1
|
Sun Y, Chou J, Dong K, Gygi SP, Gewurz BE. Insights into the Absence of Lymphoma Despite Fulminant Epstein-Barr Virus Infection in Patients with XIAP Deficiency. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.17.633616. [PMID: 39868266 PMCID: PMC11761029 DOI: 10.1101/2025.01.17.633616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
X-linked Lymphoproliferative Syndromes (XLP), which arise from mutations in the SH2D1A or XIAP genes, are characterized by the inability to control Epstein-Barr Virus (EBV) infection. While primary EBV infection triggers severe diseases in each, lymphomas occur at high rates with XLP-1 but not with XLP-2. Why XLP-2 patients are apparently protected from EBV-driven lymphomagenesis, in contrast to all other described congenital conditions that result in heightened susceptibility to EBV, remains a key open question. To gain insights, we cross-compared newly EBV infected versus immune stimulated B-cells from XLP-2 patients or upon XIAP CRISPR knockout, relative to healthy controls. XIAP perturbation impeded outgrowth of newly EBV-infected primary human B-cells, though had no impact on proliferation of B-cells stimulated by CD40 ligand and interleukin-21 or upon established EBV-immortalized lymphoblastoid cell lines (LCLs). B-cells from XLP-2 patients or in which XIAP was depleted by CRISPR editing exhibited a markedly lower EBV transformation efficiency than healthy control B-cells. Mechanistically, nascent EBV infection activated p53-mediated apoptosis signaling, whose effects on transforming B-cell death were counteracted by XIAP. In the absence of XIAP, EBV infection triggered high rates of apoptosis, not seen with CD40L/IL-21 stimulation. Moreover, inflammatory cytokines are present at high levels in XLP-2 patient serum with fulminant EBV infection, which heightened apoptosis induction in newly EBV-infected cells. These findings highlight the crucial role of XIAP in supporting early stages of EBV-driven B-cell immortalization and provide insights into the absence of EBV+ lymphoma in XLP-2 patients.
Collapse
Affiliation(s)
- Yizhe Sun
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Harvard Program in Virology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Janet Chou
- Division of Immunology, Department of Pediatrics Harvard Medical School, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Kevin Dong
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, United States
| | - Steven P. Gygi
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, United States
| | - Benjamin E. Gewurz
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Harvard Program in Virology, Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Integrated Solutions for Infectious Diseases, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
2
|
Xiong Y, Xiang D, Zhou X, Huang Y, Routy JP, Zhu B. Application of metagenomic next-generation sequencing with brain tissue biopsy for diagnosing intracranial lesions in people with HIV. PRECISION CLINICAL MEDICINE 2024; 7:pbae029. [PMID: 39525869 PMCID: PMC11546772 DOI: 10.1093/pcmedi/pbae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Affiliation(s)
- Ye Xiong
- Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Dairong Xiang
- Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Xiaotang Zhou
- Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Ying Huang
- Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Jean-Pierre Routy
- Infectious Diseases and Immunity in Global Health Program, Chronic Viral Illness Service, Division of Hematology, McGill University Health Centre, Montreal H3A 0G4, Canada
| | - Biao Zhu
- Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| |
Collapse
|
3
|
Jin J, Mao X, Zhang D. A differential diagnosis method for systemic CAEBV and the prospect of EBV-related immune cell markers via flow cytometry. Ann Med 2024; 56:2329136. [PMID: 38502913 PMCID: PMC10953786 DOI: 10.1080/07853890.2024.2329136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 02/23/2024] [Indexed: 03/21/2024] Open
Abstract
Chronic active Epstein-Barr virus (CAEBV) infection of the T-cell or Natural killer (NK)-cell type, systemic form (systemic CAEBV or sCAEBV) was defined by the WHO in 2017 as an EBV-related lymphoproliferative disorder and is listed as an EBV-positive T-cell and NK-cell proliferation. The clinical manifestations and prognoses are heterogeneous. This makes systemic CAEBV indistinguishable from other EBV-positive T-cell and NK-cell proliferations. Early diagnosis of systemic CAEBV and early hematopoietic stem cell transplantation can improve patient prognosis. At present, the diagnosis of systemic CAEBV relies mainly on age, clinical manifestations, and cell lineage, incurring missed diagnosis, misdiagnosis, long diagnosis time, and inability to identify high-risk systemic CAEBV early. The diagnostic methods for systemic CAEBV are complicated and lack systematic description. The recent development of diagnostic procedures, including molecular biological and immunological techniques such as flow cytometry, has provided us with the ability to better understand the proliferation of other EBV-positive T cells and NK cells, but there is no definitive review of their value in diagnosing systemic CAEBV. This article summarizes the recent progress in systemic CAEBV differential diagnosis and the prospects of flow cytometry.
Collapse
Affiliation(s)
- Jie Jin
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xia Mao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Donghua Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
4
|
Toner K, McCann CD, Bollard CM. Applications of cell therapy in the treatment of virus-associated cancers. Nat Rev Clin Oncol 2024; 21:709-724. [PMID: 39160243 DOI: 10.1038/s41571-024-00930-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2024] [Indexed: 08/21/2024]
Abstract
A diverse range of viruses have well-established roles as the primary driver of oncogenesis in various haematological malignancies and solid tumours. Indeed, estimates suggest that approximately 1.5 million patients annually are diagnosed with virus-related cancers. The predominant human oncoviruses include Epstein-Barr virus (EBV), Kaposi sarcoma-associated herpesvirus (KSHV), hepatitis B and C viruses (HBV and HCV), human papillomavirus (HPV), human T-lymphotropic virus type 1 (HTLV1), and Merkel cell polyomavirus (MCPyV). In addition, although not inherently oncogenic, human immunodeficiency virus (HIV) is associated with immunosuppression that contributes to the development of AIDS-defining cancers (specifically, Kaposi sarcoma, aggressive B cell non-Hodgkin lymphoma and cervical cancer). Given that an adaptive T cell-mediated immune response is crucial for the control of viral infections, increasing research is being focused on evaluating virus-specific T cell therapies for the treatment of virus-associated cancers. In this Review, we briefly outline the roles of viruses in the pathogenesis of these malignancies before describing progress to date in the field of virus-specific T cell therapy and evaluating the potential utility of these therapies to treat or possibly even prevent virus-related malignancies.
Collapse
Affiliation(s)
- Keri Toner
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, USA
- Department of Paediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Chase D McCann
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, USA
- Department of Paediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Catherine M Bollard
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, USA.
- Department of Paediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA.
| |
Collapse
|
5
|
Landman SL, Ressing ME, Gram AM, Tjokrodirijo RTN, van Veelen PA, Neefjes J, Hoeben RC, van der Veen AG, Berlin I. Epstein-Barr virus nuclear antigen EBNA3A modulates IRF3-dependent IFNβ expression. J Biol Chem 2024; 300:107645. [PMID: 39127175 PMCID: PMC11403517 DOI: 10.1016/j.jbc.2024.107645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Epstein-Barr virus (EBV), the causative agent of infectious mononucleosis, persistently infects over 90% of the human adult population and is associated with several human cancers. To establish life-long infection, EBV tampers with the induction of type I interferon (IFN I)-dependent antiviral immunity in the host. How various EBV genes help orchestrate this crucial strategy is incompletely defined. Here, we reveal a mechanism by which the EBV nuclear antigen 3A (EBNA3A) may inhibit IFNβ induction. Using proximity biotinylation we identify the histone acetyltransferase P300, a member of the IFNβ transcriptional complex, as a binding partner of EBNA3A. We further show that EBNA3A also interacts with the activated IFN-inducing transcription factor interferon regulatory factor 3 that collaborates with P300 in the nucleus. Both events are mediated by the N-terminal domain of EBNA3A. We propose that EBNA3A limits the binding of interferon regulatory factor 3 to the IFNβ promoter, thereby hampering downstream IFN I signaling. Collectively, our findings suggest a new mechanism of immune evasion by EBV, affected by its latency gene EBNA3A.
Collapse
Affiliation(s)
- Sanne L Landman
- Department of Cell and Chemical Biology, Leiden University Medical Center (LUMC), Leiden, the Netherlands; Oncode Institute, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | - Maaike E Ressing
- Department of Cell and Chemical Biology, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | - Anna M Gram
- Department of Cell and Chemical Biology, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | | | | | - Jacques Neefjes
- Department of Cell and Chemical Biology, Leiden University Medical Center (LUMC), Leiden, the Netherlands; Oncode Institute, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | - Rob C Hoeben
- Department of Cell and Chemical Biology, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | | | - Ilana Berlin
- Department of Cell and Chemical Biology, Leiden University Medical Center (LUMC), Leiden, the Netherlands; Oncode Institute, Leiden University Medical Center (LUMC), Leiden, the Netherlands.
| |
Collapse
|
6
|
Tsiakalos A, Schinas G, Karatzaferis A, Rigopoulos EA, Pappas C, Polyzou E, Dimopoulou E, Dimopoulos G, Akinosoglou K. Acalculous Cholecystitis as a Complication of Primary Epstein-Barr Virus Infection: A Case-Based Scoping Review of the Literature. Viruses 2024; 16:463. [PMID: 38543828 PMCID: PMC10974004 DOI: 10.3390/v16030463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 04/09/2024] Open
Abstract
Primary Epstein-Barr virus (EBV) infection manifests with diverse clinical symptoms, occasionally resulting in severe complications. This scoping review investigates the rare occurrence of acute acalculous cholecystitis (AAC) in the context of primary EBV infection, with a focus on understanding its prevalence, clinical features, and underlying mechanisms. The study also explores EBV infection association with Gilbert syndrome, a condition that potentially exacerbates the clinical picture. Additionally, a case report of an 18-year-old female presenting with AAC and ascites secondary to EBV infection enhances the review. A comprehensive literature review was conducted, analyzing reported cases of AAC secondary to EBV infection. This involved examining patient demographics, clinical presentations, laboratory findings, and outcomes. The search yielded 44 cases, predominantly affecting young females. Common clinical features included fever, cervical lymphadenopathy, tonsillitis/pharyngitis, and splenomegaly. Laboratory findings highlighted significant hepatic involvement. The review also noted a potential link between AAC in EBV infection and Gilbert syndrome, particularly in cases with abnormal bilirubin levels. AAC is a rare but significant complication of primary EBV infection, primarily observed in young females, and may be associated with Gilbert syndrome. This comprehensive review underscores the need for heightened clinical awareness and timely diagnosis to manage this complication effectively.
Collapse
Affiliation(s)
| | - Georgios Schinas
- School of Medicine, University of Patras, 26504 Rio, Greece; (G.S.); (E.A.R.); (E.P.)
| | | | | | | | - Eleni Polyzou
- School of Medicine, University of Patras, 26504 Rio, Greece; (G.S.); (E.A.R.); (E.P.)
| | | | - George Dimopoulos
- 3rd Department of Critical Care, Evgenidio Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| | - Karolina Akinosoglou
- School of Medicine, University of Patras, 26504 Rio, Greece; (G.S.); (E.A.R.); (E.P.)
