeting MiR-132. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7044208. [PMID: 36159559 PMCID: PMC9507748 DOI: 10.1155/2022/7044208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/12/2022] [Accepted: 08/13/2022] [Indexed: 11/17/2022]
Abstract
Deprivation of rapid eye movement sleep (REMSD) reduces the potential for learning and memory. The neuronal foundation of cognitive performance is synapse plasticity. MicroRNA-132 (MiR-132) is an important microRNA related to cognitive and synapse plasticity. Acupuncture is effective at improving cognitive impairment caused by sleep deprivation. Furthermore, its underlying principle is still unclear. Herein, whether electroacupuncture (EA) helps alleviate cognitive impairment in REMSD by targeting miR-132 was assessed. A rat model of REMSD was constructed using the developing multiplatform water environment technique, as well as EA therapy in Baihui (GV20) and Dazhui (GV14) was performed for 15 minutes, once daily for 7 days. Agomir or antagomir of MiR-132 was injected into the hippocampal CA1 areas to assess the EA mechanism in rats with REMSD. Then, the learning and memory abilities were detected by behavioral tests; synapse structure was assessed by transmission electron microscope (TCM); and dendrites branches and length were examined by Golgi staining. MiR-132-3p was assessed by real-time quantitative polymerase chain reaction (qRT-PCR). P250GAP, ras-related C3 botulinum toxin substrate 1 (Rac1), and cell division cycle 42 (Cdc42) expression levels in hippocampal tissues were evaluated by immunohistochemistry and Western blot. According to the research, EA therapy enhanced cognitive in REMSD rats, as evidenced by reduced escape latency; upregulated the performance of platform crossings and prolonged duration in the goal region; and improved spontaneous alternation. EA administration restored synaptic and dendritic structural damage in hippocampal neurons, enhanced miR-132 expression, and reduced p250GAP mRNA and protein levels. Additionally, EA boosted the protein level of Rac1 and Cdc42 associated with synaptic plasticity. MiR-132 agomir enhanced this effect, whereas miR-13 antagomir reversed this action. The current data demonstrate that EA at GV20 and GV14 attenuates cognitive impairment and modulates synaptic plasticity in hippocampal neurons via miR-132 in a sleep-deprived rat model.
Collapse
|
15
|
Roy B, Lee E, Li T, Rampersaud M. Role of miRNAs in Neurodegeneration: From Disease Cause to Tools of Biomarker Discovery and Therapeutics. Genes (Basel) 2022; 13:genes13030425. [PMID: 35327979 PMCID: PMC8951370 DOI: 10.3390/genes13030425] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/14/2022] [Accepted: 02/18/2022] [Indexed: 11/16/2022] Open
Abstract
Neurodegenerative diseases originate from neuronal loss in the central nervous system (CNS). These debilitating diseases progress with age and have become common due to an increase in longevity. The National Institute of Environmental Health Science’s 2021 annual report suggests around 6.2 million Americans are living with Alzheimer’s disease, and there is a possibility that there will be 1.2 million Parkinson’s disease patients in the USA by 2030. There is no clear-cut universal mechanism for identifying neurodegenerative diseases, and therefore, they pose a challenge for neurobiology scientists. Genetic and environmental factors modulate these diseases leading to familial or sporadic forms. Prior studies have shown that miRNA levels are altered during the course of the disease, thereby suggesting that these noncoding RNAs may be the contributing factor in neurodegeneration. In this review, we highlight the role of miRNAs in the pathogenesis of neurodegenerative diseases. Through this review, we aim to achieve four main objectives: First, we highlight how dysregulation of miRNA biogenesis led to these diseases. Second, we highlight the computational or bioinformatics tools required to identify the putative molecular targets of miRNAs, leading to biological molecular pathways or mechanisms involved in these diseases. Third, we focus on the dysregulation of miRNAs and their target genes leading to several neurodegenerative diseases. In the final section, we highlight the use of miRNAs as potential diagnostic biomarkers in the early asymptomatic preclinical diagnosis of these age-dependent debilitating diseases. Additionally, we discuss the challenges and advances in the development of miRNA therapeutics for brain targeting. We list some of the innovative strategies employed to deliver miRNA into target cells and the relevance of these viral and non-viral carrier systems in RNA therapy for neurodegenerative diseases. In summary, this review highlights the relevance of studying brain-enriched miRNAs, the mechanisms underlying their regulation of target gene expression, their dysregulation leading to progressive neurodegeneration, and their potential for biomarker marker and therapeutic intervention. This review thereby highlights ways for the effective diagnosis and prevention of these neurodegenerative disorders in the near future.
Collapse
Affiliation(s)
- Bidisha Roy
- Life Science Centre, Department of Biological Sciences, Rutgers University-Newark, Newark, NJ 07012, USA
- Correspondence:
| | - Erica Lee
- Department of Pathology, Icahn School of Medicine, New York, NY 10029, USA; (E.L.); (T.L.); (M.R.)
| | - Teresa Li
- Department of Pathology, Icahn School of Medicine, New York, NY 10029, USA; (E.L.); (T.L.); (M.R.)
| | - Maria Rampersaud
- Department of Pathology, Icahn School of Medicine, New York, NY 10029, USA; (E.L.); (T.L.); (M.R.)
| |
Collapse
|
16
|
The Biogenesis of miRNAs and Their Role in the Development of Amyotrophic Lateral Sclerosis. Cells 2022; 11:cells11030572. [PMID: 35159383 PMCID: PMC8833997 DOI: 10.3390/cells11030572] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 02/07/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that affects upper and lower motor neurons. As there is no effective treatment for ALS, it is particularly important to screen key gene therapy targets. The identifications of microRNAs (miRNAs) have completely changed the traditional view of gene regulation. miRNAs are small noncoding single-stranded RNA molecules involved in the regulation of post-transcriptional gene expression. Recent advances also indicate that miRNAs are biomarkers in many diseases, including neurodegenerative diseases. In this review, we summarize recent advances regarding the mechanisms underlying the role of miRNAs in ALS pathogenesis and its application to gene therapy for ALS. The potential of miRNAs to target diverse pathways opens a new avenue for ALS therapy.
Collapse
|
17
|
Circulating miRNAs as Potential Biomarkers Distinguishing Relapsing-Remitting from Secondary Progressive Multiple Sclerosis. A Review. Int J Mol Sci 2021; 22:ijms222111887. [PMID: 34769314 PMCID: PMC8584709 DOI: 10.3390/ijms222111887] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/30/2021] [Accepted: 10/31/2021] [Indexed: 12/18/2022] Open
Abstract
Multiple sclerosis (MS) is a debilitating neurodegenerative, highly heterogeneous disease with a variable course. The most common MS subtype is relapsing–remitting (RR), having interchanging periods of worsening and relative stabilization. After a decade, in most RR patients, it alters into the secondary progressive (SP) phase, the most debilitating one with no clear remissions, leading to progressive disability deterioration. Among the greatest challenges for clinicians is understanding disease progression molecular mechanisms, since RR is mainly characterized by inflammatory processes, while in SP, the neurodegeneration prevails. This is especially important because distinguishing RR from the SP subtype early will enable faster implementation of appropriate treatment. Currently, the MS course is not well-correlated with the biomarkers routinely used in clinical practice. Despite many studies, there are still no reliable indicators correlating with the disease stage and its activity degree. Circulating microRNAs (miRNAs) may be considered valuable molecules for the MS diagnosis and, presumably, helpful in predicting disease subtype. MiRNA expression dysregulation is commonly observed in the MS course. Moreover, knowledge of diverse miRNA panel expression between RRMS and SPMS may allow for deterring disability progression through successful treatment. Therefore, in this review, we address the current state of research on differences in miRNA panel expression between the phases.
Collapse
|
18
|
Lu J, Fang Q, Ge X. Role and Mechanism of mir-5189-3p in Deep Vein Thrombosis of Lower Extremities. Ann Vasc Surg 2021; 77:288-295. [PMID: 34416282 DOI: 10.1016/j.avsg.2021.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND This study is to investigate the role and mechanism of mir-5189-3p in deep vein thrombosis (DVT) in lower extremity. METHODS The blood samples were collected from Kazakh patients with DVT in lower extremity and were subjected to microRNA sequencing. Bioinformatics were used to identify mir-5189-3p and its target genes. Dual luciferase reporter assay was used to determine the regulatory effect of mir-5189-3p on JAG1. SD rats were randomly divided into normal control, DVT model, hsa-miR-5189-3p mimics and hsa-miR-5189-3p negative control groups. HE staining was used to observe the pathological changes. TUNEL method was used to observe apoptosis. Western blot was used to detect Bax and Bcl-2 protein expression. Real-time quantitative PCR was used to detect JAG1, Notch1 and Hes1 mRNA. RESULTS The target of Has-miR-5189-3p was JAG1. Co-transfection of miR-5189-3p mimics and pmirGLO/JAG1 wild-type plasmid induced significantly decreased luciferase activity. In hsa-miR-5189-3p mimics and hsa-miR-5189-3p negative control groups, there were more nucleated cells in the thrombus tissues, and the organization degree obviously increased. Signs of blood flow recanalization were observed. The apoptosis of hsa-miR-5189-3p mimics and hsa-miR-5189-3p negative control groups was lower than that in DVT model group. Furthermore, mir-5189-3p mimics significantly increased the mRNA levels of JAG1, Notch1 and Hes1. Additionally, mir-5189-3p mimics significantly increased Bcl-2 while decreased Bax protein. CONCLUSIONS mir-5189-3p could inhibit apoptosis and promote thrombus organization in DVT possibly via Notch signaling pathway. Mir-5189-3p can be used as a potential target for DVT treatment.