- Department of Internal Medicine and Infectious Diseases, University General Hospital of Patras, 26504 Rio, Greece
| |
Collapse
|
7
|
Bu W, Kumar A, Board NL, Kim J, Dowdell K, Zhang S, Lei Y, Hostal A, Krogmann T, Wang Y, Pittaluga S, Marcotrigiano J, Cohen JI. Epstein-Barr virus gp42 antibodies reveal sites of vulnerability for receptor binding and fusion to B cells. Immunity 2024; 57:559-573.e6. [PMID: 38479361 PMCID: PMC11000673 DOI: 10.1016/j.immuni.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/13/2023] [Accepted: 02/08/2024] [Indexed: 04/10/2024]
Abstract
Epstein-Barr virus (EBV) causes infectious mononucleosis and is associated with B cell lymphomas. EBV glycoprotein 42 (gp42) binds HLA class II and activates membrane fusion with B cells. We isolated gp42-specific monoclonal antibodies (mAbs), A10 and 4C12, which use distinct mechanisms to neutralize virus infection. mAb A10 was more potent than the only known neutralizing gp42 mAb, F-2-1, in neutralizing EBV infection and blocking binding to HLA class II. mAb 4C12 was similar to mAb A10 in inhibiting glycoprotein-mediated B cell fusion but did not block receptor binding, and it was less effective in neutralizing infection. Crystallographic structures of gH/gL/gp42/A10 and gp42/4C12 complexes revealed two distinct sites of vulnerability on gp42 for receptor binding and B cell fusion. Passive transfer of mAb A10 into humanized mice conferred nearly 100% protection from viremia and EBV lymphomas after EBV challenge. These findings identify vulnerable sites on EBV that may facilitate therapeutics and vaccines.
Collapse
Affiliation(s)
- Wei Bu
- Medical Virology Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ashish Kumar
- Structural Virology Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nathan L Board
- Medical Virology Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - JungHyun Kim
- Medical Virology Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kennichi Dowdell
- Medical Virology Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shu Zhang
- Medical Virology Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yona Lei
- Medical Virology Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anna Hostal
- Medical Virology Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tammy Krogmann
- Medical Virology Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yanmei Wang
- Clinical Services Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Stefania Pittaluga
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joseph Marcotrigiano
- Structural Virology Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Jeffrey I Cohen
- Medical Virology Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
8
|
Gan YZ, Yang P, Liu R, Wang YH, Hu YW, Yang Y. Changes in Spectrum of Respiratory Pathogen Infections and Disease Severity Among Children in Hohhot, China: Impact of COVID-19 Prevention Measures. Med Sci Monit 2024; 30:e942845. [PMID: 38451880 DOI: 10.12659/msm.942845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND This retrospective study evaluated the effects of specific COVID-19 preventive measures, including the use of medical masks, nucleic acid testing, and patient isolation, on respiratory infections, disease severity, and seasonal patterns among children in Hohhot, located in northern China. Understanding these alterations is pivotal in developing effective strategies to handle pediatric respiratory infections within the context of continuous public health initiatives. MATERIAL AND METHODS At the First Hospital of Hohhot, throat swabs were collected from 605 children with community-acquired respiratory between January 2022 and March 2023 for pathogen infection spectrum detection using microarray testing. RESULTS Among the patients, 56.03% were male, and their average age was 3.45 years. SARS-CoV-2 infections were highest between October 2022 and January 2023. Influenza A peaked in March 2023, and other pathogens such as respiratory syncytial virus and influenza B virus disappeared after December 2022. The proportion of mixed infections was 41.94% among SARS-CoV-2 patients, while other pathogens had mixed infection rates exceeding 57.14%. Before December 2022, the mean WBC count for Streptococcus pneumoniae and Haemophilus influenzae was 8.83×10⁹/L, CRP was 18.36 mg/L, and PCT was 1.11 ng/ml. After December 2022, these values decreased significantly. Coughing, difficulty breathing, running nose, and lower respiratory tract infection diagnoses decreased in December 2022, except for SARS-CoV-2 infections. CONCLUSIONS SARS-CoV-2 peaked around November 2022, influenza A peaked in March 2023, and other pathogens like respiratory syncytial virus and influenza B virus were greatly reduced after December 2022. Inflammatory markers and respiratory symptoms decreased after December 2022, except for SARS-CoV-2.
Collapse
Affiliation(s)
- Yan-Zi Gan
- Child Health Department, The First Hospital of Hohhot, Hohhot, Inner Mongolia, China (mainland)
| | - Peng Yang
- Neurophysiology Department, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China (mainland)
| | - Rui Liu
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, China (mainland)
| | - Yan-Hai Wang
- Child Health Department, The First Hospital of Hohhot, Hohhot, Inner Mongolia, China (mainland)
| | - Yu-Wei Hu
- Child Health Department, The First Hospital of Hohhot, Hohhot, Inner Mongolia, China (mainland)
| | - Yang Yang
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, China (mainland)
| |
Collapse
|
9
|
Gutiérrez-Guerrero A, Espinosa-Padilla SE, Lugo-Reyes SO. [Anything that can go wrong: cytotoxic cells and their control of Epstein-Barr virus]. REVISTA ALERGIA MÉXICO 2024; 71:29-39. [PMID: 38683066 DOI: 10.29262/ram.v71i1.1276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/31/2023] [Indexed: 05/01/2024] Open
Abstract
Epstein-Barr virus (EBV) is an gamma of herpes virus affecting exclusively humans, was the first oncogenic virus described and is associated with over seven different cancers. Curiously, the exchange of genes during viral infections has enabled the evolution of other cellular organisms, favoring new functions and the survival of the host. EBV has been co-evolving with mammals for hundreds of millions of years, and more than 95% of adults have been infected in one moment of their life. The infection is acquired primarily during childhood, in most cases as an asymptomatic infection. However, during adolescence or young adulthood, around 10 to 30% develop infectious mononucleosis. The NK and CD8+ T cells are the cytotoxic cells of the immune system that focus on antiviral responses. Importantly, an essential role of NK and CD8+ T cells has been demonstrated during the control and elimination of EBV-infected cells. Nonetheless, when the cytotoxic function of these cells is compromised, the infection increases the risk of developing lymphoproliferative diseases and cancer, often fatal. In this review, we delineate EBV infection and the importance of cytotoxic responses by NK and CD8+ T cells during the control and elimination of EBV-infected cells. Furthermore, we briefly discuss the main inborn errors of immunity that compromise cytotoxic responses by NK and CD8+ T cells, and how this scenario affects the antiviral response during EBV infection. Finally, we conclude the review by underlying the need for an effective EBV vaccine capable of preventing infection and the consequent development of malignancies and autoimmune diseases.
Collapse
Affiliation(s)
- Arturo Gutiérrez-Guerrero
- Laboratorio de Inmunodeficiencias, Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de México
| | - Sara Elva Espinosa-Padilla
- Laboratorio de Inmunodeficiencias, Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de México
| | - Saúl Oswaldo Lugo-Reyes
- Laboratorio de Inmunodeficiencias, Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de México
| |
Collapse
|
10
|
Al-Saud B, Alajlan H, Alruwaili H, Almoaibed L, Al-Mazrou A, Ghebeh H, Al-Alwan M, Alazami AM. A unique STK4 mutation truncating only the C-terminal SARAH domain results in a mild clinical phenotype despite severe T cell lymphopenia: Case report. Front Immunol 2024; 15:1329610. [PMID: 38361950 PMCID: PMC10867200 DOI: 10.3389/fimmu.2024.1329610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 01/15/2024] [Indexed: 02/17/2024] Open
Abstract
Mutations in STK4 (MST1) are implicated in a form of autosomal recessive combined immunodeficiency, resulting in recurrent infections (especially Epstein-Barr virus viremia), autoimmunity, and cardiac malformations. Here we report a patient with an atypically mild presentation of this disease, initially presenting with severe T cell lymphopenia (< 500 per mm3) and intermittent neutropenia, but now surviving well on immunoglobulins and prophylactic antibacterial treatment. She harbors a unique STK4 mutation that lies further downstream than all others reported to date. Unlike other published cases, her mRNA transcript is not vulnerable to nonsense mediated decay (NMD) and yields a truncated protein that is expected to lose only the C-terminal SARAH domain. This domain is critical for autodimerization and autophosphorylation. While exhibiting significant differences from controls, this patient's T cell proliferation defects and susceptibility to apoptosis are not as severe as reported elsewhere. Expression of PD-1 is in line with healthy controls. Similarly, the dysregulation seen in immunophenotyping is not as pronounced as in other published cases. The nature of this mutation, enabling its evasion from NMD, provides a rare glimpse into the clinical and cellular features associated with the absence of a "null" phenotype of this protein.
Collapse
Affiliation(s)
- Bandar Al-Saud
- Section of Pediatric Allergy/Immunology, Department of Pediatrics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Huda Alajlan
- Translational Genomics, Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Hibah Alruwaili
- Translational Genomics, Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Latifa Almoaibed
- Section of Pediatric Allergy/Immunology, Department of Pediatrics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Amer Al-Mazrou
- Cell Therapy and Immunobiology Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Hazem Ghebeh
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Cell Therapy and Immunobiology Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Monther Al-Alwan
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Cell Therapy and Immunobiology Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Anas M. Alazami
- Translational Genomics, Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| |
Collapse
|
11
|
Verbist K, Nichols KE. Cytokine Storm Syndromes Associated with Epstein-Barr Virus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1448:227-248. [PMID: 39117818 DOI: 10.1007/978-3-031-59815-9_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Epstein-Barr virus (EBV) is a ubiquitous and predominantly B cell tropic virus. One of the most common viruses to infect humans, EBV, is best known as the causative agent of infectious mononucleosis (IM). Although most people experience asymptomatic infection, EBV is a potent immune stimulus and as such it elicits robust proliferation and activation of the B-lymphocytes it infects as well as the immune cells that respond to infection. In certain individuals, such as those with inherited or acquired defects affecting the immune system, failure to properly control EBV leads to the accumulation of EBV-infected B cells and EBV-reactive immune cells, which together contribute to the development of often life-threatening cytokine storm syndromes (CSS). Here, we review the normal immune response to EBV and discuss several CSS associated with EBV, such as chronic active EBV infection, hemophagocytic lymphohistiocytosis, and post-transplant lymphoproliferative disorder. Given the critical role for cytokines in driving inflammation and contributing to disease pathogenesis, we also discuss how targeting specific cytokines provides a rational and potentially less toxic treatment for EBV-driven CSS.
Collapse
Affiliation(s)
- Katherine Verbist
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kim E Nichols
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
12
|
Zoref-Lorenz A, Lehmberg K, Jordan M. Hemophagocytic Lymphohistiocytosis in the Context of Hematological Malignancies and Solid Tumors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1448:429-440. [PMID: 39117831 DOI: 10.1007/978-3-031-59815-9_29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Hemophagocytic lymphohistiocytosis (HLH) has been described for decades in association with malignancies (M-HLH). While its mechanism is unknown, M-HLH has a poor prognosis, ranging from 10% to 30% overall survival. Mature T-cell lymphomas, diffuse large B-cell lymphoma, and Hodgkin lymphoma, with or without viral co-triggers such as Epstein-Barr virus, are among the most frequent underlying entities. Most M-HLH cases occur at the presentation of malignancy, but they may also occur during therapy as a result of immune compromise from chemotherapy (HLH in the context of immune compromise, IC-HLH) and (typically) disordered response to infection or after immune-activating therapies (Rx-HLH, also known as cytokine release syndrome, CRS). IC-HLH typically occurs months after diagnosis in the context of fungal, bacterial, or viral infection, though it may occur without an apparent trigger. Rx-HLH can be associated with checkpoint blockade, chimeric antigen receptor T-cell therapy, or bispecific T-cell engaging therapy. Until recently, M-HLH diagnosis and treatment strategies were extrapolated from familial HLH (F-HLH), though optimized diagnostic and therapeutic treatment strategies are emerging.
Collapse
Affiliation(s)
- Adi Zoref-Lorenz
- Hematology Institute, Meir Medical Center, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Kai Lehmberg
- Division of Pediatric Stem Cell Transplantation and Immunology, Clinic of Pediatric Hematology and Oncology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Michael Jordan
- Divisions of Immunobiology and Bone Marrow Transplantation/Immune Deficiency, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
13
|
Ma Y, Bao Y, Zheng M. Epstein-Barr virus-associated B-cell lymphoproliferative disorder meeting the definition of CAEBV B cell disease: a case report. BMC Infect Dis 2023; 23:453. [PMID: 37420238 DOI: 10.1186/s12879-023-08430-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 06/28/2023] [Indexed: 07/09/2023] Open
Abstract
BACKGROUND Chronic active Epstein-Barr virus infection (CAEBV) is a systemic EBV-positive lymphoproliferative disorder (EBV-LPD) considered to be associated with a genetic immunological abnormality, although its cause is still unclear. EBV is usually detected in T cells or NK cells in CAEBV patients with only a few cases involving B cells described in East Asia, which may be due to differences in genetic and environmental factors. CASE DESCRIPTION A 16-year-old boy who seemed to be diagnosed as CAEBV of B cell type was studied. The patient had IM-like symptoms persisting for more than 3 months, high levels of EBV DNA in the PB, and positive EBER in situ hybridization in B cells. In addition, to exclude underlying genetic disorders, we performed next-generation sequencing (NGS) and whole-exome sequencing (WES), which identified the missense mutation in PIK3CD (E1021K), ADA (S85L) and CD3D (Q140K) in the patient while no same genetic mutation was detected in his parents and sister. However, there is no diagnosis of CAEBV of B cell type in the most recent World Health Organization classification of tumors of hematopoietic and lymphoid tissues, therefore we finally diagnosed this patient as EBV-B-LPD. CONCLUSIONS This study shows a rare case of a patient meeting the definition of CAEBV B-cell disease in East Asia. Meanwhile, the case indicates that the missense mutation and the disease are related.
Collapse
Affiliation(s)
- Yaxian Ma
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, China
| | - Yuhan Bao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, China
| | - Miao Zheng
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, China.
| |
Collapse
|
14
|
Wen Q, Ning J, Mao Z, Long X, He X, Chen Z, Di Q, Li Q, Zhuo Y, Zhong G. Case report: Multiple epstein-barr virus-associated smooth muscle tumours in a child with IL-2-inducible T-cell kinase mutation of undetermined clinical significance. Front Pediatr 2023; 11:1189219. [PMID: 37465420 PMCID: PMC10350626 DOI: 10.3389/fped.2023.1189219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 06/22/2023] [Indexed: 07/20/2023] Open
Abstract
Background EBV-associated smooth muscle tumours (EBV-SMTs) are uncommon neoplasms associated with immunodeficiency. The pathogenesis of EBV-SMTs is poorly understood. IL-2-inducible T-cell kinase (ITK), a member of the Tec family of tyrosine kinases, is the predominant Tec kinase in T cells. Researchers have shown that ITK is involved in the pathogenesis of autoimmune diseases and carcinogenesis, and the loss of ITK function due to mutation in patients can lead to EBV-associated lymphoproliferation. Multiple Epstein-Barr virus-associated smooth muscle tumours with ITK mutation have rarely been reported. Case presentation A 6-year-old female child was admitted to the hospital due to recurrent bilateral hip pain for more than one year. Tumours were found in the lung, near the intracranial cavernous sinus and in the lumbar spine and paraspinal soft tissues by CT and MRI. The patient underwent vertebral tumour biopsy, which suggested low-grade myogenic or inflammatory myofibroblastic tumours, so the patient was given three courses of chemotherapy without symptom relief or mass reduction. The patient underwent lumbar mass resection, the pathological results indicated EBV-SMT, and a novel germline homozygous deletion mutation in the ITK gene was detected. The deletion mutation in this gene has not yet been reported and the clinical significance of the pathogenicity of the variant is unknown. Intrabronchial mass resection was performed under fibre bronchoscopy, and the pathological results indicated EBV-SMT. No significant recurrence or progression was observed after more than 2 years of follow-up. Conclusions We present a rare case of multiple EBV-SMTs combined with ITK gene mutation. Some of the tumours were removed, and some were treated conservatively. There was no significant recurrence or progression after more than two years of follow-up. The optimal treatment regimen still needs to be further explored, and the relationship between ITK gene mutation at this locus and immunodeficiency and EBV-SMT warrants further investigation.
Collapse
Affiliation(s)
- Qiongli Wen
- Department of Ultrasound, The First Affiliated Hospital of Hunan Normal University/Hunan Provincial People's Hospital, Changsha, China
| | - Jing Ning
- Department of Ultrasound, The First Affiliated Hospital of Hunan Normal University/Hunan Provincial People's Hospital, Changsha, China
| | - Zhiqun Mao
- Department of PET Imaging Center, The First Affiliated Hospital of Hunan Normal University/Hunan Provincial People's Hospital, Changsha, China
| | - Xiangdang Long
- Department of Ultrasound, The First Affiliated Hospital of Hunan Normal University/Hunan Provincial People's Hospital, Changsha, China
| | - Xiangling He
- Department of Pediatric Hematology and Oncology, The First Affiliated Hospital of Hunan Normal University/Hunan Provincial People's Hospital, Changsha, China
| | - Zhihong Chen
- Department of Pathology, The First Affiliated Hospital of Hunan Normal University/Hunan Provincial People's Hospital, Changsha, China
| | - Qiuyi Di
- Department of Ultrasound, The First Affiliated Hospital of Hunan Normal University/Hunan Provincial People's Hospital, Changsha, China
| | - Qiaorong Li
- Department of Ultrasound, The First Affiliated Hospital of Hunan Normal University/Hunan Provincial People's Hospital, Changsha, China
| | - Yu Zhuo
- Department of Ultrasound, The First Affiliated Hospital of Hunan Normal University/Hunan Provincial People's Hospital, Changsha, China
| | - Gang Zhong
- Department of Ultrasound, The First Affiliated Hospital of Hunan Normal University/Hunan Provincial People's Hospital, Changsha, China
| |
Collapse
|
15
|
Ye Z, Chen L, Zhong H, Cao L, Fu P, Xu J. Epidemiology and clinical characteristics of Epstein-Barr virus infection among children in Shanghai, China, 2017-2022. Front Cell Infect Microbiol 2023; 13:1139068. [PMID: 37026057 PMCID: PMC10072160 DOI: 10.3389/fcimb.2023.1139068] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/08/2023] [Indexed: 04/08/2023] Open
Abstract
Objective To investigate the epidemiology and infectious characteristics of Epstein-Barr virus (EBV) infection among children in Shanghai, China from 2017 to 2022. Methods We conducted a retrospective analysis of 10,260 inpatient patients who were subjected EBV nucleic acid testing from July 2017 to December 2022. Demographic information, clinical diagnosis, laboratory findings, etc. were collected and analyzed. EBV nucleic acid testing were performed by real-time PCR. Results A total of 2192 (21.4%) inpatient children were EBV-positive, with the average age of 7.3 ± 0.1 y. EBV detection was stable from 2017 to 2020 (26.9~30.1%), but showed essential decreases in 2021 (16.0%) and 2022 (9.0%). EBV was highest (>30%) detected from three quarters (Q) including 2018-Q4, 2019-Q4 and 2020-Q3. There were 24.5% of EBV coinfection with other pathogens, including bacteria (16.8%), other viruses (7.1%) and fungi (0.7%). EBV viral loads increased when coinfecting with bacteria ((142.2 ± 40.1) ×104/mL) or other viruses ((165.7 ± 37.4) ×104/mL). CRP significantly increased in EBV/fungi coinfection, while procalcitonin (PCT) and IL-6 showed remarkable increases in EBV/bacteria coinfection. Most (58.9%) of EBV-associated diseases belonged to immune disorders. The primary EBV-related diseases were systemic lupus erythematosus (SLE, 16.1%), immunodeficiency (12.4%), infectious mononucleosis (IM, 10.7%), pneumonia (10.4%) and Henoch-schonlein purpura (HSP, 10.2%). EBV viral loads were highest ((233.7 ± 27.4) × 104/mL) in patients with IM. Conclusion EBV was prevalent among children in China, the viral loads increased when coinfecting with bacteria or other viruses. SLE, immunodeficiency and IM were the primary EBV-related diseases.
Collapse
Affiliation(s)
- Zhicheng Ye
- Department of Clinical Laboratory, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Luxi Chen
- Department of Clinical Laboratory, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Huaqing Zhong
- Department of Clinical Laboratory, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Lingfeng Cao
- Department of Clinical Laboratory, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Pan Fu
- Department of Clinical Laboratory, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
- Nosocomial Infection Control Department, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
- *Correspondence: Jin Xu, ; Pan Fu,
| | - Jin Xu
- Department of Clinical Laboratory, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
- *Correspondence: Jin Xu, ; Pan Fu,
| |
Collapse
|
16
|
Abstract
Epstein-Barr virus (EBV) is a ubiquitous human lymphotropic herpesvirus with a well-established causal role in several cancers. Recent studies have provided compelling epidemiological and mechanistic evidence for a causal role of EBV in multiple sclerosis (MS). MS is the most prevalent chronic inflammatory and neurodegenerative disease of the central nervous system and is thought to be triggered in genetically predisposed individuals by an infectious agent, with EBV as the lead candidate. How a ubiquitous virus that typically leads to benign latent infections can promote cancer and autoimmune disease in at-risk populations is not fully understood. Here we review the evidence that EBV is a causal agent for MS and how various risk factors may affect EBV infection and immune control. We focus on EBV contributing to MS through reprogramming of latently infected B lymphocytes and the chronic presentation of viral antigens as a potential source of autoreactivity through molecular mimicry. We consider how knowledge of EBV-associated cancers may be instructive for understanding the role of EBV in MS and discuss the potential for therapies that target EBV to treat MS.