Collapse
Affiliation(s)
- Jing Lu
- Xinjiang Medical University, Urumqi, China
| | - Qingbo Fang
- Department of Vascular Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Xiaohu Ge
- Department of Vascular Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China.
| |
Collapse
|
19
|
Wang J, Cao Y, Lu X, Wang T, Li S, Kong X, Bo C, Li J, Wang X, Ma H, Li L, Zhang H, Ning S, Wang L. MicroRNAs and nervous system diseases: network insights and computational challenges. Brief Bioinform 2021; 21:863-875. [PMID: 30953059 DOI: 10.1093/bib/bbz032] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/12/2019] [Accepted: 03/01/2019] [Indexed: 12/16/2022] Open
Abstract
The nervous system is one of the most complex biological systems, and nervous system disease (NSD) is a major cause of disability and mortality. Extensive evidence indicates that numerous dysregulated microRNAs (miRNAs) are involved in a broad spectrum of NSDs. A comprehensive review of miRNA-mediated regulatory will facilitate our understanding of miRNA dysregulation mechanisms in NSDs. In this work, we summarized currently available databases on miRNAs and NSDs, star NSD miRNAs, NSD spectrum width, miRNA spectrum width and the distribution of miRNAs in NSD sub-categories by reviewing approximately 1000 studies. In addition, we characterized miRNA-miRNA and NSD-NSD interactions from a network perspective based on miRNA-NSD benchmarking data sets. Furthermore, we summarized the regulatory principles of miRNAs in NSDs, including miRNA synergistic regulation in NSDs, miRNA modules and NSD modules. We also discussed computational challenges for identifying novel miRNAs in NSDs. Elucidating the roles of miRNAs in NSDs from a network perspective would not only improve our understanding of the precise mechanism underlying these complex diseases, but also provide novel insight into the development, diagnosis and treatment of NSDs.
Collapse
Affiliation(s)
- Jianjian Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuze Cao
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoyu Lu
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tianfeng Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shuang Li
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaotong Kong
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chunrui Bo
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jie Li
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaolong Wang
- Department of Orthopedics, Harbin Medical University Cancer Hospital, Harbin, China
| | - Heping Ma
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Lei Li
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Huixue Zhang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shangwei Ning
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Lihua Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
20
|
Chu-Tan JA, Cioanca AV, Feng ZP, Wooff Y, Schumann U, Aggio-Bruce R, Patel H, Rutar M, Hannan K, Panov K, Provis J, Natoli R. Functional microRNA targetome undergoes degeneration-induced shift in the retina. Mol Neurodegener 2021; 16:60. [PMID: 34465369 PMCID: PMC8406976 DOI: 10.1186/s13024-021-00478-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/03/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND MicroRNA (miRNA) play a significant role in the pathogenesis of complex neurodegenerative diseases including age-related macular degeneration (AMD), acting as post-transcriptional gene suppressors through their association with argonaute 2 (AGO2) - a key member of the RNA Induced Silencing Complex (RISC). Identifying the retinal miRNA/mRNA interactions in health and disease will provide important insight into the key pathways miRNA regulate in disease pathogenesis and may lead to potential therapeutic targets to mediate retinal degeneration. METHODS To identify the active miRnome targetome interactions in the healthy and degenerating retina, AGO2 HITS-CLIP was performed using a rodent model of photoreceptor degeneration. Analysis of publicly available single-cell RNA sequencing (scRNAseq) data was performed to identify the cellular location of AGO2 and key members of the microRNA targetome in the retina. AGO2 findings were verified by in situ hybridization (RNA) and immunohistochemistry (protein). RESULTS Analysis revealed a similar miRnome between healthy and damaged retinas, however, a shift in the active targetome was observed with an enrichment of miRNA involvement in inflammatory pathways. This shift was further demonstrated by a change in the seed binding regions of miR-124-3p, the most abundant retinal AGO2-bound miRNA, and has known roles in regulating retinal inflammation. Additionally, photoreceptor cluster miR-183/96/182 were all among the most highly abundant miRNA bound to AGO2. Following damage, AGO2 expression was localized to the inner retinal layers and more in the OLM than in healthy retinas, indicating a locational miRNA response to retinal damage. CONCLUSIONS This study provides important insight into the alteration of miRNA regulatory activity that occurs as a response to retinal degeneration and explores the miRNA-mRNA targetome as a consequence of retinal degenerations. Further characterisation of these miRNA/mRNA interactions in the context of the degenerating retina may provide an important insight into the active role these miRNA may play in diseases such as AMD.
Collapse
Affiliation(s)
- Joshua A. Chu-Tan
- Eccles Institute of Neuroscience, The John Curtin School of Medical Research, College of Health and Medicine, The Australian National University, Acton, Canberra, ACT 2601 Australia
- The Australian National University Medical School, College of Health and Medicine, Canberra, ACT 2601 Australia
| | - Adrian V. Cioanca
- Eccles Institute of Neuroscience, The John Curtin School of Medical Research, College of Health and Medicine, The Australian National University, Acton, Canberra, ACT 2601 Australia
| | - Zhi-Ping Feng
- The ANU Bioinformatics Consultancy, The John Curtin School of Medical Research, College of Health and Medicine, The Australian National University, Acton, Canberra, ACT 2601 Australia
| | - Yvette Wooff
- Eccles Institute of Neuroscience, The John Curtin School of Medical Research, College of Health and Medicine, The Australian National University, Acton, Canberra, ACT 2601 Australia
- The Australian National University Medical School, College of Health and Medicine, Canberra, ACT 2601 Australia
| | - Ulrike Schumann
- Eccles Institute of Neuroscience, The John Curtin School of Medical Research, College of Health and Medicine, The Australian National University, Acton, Canberra, ACT 2601 Australia
| | - Riemke Aggio-Bruce
- Eccles Institute of Neuroscience, The John Curtin School of Medical Research, College of Health and Medicine, The Australian National University, Acton, Canberra, ACT 2601 Australia
- The Australian National University Medical School, College of Health and Medicine, Canberra, ACT 2601 Australia
| | - Hardip Patel
- The ANU Bioinformatics Consultancy, The John Curtin School of Medical Research, College of Health and Medicine, The Australian National University, Acton, Canberra, ACT 2601 Australia
| | - Matt Rutar
- School of Biomedical Sciences, The University of Melbourne, Parkville, Victoria 3010 Australia
- Faculty of Science and Technology, University of Canberra, Bruce, ACT 2617 Australia
| | - Katherine Hannan
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, College of Health and Medicine, The Australian National University, Acton, Canberra, ACT 2601 Australia
| | - Konstantin Panov
- School of Biological Sciences Queen’s University Belfast, Belfast, BT9 5DL Northern Ireland
| | - Jan Provis
- Eccles Institute of Neuroscience, The John Curtin School of Medical Research, College of Health and Medicine, The Australian National University, Acton, Canberra, ACT 2601 Australia
- The Australian National University Medical School, College of Health and Medicine, Canberra, ACT 2601 Australia
| | - Riccardo Natoli
- Eccles Institute of Neuroscience, The John Curtin School of Medical Research, College of Health and Medicine, The Australian National University, Acton, Canberra, ACT 2601 Australia
- The Australian National University Medical School, College of Health and Medicine, Canberra, ACT 2601 Australia
| |
Collapse
|
21
|
Lin YT, Lin YS, Cheng WL, Chang JC, Chao YC, Liu CS, Wei AC. Transcriptomic and Metabolic Network Analysis of Metabolic Reprogramming and IGF-1 Modulation in SCA3 Transgenic Mice. Int J Mol Sci 2021; 22:ijms22157974. [PMID: 34360740 PMCID: PMC8348158 DOI: 10.3390/ijms22157974] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/31/2022] Open
Abstract
Spinocerebellar ataxia type 3 (SCA3) is a genetic neurodegenerative disease for which a cure is still needed. Growth hormone (GH) therapy has shown positive effects on the exercise behavior of mice with cerebellar atrophy, retains more Purkinje cells, and exhibits less DNA damage after GH intervention. Insulin-like growth factor 1 (IGF-1) is the downstream mediator of GH that participates in signaling and metabolic regulation for cell growth and modulation pathways, including SCA3-affected pathways. However, the underlying therapeutic mechanisms of GH or IGF-1 in SCA3 are not fully understood. In the present study, tissue-specific genome-scale metabolic network models for SCA3 transgenic mice were proposed based on RNA-seq. An integrative transcriptomic and metabolic network analysis of a SCA3 transgenic mouse model revealed that metabolic signaling pathways were activated to compensate for the metabolic remodeling caused by SCA3 genetic modifications. The effect of IGF-1 intervention on the pathology and balance of SCA3 disease was also explored. IGF-1 has been shown to invoke signaling pathways and improve mitochondrial function and glycolysis pathways to restore cellular functions. As one of the downregulated factors in SCA3 transgenic mice, IGF-1 could be a potential biomarker and therapeutic target.
Collapse
Affiliation(s)
- Yu-Te Lin
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan;
| | - Yong-Shiou Lin
- Institute of ATP, Vascular and Genomic Center, Changhua Christian Hospital, Changhua 50091, Taiwan; (Y.-S.L.); (W.-L.C.); (J.-C.C.)
| | - Wen-Ling Cheng
- Institute of ATP, Vascular and Genomic Center, Changhua Christian Hospital, Changhua 50091, Taiwan; (Y.-S.L.); (W.-L.C.); (J.-C.C.)
| | - Jui-Chih Chang
- Institute of ATP, Vascular and Genomic Center, Changhua Christian Hospital, Changhua 50091, Taiwan; (Y.-S.L.); (W.-L.C.); (J.-C.C.)
| | - Yi-Chun Chao
- Inflammation Research & Drug Development Center, Changhua Christian Hospital, Changhua 50091, Taiwan;
| | - Chin-San Liu
- Institute of ATP, Vascular and Genomic Center, Changhua Christian Hospital, Changhua 50091, Taiwan; (Y.-S.L.); (W.-L.C.); (J.-C.C.)