Collapse
Affiliation(s)
- Samantha S. Soldan
- grid.251075.40000 0001 1956 6678The Wistar Institute, Philadelphia, PA USA
| | - Paul M. Lieberman
- grid.251075.40000 0001 1956 6678The Wistar Institute, Philadelphia, PA USA
| |
Collapse
|
17
|
Guevara-Hoyer K, Fuentes-Antrás J, de la Fuente-Muñoz E, Fernández-Arquero M, Solano F, Pérez-Segura P, Neves E, Ocaña A, Pérez de Diego R, Sánchez-Ramón S. Genomic crossroads between non-Hodgkin's lymphoma and common variable immunodeficiency. Front Immunol 2022; 13:937872. [PMID: 35990641 PMCID: PMC9390007 DOI: 10.3389/fimmu.2022.937872] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/07/2022] [Indexed: 12/03/2022] Open
Abstract
Common variable immunodeficiency (CVID) represents the largest group of primary immunodeficiencies that may manifest with infections, inflammation, autoimmunity, and cancer, mainly B-cell non-Hodgkin's lymphoma (NHL). Indeed, NHL may result from chronic or recurrent infections and has, therefore, been recognized as a clinical phenotype of CVID, although rare. The more one delves into the mechanisms involved in CVID and cancer, the stronger the idea that both pathologies can be a reflection of the same primer events observed from different angles. The potential effects of germline variants on specific somatic modifications in malignancies suggest that it might be possible to anticipate critical events during tumor development. In the same way, a somatic alteration in NHL could be conditioning a similar response at the transcriptional level in the shared signaling pathways with genetic germline alterations in CVID. We aimed to explore the genomic substrate shared between these entities to better characterize the CVID phenotype immunodeficiency in NHL. By means of an in-silico approach, we interrogated the large, publicly available datasets contained in cBioPortal for the presence of genes associated with genetic pathogenic variants in a panel of 50 genes recurrently altered in CVID and previously described as causative or disease-modifying. We found that 323 (25%) of the 1,309 NHL samples available for analysis harbored variants of the CVID spectrum, with the most recurrent alteration presented in NHL occurring in PIK3CD (6%) and STAT3 (4%). Pathway analysis of common gene alterations showed enrichment in inflammatory, immune surveillance, and defective DNA repair mechanisms similar to those affected in CVID, with PIK3R1 appearing as a central node in the protein interaction network. The co-occurrence of gene alterations was a frequent phenomenon. This study represents an attempt to identify common genomic grounds between CVID and NHL. Further prospective studies are required to better know the role of genetic variants associated with CVID and their reflection on the somatic pathogenic variants responsible for cancer, as well as to characterize the CVID-like phenotype in NHL, with the potential to influence early CVID detection and therapeutic management.
Collapse
Affiliation(s)
- Kissy Guevara-Hoyer
- Cancer Immunomonitoring and Immuno-Mediated Pathologies Support Unit, IdSSC, Department of Clinical Immunology, San Carlos Clinical Hospital, Madrid, Spain
- Department of Clinical Immunology, IML and IdSSC, San Carlos Clinical Hospital, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, Madrid, Spain
| | - Jesús Fuentes-Antrás
- Oncology Department, San Carlos Clinical Hospital, Madrid, Spain
- Experimental Therapeutics and Translational Oncology Unit, Medical Oncology Department, San Carlos University Hospital, Madrid, Spain
| | - Eduardo de la Fuente-Muñoz
- Cancer Immunomonitoring and Immuno-Mediated Pathologies Support Unit, IdSSC, Department of Clinical Immunology, San Carlos Clinical Hospital, Madrid, Spain
- Department of Clinical Immunology, IML and IdSSC, San Carlos Clinical Hospital, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, Madrid, Spain
| | - Miguel Fernández-Arquero
- Cancer Immunomonitoring and Immuno-Mediated Pathologies Support Unit, IdSSC, Department of Clinical Immunology, San Carlos Clinical Hospital, Madrid, Spain
- Department of Clinical Immunology, IML and IdSSC, San Carlos Clinical Hospital, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, Madrid, Spain
| | - Fernando Solano
- Department of Hematology, General University Hospital Nuestra Señora del Prado, Talavera de la Reina, Spain
| | | | - Esmeralda Neves
- Department of Immunology, Centro Hospitalar e Universitário do Porto, Porto, Portugal
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Hospital and University Center of Porto, Porto, Portugal
| | - Alberto Ocaña
- Oncology Department, San Carlos Clinical Hospital, Madrid, Spain
- Experimental Therapeutics and Translational Oncology Unit, Medical Oncology Department, San Carlos University Hospital, Madrid, Spain
| | - Rebeca Pérez de Diego
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, Madrid, Spain
- Laboratory of Immunogenetics of Human Diseases, IdiPAZ Institute for Health Research, Madrid, Spain
| | - Silvia Sánchez-Ramón
- Cancer Immunomonitoring and Immuno-Mediated Pathologies Support Unit, IdSSC, Department of Clinical Immunology, San Carlos Clinical Hospital, Madrid, Spain
- Department of Clinical Immunology, IML and IdSSC, San Carlos Clinical Hospital, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, Madrid, Spain
| |
Collapse
|
18
|
Vesicular Stomatitis Virus-Based Epstein-Barr Virus Vaccines Elicit Strong Protective Immune Responses. J Virol 2022; 96:e0033622. [PMID: 35404082 PMCID: PMC9093130 DOI: 10.1128/jvi.00336-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epstein-Barr virus (EBV), the first identified human tumor virus, is etiologically associated with various kinds of malignant and benign diseases, accounting for 265,000 cancer incident cases and 164,000 cancer deaths in 2017. EBV prophylactic vaccine development has been gp350 centered for several decades. However, clinical studies show that gp350-centered vaccines fail to prevent EBV infection. Advances in the EBV infection mechanisms shed light on gB and gHgL, the two key components of the infection apparatus. In this study, for the first time, we utilized recombinant vesicular stomatitis virus (VSV) to display EBV gB (VSV-ΔG-gB/gB-G) or gHgL (VSV-ΔG-gHgL). In vitro studies confirmed successful virion production and glycoprotein presentation on the virion surface. In mouse models, VSV-ΔG-gB/gB-G or VSV-ΔG-gHgL elicited potent humoral responses. Neutralizing antibodies elicited by VSV-ΔG-gB/gB-G were prone to prevent B cell infection, while those elicited by VSV-ΔG-gHgL were prone to prevent epithelial cell infection. Combinatorial vaccination yields an additive effect. The ratio of endpoint neutralizing antibody titers to the endpoint total IgG titers immunized with VSV-ΔG-gHgL was approximately 1. The ratio of IgG1/IgG2a after VSV-ΔG-gB/gB-G immunization was approximately 1 in a dose-dependent, adjuvant-independent manner. Taken together, VSV-based EBV vaccines can elicit a high ratio of epithelial and B lymphocyte neutralizing antibodies, implying their unique potential as EBV prophylactic vaccine candidates. IMPORTANCE Epstein-Barr virus (EBV), one of the most common human viruses and the first identified human oncogenic virus, accounted for 265,000 cancer incident cases and 164,000 cancer deaths in 2017 as well as millions of nonmalignant disease cases. So far, no prophylactic vaccine is available to prevent EBV infection. In this study, for the first time, we reported the VSV-based EBV vaccines presenting two key components of the EBV infection apparatus, gB and gHgL. We confirmed potent antigen-specific antibody generation; these antibodies prevented EBV from infecting epithelial cells and B cells, and the IgG1/IgG2a ratio indicated balanced humoral-cellular responses. Taken together, we suggest VSV-based EBV vaccines are potent prophylactic candidates for clinical studies and help eradicate numerous EBV-associated malignant and benign diseases.
Collapse
|
19
|
Iwata S, Tanaka Y. Association of Viral Infection With the Development and Pathogenesis of Systemic Lupus Erythematosus. Front Med (Lausanne) 2022; 9:849120. [PMID: 35280878 PMCID: PMC8914279 DOI: 10.3389/fmed.2022.849120] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/03/2022] [Indexed: 12/27/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease that causes multiple organ damage in women of childbearing age and has a relapsing-remitting course. SLE is caused by the interaction between genetic and environmental factors, however, its underlying triggers remain unknown. Among the environmental factors, the involvement of infections as a trigger for SLE, especially those of viral etiology, has been widely reported. Human endogenous retroviruses (HERVs) may put patients at a genetic predisposition to SLE, while the Epstein-Barr virus (EBV) may play a role as an environmental factor that triggers the development of SLE. It has been suggested that EBV-infected B-cells may become resistant to apoptosis, resulting in the activation, proliferation, and antibody production of autoreactive B-cells, which cause tissue damage in SLE. However, the interaction between the virus and immune cells, as well as the impact of the virus on the differentiation and dysfunction of immune cells, remain unclear. In this review, we focus on the relationship between the development and pathogenesis of SLE and viral infections, as well as the mechanism of SLE exacerbation via activation of immune cells, such as B-cells, based on the latest findings.
Collapse
|
20
|
Foti C, Favoino E, Scarasciulli M, Colacicco AM, Jahantigh H, Stufano A, Lovreglio P, Mascia P, Barlusconi C, Perosa F, Romita P, Calvario A. Chronic-Relapsing cutaneous leukocytoclastic vasculitis in a young patient with reduced EBV-specific T cell response using enzyme-linked immunospot (ELISPOT) assay successfully treated with Valaciclovir. IDCases 2021; 26:e01331. [PMID: 34840952 PMCID: PMC8605419 DOI: 10.1016/j.idcr.2021.e01331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 11/03/2022] Open
Abstract
Among different pathogens, opportunistic viral infection caused by EBV is particularly relevant. This gammaherpesvirus, belonging to the Herpesviridae family, may complicate the disease course in different clinical settings by inducing pathological EBV pictures in patients with a defective immunologic response. Our report evaluated EBV-specific T cell responses by IFN- γ ELISPOT assay, which revealed defective EBV specific immunological response.