- Department of Neurology, Changhua Christian Hospital, Changhua 50091, Taiwan
- Graduate Institute of Integrated Medicine College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
- Correspondence: (C.-S.L.); (A.-C.W.); Tel.: +886-4-7238595 (C.-S.L.); +886-2-33668612 (A.-C.W.)
| | - An-Chi Wei
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan;
- Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Correspondence: (C.-S.L.); (A.-C.W.); Tel.: +886-4-7238595 (C.-S.L.); +886-2-33668612 (A.-C.W.)
| |
Collapse
|
22
|
Dysregulation of miR-15a-5p, miR-497a-5p and miR-511-5p Is Associated with Modulation of BDNF and FKBP5 in Brain Areas of PTSD-Related Susceptible and Resilient Mice. Int J Mol Sci 2021; 22:ijms22105157. [PMID: 34068160 PMCID: PMC8153003 DOI: 10.3390/ijms22105157] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/06/2021] [Accepted: 05/10/2021] [Indexed: 12/21/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is a neuropsychiatric disorder occurring in susceptible individuals following a traumatic event. Understanding the mechanisms subserving trauma susceptibility/resilience is essential to develop new effective treatments. Increasing evidence suggests that non-coding RNAs, such as microRNAs (miRNAs), may play a prominent role in mediating trauma susceptibility/resilience. In this study, we evaluated the transcriptional expression of two key PTSD-related genes (FKBP5 and BDNF) and the relative targeting miRNAs (miR-15a-5p, miR-497a-5p, miR-511-5p, let-7d-5p) in brain areas of PTSD-related susceptible and resilient mice identified through our recently developed mouse model of PTSD (arousal-based individual screening (AIS) model). We observed lower transcript levels of miR-15a-5p, miR-497a-5p, and miR-511a-5p in the hippocampus and hypothalamus of susceptible mice compared to resilient mice, suggesting that the expression of these miRNAs could discriminate the two different phenotypes of stress-exposed mice. These miRNA variations could contribute, individually or synergically, to the inversely correlated transcript levels of FKBP5 and BDNF. Conversely, in the medial prefrontal cortex, downregulation of miR-15a-5p, miR-511-5p, and let-7d-5p was observed both in susceptible and resilient mice, and not accompanied by changes in their mRNA targets. Furthermore, miRNA expression in the different brain areas correlated to stress-induced behavioral scores (arousal score, avoidance-like score, social memory score and PTSD-like score), suggesting a linear connection between miRNA-based epigenetic modulation and stress-induced phenotypes. Pathway analysis of a miRNA network showed a statistically significant enrichment of molecular processes related to PTSD and stress. In conclusion, our results indicate that PTSD susceptibility/resilience might be shaped by brain-area-dependent modulation of miRNAs targeting FKBP5, BDNF, and other stress-related genes.
Collapse
|
23
|
Knockdown of long non-coding RNA SOX21-AS1 attenuates amyloid-β-induced neuronal damage by sponging miR-107. Biosci Rep 2021; 40:222277. [PMID: 32124921 PMCID: PMC7103586 DOI: 10.1042/bsr20194295] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/16/2020] [Accepted: 03/02/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD), which has no effective drugs to delay or prevent its progression, is a multifactorial complex neurodegenerative disease. Long non-coding RNA SOX21 antisense RNA1 (SOX21-AS1) is associated with the development of AD, but the underlying molecular mechanism of SOX21-AS1 in AD is still largely unclear. METHODS To construct the AD model, SH-SY5Y and SK-N-SH cells were treated with amyloid-β1-42 (Aβ1-42). Quantitative real-time polymerase chain reaction (qRT-PCR) was executed to detect the expression of SOX21-AS1 and miRNA-107. Western blot analysis was utilized to assess the levels of phosphorylated Tau (p-Tau). 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) or flow cytometry assay was employed to determine the viability and apoptosis of SH-SY5Y and SK-N-SH cells. The relationship between SOX21-AS1 and miRNA-107 was verified with the dual-luciferase reporter assay. RESULTS SOX21-AS1 expression was augmented while miR-107 expression was decreased in Aβ1-42-treated SH-SY5Y and SK-N-SH cells. Moreover, Aβ1-42 elevated the levels of p-Tau and impeded viability and induced apoptosis of SH-SY5Y and SK-N-SH cells. Also, SOX21-AS1 silencing attenuated Aβ1-42 mediated the levels of p-Tau, viability, and apoptosis of SH-SY5Y and SK-N-SH cells. Importantly, SOX21-AS1 acted as a sponge for miR-107 in SH-SY5Y and SK-N-SH cells. Furthermore, the increase in p-Tau levels and apoptosis and the repression of viability of Aβ1-42-treated SH-SY5Y and SK-N-SH cells mediated by miR-107 inhibition were partly recovered by SOX21-AS1 depletion. CONCLUSION SOX21-AS1 silencing could attenuate Aβ1-42-induced neuronal damage by sponging miR-107, which provided a possible strategy for the treatment of AD.
Collapse
|
24
|
Ma Y, Ye J, Zhao L, Pan D. MicroRNA-146a inhibition promotes total neurite outgrowth and suppresses cell apoptosis, inflammation, and STAT1/MYC pathway in PC12 and cortical neuron cellular Alzheimer's disease models. ACTA ACUST UNITED AC 2021; 54:e9665. [PMID: 33729395 PMCID: PMC7959174 DOI: 10.1590/1414-431x20209665] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 09/30/2020] [Indexed: 01/20/2023]
Abstract
This study aimed to explore the effect of microRNA (miR)-146a inhibition on regulating cell apoptosis, total neurite outgrowth, inflammation, and STAT1/MYC pathway in Alzheimer's disease (AD). PC12 and cortical neuron cellular AD models were constructed by Aβ1-42 insult. For the former model, nerve growth factor (NGF) stimulation was previously conducted. miR-146a inhibitor and negative-control (NC) inhibitor were transfected into the two cellular AD models, and then cells were named miR-inhibitor group and NC-inhibitor group, respectively. After transfection, cell apoptosis, total neurite outgrowth, supernatant inflammation cytokines, and STAT1/MYC pathway were detected. miR-146a expression was similar between PC12 cellular AD model and control cells (NGF-stimulated PC12 cells), while miR-146a expression was increased in cortical neuron cellular AD model compared with control cells (rat embryo primary cortical neurons). In both PC12 and cortical neuron cellular AD models, miR-146a expression was reduced in miR-inhibitor group compared with NC-inhibitor group after transfection. Furthermore, cell apoptosis was attenuated, while total neurite outgrowth was elevated in miR-inhibitor group compared with NC-inhibitor group. As for supernatant inflammatory cytokines, tumor necrosis factor-α, interleukin (IL)-1β, IL-6, and IL-17 levels were lower in miR-inhibitor group than in NC-inhibitor group. Additionally, STAT1 and c-Myc mRNA and protein expressions were attenuated in miR-inhibitor group compared with NC-inhibitor group. In conclusion, miR-146a potentially represented a viable therapeutic target for AD.
Collapse
Affiliation(s)
- Yinghui Ma
- Department of Neurosurgery, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, China
| | - Jiye Ye
- Department of Neurosurgery, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, China
| | | | - Dongmei Pan
- Department of Gerontology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, China
| |
Collapse
|
25
|
Du W, Lei C, Dong Y. MicroRNA-149 is downregulated in Alzheimer's disease and inhibits β-amyloid accumulation and ameliorates neuronal viability through targeting BACE1. Genet Mol Biol 2021; 44:e20200064. [PMID: 33428703 DOI: 10.1590/1678-4685-gmb-2020-0064] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 11/25/2020] [Indexed: 01/17/2023] Open
Abstract
Beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) plays a critical role in Alzheimer's disease (AD) pathogenesis. This study aimed to investigate the relationship between microRNA-149 (miR-149) and BACE1, and evaluate the clinical significance and biological function of miR-149 in AD progression. Bioinformatics analysis and a luciferase reporter assay were used to confirm the interaction between miR-149 and BACE1. Expression of miR-149 and BACE1 was estimated using quantitative real-time PCR. The clinical significance of miR-149 in AD diagnosis and severity determination was evaluated using ROC analysis. The effect of miR-149 on Aβ accumulation and neuronal viability was analyzed in Aβ-treated SH-SY5Y cells. miR-149 was found directly binding the 3'-UTR of BACE1 and was negatively correlated with BACE1 in AD patients and cell model. Serum miR-149 expression was downregulated in AD patients and served as a potential diagnostic biomarker. The overexpression of miR-149 in Aβ-treated SH-SY5Y cells resulted in inhibited Aβ accumulation and enhanced neuronal viability. This study demonstrated that serum miR-149 is decreased in AD patients and serves as a candidate diagnostic biomarker, and that the overexpression of miR-149 may suppress Aβ accumulation and promote neuronal viability by targeting BACE1 in AD model cells.
Collapse
Affiliation(s)
- Wenyan Du
- Zibo Central Hospital, Department of Science and Education, Zibo, Shandong, China
| | - Chengbin Lei
- Zibo Central Hospital, Department of Clinical Laboratory, Zibo, Shandong, China
| | - Yong Dong
- The Affiliated Hospital of Qingdao University, Department of Blood Transfusion, Qingdao, Shandong, China
| |
Collapse
|
26
|
Eyileten C, Sharif L, Wicik Z, Jakubik D, Jarosz-Popek J, Soplinska A, Postula M, Czlonkowska A, Kaplon-Cieslicka A, Mirowska-Guzel D. The Relation of the Brain-Derived Neurotrophic Factor with MicroRNAs in Neurodegenerative Diseases and Ischemic Stroke. Mol Neurobiol 2021; 58:329-347. [PMID: 32944919 PMCID: PMC7695657 DOI: 10.1007/s12035-020-02101-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/25/2020] [Indexed: 03/07/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin family of growth factors that plays a crucial role in the development of the nervous system while supporting the survival of existing neurons and instigating neurogenesis. Altered levels of BDNF, both in the circulation and in the central nervous system (CNS), have been reported to be involved in the pathogenesis of neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), multiple sclerosis (MS), and ischemic stroke. MicroRNAs (miRNAs) are a class of non-coding RNAs found in body fluids such as peripheral blood and cerebrospinal fluid. Several different miRNAs, and their target genes, are recognized to be involved in the pathophysiology of neurodegenerative and neurovascular diseases. Thus, they present as promising biomarkers and a novel treatment approach for CNS disorders. Currently, limited studies provide viable evidence of miRNA-mediated post-transcriptional regulation of BDNF. The aim of this review is to provide a comprehensive assessment of the current knowledge regarding the potential diagnostic and prognostic values of miRNAs affecting BDNF expression and its role as a CNS disorders and neurovascular disease biomarker. Moreover, a novel therapeutic approach in neurodegenerative diseases and ischemic stroke targeting miRNAs associated with BDNF will be discussed.
Collapse
Affiliation(s)
- Ceren Eyileten
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Banacha 1B Str., 02-097 Warsaw, Poland
| | - Lucia Sharif
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Banacha 1B Str., 02-097 Warsaw, Poland
| | - Zofia Wicik
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Banacha 1B Str., 02-097 Warsaw, Poland
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Paulo, Brazil
| | - Daniel Jakubik
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Banacha 1B Str., 02-097 Warsaw, Poland
| | - Joanna Jarosz-Popek
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Banacha 1B Str., 02-097 Warsaw, Poland
| | - Aleksandra Soplinska
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Banacha 1B Str., 02-097 Warsaw, Poland
| | - Marek Postula
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Banacha 1B Str., 02-097 Warsaw, Poland
| | - Anna Czlonkowska
- 2nd Department of Neurology, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland
| | | | - Dagmara Mirowska-Guzel
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Banacha 1B Str., 02-097 Warsaw, Poland
| |
Collapse
|
27
|
Morabito S, Miyoshi E, Michael N, Swarup V. Integrative genomics approach identifies conserved transcriptomic networks in Alzheimer's disease. Hum Mol Genet 2020; 29:2899-2919. [PMID: 32803238 PMCID: PMC7566321 DOI: 10.1093/hmg/ddaa182] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/10/2020] [Accepted: 07/27/2020] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease (AD) is a devastating neurological disorder characterized by changes in cell-type proportions and consequently marked alterations of the transcriptome. Here we use a data-driven systems biology meta-analytical approach across three human AD cohorts, encompassing six cortical brain regions, and integrate with multi-scale datasets comprising of DNA methylation, histone acetylation, transcriptome- and genome-wide association studies and quantitative trait loci to further characterize the genetic architecture of AD. We perform co-expression network analysis across more than 1200 human brain samples, identifying robust AD-associated dysregulation of the transcriptome, unaltered in normal human aging. We assess the cell-type specificity of AD gene co-expression changes and estimate cell-type proportion changes in human AD by integrating co-expression modules with single-cell transcriptome data generated from 27 321 nuclei from human postmortem prefrontal cortical tissue. We also show that genetic variants of AD are enriched in a microglial AD-associated module and identify key transcription factors regulating co-expressed modules. Additionally, we validate our results in multiple published human AD gene expression datasets, which can be easily accessed using our online resource (https://swaruplab.bio.uci.edu/consensusAD).
Collapse
Affiliation(s)
- Samuel Morabito
- Mathematical, Computational and Systems Biology (MCSB) Program, University of California, Irvine, CA 92697, USA
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California, Irvine, CA 92697, USA
| | - Emily Miyoshi
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California, Irvine, CA 92697, USA
| | - Neethu Michael
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California, Irvine, CA 92697, USA
| | - Vivek Swarup
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California, Irvine, CA 92697, USA
| |
Collapse
|
28
|
Ausó E, Gómez-Vicente V, Esquiva G. Biomarkers for Alzheimer's Disease Early Diagnosis. J Pers Med 2020; 10:E114. [PMID: 32899797 PMCID: PMC7563965 DOI: 10.3390/jpm10030114] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/27/2020] [Accepted: 09/01/2020] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia, affecting the central nervous system (CNS) through the accumulation of intraneuronal neurofibrillary tau tangles (NFTs) and β-amyloid plaques. By the time AD is clinically diagnosed, neuronal loss has already occurred in many brain and retinal regions. Therefore, the availability of early and reliable diagnosis markers of the disease would allow its detection and taking preventive measures to avoid neuronal loss. Current diagnostic tools in the brain, such as magnetic resonance imaging (MRI), positron emission tomography (PET) imaging, and cerebrospinal fluid (CSF) biomarkers (Aβ and tau) detection are invasive and expensive. Brain-secreted extracellular vesicles (BEVs) isolated from peripheral blood have emerged as novel strategies in the study of AD, with enormous potential as a diagnostic evaluation of therapeutics and treatment tools. In addition; similar mechanisms of neurodegeneration have been demonstrated in the brain and the eyes of AD patients. Since the eyes are more accessible than the brain, several eye tests that detect cellular and vascular changes in the retina have also been proposed as potential screening biomarkers. The aim of this study is to summarize and discuss several potential markers in the brain, eye, blood, and other accessible biofluids like saliva and urine, and correlate them with earlier diagnosis and prognosis to identify individuals with mild symptoms prior to dementia.
Collapse
Affiliation(s)
| | | | - Gema Esquiva
- Department of Optics, Pharmacology and Anatomy, University of Alicante, 03690 Alicante, Spain; (E.A.); (V.G.-V.)
| |
Collapse
|
29
|
Neueder A, Orth M. Mitochondrial biology and the identification of biomarkers of Huntington's disease. Neurodegener Dis Manag 2020; 10:243-255. [PMID: 32746707 DOI: 10.2217/nmt-2019-0033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Apart from finding novel compounds for treating Huntington's disease (HD) an important challenge at present consists in finding reliable read-outs or biomarkers that reflect key biological processes involved in HD pathogenesis. The core elements of HD biology, for example, HTT RNA levels or protein species can serve as biomarker, as could measures from biological systems or pathways in which Huntingtin plays an important role. Here we review the evidence for the involvement of mitochondrial biology in HD. The most consistent findings pertain to mitochondrial quality control, for example, fission/fusion. However, a convincing mitochondrial signature with biomarker potential is yet to emerge. This requires more research including in peripheral sources of human material, such as blood, or skeletal muscle.
Collapse
Affiliation(s)
| | - Michael Orth
- Department of Neurology, Ulm University, Ulm, Germany.,SwissHuntington's Disease Centre, Neurozentrum Siloah, Worbstr. 312, 3073 Gümligenbei Bern, Switzerland
| |
Collapse
|
30
|
Koller D, Kubinyi E, Elek Z, Nemeth H, Miklosi A, Sasvari-Szekely M, Ronai Z. The molecular effect of a polymorphic microRNA binding site of Wolfram syndrome 1 gene in dogs. BMC Genet 2020; 21:82. [PMID: 32723293 PMCID: PMC7390163 DOI: 10.1186/s12863-020-00879-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/29/2020] [Indexed: 11/10/2022] Open
Abstract
Background Although the molecular function of wolframin remains unclear, the lack of this protein is known to cause stress in the endoplasmic reticulum. Some variants in the Wolfram Syndrome 1 gene (WFS1) were associated with various neuropsychiatric disorders in humans, such as aggressiveness, impulsivity and anxiety. Results Here we present an in silico study predicting a single nucleotide polymorphism (rs852850348) in the canine WFS1 gene which was verified by direct sequencing and was genotyped by a PCR-based technique. We found that the rs852850348 polymorphism is located in a putative microRNA (cfa-miR-8834a and cfa-miR-1838) binding site. Therefore, the molecular effect of allelic variants was studied in a luciferase reporter system that allowed assessing gene expression. We demonstrated that the variant reduced the activity of the reporter protein expression in an allele-specific manner. Additionally, we performed a behavioral experiment and investigated the association with this locus to different performance in this test. Association was found between food possessivity and the studied WFS1 gene polymorphism in the Border collie breed. Conclusions Based on our findings, the rs852850348 locus might contribute to the genetic risk of possessivity behavior of dogs in at least one breed and might influence the regulation of wolframin expression.
Collapse
Affiliation(s)
- Dora Koller
- Comparative Ethology Research Group, MTA-ELTE, Budapest, Hungary. .,Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary. .,Department of Ethology, ELTE Eötvös Loránd University, Budapest, Hungary.
| | - Eniko Kubinyi
- Comparative Ethology Research Group, MTA-ELTE, Budapest, Hungary.,Department of Ethology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Zsuzsanna Elek
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Helga Nemeth
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Adam Miklosi
- Comparative Ethology Research Group, MTA-ELTE, Budapest, Hungary.,Department of Ethology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Maria Sasvari-Szekely
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Zsolt Ronai
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| |
Collapse
|
31
|
Paul S, Bravo Vázquez LA, Pérez Uribe S, Roxana Reyes-Pérez P, Sharma A. Current Status of microRNA-Based Therapeutic Approaches in Neurodegenerative Disorders. Cells 2020; 9:cells9071698. [PMID: 32679881 PMCID: PMC7407981 DOI: 10.3390/cells9071698] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/03/2020] [Accepted: 07/03/2020] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are a key gene regulator and play essential roles in several biological and pathological mechanisms in the human system. In recent years, plenty of miRNAs have been identified to be involved in the development of neurodegenerative disorders (NDDs), thus making them an attractive option for therapeutic approaches. Hence, in this review, we provide an overview of the current research of miRNA-based therapeutics for a selected set of NDDs, either for their high prevalence or lethality, such as Alzheimer's, Parkinson's, Huntington's, Amyotrophic Lateral Sclerosis, Friedreich's Ataxia, Spinal Muscular Atrophy, and Frontotemporal Dementia. We also discuss the relevant delivery techniques, pertinent outcomes, their limitations, and their potential to become a new generation of human therapeutic drugs in the near future.
Collapse
|
32
|
Improta-Caria AC, Nonaka CKV, Cavalcante BRR, De Sousa RAL, Aras Júnior R, Souza BSDF. Modulation of MicroRNAs as a Potential Molecular Mechanism Involved in the Beneficial Actions of Physical Exercise in Alzheimer Disease. Int J Mol Sci 2020; 21:E4977. [PMID: 32674523 PMCID: PMC7403962 DOI: 10.3390/ijms21144977] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/23/2020] [Accepted: 06/23/2020] [Indexed: 12/18/2022] Open
Abstract
Alzheimer disease (AD) is one of the most common neurodegenerative diseases, affecting middle-aged and elderly individuals worldwide. AD pathophysiology involves the accumulation of beta-amyloid plaques and neurofibrillary tangles in the brain, along with chronic neuroinflammation and neurodegeneration. Physical exercise (PE) is a beneficial non-pharmacological strategy and has been described as an ally to combat cognitive decline in individuals with AD. However, the molecular mechanisms that govern the beneficial adaptations induced by PE in AD are not fully elucidated. MicroRNAs are small non-coding RNAs involved in the post-transcriptional regulation of gene expression, inhibiting or degrading their target mRNAs. MicroRNAs are involved in physiological processes that govern normal brain function and deregulated microRNA profiles are associated with the development and progression of AD. It is also known that PE changes microRNA expression profile in the circulation and in target tissues and organs. Thus, this review aimed to identify the role of deregulated microRNAs in the pathophysiology of AD and explore the possible role of the modulation of microRNAs as a molecular mechanism involved in the beneficial actions of PE in AD.