Collapse
Affiliation(s)
- Caterina Foti
- Department of Biomedical Science and Human Oncology, Dermatological Clinic, University of Bari "Aldo Moro", Bari, Italy
| | - Elvira Favoino
- Department of Biomedical Science and Human Oncology (DIMO), Rheumatic and Systemic Autoimmune Diseases Unit, University of Bari Medical School, Bari, Italy
| | - Maria Scarasciulli
- Microbiology and Virology Unit - Interdisciplinary Department of Medicine (DIM) - University of Bari "Aldo Moro"- AOU Policlinico Bari, Italy
| | - Anna Maria Colacicco
- Microbiology and Virology Unit - Interdisciplinary Department of Medicine (DIM) - University of Bari "Aldo Moro"- AOU Policlinico Bari, Italy
| | - Hamidreza Jahantigh
- Interdisciplinary Department of Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Angela Stufano
- Interdisciplinary Department of Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Piero Lovreglio
- Interdisciplinary Department of Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Paola Mascia
- Department of Biomedical Science and Human Oncology, Dermatological Clinic, University of Bari "Aldo Moro", Bari, Italy
| | - Chiara Barlusconi
- Department of Biomedical Science and Human Oncology, Dermatological Clinic, University of Bari "Aldo Moro", Bari, Italy
| | - Federico Perosa
- Department of Biomedical Science and Human Oncology (DIMO), Rheumatic and Systemic Autoimmune Diseases Unit, University of Bari Medical School, Bari, Italy
| | - Paolo Romita
- Department of Biomedical Science and Human Oncology, Dermatological Clinic, University of Bari "Aldo Moro", Bari, Italy
| | - Agata Calvario
- Microbiology and Virology Unit - Interdisciplinary Department of Medicine (DIM) - University of Bari "Aldo Moro"- AOU Policlinico Bari, Italy
| |
Collapse
|
21
|
Wang Y, Luo Y, Tang G, Ouyang R, Zhang M, Jiang Y, Wang T, Zhang X, Yin B, Huang J, Wei W, Huang M, Wang F, Wu S, Hou H. HLA-DR Expression Level in CD8 + T Cells Correlates With the Severity of Children With Acute Infectious Mononucleosis. Front Immunol 2021; 12:753290. [PMID: 34804038 PMCID: PMC8596082 DOI: 10.3389/fimmu.2021.753290] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/14/2021] [Indexed: 01/04/2023] Open
Abstract
Background This study aimed to assess the host immune signatures associated with EBV infection and its clinical value in indicating the severity of children with acute infectious mononucleosis (IM). Methods Twenty-eight pediatric patients with IM aged 3–8 years were enrolled. The immune phenotypes and cytokine secretion capability of T cells were detected. Results The percentages and absolute numbers of CD3+ and CD8+ T cells were significantly increased in IM patients compared with HCs. The percentages of Naïve CD4+ and CD8+ T cells were decreased but with increased percentages of memory CD4+ and CD8+ T subsets. Our results showed the upregulation of active marker HLA-DR, TCR-αβ, and inhibitory receptors PD-1, TIGIT in CD8+ T cells from IM patients, which suggested that effective cytotoxic T cells were highly against EBV infection. However, EBV exposure impaired the cytokine (IFN-γ, IL-2, and TNF-α) secretion capability of CD4+ and CD8+ T cells after stimulation with PMA/ionomycin in vitro. Multivariate analysis revealed that the percentage of HLA-DR+ CD8+ T cells was an independent prognostic marker for IM. The percentage of HLA-DR+ CD8+ T cells was significantly correlated with high viral load and abnormal liver function results. Conclusion Robust expansion and upregulation of HLA-DR in CD8+ T cells, accompanied with impaired cytokine secretion, were typical characteristics of children with acute IM. The percentage of HLA-DR+ CD8+ T cells might be used as a prominent marker not only for the early diagnosis but also for indicating the severity of IM.
Collapse
Affiliation(s)
- Yun Wang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Luo
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guoxing Tang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Renren Ouyang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Minxia Zhang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuhuan Jiang
- Department of Clinical Laboratory, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ting Wang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiwen Zhang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Botao Yin
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jin Huang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Wei
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Huang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Wang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiji Wu
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongyan Hou
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
22
|
Saglam A, Cagdas D, Aydin B, Keles S, Reisli I, Arslankoz S, Katipoglu K, Uner A. STK4 deficiency and EBV-associated lymphoproliferative disorders, emphasis on histomorphology, and review of literature. Virchows Arch 2021; 480:393-401. [PMID: 34604912 DOI: 10.1007/s00428-021-03147-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 01/03/2023]
Abstract
Aberrations of the STK4 gene in humans result in an autosomal recessively inherited primary immunodeficiency. We identified three patients with STK4 deficiency who had presented to our hospital and reviewed their biopsy samples with the goal of detailing the characteristics of STK4 deficiency from a pathology perspective. Case 1 was a 20-year-old male who presented with cervical and supraclavicular lymphadenopathy which showed plasmacytic hyperplasia and a concurrent bronchial mass, with AA amyloidosis and EBV-associated "polymorphic lymphoproliferative disorder (LPD) resembling polymorphic post-transplant LPD." The second case was an 8-year-old girl with abdominal lymphadenopathy; biopsy revealed a complex lymphoproliferation which consisted of EBV-associated "polymorphic LPD resembling polymorphic post-transplant LPD," plasmacytic hyperplasia, granulomatous reaction, and a CD4- and PD-1-positive clonal T cell proliferation. The third was a 15-year-old girl with a laryngeal mass, representing a high-grade B cell lymphoma with prominent plasmacytic differentiation. Our cases emphasize the complex and challenging histopathology of lymphoid proliferations in patients with STK4 deficiency.
Collapse
Affiliation(s)
- Arzu Saglam
- Department of Pathology, Hacettepe University Faculty of Medicine, 06100, Ankara, Turkey
| | - Deniz Cagdas
- Department of Pediatric Immunology, Hacettepe University Faculty of Medicine, 06100, Ankara, Turkey
| | - Burca Aydin
- Department of Pediatric Oncology, Hacettepe University Faculty of Medicine, 06100, Ankara, Turkey
| | - Sevgi Keles
- Department of Pediatric Immunology, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Ismail Reisli
- Department of Pediatric Immunology, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Sehbal Arslankoz
- Department of Pathology, Hacettepe University Faculty of Medicine, 06100, Ankara, Turkey
| | - Kubra Katipoglu
- Department of Pathology, Hacettepe University Faculty of Medicine, 06100, Ankara, Turkey
| | - Aysegul Uner
- Department of Pathology, Hacettepe University Faculty of Medicine, 06100, Ankara, Turkey.
| |
Collapse
|
23
|
Nasopharyngeal Carcinoma: The Role of the EGFR in Epstein-Barr Virus Infection. Pathogens 2021; 10:pathogens10091113. [PMID: 34578147 PMCID: PMC8470510 DOI: 10.3390/pathogens10091113] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 01/24/2023] Open
Abstract
Epstein-Barr virus (EBV), a type 4 γ herpes virus, is recognized as a causative agent in nasopharyngeal carcinoma (NPC). Incidence of EBV-positive NPC have grown in recent decades along with worse outcomes compared with their EBV-negative counterparts. Latent membrane protein 1 (LMP1), encoded by EBV, induces NPC progression. The epidermal growth factor receptor (EGFR), a member of the ErbB family of receptor tyrosine kinases (RTK), is a driver of tumorigenesis, including for NPC. Little data exist on the relationship between EGFR and EBV-induced NPC. In our initial review, we found that LMP1 promoted the expression of EGFR in NPC in two main ways: the NF-κB pathway and STAT3 activation. On the other hand, EGFR also enhances EBV infection in NPC cells. Moreover, activation of EGFR signalling affects NPC cell proliferation, cell cycle progression, angiogenesis, invasion, and metastasis. Since EGFR promotes tumorigenesis and progression by downstream signalling pathways, causing poor outcomes in NPC patients, EGFR-targeted drugs could be considered a newly developed anti-tumor drug. Here, we summarize the major studies on EBV, EGFR, and LMP1-regulatory EGFR expression and nucleus location in NPC and discuss the clinical efficacy of EGFR-targeted agents in locally advanced NPC (LA NPC) and recurrent or metastatic NPC (R/M NPC) patients.
Collapse
|
24
|
Tatfi M, Perthame E, Hillion KH, Dillies MA, Menager H, Hermine O, Suarez F. Gene expression analysis in EBV-infected ataxia-telangiectasia cell lines by RNA-sequencing reveals protein synthesis defect and immune abnormalities. Orphanet J Rare Dis 2021; 16:288. [PMID: 34183044 PMCID: PMC8237493 DOI: 10.1186/s13023-021-01904-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 06/07/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Epstein-Barr virus (EBV) targets B-cells where it establishes a latent infection. EBV can transform B-cells in vitro and is recognized as an oncogenic virus, especially in the setting of immune compromise. Indeed, immunodeficient patients may fail to control chronic EBV infection, leading to the development EBV-driven lymphoid malignancies. Ataxia telangiectasia (AT) is a primary immune deficiency caused by mutations in the ATM gene, involved in the repair of double-strand breaks. Patients with AT are at high risk of developing cancers, mostly B-cell lymphoid malignancies, most of which being EBV-related. Aside from immune deficiency secondary to AT, loss of ATM function could also hinder the control of the virus within B-cells, favoring lymphomagenesis in AT patients. RESULTS We used RNA sequencing on lymphoblastoid cell lines derived from patients with AT and healthy donors to analyze and compare both cellular and viral gene expression. We found numerous deregulated signaling pathways involving transcription, translation, oncogenesis and immune regulation. Specifically, the translational defect was confirmed in vitro, suggesting that the pathogenesis of AT may also involve a ribosomal defect. Concomitant analysis of viral gene expression did not reveal significant differential gene expression, however, analysis of EBV interactome suggests that the viral latency genes EBNA-3A, EBNA-3C and LMP1 may be disrupted in LCL from AT patients. CONCLUSION Our data support the notion that ATM deficiency deregulates cellular gene expression possibly disrupting interactions with EBV latent genes, promoting the oncogenic potential of the virus. These preliminary findings provide a new step towards the understanding of EBV regulation and of AT pathogenesis.
Collapse
Affiliation(s)
- Moussab Tatfi
- INSERM U1163/CNRS ERL8254 - Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, Institut Imagine, Paris, France
| | - Emeline Perthame
- Hub de Bioinformatique et Biostatistique - Département Biologie Computationnelle, Institut Pasteur, Paris, France
| | - Kenzo-Hugo Hillion
- Hub de Bioinformatique et Biostatistique - Département Biologie Computationnelle, Institut Pasteur, Paris, France
| | - Marie-Agnès Dillies
- Hub de Bioinformatique et Biostatistique - Département Biologie Computationnelle, Institut Pasteur, Paris, France
| | - Hervé Menager
- Hub de Bioinformatique et Biostatistique - Département Biologie Computationnelle, Institut Pasteur, Paris, France
| | - Olivier Hermine
- INSERM U1163/CNRS ERL8254 - Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, Institut Imagine, Paris, France
- Department of Adult Hematology, AP-HP. Centre, Necker - Enfants Malades Hospital, Université de Paris, Paris, France
- Université de Paris, Paris, France
| | - Felipe Suarez
- INSERM U1163/CNRS ERL8254 - Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, Institut Imagine, Paris, France.
- Department of Adult Hematology, AP-HP. Centre, Necker - Enfants Malades Hospital, Université de Paris, Paris, France.
- Université de Paris, Paris, France.
| |
Collapse
|
25
|
Shamriz O, Kumar D, Shim J, Briones M, Quarmyne MO, Chonat S, Lucas L, Edington H, White MH, Mahajan A, Park S, Chandrakasan S. T Cell-Epstein-Barr Virus-Associated Hemophagocytic Lymphohistiocytosis (HLH) Occurs in Non-Asians and Is Associated with a T Cell Activation State that Is Comparable to Primary HLH. J Clin Immunol 2021; 41:1582-1596. [PMID: 34173902 PMCID: PMC8233186 DOI: 10.1007/s10875-021-01073-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/20/2021] [Indexed: 12/11/2022]
Abstract
Purpose T cell-Epstein-Barr virus–associated hemophagocytic lymphohistiocytosis (T cell-EBV-HLH) is prevalent in East Asia and has poor prognosis. Understanding of this disease is limited, and literature regarding prevalence in North America is scarce. Herein, we summarize our experience. Methods A retrospective analysis of T cell-EBV-HLH patients admitted to Children’s Healthcare of Atlanta (GA, USA) from 2010 to 2020 was conducted. Additional immune studies were completed in a subset of patients. Results We report 15 patients (10 months–19 years of age) diagnosed with T cell-EBV-HLH. Nine patients were Hispanic, and the majority did not have primary HLH (p-HLH) gene defects. Soluble interleukin-2 receptor levels in T cell-EBV-HLH were significantly higher than other forms of secondary-HLH but comparable to p-HLH, and it correlated with disease severity at presentation. Natural killer cell function was decreased in most patients despite a negative workup for p-HLH. Depending on disease severity, initial therapy included dexamethasone or dexamethasone and etoposide. Refractory patients were managed with blended regimens that included one or more of the following therapies: combination chemotherapy, alemtuzumab, emapalumab, and nivolumab. Rituximab did not appreciably decrease EBV viremia in most patients. Non-critically ill patients responded well to immunosuppressive therapy and are long-term survivors without undergoing allogeneic hematopoietic stem cell transplantation (HSCT). Alemtuzumab resulted in inflammation flare in two of the three patients. Three patients underwent allogeneic HSCT, with disease relapse noted in one. At a median follow-up of 3 years, 10 of the 15 patients are alive. Conclusion T cell-EBV-HLH occurs in the USA among the non-Asian populations, especially in those who are Hispanic.
Collapse
Affiliation(s)
- Oded Shamriz
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.,Allergy and Clinical Immunology Unit, Department of Medicine, Hadassah Medical Organization, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Deepak Kumar
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.,Allergy and Clinical Immunology Unit, Department of Medicine, Hadassah Medical Organization, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jenny Shim
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.,Allergy and Clinical Immunology Unit, Department of Medicine, Hadassah Medical Organization, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Michael Briones
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.,Allergy and Clinical Immunology Unit, Department of Medicine, Hadassah Medical Organization, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Maa-Ohui Quarmyne
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.,Center for Cancer and Blood Disorders, Phoenix Children's Hospital, AZ, Phoenix, USA
| | - Satheesh Chonat
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.,Allergy and Clinical Immunology Unit, Department of Medicine, Hadassah Medical Organization, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Laura Lucas
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Holly Edington
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.,Allergy and Clinical Immunology Unit, Department of Medicine, Hadassah Medical Organization, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Michael H White
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.,Allergy and Clinical Immunology Unit, Department of Medicine, Hadassah Medical Organization, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Advay Mahajan
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.,Allergy and Clinical Immunology Unit, Department of Medicine, Hadassah Medical Organization, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sunita Park
- Department of Pathology, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Shanmuganathan Chandrakasan
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
26
|
Ghanemi A, Yoshioka M, St-Amand J. Coronavirus Disease 2019 (COVID-19) Crisis: Losing Our Immunity When We Need It the Most. BIOLOGY 2021; 10:545. [PMID: 34207024 PMCID: PMC8235440 DOI: 10.3390/biology10060545] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/02/2021] [Accepted: 06/15/2021] [Indexed: 02/06/2023]
Abstract
The ongoing coronavirus disease 2019 (COVID-19) crisis has led to a new socioeconomic reality with the acquisition of novel habits. Measures imposed by governments and health authorities such as confinement and lockdown have had important consequences, including mental health problems, economic crisis, and social isolation. Combined with newly acquired habits such as hand washing, sanitization, and face masks, these have all directly and indirectly led to reduced immunity. Such effects on the immune system not only impact the epidemiological profile with respect to COVID-19 and other infectious diseases but also limit the efficacy of the ongoing anti-COVID-19 vaccination campaign. Therefore, there is a need to review these approaches and optimize measures towards better population immunity, which is much needed during such an epidemic.
Collapse
Affiliation(s)
- Abdelaziz Ghanemi
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, QC G1V 0A6, Canada
| | - Mayumi Yoshioka
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada
| | - Jonny St-Amand
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, QC G1V 0A6, Canada
| |
Collapse
|
27
|
Liu Y, Li Y, Li Y, Wu S, Tian X, Tang T, Sun H, He C. Clinical Features of Intestinal Ulcers Complicated by Epstein-Barr Virus Infection: Importance of Active Infection. DISEASE MARKERS 2021; 2021:6627620. [PMID: 34007344 PMCID: PMC8110392 DOI: 10.1155/2021/6627620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 02/02/2021] [Accepted: 03/09/2021] [Indexed: 12/27/2022]
Abstract
Clinical characteristics of intestinal ulcers complicated with Epstein-Barr virus (EBV) infection remain poorly studied. This study is aimed at providing further insight into clinical features of this patient cohort. The presence of serum EBV DNA was assessed in 399 patients with colonic ulcers, of which 30 cases were positive. In EBV-positive patients, the EBV-encoded RNA (EBER) was detected in intestinal tissues of 13 patients (EBER-positive group). The test was negative in 17 patients (EBER-negative group). Acute EBV infection rate in patients with colonic ulcer was 7.52%. Age and sex differences between two groups were not statistically significant. Fever, abdominal lymph node enlargement, and crater-like gouged ulcer morphology were more common in the EBER-positive group (P < 0.05). The albumin level in the EBER-positive group was significantly lower compared to that in the EBER-negative group (P < 0.05). The copy count of EBV DNA in the blood of patients from the EBER-positive group was higher, and the prognosis was worse (P < 0.05). Clinical manifestations were more severe in the EBER-positive group. Endoscopic, histopathological, and biochemical findings were also more serious in this group of patients. The findings point to the importance of assessing the EBER expression in patients with intestinal ulcers of various etiology. EBER positivity should be viewed as a diagnostic marker of more severe condition requiring more aggressive treatment.
Collapse
Affiliation(s)
- Yuyuan Liu
- Department of Gastroenterology, Bethune First Affiliated Hospital of Jilin University, Changchun, Jilin, China
| | - Yuqin Li
- Department of Gastroenterology, Bethune First Affiliated Hospital of Jilin University, Changchun, Jilin, China
| | - Yajun Li
- Department of Gastroenterology, Affiliated Hospital of Shandong Medical College, Changchun, Jilin, China
| | - Shuang Wu
- Department of Gastroenterology, Bethune First Affiliated Hospital of Jilin University, Changchun, Jilin, China
| | - Xinyue Tian
- Department of Gastroenterology, Bethune First Affiliated Hospital of Jilin University, Changchun, Jilin, China
| | - Tongyu Tang
- Department of Gastroenterology, Bethune First Affiliated Hospital of Jilin University, Changchun, Jilin, China
| | - Haibo Sun
- Department of Gastroenterology, Bethune First Affiliated Hospital of Jilin University, Changchun, Jilin, China
| | - Chuan He
- Department of Gastroenterology, Bethune First Affiliated Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
28
|
Sogkas G, Atschekzei F, Adriawan IR, Dubrowinskaja N, Witte T, Schmidt RE. Cellular and molecular mechanisms breaking immune tolerance in inborn errors of immunity. Cell Mol Immunol 2021; 18:1122-1140. [PMID: 33795850 PMCID: PMC8015752 DOI: 10.1038/s41423-020-00626-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/11/2020] [Indexed: 02/01/2023] Open
Abstract
In addition to susceptibility to infections, conventional primary immunodeficiency disorders (PIDs) and inborn errors of immunity (IEI) can cause immune dysregulation, manifesting as lymphoproliferative and/or autoimmune disease. Autoimmunity can be the prominent phenotype of PIDs and commonly includes cytopenias and rheumatological diseases, such as arthritis, systemic lupus erythematosus (SLE), and Sjogren's syndrome (SjS). Recent advances in understanding the genetic basis of systemic autoimmune diseases and PIDs suggest an at least partially shared genetic background and therefore common pathogenic mechanisms. Here, we explore the interconnected pathogenic pathways of autoimmunity and primary immunodeficiency, highlighting the mechanisms breaking the different layers of immune tolerance to self-antigens in selected IEI.
Collapse
Affiliation(s)
- Georgios Sogkas
- Department of Rheumatology and Immunology, Hannover Medical School, Hanover, Germany.
- Hannover Medical School, Cluster of Excellence RESIST (EXC 2155), Hanover, Germany.
| | - Faranaz Atschekzei
- Department of Rheumatology and Immunology, Hannover Medical School, Hanover, Germany
- Hannover Medical School, Cluster of Excellence RESIST (EXC 2155), Hanover, Germany
| | - Ignatius Ryan Adriawan
- Department of Rheumatology and Immunology, Hannover Medical School, Hanover, Germany
- Hannover Medical School, Cluster of Excellence RESIST (EXC 2155), Hanover, Germany
| | - Natalia Dubrowinskaja
- Department of Rheumatology and Immunology, Hannover Medical School, Hanover, Germany
- Hannover Medical School, Cluster of Excellence RESIST (EXC 2155), Hanover, Germany
| | - Torsten Witte
- Department of Rheumatology and Immunology, Hannover Medical School, Hanover, Germany
- Hannover Medical School, Cluster of Excellence RESIST (EXC 2155), Hanover, Germany
| | - Reinhold Ernst Schmidt
- Department of Rheumatology and Immunology, Hannover Medical School, Hanover, Germany
- Hannover Medical School, Cluster of Excellence RESIST (EXC 2155), Hanover, Germany
| |
Collapse
|
29
|
Jamal O, Sahel N, Saouab R, El Qatni M, Zaizaa M, El Kassimi I, Rkiouak A, Hammi S, Sekkach Y. Fatal Systemic Vasculitis Associated with Chronic Active Epstein-Barr Virus Infection. MISSOURI MEDICINE 2021; 118:226-232. [PMID: 34149082 PMCID: PMC8210988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Chronic active Epstein-Barr virus infection is a rare disease with an often fatal outcome. Cardiovascular complications are associated with a poor prognosis. We herein describe the clinical course of an adult patient with Epstein-Barr virus-associated systemic vasculitis complicated by multi-systemic aneurysmal disease. The vascular imaging showed multiple aneurysms involving coronary arteries, abdominal arteries, cerebral arteries, and vertebral arteries. Immunophenotyping analysis of peripheral blood lymphocytes revealed the presence of an increased number of double negative T cells. The patient received multiple lines of immunosuppressive therapy with no response. Unfortunately, he succumbed to a cerebral aneurysm rupture.