Collapse
Affiliation(s)
- Alex Cleber Improta-Caria
- Post-Graduate Program in Medicine and Health, Faculty of Medicine, Federal University of Bahia, Bahia 40110-909, Brazil; (A.C.I.-C.); (R.A.J.)
- University Hospital Professor Edgard Santos, Bahia 40110-909, Brazil
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Bahia 40110-909, Brazil; (C.K.V.N.); (B.R.R.C.)
| | - Carolina Kymie Vasques Nonaka
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Bahia 40110-909, Brazil; (C.K.V.N.); (B.R.R.C.)
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro 20000-000, Brazil
| | - Bruno Raphael Ribeiro Cavalcante
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Bahia 40110-909, Brazil; (C.K.V.N.); (B.R.R.C.)
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro 20000-000, Brazil
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Bahia 40110-909, Brazil
| | - Ricardo Augusto Leoni De Sousa
- Physiological Science Multicentric Program, Federal University of Valleys´ Jequitinhonha and Mucuri, Minas Gerais 30000-000, Brazil;
| | - Roque Aras Júnior
- Post-Graduate Program in Medicine and Health, Faculty of Medicine, Federal University of Bahia, Bahia 40110-909, Brazil; (A.C.I.-C.); (R.A.J.)
- University Hospital Professor Edgard Santos, Bahia 40110-909, Brazil
| | - Bruno Solano de Freitas Souza
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Bahia 40110-909, Brazil; (C.K.V.N.); (B.R.R.C.)
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro 20000-000, Brazil
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Bahia 40110-909, Brazil
| |
Collapse
|
33
|
Astaxanthin suppresses endoplasmic reticulum stress and protects against neuron damage in Parkinson's disease by regulating miR-7/SNCA axis. Neurosci Res 2020; 165:51-60. [PMID: 32333925 DOI: 10.1016/j.neures.2020.04.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/19/2020] [Accepted: 04/15/2020] [Indexed: 12/25/2022]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder that featured by the loss of dopaminergic neurons. Astaxanthin (AST), an important antioxidant, is demonstrated to be a neuroprotective agent for PD. However, the underlying mechanisms of AST in PD remain largely unclear. In this study, we found that AST treatment significantly not only abolished the cell viability inhibition and apoptosis promotion induced by 1-methyl-4-phenylpyridinium (MPP+) in SH-SY5Y cells via inhibiting endoplasmic reticulum (ER) stress, but also reversed the MPP+ caused dysregulation of miR-7 and SNCA expression. MiR-7 knockdown and SNCA overexpression were achieved by treating SH-SY5Y cells with miR-7 inhibitor and pcDNA3.1-SNCA plasmids, respectively. MiR-7 could bind to and negatively regulate SNCA in SH-SY5Y cells. Treated SH-SY5Y cells with miR-7 inhibitor or pcDNA3.1-SNCA abrogated the protective effects of AST on MPP+ induced cytotoxicity. Knockdown of miR-7 aggravated 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induced neuron injury in vivo suggested by athletic performance, histopathological morphology, expression of tyrosine hydroxylase (TH) and TUNEL positvie cells, however, AST treatment could reverse these effects of miR-7 knockdown. Collectively, AST suppressed ER stress and protected against PD-caused neuron damage by targeting miR-7/SNCA axis, implying that AST might be a potential effective therapeutic agent for PD.
Collapse
|
34
|
Xia F, Chen Y, Jiang B, Bai N, Li X. Hsa_circ_0011385 accelerates the progression of thyroid cancer by targeting miR-361-3p. Cancer Cell Int 2020; 20:49. [PMID: 32082079 PMCID: PMC7017482 DOI: 10.1186/s12935-020-1120-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 01/21/2020] [Indexed: 01/04/2023] Open
Abstract
Background Thyroid cancer is an endocrine malignancy that is growing in incidence worldwide. Despite progress in diagnostics and treatment of thyroid cancer, prognosis remains poor. Emerging research has shown that circular RNAs (circRNAs) have crucial regulatory roles in cancers. However, the possible functions and mechanisms of hsa_circ_0011385 remain undetermined. Materials and methods Expression levels of hsa_circ_0011385 and miR-361-3p were evaluated by qRT-PCR assay. The interaction between hsa_circ_0011385 and miR-361-3p was verified by dual-luciferase reporter assay. Effects of hsa_circ_0011385 or miR-361-3p on cell viability, proliferation, cell cycle, apoptosis, migration and invasion were confirmed by cell counting kit-8 (CCK-8), carboxyfluoresceinsuccinimidyl ester (CFSE), flow cytometry, and Transwell assays in vitro. The effect of hsa_circ_0011385 on thyroid cancer progression was also determined by in vivo tumor formation assay. Target genes of miR-361-3p were predicted by gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, and the expression of apoptosis- and metastasis-related proteins were assessed by Western blot assay. Results Hsa_circ_0011385 upregulated in thyroid cancer; hsa_circ_0011385 knockdown inhibited thyroid cancer cell proliferation, migration and invasion, and promoted cell cycle arrest and apoptosis. In addition, hsa_circ_0011385 could negatively regulate miR-361-3p by functioning as a sponge. Hsa_circ_0011385 promoted thyroid cancer cell proliferation, migration and invasion and suppressed cell cycle arrest and apoptosis by targeting miR-361-3p in vitro. We also found that hsa_circ_0011385 knockdown dramatically inhibited thyroid cancer growth in vivo. Furthermore, hsa_circ_0011385 regulated expression of apoptosis and metastasis-related proteins in thyroid cancer. Conclusions Hsa_circ_0011385facilitated thyroid cancer cell proliferation, invasion and migration, and inhibited thyroid cancer cell cycle arrest and apoptosis by targeting miR-361-3p, suggesting that the hsa_circ_0011385/miR-361-3p axis might be a promising therapeutic target for thyroid cancer.
Collapse
Affiliation(s)
- Fada Xia
- Department of General Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China
| | - Yong Chen
- Department of General Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China
| | - Bo Jiang
- Department of General Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China
| | - Ning Bai
- Department of General Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China
| | - Xinying Li
- Department of General Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China
| |
Collapse
|
35
|
Wu L, Xi Y, Kong Q. Dexmedetomidine protects PC12 cells from oxidative damage through regulation of miR-199a/HIF-1α. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 48:506-514. [PMID: 32024386 DOI: 10.1080/21691401.2020.1716780] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Ling Wu
- Department of Clinical Pharmacy, Dalian Central Hospital, Dalian, China
| | - Yalin Xi
- Department of Clinical Pharmacy, Dalian Central Hospital, Dalian, China
| | - Qinglong Kong
- Department of Thoracic Surgery, Dalian Central Hospital, Dalian, China
| |
Collapse
|
36
|
Desjarlais M, Wirth M, Rivera JC, Lahaie I, Dabouz R, Omri S, Ruknudin P, Borras C, Chemtob S. MicroRNA-96 Promotes Vascular Repair in Oxygen-Induced Retinopathy-A Novel Uncovered Vasoprotective Function. Front Pharmacol 2020; 11:13. [PMID: 32116694 PMCID: PMC7008172 DOI: 10.3389/fphar.2020.00013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/07/2020] [Indexed: 12/16/2022] Open
Abstract
Background and Aims Vascular degeneration is a hallmark in the pathogenesis of oxygen-induced retinopathy (OIR). Dysregulation of microRNAs (miRNAs), key regulators of genes expressions, has been implicated in the regulation of ocular angiogenesis. However, miRNAs specific functions in impaired vascular development during OIR are poorly understood. Herein, we identified miR-96 as one of the most highly expressed miRNAs in the retina and choroid during vascular development and investigated the potential role of miR-96 on microvascular degeneration in a rat OIR model. Methods and Results Next generation sequencing (NGS) and qRT-PCR analysis showed that miR-96 maintain high levels of expression during ocular vascular development. Nevertheless, miR-96 was significantly downregulated in the retina and choroid of OIR rats (80% O2 from P5 to P10) during the phase of microvascular degeneration. Similarly, human retinal microvascular endothelial cells (HRMEC) subjected to hyperoxia (80% O2) showed a significant downregulation of miR-96 evaluated by qPCR. Interestingly, HRMEC supplemented with miR-96 regulated positively the expression of several key angiogenic factors including VEGF and ANG-2. To explore the angiogenic activity of miR-96 on HRMEC, we performed a gain/loss of function study. In a similar way to hyperoxia exposure, we observed a robust angiogenic impairment (tubulogenesis and migration) on HRMEC transfected with an antagomiR-96. Conversely, overexpression of miR-96 stimulated the angiogenic activity of HRMEC and protected against hyperoxia-induced endothelial dysfunction. Finally, we evaluated the potential vasoprotective function of miR-96 in OIR animals. Rat pups intravitreally supplemented with miR-96 mimic (1 mg/kg) displayed a significant preservation of retinal/choroidal microvessels at P10 compared to controls. This result was consistent with the maintenance of physiologic levels of VEGF and ANG-2 in the OIR retina. Conclusion This study demonstrates that miR-96 regulates the expression of angiogenic factors (VEGF/ANG-2) associated to the maintenance of retinal and choroidal microvasculature during physiological and pathological conditions. Intravitreal supplementation of miR-96 mimic could constitute a novel therapeutic strategy to improve vascular repair in OIR and other ischemic retinopathies.