Collapse
Affiliation(s)
- Oumama Jamal
- Department of Internal Medicine A, Mohammed V Military Instruction Hospital, Faculty of Medicine and Pharmacy of Rabat, Mohammed V University, Rabat, Morocco
| | - Nawal Sahel
- Department of Internal Medicine A, Mohammed V Military Instruction Hospital, Faculty of Medicine and Pharmacy of Rabat, Mohammed V University, Rabat, Morocco
| | - Rachida Saouab
- Department of Radiology, Mohammed V Military Instruction Hospital, Faculty of Medicine and Pharmacy of Rabat, Mohammed V University Rabat, Morocco
| | - Mohammed El Qatni
- Department of Internal Medicine A, Mohammed V Military Instruction Hospital, Faculty of Medicine and Pharmacy of Rabat, Mohammed V University, Rabat, Morocco
| | - Meryem Zaizaa
- Department of Internal Medicine A, Mohammed V Military Instruction Hospital, Faculty of Medicine and Pharmacy of Rabat, Mohammed V University, Rabat, Morocco
| | - Ilyas El Kassimi
- Department of Internal Medicine A, Mohammed V Military Instruction Hospital, Faculty of Medicine and Pharmacy of Rabat, Mohammed V University, Rabat, Morocco
| | - Adil Rkiouak
- Department of Internal Medicine A, Mohammed V Military Instruction Hospital, Faculty of Medicine and Pharmacy of Rabat, Mohammed V University, Rabat, Morocco
| | - Salaheddine Hammi
- Department of Internal Medicine A, Mohammed V Military Instruction Hospital, Faculty of Medicine and Pharmacy of Rabat, Mohammed V University, Rabat, Morocco
| | - Youssef Sekkach
- Department of Internal Medicine A, Mohammed V Military Instruction Hospital, Faculty of Medicine and Pharmacy of Rabat, Mohammed V University, Rabat, Morocco
| |
Collapse
|
30
|
Howe MK, Dowdell K, Kuehn HS, Li Q, Hart GT, Garabedian D, Liepshutz K, Hsu AP, Su H, Niemela JE, Stoddard JL, Uzel G, Shereck E, Schulz L, Feldman T, Rosenzweig SD, Long EO, Dropulic L, Cohen JI. Patients With Natural Killer (NK) Cell Chronic Active Epstein-Barr Virus Have Immature NK Cells and Hyperactivation of PI3K/Akt/mTOR and STAT1 Pathways. J Infect Dis 2021; 222:1170-1179. [PMID: 32386415 DOI: 10.1093/infdis/jiaa232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 05/05/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Chronic active Epstein-Barr virus (CAEBV) presents with high levels of viral genomes in blood and tissue infiltration with Epstein-Barr virus (EBV)-positive lymphocytes. The pathogenesis of CAEBV is poorly understood. METHODS We evaluated 2 patients with natural killer (NK) cell CAEBV and studied their NK cell phenotype and signaling pathways in cells. RESULTS Both patients had increased numbers of NK cells, EBV predominantly in NK cells, and immature NK cells in the blood. Both patients had increased phosphorylation of Akt, S6, and STAT1 in NK cells, and increased total STAT1. Treatment of 1 patient with sirolimus reduced phosphorylation of S6 in T and B cells, but not in NK cells and did not reduce levels of NK cells or EBV DNA in the blood. Treatment of both patients' cells with JAK inhibitors in vitro reduced phosphorylated STAT1 to normal. Patients with T- or B-cell CAEBV had increased phosphorylation of Akt and S6 in NK cells, but no increase in total STAT1. CONCLUSIONS The increase in phosphorylated Akt, S6, and STAT1, as well as immature NK cells describe a new phenotype for NK cell CAEBV. The reduction of STAT1 phosphorylation in their NK cells with JAK inhibitors suggests a novel approach to therapy.
Collapse
Affiliation(s)
- Matthew K Howe
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Kennichi Dowdell
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Hye Sun Kuehn
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Qingxue Li
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Geoffrey T Hart
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Doreen Garabedian
- Leidos Biomedical Research, Inc, Frederick National Laboratory, Frederick, Maryland, USA
| | - Kelly Liepshutz
- Leidos Biomedical Research, Inc, Frederick National Laboratory, Frederick, Maryland, USA
| | - Amy P Hsu
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Hua Su
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Julie E Niemela
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Jennifer L Stoddard
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Gulbu Uzel
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Evan Shereck
- Doembecker Children's Hospital, Oregon Health and Science University, Portland, Oregon, USA
| | - Laura Schulz
- Pediatric Hematology and Oncology, Providence Alaska Medical Center, Anchorage, Alaska, USA
| | - Tatyana Feldman
- John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, New Jersey, USA
| | - Sergio D Rosenzweig
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Eric O Long
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Lesia Dropulic
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jeffrey I Cohen
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
31
|
Ruohtula T, Kondrashova A, Lehtonen J, Oikarinen S, Hämäläinen AM, Niemelä O, Peet A, Tillmann V, Nieminen JK, Ilonen J, Knip M, Vaarala O, Hyöty H. Immunomodulatory Effects of Rhinovirus and Enterovirus Infections During the First Year of Life. Front Immunol 2021; 11:567046. [PMID: 33643278 PMCID: PMC7905218 DOI: 10.3389/fimmu.2020.567046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 12/29/2020] [Indexed: 11/13/2022] Open
Abstract
Early childhood infections have been implicated in the development of immune-mediated diseases, such as allergies, asthma, and type 1 diabetes. We set out to investigate the immunomodulatory effects of early viral infections experienced before the age of one year on the peripheral regulatory T cell population (Treg) and circulating cytokines in a birth-cohort study of Estonian and Finnish infants. We show here a temporal association of virus infection with the expression of FOXP3 in regulatory T cells. Infants with rhinovirus infection during the preceding 30 days had a higher FOXP3 expression in Treg cells and decreased levels of several cytokines related to Th1 and Th2 responses in comparison to the children without infections. In contrast, FOXP3 expression was significantly decreased in highly activated (CD4+CD127-/loCD25+FOXP3high) regulatory T cells (TregFOXP3high) in the infants who had enterovirus infection during the preceding 30 or 60 days. After enterovirus infections, the cytokine profile showed an upregulation of Th1- and Th17-related cytokines and a decreased activation of CCL22, which is a chemokine derived from dendritic cells and associated with Th2 deviation. Our results reveal that immunoregulatory mechanisms are up-regulated after rhinovirus infections, while enterovirus infections are associated with activation of proinflammatory pathways and decreased immune regulation.
Collapse
Affiliation(s)
| | - Anita Kondrashova
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Jussi Lehtonen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Sami Oikarinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Anu-Maaria Hämäläinen
- Department of Pediatrics, Jorvi Hospital, Helsinki University Hospital, Espoo, Finland
| | - Onni Niemelä
- Department of Laboratory Medicine and Medical Research Unit, Seinäjoki Central Hospital and University of Tampere, Seinäjoki, Finland
| | - Aleksandr Peet
- Department of Pediatrics, University of Tartu and Tartu University Hospital, Tartu, Estonia
| | - Vallo Tillmann
- Department of Pediatrics, University of Tartu and Tartu University Hospital, Tartu, Estonia
| | - Janne K Nieminen
- Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Jorma Ilonen
- Immunogenetics Laboratory, University of Turku, Turku, Finland
| | - Mikael Knip
- Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Folkhälsan Research Center, Helsinki, Finland.,Tampere Center for Child Health Research, Tampere University Hospital, Tampere, Finland
| | - Outi Vaarala
- Clinicum, University of Helsinki, Helsinki, Finland
| | - Heikki Hyöty
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Fimlab Laboratories, Pirkanmaa Hospital District, Tampere, Finland
| | | |
Collapse
|
32
|
Long C, Xu QB, Ding L, Yang L, Ji W, Gao F, Ji Y. Triptolide inhibits human telomerase reverse transcriptase by downregulating translation factors SP1 and c-Myc in Epstein-Barr virus-positive B lymphocytes. Oncol Lett 2021; 21:280. [PMID: 33732356 PMCID: PMC7905526 DOI: 10.3892/ol.2021.12541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 11/17/2020] [Indexed: 11/06/2022] Open
Abstract
Epstein-Barr virus (EBV) mainly causes infectious mononucleosis and is associated with several neoplasms, including Burkitt's lymphoma, nasopharyngeal carcinoma and lymphoproliferative disease. Human telomerase reverse transcriptase (hTERT) regulates enzymatic activity of telomerase and is closely associated with tumorigenesis and senescence evasion. Triptolide (TP) is a diterpenoid triepoxide, with a broad-spectrum anticancer and immunosuppressive bioactivity profile. The present study investigated whether TP inhibited hTERT expression and suppressed its activity. The mRNA and protein levels of hTERT were examined by reverse transcription-quantitative PCR and western blotting. The activity of hTERT promoter was determined by dual-luciferase reporter assay. Cell Counting Kit-8 assays were performed to analyze cell proliferation. The present study used EBV-positive B lymphoma cells as a model system, and the results demonstrated that TP significantly decreased hTERT transcription and protein expression. Mechanistically, TP attenuated the hTERT promoter activity by downregulating the expression levels of specificityprotein 1 and c-Myc transcription factors. Consistently, inhibition of hTERT via shRNA transfection efficiently enhanced the suppression of cell proliferation by TP. Furthermore, TP increased virus latent replication and promoted the lytic cycle of EBV in EBV-positive B lymphoma cells, increasing the number of lytic cells and inhibiting the viability of tumor cells. Taken together, the results of the present study revealed a molecular mechanism of the pharmacological inhibition of tumor cell proliferation by TP, encouraging the translation of TP-based therapeutics in EBV-positive B lymphoma treatment.
Collapse
Affiliation(s)
- Cong Long
- Clinical Laboratory, Jingjiang People's Hospital, Jingjiang, Jiangsu 214500, P.R. China
| | - Qiu-Bo Xu
- Clinical Laboratory, Jingjiang People's Hospital, Jingjiang, Jiangsu 214500, P.R. China
| | - Li Ding
- Clinical Laboratory, Jingjiang People's Hospital, Jingjiang, Jiangsu 214500, P.R. China
| | - Liu Yang
- Clinical Laboratory, Jingjiang People's Hospital, Jingjiang, Jiangsu 214500, P.R. China
| | - Wei Ji
- Clinical Laboratory, Jingjiang People's Hospital, Jingjiang, Jiangsu 214500, P.R. China
| | - Feng Gao
- Department of General Surgery, Jingjiang People's Hospital, Jingjiang, Jiangsu 214500, P.R. China
| | - Yong Ji
- Department of General Surgery, Jingjiang People's Hospital, Jingjiang, Jiangsu 214500, P.R. China
| |
Collapse
|
33
|
Association between Antibody Responses to Epstein-Barr Virus Glycoproteins, Neutralization of Infectivity, and the Risk of Nasopharyngeal Carcinoma. mSphere 2020; 5:5/6/e00901-20. [PMID: 33268566 PMCID: PMC7716278 DOI: 10.1128/msphere.00901-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Epstein-Barr virus (EBV) is a human oncogenic gammaherpesvirus that infects over 90% of humans in the world and is causally associated with a spectrum of epithelial and B-cell malignancies such as nasopharyngeal carcinoma (NPC). A prophylactic vaccine against EBV is called for, but no approved vaccine is available yet. While Epstein-Barr virus (EBV) is the major cause of nasopharyngeal carcinoma (NPC), the value of the humoral immune response to EBV glycoproteins and NPC development remains unclear. Correlation between antiglycoprotein antibody levels, neutralization of EBV infectivity, and the risk of NPC requires systematic study. Here, we applied a cytometry-based method and enzyme-linked immunosorbent assay to measure neutralization of infectivity and antibody response to EBV glycoproteins (gH/gL, gB, gp350, and gp42) of plasma samples from 20 NPC cases and 20 high-risk and 20 low-risk healthy controls nested within a screening cohort in Sihui, southern China. We found that NPC cases have similar plasma neutralizing activity in both B cells and epithelial cells and EBV glycoprotein-specific IgA and IgG antibody levels compared with those of healthy controls. Significant correlations were observed between gH/gL IgG and gB IgG and the neutralizing ability against EBV infection of epithelial cells and B cells. These results indicate that a high level of glycoprotein antibodies may favor protection against primary EBV infection, instead of being low-risk biomarkers for NPC in long-term EBV-infected adults. In conclusion, this study provides novel insights into the humoral immune response to EBV infection and NPC development, providing valuable leads for future research that is important for prevention and treatment of EBV-related diseases. IMPORTANCE Epstein-Barr virus (EBV) is a human oncogenic gammaherpesvirus that infects over 90% of humans in the world and is causally associated with a spectrum of epithelial and B-cell malignancies such as nasopharyngeal carcinoma (NPC). A prophylactic vaccine against EBV is called for, but no approved vaccine is available yet. Therefore, EBV remains a major public health concern. To facilitate novel vaccines and therapeutics for NPC, it is of great importance to explore the impact of humoral immune response to EBV glycoproteins before the development of NPC. Therefore, in this study, we systematically assessed the correlation between antiglycoprotein antibody levels, neutralization of EBV infectivity, and the risk of NPC development. These results provide valuable information that will contribute to designing effective prevention and treatment strategies for EBV-related diseases such as NPC.