Collapse
Affiliation(s)
- Michel Desjarlais
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montreal, Montreal, QC, Canada
| | - Maëlle Wirth
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montreal, Montreal, QC, Canada
| | - José Carlos Rivera
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montreal, Montreal, QC, Canada.,Departments of Pediatrics, Ophthalmology and Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montreal, QC, Canada
| | - Isabelle Lahaie
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montreal, Montreal, QC, Canada
| | - Rabah Dabouz
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montreal, Montreal, QC, Canada
| | - Samy Omri
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montreal, Montreal, QC, Canada
| | - Pakiza Ruknudin
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montreal, Montreal, QC, Canada
| | - Celine Borras
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montreal, Montreal, QC, Canada
| | - Sylvain Chemtob
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montreal, Montreal, QC, Canada.,Departments of Pediatrics, Ophthalmology and Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montreal, QC, Canada
| |
Collapse
|
37
|
Zhang Y, Zhang Z, Wei R, Miao X, Sun S, Liang G, Chu C, Zhao L, Zhu X, Guo Q, Wang B, Li X. IL (Interleukin)-6 Contributes to Deep Vein Thrombosis and Is Negatively Regulated by miR-338-5p. Arterioscler Thromb Vasc Biol 2019; 40:323-334. [PMID: 31852218 PMCID: PMC6975520 DOI: 10.1161/atvbaha.119.313137] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Supplemental Digital Content is available in the text. Objective: Deep venous thrombosis (DVT), one of the most common venous thromboembolic disorders, is closely linked with pulmonary embolism and post-thrombotic syndrome, both of which have a high mortality. However, the factors that trigger DVT formation are still largely unknown. Elevated expression of IL (interleukin)-6—an important inflammatory cytokine—has been linked with DVT formation. However, the molecular mechanisms leading to the elevated IL-6 in DVT remain unclear. Here, we proposed that epigenetic modification of IL-6 at the post-transcriptional level may be a crucial trigger for IL-6 upregulation in DVT. Approach and Results: To explore the association between microRNAs and IL-6 in DVT, we performed microRNA microarray analysis and experiments both in vitro and in vivo. Microarray and quantitative real-time polymerase chain reaction results showed that IL-6 expression was increased while miR-338-5p level was decreased substantially in peripheral blood mononuclear cells of patients with DVT, and there was significant negative correlation between miR-338-5p and IL-6. Experiments in vitro showed that overexpressed miR-338-5p reduced IL-6 expression, while miR-338-5p knockdown increased IL-6 expression. Moreover, our in vivo study found that mice with anti–IL-6 antibody or agomiR-338-5p delivery resulted in decreased IL-6 expression and alleviated DVT formation, whereas antagomiR-338-5p acted inversely. Most of miR-338-5p was found located in cytoplasm by fluorescence in situ hybridization. Dual-luciferase reporter assay identified direct binding between miR-338-5p and IL-6. Conclusions: Our results suggest that decreased miR-338-5p promotes DVT formation by increasing IL-6 expression.
Collapse
Affiliation(s)
- Yunhong Zhang
- From the School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, China (Y.Z., C.C.).,Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China (Y.Z., Z.Z., R.W., S.S., C.C., L.Z., X.Z., Q.G., X.L.)
| | - Zhen Zhang
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China (Y.Z., Z.Z., R.W., S.S., C.C., L.Z., X.Z., Q.G., X.L.)
| | - Ran Wei
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China (Y.Z., Z.Z., R.W., S.S., C.C., L.Z., X.Z., Q.G., X.L.)
| | - Xiuming Miao
- Department of Peripheral Vascular Disease, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China (X.M., G.L., B.W.)
| | - Shangwen Sun
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China (Y.Z., Z.Z., R.W., S.S., C.C., L.Z., X.Z., Q.G., X.L.).,Department of Cardiology, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan (S.S.)
| | - Gang Liang
- Department of Peripheral Vascular Disease, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China (X.M., G.L., B.W.)
| | - Chu Chu
- From the School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, China (Y.Z., C.C.).,Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China (Y.Z., Z.Z., R.W., S.S., C.C., L.Z., X.Z., Q.G., X.L.)
| | - Lin Zhao
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China (Y.Z., Z.Z., R.W., S.S., C.C., L.Z., X.Z., Q.G., X.L.)
| | - Xiaoxiao Zhu
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China (Y.Z., Z.Z., R.W., S.S., C.C., L.Z., X.Z., Q.G., X.L.)
| | - Qiang Guo
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China (Y.Z., Z.Z., R.W., S.S., C.C., L.Z., X.Z., Q.G., X.L.)
| | - Bin Wang
- Department of Peripheral Vascular Disease, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China (X.M., G.L., B.W.)
| | - Xia Li
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China (Y.Z., Z.Z., R.W., S.S., C.C., L.Z., X.Z., Q.G., X.L.)
| |
Collapse
|
38
|
Chen J, Gu X, Zhou L, Wang S, Zhu L, Huang Y, Cao F. Long non-coding RNA-HOTAIR promotes the progression of sepsis by acting as a sponge of miR-211 to induce IL-6R expression. Exp Ther Med 2019; 18:3959-3967. [PMID: 31656541 PMCID: PMC6812472 DOI: 10.3892/etm.2019.8063] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 06/29/2019] [Indexed: 12/18/2022] Open
Abstract
Sepsis remains the primary cause of death in intensive care units and multiple long non-coding RNAs (lncRNAs) have been demonstrated to be dysregulated in samples of patients with sepsis. However, whether lncRNA-HOTAIR is involved in the etiology of sepsis remains unclear. The aim of the present study was to investigate the role of HOTAIR in sepsis and to reveal the associated mechanisms. A bioinformatics analysis and dual-luciferase reporter assay was performed to evaluate the interaction between HOTAIR and miR-211, as well as miR-211 and IL-6R. An animal model of sepsis was established in mice via cecal ligation and puncture. Interferon (IFN)-γ, interleukin (IL)-6, IL-17, tumor necrosis factor (TNF)-α, IL-1β, IL-6 receptor (R), microRNA (miR)-211 and HOTAIR expression was measured using reverse transcription-quantitative PCR. Cellular proliferation and apoptosis of monocytes were assessed using cell counting kit-8 assay and flow cytometry, respectively. miR-211 was revealed to be targeted by HOTAIR and IL-6R. The expression of IFN-γ, IL-6, IL-17, TNF-α, IL-1β, IL-6R and HOTAIR was significantly upregulated in the septic mice, whereas miR-211 expression was downregulated. The overexpression of hox transcript antisense RNA (HOTAIR) and knockdown of miR-211 were associated with an increased expression of IFN-γ, IL-6, IL-17, TNF-α, IL-1β and IL-6R in monocytes, while the overexpression of miR-211 exhibited the opposite effect. HOTAIR overexpression and miR-211 knockdown significantly inhibited cellular proliferation and promoted monocyte apoptosis, whereas the overexpression of miR-211 exhibited the opposite effects in monocytes. Therefore, HOTAIR may promote the progression of sepsis by indirectly regulating the expression of IL-6R via miR-211.
Collapse
Affiliation(s)
- Jianan Chen
- Department of Emergency Intensive Care Unit, Ningbo 6th Hospital, Ningbo, Zhejiang 315040, P.R. China
| | - Xingsheng Gu
- Department of Emergency, Ningbo 6th Hospital, Ningbo, Zhejiang 315040, P.R. China
| | - Li Zhou
- Department of Emergency Intensive Care Unit, Ningbo 6th Hospital, Ningbo, Zhejiang 315040, P.R. China
| | - Shuguang Wang
- Department of Emergency Intensive Care Unit, Ningbo 6th Hospital, Ningbo, Zhejiang 315040, P.R. China
| | - Limei Zhu
- Department of Trauma Orthopedics, Ningbo 6th Hospital, Ningbo, Zhejiang 315040, P.R. China
| | - Yangneng Huang
- Department of Emergency, Ningbo 6th Hospital, Ningbo, Zhejiang 315040, P.R. China
| | - Feng Cao
- Department of Emergency, Ningbo 6th Hospital, Ningbo, Zhejiang 315040, P.R. China
| |
Collapse
|
39
|
Zheng F, Wang F, Xu Z. MicroRNA-98-5p prevents bone regeneration by targeting high mobility group AT-Hook 2. Exp Ther Med 2019; 18:2660-2666. [PMID: 31555368 DOI: 10.3892/etm.2019.7835] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 05/03/2019] [Indexed: 12/31/2022] Open
Abstract
MicroRNAs (mRNAs or miRs) serve an important role in the regulation of gene expression. In the present study, the role of miR-98-5p in bone regeneration was determined. Three osteoblast cell models were established, including primary human stem cells (BMMSC), mouse BMMSC's and MC3T3-E1 cells. miR-98-5p expression was determined using reverse transcription-quantitative (RT-q)PCR. Osteoblast markers, including alkaline phosphatase, runt related transcription factor 2 and transcription factor Sp7, were determined using RT-qPCR and western blot analysis, respectively. Alkaline phosphatase activity was determined in the present study and cell proliferation and apoptosis assays were performed. Furthermore, an association between miR-98-5p and high mobility group AT-Hook 2 (HMGA2) was revealed. This association was determined using TargetScan and a dual luciferase reporter assay. The current study demonstrated that miR-98-5p was downregulated during osteogenic differentiation and further demonstrated that HMGA2 may be a direct target of miR-98-5p. The results also demonstrated that miR-98-5p upregulation significantly inhibited the osteogenic differentiation of MC3T3-E1 cells, an effect that was reversed by an increased HMGA2 expression. Additionally, the results revealed that miR-98-5p upregulation inhibited MC3T3-E1 cell viability and induced cell apoptosis and these effects were eliminated by HMGA2 overexpression. In conclusion, miR-98-5p may prevent bone regeneration through inhibiting osteogenic differentiation and osteoblast growth by targeting HMGA2.
Collapse
Affiliation(s)
- Feng Zheng
- Department of Orthopedics, Qinghai Provincial People's Hospital, Xining, Qinghai 810007, P.R. China
| | - Furong Wang
- Department of Orthopedics, Qinghai Provincial People's Hospital, Xining, Qinghai 810007, P.R. China
| | - Zhe Xu
- Department of Orthopedics, Qinghai Provincial People's Hospital, Xining, Qinghai 810007, P.R. China
| |
Collapse
|
40
|
Xu C, Wang C, Meng Q, Gu Y, Wang Q, Xu W, Han Y, Qin Y, Li J, Jia S, Xu J, Zhou Y. miR‑153 promotes neural differentiation in the mouse hippocampal HT‑22 cell line and increases the expression of neuron‑specific enolase. Mol Med Rep 2019; 20:1725-1735. [PMID: 31257504 PMCID: PMC6625396 DOI: 10.3892/mmr.2019.10421] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 05/06/2019] [Indexed: 01/22/2023] Open
Abstract
MicroRNAs (miRNAs) have been found to play important regulatory roles in certain neurodegenerative diseases. The aim of the present study was to investigate the effect of miRNA-153 (miR-153) on the neural differentiation of HT-22 cells. Overexpression of miR-153 induced the differentiation of HT-22 cells, increasing the number of protrusions and branches, reducing the S phase distribution of the cell cycle, and attenuating the cell proliferation rate as determined using the Cell Counting Kit-8 assay. Furthermore, miR-153 increased the expression of neuron-specific γ-enolase (NSE), neuronal nuclei (NeuN), and N-ethylmaleimide-sensitive fusion attachment protein 23 (SNAP23) and SNAP25 at the transcriptional and protein level by PCR and western blot analysis. Moreover, miR-153 caused obvious upregulation of peroxiredoxin 5 (PRX5), which has been found to protect neural cells from death and apoptosis. miR-153 promoted neural differentiation and protected neural cells by upregulating the neuron markers γ-enolase, neuronal nuclei, and the functional proteins SNAP23, SNAP25 and PRX5. Therefore, miR-153 may be a potential target for the treatment of certain neurodegenerative diseases.
Collapse
Affiliation(s)
- Chunli Xu
- Department of Neurology, The Seventh People's Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Chen Wang
- School of Life Science and Technology, School of Medicine, Tongji University, Shanghai 200092, P.R. China
| | - Qiuyu Meng
- School of Life Science and Technology, School of Medicine, Tongji University, Shanghai 200092, P.R. China
| | - Yuming Gu
- Department of Neurology, The Seventh People's Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Qiwei Wang
- Department of Neurology, The Seventh People's Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Wenjie Xu
- Department of Neurology, The Seventh People's Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Ying Han
- Department of Neurology, The Seventh People's Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Yong Qin
- Department of Neurology, The Seventh People's Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Jiao Li
- Teaching Laboratory Center of Medicine and Life Science, School of Medicine, Tongji University, Shanghai 200092, P.R. China
| | - Song Jia
- Teaching Laboratory Center of Medicine and Life Science, School of Medicine, Tongji University, Shanghai 200092, P.R. China
| | - Jie Xu
- Teaching Laboratory Center of Medicine and Life Science, School of Medicine, Tongji University, Shanghai 200092, P.R. China
| | - Yixin Zhou
- Department of Neurology, The Seventh People's Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| |
Collapse
|
41
|
MicroRNA expression profile in retina and choroid in oxygen-induced retinopathy model. PLoS One 2019; 14:e0218282. [PMID: 31188886 PMCID: PMC6561584 DOI: 10.1371/journal.pone.0218282] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 05/29/2019] [Indexed: 12/13/2022] Open
Abstract
Background Ischemic retinopathies (IRs) are leading causes of visual impairment. They are characterized by an initial phase of microvascular degeneration and a second phase of aberrant pre-retinal neovascularization (NV). microRNAs (miRNAs) regulate gene expression, and a number play a role in normal and pathological NV. But, post-transcriptional modulation of miRNAs in the eye during the development of IRs has not been systematically evaluated. Aims & methods Using Next Generation Sequencing (NGS) we profiled miRNA expression in the retina and choroid during vasodegenerative and NV phases of oxygen-induced retinopathy (OIR). Results Approximately 20% of total miRNAs exhibited altered expression (up- or down-regulation); 6% of miRNA were found highly expressed in retina and choroid of rats subjected to OIR. During OIR-induced vessel degeneration phase, miR-199a-3p, -199a-5p, -1b, -126a-3p displayed a robust decreased expression (> 85%) in the retina. While in the choroid, miR-152-3p, -142-3p, -148a-3p, -532-3p were upregulated (>200%) and miR-96-5p, -124-3p, -9a-3p, -190b-5p, -181a-1-3p, -9a-5p, -183-5p were downregulated (>70%) compared to controls. During peak pathological NV, miR-30a-5p, -30e-5p and 190b-5p were markedly reduced (>70%), and miR-30e-3p, miR-335, -30b-5p strongly augmented (by up to 300%) in the retina. Whereas in choroid, miR-let-7f-5p, miR-126a-5p and miR-101a-3p were downregulated by (>81%), and miR-125a-5p, let-7e-5p and let-7g-5p were upregulated by (>570%) during NV. Changes in miRNA observed using NGS were validated using qRT-PCR for the 24 most modulated miRNAs. In silico approach to predict miRNA target genes (using algorithms of miRSystem database) identified potential new target genes with pro-inflammatory, apoptotic and angiogenic properties. Conclusion The present study is the first comprehensive description of retinal/choroidal miRNAs profiling in OIR (using NGS technology). Our results provide a valuable framework for the characterization and possible therapeutic potential of specific miRNAs involved in ocular IR-triggered inflammation, angiogenesis and degeneration.
Collapse
|
42
|
Martinez BI, Stabenfeldt SE. Current trends in biomarker discovery and analysis tools for traumatic brain injury. J Biol Eng 2019; 13:16. [PMID: 30828380 PMCID: PMC6381710 DOI: 10.1186/s13036-019-0145-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 02/06/2019] [Indexed: 12/13/2022] Open
Abstract
Traumatic brain injury (TBI) affects 1.7 million people in the United States each year, causing lifelong functional deficits in cognition and behavior. The complex pathophysiology of neural injury is a primary barrier to developing sensitive and specific diagnostic tools, which consequentially has a detrimental effect on treatment regimens. Biomarkers of other diseases (e.g. cancer) have provided critical insight into disease emergence and progression that lend to developing powerful clinical tools for intervention. Therefore, the biomarker discovery field has recently focused on TBI and made substantial advancements to characterize markers with promise of transforming TBI patient diagnostics and care. This review focuses on these key advances in neural injury biomarkers discovery, including novel approaches spanning from omics-based approaches to imaging and machine learning as well as the evolution of established techniques.
Collapse
Affiliation(s)
- Briana I. Martinez
- School of Life Sciences, Arizona State University, Tempe, AZ USA
- School of Biological and Health Systems Engineering, Ira A. Fulton School of Engineering, Arizona State University, PO Box 879709, Tempe, AZ 85287-9709 USA
| | - Sarah E. Stabenfeldt
- School of Biological and Health Systems Engineering, Ira A. Fulton School of Engineering, Arizona State University, PO Box 879709, Tempe, AZ 85287-9709 USA
| |
Collapse
|
43
|
Zhao C, Zhang Y, Popel AS. Mechanistic Computational Models of MicroRNA-Mediated Signaling Networks in Human Diseases. Int J Mol Sci 2019; 20:E421. [PMID: 30669429 PMCID: PMC6358731 DOI: 10.3390/ijms20020421] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 01/14/2019] [Accepted: 01/15/2019] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs (miRs) are endogenous non-coding RNA molecules that play important roles in human health and disease by regulating gene expression and cellular processes. In recent years, with the increasing scientific knowledge and new discovery of miRs and their gene targets, as well as the plentiful experimental evidence that shows dysregulation of miRs in a wide variety of human diseases, the computational modeling approach has emerged as an effective tool to help researchers identify novel functional associations between differential miR expression and diseases, dissect the phenotypic expression patterns of miRs in gene regulatory networks, and elucidate the critical roles of miRs in the modulation of disease pathways from mechanistic and quantitative perspectives. Here we will review the recent systems biology studies that employed different kinetic modeling techniques to provide mechanistic insights relating to the regulatory function and therapeutic potential of miRs in human diseases. Some of the key computational aspects to be discussed in detail in this review include (i) models of miR-mediated network motifs in the regulation of gene expression, (ii) models of miR biogenesis and miR⁻target interactions, and (iii) the incorporation of such models into complex disease pathways in order to generate mechanistic, molecular- and systems-level understanding of pathophysiology. Other related bioinformatics tools such as computational platforms that predict miR-disease associations will also be discussed, and we will provide perspectives on the challenges and opportunities in the future development and translational application of data-driven systems biology models that involve miRs and their regulatory pathways in human diseases.
Collapse
Affiliation(s)
- Chen Zhao
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Yu Zhang
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Aleksander S Popel
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
44
|
Diseases and their clinical heterogeneity – Are we ignoring the SNiPers and micRomaNAgers? An illustration using Beta-thalassemia clinical spectrum and fetal hemoglobin levels. Genomics 2019; 111:67-75. [DOI: 10.1016/j.ygeno.2018.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/18/2017] [Accepted: 01/03/2018] [Indexed: 12/18/2022]
|
45
|
Song Y, Hu M, Zhang J, Teng ZQ, Chen C. A novel mechanism of synaptic and cognitive impairments mediated via microRNA-30b in Alzheimer's disease. EBioMedicine 2019; 39:409-421. [PMID: 30522932 PMCID: PMC6354659 DOI: 10.1016/j.ebiom.2018.11.059] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/20/2018] [Accepted: 11/27/2018] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND It is widely accepted that cognitive and memory deficits in Alzheimer's disease (AD) primarily result from synaptic failure. However, the mechanisms that underlie synaptic and cognitive dysfunction remain unclear. METHODS We utilized molecular biology techniques, electrophysiological recordings, fluorescence in situ hybridization (FISH), immuno- and Golgi-staining, chromatin immunoprecipitation (CHIP); lentivirus (LV)-based microRNA overexpression and 'sponging', and behavioral tests to assess upregulated miR-30b causing synaptic and cognitive declines in APP transgenic (TG) mice. FINDINGS We provide evidence that expression of miR-30b, which targets molecules important for maintaining synaptic integrity, including ephrin type-B receptor 2 (ephB2), sirtuin1 (sirt1), and glutamate ionotropic receptor AMPA type subunit 2 (GluA2), is robustly upregulated in the brains of both AD patients and APP transgenic (TG) mice, an animal model of AD, while expression of its targets is significantly downregulated. Overexpression of miR-30b in the hippocampus of normal wild-type (WT) mice impairs synaptic and cognitive functions, mimicking those seen in TG mice. Conversely, knockdown of endogenous miR-30b in TG mice prevents synaptic and cognitive decline. We further observed that expression of miR-30b is upregulated by proinflammatory cytokines and Aβ42 through NF-κB signaling. INTERPRETATION Our results provide a previously undefined mechanism by which unregulated miR-30b causes synaptic and cognitive dysfunction in AD, suggesting that reversal of dysregulated miR-30b in the brain may prevent or slow cognitive declines in AD. FUND: This work was supported by National Institutes of Health grants R01NS076815, R01MH113535, R01AG058621, P30GM103340 Pilot Project, and by the LSUHSC School of Medicine Research Enhancement Program grant (to C.C.).
Collapse
Affiliation(s)
- Yunping Song
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Mei Hu
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Jian Zhang
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Zhao-Qian Teng
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Chu Chen
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; Department of Otorhinolaryngology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA.
| |
Collapse
|
46
|
Abstract
MicroRNAs (miRNA) are small non-coding RNAs (∼22 nt in length) that are known as potent master regulators of eukaryotic gene expression. miRNAs have been shown to play a critical role in cancer pathogenesis, and the misregulation of miRNAs is a well-known feature of cancer. In recent years, miR-29 has emerged as a critical miRNA in various cancers, and it has been shown to regulate multiple oncogenic processes, including epigenetics, proteostasis, metabolism, proliferation, apoptosis, metastasis, fibrosis, angiogenesis, and immunomodulation. Although miR-29 has been thoroughly documented as a tumor suppressor in the majority of studies, some controversy remains with conflicting reports of miR-29 as an oncogene. In this review, we provide a systematic overview of miR-29's functional role in various mechanisms of cancer and introspection on the contradictory roles of miR-29.
Collapse
|
47
|
He Q, Wang F, Honda T, James J, Li J, Redington A. Loss of miR-144 signaling interrupts extracellular matrix remodeling after myocardial infarction leading to worsened cardiac function. Sci Rep 2018; 8:16886. [PMID: 30443020 PMCID: PMC6237773 DOI: 10.1038/s41598-018-35314-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 10/30/2018] [Indexed: 02/07/2023] Open
Abstract
We have previously shown that MicroRNA (miR) -144 is a key modulator of the acute cardioprotection associated with remote ischemic preconditioning and post myocardial infarction (MI) remodeling. In this study we examine the biology of the remodeling response after permanent ligation of the left anterior descending coronary artery in male miR-144 KO mice, and wild-type littermates (WT). Collagen content and cross linking were determined by hydroxyproline and pyridinoline assays, MI size and scar thickness were measured post PicoSirius Red staining, and cardiac function was evaluated by echocardiography. miR-144 KO mice developed normally with normal cardiac function, however after MI, infarction size was greater and scar thickness was reduced in miR-144 KO mice compared with WT littermates. miR-144 KO mice had a lower incidence of acute cardiac rupture compared with WT littermates early after MI but there was impaired late remodeling, reflected by increased total cardiac collagen content and collagen cross-linkage associated with changes in Zeb1/LOX1 axis, and decreased left ventricular ejection fraction. We conclude that miR-144 is involved in extracellular matrix remodeling post MI and its loss leads to increased myocardial fibrosis and impaired functional recovery.
Collapse
Affiliation(s)
- Quan He
- The Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Fangfei Wang
- The Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Takashi Honda
- The Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Jeanne James
- The Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Jing Li
- Division of Cardiology, Labatt Family Heart Center, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Andrew Redington
- The Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.
| |
Collapse
|
48
|
Chanda K, Das S, Chakraborty J, Bucha S, Maitra A, Chatterjee R, Mukhopadhyay D, Bhattacharyya NP. Altered Levels of Long NcRNAs Meg3 and Neat1 in Cell And Animal Models Of Huntington's Disease. RNA Biol 2018; 15:1348-1363. [PMID: 30321100 PMCID: PMC6284602 DOI: 10.1080/15476286.2018.1534524] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 09/28/2018] [Accepted: 10/05/2018] [Indexed: 12/19/2022] Open
Abstract
Altered expression levels of protein-coding genes and microRNAs have been implicated in the pathogenesis of Huntington's disease (HD). The involvement of other ncRNAs, especially long ncRNAs (lncRNA), is being realized recently and the related knowledge is still rudimentary. Using small RNA sequencing and PCR arrays we observed perturbations in the levels of 12 ncRNAs in HD mouse brain, eight of which had human homologs. Of these, Meg3, Neat1, and Xist showed a consistent and significant increase in HD cell and animal models. Transient knock-down of Meg3 and Neat1 in cell models of HD led to a significant decrease of aggregates formed by mutant huntingtin and downregulation of the endogenous Tp53 expression. Understanding Meg3 and Neat1 functions in the context of HD pathogenesis is likely to open up new strategies to control the disease.
Collapse
Affiliation(s)
- Kaushik Chanda
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, HBNI, Kolkata, India
| | - Srijit Das
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, HBNI, Kolkata, India
| | - Joyeeta Chakraborty
- Human Genetics Unit, Indian Statistical Institute, Kolkata, West Bengal, India
| | - Sudha Bucha
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, HBNI, Kolkata, India
| | - Arindam Maitra
- National Institute of Biomedical Genomics, P.O. N.S.S., Kalyani, West Bengal, India
| | | | - Debashis Mukhopadhyay
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, HBNI, Kolkata, India
| | - Nitai P Bhattacharyya
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, HBNI, Kolkata, India
| |
Collapse
|
49
|
Tentori AM, Nagarajan MB, Kim JJ, Zhang WC, Slack FJ, Doyle PS. Quantitative and multiplex microRNA assays from unprocessed cells in isolated nanoliter well arrays. LAB ON A CHIP 2018; 18:2410-2424. [PMID: 29998262 PMCID: PMC6081239 DOI: 10.1039/c8lc00498f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
MicroRNAs (miRNAs) have recently emerged as promising biomarkers for the profiling of diseases. Translation of miRNA biomarkers to clinical practice, however, remains a challenge due to the lack of analysis platforms for sensitive, quantitative, and multiplex miRNA assays that have simple and robust workflows suitable for translation. The platform we present here utilizes functionalized hydrogel posts contained within isolated nanoliter well reactors for quantitative and multiplex assays directly from unprocessed cell samples without the need of prior nucleic acid extraction. Simultaneous reactor isolation and delivery of miRNA extraction reagents is achieved by sealing an array of wells containing the functionalized hydrogel posts and cells against another array of wells containing lysis and extraction reagents. The nanoliter well array platform features >100× better sensitivity compared to previous technology utilizing hydrogel particles without relying on signal amplification and enables >100 parallel assays in a single device. These advances provided by this platform lay the groundwork for translatable and robust analysis technologies for miRNA expression profiling in samples with small populations of cells and in precious, material-limited samples.
Collapse
Affiliation(s)
- Augusto M. Tentori
- Department of Chemical Engineering
, Massachusetts Institute of Technology
,
Cambridge
, USA
.
; Tel: +1 617 253 4534
| | - Maxwell B. Nagarajan
- Department of Chemical Engineering
, Massachusetts Institute of Technology
,
Cambridge
, USA
.
; Tel: +1 617 253 4534
| | - Jae Jung Kim
- Department of Chemical Engineering
, Massachusetts Institute of Technology
,
Cambridge
, USA
.
; Tel: +1 617 253 4534
| | - Wen Cai Zhang
- Department of Pathology
, Beth Israel Deaconess Medical Center/Harvard Medical School
,
Boston
, USA
| | - Frank J. Slack
- Department of Pathology
, Beth Israel Deaconess Medical Center/Harvard Medical School
,
Boston
, USA
| | - Patrick S. Doyle
- Department of Chemical Engineering
, Massachusetts Institute of Technology
,
Cambridge
, USA
.
; Tel: +1 617 253 4534
| |
Collapse
|
50
|
Neueder A, Bates GP. RNA Related Pathology in Huntington's Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1049:85-101. [PMID: 29427099 DOI: 10.1007/978-3-319-71779-1_4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
This chapter summarises research investigating the expression of huntingtin sense and anti-sense transcripts, the effect of the mutation on huntingtin processing as well as the more global effect of the mutation on the coding and non-coding transcriptomes. The huntingtin gene is ubiquitously expressed, although expression levels vary between tissues and cell types. A SNP that affects NF-ĸB binding in the huntingtin promoter modulates the expression level of huntingtin transcripts and is associated with the age of disease onset. Incomplete splicing between exon 1 and exon 2 has been shown to result in the expression of a small polyadenylated mRNA that encodes the highly pathogenic exon 1 huntingtin protein. This occurs in a CAG-repeat length dependent manner in all full-length mouse models of HD as well as HD patient post-mortem brains and fibroblasts. An antisense transcript to huntingtin is generated that contains a CUG repeat that is expanded in HD patients. In myotonic dystrophy, expanded CUG repeats form RNA foci in cell nuclei that bind specific proteins (e.g. MBL1). Short, pure CAG RNAs of approximately 21 nucleotides that have been processed by DICER can inhibit the translation of other CAG repeat containing mRNAs. The HD mutation affects the transcriptome at the level of mRNA expression, splicing and the expression of non-coding RNAs. Finally, expanded repetitive stretched of nucleotides can lead to RAN translation, in which the ribosome translates from the expanded repeat in all possible reading frames, producing proteins with various poly-amino acid tracts. The extent to which these events contribute to HD pathogenesis is largely unknown.
Collapse
Affiliation(s)
- Andreas Neueder
- Sobell Department of Motor Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Gillian P Bates
- Sobell Department of Motor Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK.
| |
Collapse
|