Collapse
|
34
|
Fujiwara S, Nakamura H. Chronic Active Epstein-Barr Virus Infection: Is It Immunodeficiency, Malignancy, or Both? Cancers (Basel) 2020; 12:cancers12113202. [PMID: 33143184 PMCID: PMC7692233 DOI: 10.3390/cancers12113202] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/17/2020] [Accepted: 10/27/2020] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Chronic active Epstein–Barr virus (EBV) infection (CAEBV) is a rare syndrome of unknown etiology characterized by prolonged infectious mononucleosis-like symptoms and proliferation of EBV-infected T and/or natural killer cells. CAEBV has been primarily reported in East Asia and Latin America, suggesting a genetic predisposition in its pathogenesis. The clinical course of CAEBV is heterogeneous ranging from an indolent and occasionally self-limiting disease to an aggressive and fatal condition, but its prognosis is generally poor. This heterogeneous clinical picture does not suggest a simple etiology for the syndrome. Clinicopathological investigations of CAEBV suggest that it has aspects of both malignant neoplasm and immunodeficiency. This article summarizes the latest findings on CAEBV and discusses critical unsolved questions regarding its pathogenesis and disease concept. Abstract Chronic active Epstein–Barr virus (EBV) infection (CAEBV) is a rare syndrome characterized by prolonged infectious mononucleosis-like symptoms and elevated peripheral blood EBV DNA load in apparently immunocompetent persons. CAEBV has been primarily reported in East Asia and Latin America, suggesting a genetic predisposition in its pathogenesis. In most cases of CAEBV, EBV induces proliferation of its unusual host cells, T or natural killer (NK) cells. The clinical course of CAEBV is heterogeneous; some patients show an indolent course, remaining in a stable condition for years, whereas others show an aggressive course with a fatal outcome due to hemophagocytic lymphohistiocytosis, multiple organ failure, or progression to leukemia/lymphoma. The pathogenesis of CAEBV is unclear and clinicopathological investigations suggest that it has aspects of both malignant neoplasm and immunodeficiency. Recent genetic analyses of both viral and host genomes in CAEBV patients have led to discoveries that are improving our understanding of the nature of this syndrome. This article summarizes the latest findings on CAEBV and discusses critical unsolved questions regarding its pathogenesis and disease concept.
Collapse
Affiliation(s)
- Shigeyoshi Fujiwara
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, Tokyo 173-8610, Japan
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan;
- Correspondence:
| | - Hiroyuki Nakamura
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan;
| |
Collapse
|
35
|
Xiao H, Hu B, Luo R, Hu H, Zhang J, Kuang W, Zhang R, Li L, Liu G. Chronic active Epstein-Barr virus infection manifesting as coronary artery aneurysm and uveitis. Virol J 2020; 17:166. [PMID: 33121509 PMCID: PMC7597064 DOI: 10.1186/s12985-020-01409-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 09/01/2020] [Indexed: 12/15/2022] Open
Abstract
Background Chronic active Epstein–Barr virus (CAEBV) infection is a type of lymphoproliferative disorder characterized by chronic or recurrent infectious mononucleosis (IM)-like symptoms, which can have less-frequent clinical presentations. The prognosis of CAEBV is poor, and hematopoietic stem cell transplantation (HSCT) has been shown to be the only potentially effective treatment. In this article, we present a special CAEBV case of a patient who had no typical IM-like symptoms at the early stage, but manifested with severe and progressive coronary artery aneurysm (CAA), abdominal aortic lesions, and severe uveitis. These manifestations were uncommon features and could only be blocked by HSCT. Case presentation A 4-year-old girl with no special medical history complained of decreased vision for 10 months and cough after physical activities for three months. The blurred vision grew rapidly worse within one month, until only light perception remained. She was diagnosed with uveitis and cataract, and received prednisone and ciclosporin A treatment. However, her vision did not improve. Physical examination showed slight hepatosplenomegaly. Ultrasonic cardiogram showed bilateral CAA (5.0 mm and 5.7 mm for inner diameters), and abdominal CT scan revealed a thickened aortic wall, as well as stenosis and dilation of the segmental abdominal aorta. Other significant findings were increased EBV-DNA (3.29 × 104 copies/mL) from peripheral blood, positive EBV antibodies (EBV-CA-IgG, EBV-EA-IgA, and EBV-NA-IgG), and positive EBV-encoded small RNAs found by bone marrow biopsy. Based on her clinical manifestations and evidence for EBV infection, we diagnosed CAEBV. She received allogeneic HSCT, and the cataract operation was performed after HSCT. EBV-DNA could not be detected in peripheral blood after HSCT. Her CAAs did not progress, and uveitis was well controlled. Her vision recovered gradually over the 3 years after HSCT. Conclusions We present a rare CAEBV case of a patient who suffered from uncommon and severe cardiovascular and ocular involvement that was relieved by HSCT. Therefore, early recognition and diagnosis of CAEBV are of vital importance to improve its prognosis. In summary, this atypical CAEBV case could help us recognize similar cases more easily, make the right diagnosis as early as possible, and deliver proper and timely treatment.
Collapse
Affiliation(s)
- Haijuan Xiao
- Department of Infectious Diseases, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Bing Hu
- Department of Infectious Diseases, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Rongmu Luo
- Department of Hematology and Oncology, Affiliated Bayi Children's Hospital, The Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Huili Hu
- Department of Infectious Diseases, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Junmei Zhang
- Department of Rheumatology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Weiying Kuang
- Department of Rheumatology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Rui Zhang
- Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Li Li
- Department of Ophthalmology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Gang Liu
- Department of Infectious Diseases, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China.
| |
Collapse
|
36
|
Plasmacytoid dendritic cells respond to Epstein-Barr virus infection with a distinct type I interferon subtype profile. Blood Adv 2020; 3:1129-1144. [PMID: 30952679 DOI: 10.1182/bloodadvances.2018025536] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 02/24/2019] [Indexed: 12/15/2022] Open
Abstract
Infectious mononucleosis, caused by infection with the human gamma-herpesvirus Epstein-Barr virus (EBV), manifests with one of the strongest CD8+ T-cell responses described in humans. The resulting T-cell memory response controls EBV infection asymptomatically in the vast majority of persistently infected individuals. Whether and how dendritic cells (DCs) contribute to the priming of this near-perfect immune control remains unclear. Here we show that of all the human DC subsets, plasmacytoid DCs (pDCs) play a central role in the detection of EBV infection in vitro and in mice with reconstituted human immune system components. pDCs respond to EBV by producing the interferon (IFN) subtypes α1, α2, α5, α7, α14, and α17. However, the virus curtails this type I IFN production with its latent EBV gene products EBNA3A and EBNA3C. The induced type I IFNs inhibit EBV entry and the proliferation of latently EBV-transformed B cells but do not influence lytic reactivation of the virus in vitro. In vivo, exogenous IFN-α14 and IFN-α17, as well as pDC expansion, delay EBV infection and the resulting CD8+ T-cell expansion, but pDC depletion does not significantly influence EBV infection. Thus, consistent with the observation that primary immunodeficiencies compromising type I IFN responses affect only alpha- and beta-herpesvirus infections, we found that EBV elicits pDC responses that transiently suppress viral replication and attenuate CD8+ T-cell expansion but are not required to control primary infection.
Collapse
|
37
|
Caduff N, McHugh D, Murer A, Rämer P, Raykova A, Landtwing V, Rieble L, Keller CW, Prummer M, Hoffmann L, Lam JKP, Chiang AKS, Raulf F, Azzi T, Berger C, Rubic-Schneider T, Traggiai E, Lünemann JD, Kammüller M, Münz C. Immunosuppressive FK506 treatment leads to more frequent EBV-associated lymphoproliferative disease in humanized mice. PLoS Pathog 2020; 16:e1008477. [PMID: 32251475 PMCID: PMC7162544 DOI: 10.1371/journal.ppat.1008477] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 04/16/2020] [Accepted: 03/15/2020] [Indexed: 12/13/2022] Open
Abstract
Post-transplant lymphoproliferative disorder (PTLD) is a potentially fatal complication after organ transplantation frequently associated with the Epstein-Barr virus (EBV). Immunosuppressive treatment is thought to allow the expansion of EBV-infected B cells, which often express all eight oncogenic EBV latent proteins. Here, we assessed whether HLA-A2 transgenic humanized NSG mice treated with the immunosuppressant FK506 could be used to model EBV-PTLD. We found that FK506 treatment of EBV-infected mice led to an elevated viral burden, more frequent tumor formation and diminished EBV-induced T cell responses, indicative of reduced EBV-specific immune control. EBV latency III and lymphoproliferation-associated cellular transcripts were up-regulated in B cells from immunosuppressed animals, akin to the viral and host gene expression pattern found in EBV-PTLD. Utilizing an unbiased gene expression profiling approach, we identified genes differentially expressed in B cells of EBV-infected animals with and without FK506 treatment. Upon investigating the most promising candidates, we validated sCD30 as a marker of uncontrolled EBV proliferation in both humanized mice and in pediatric patients with EBV-PTLD. High levels of sCD30 have been previously associated with EBV-PTLD in patients. As such, we believe that humanized mice can indeed model aspects of EBV-PTLD development and may prove useful for the safety assessment of immunomodulatory therapies.
Collapse
Affiliation(s)
- Nicole Caduff
- University of Zurich, Viral Immunobiology, Institute of Experimental Immunology, Zurich, Switzerland
| | - Donal McHugh
- University of Zurich, Viral Immunobiology, Institute of Experimental Immunology, Zurich, Switzerland
| | - Anita Murer
- University of Zurich, Viral Immunobiology, Institute of Experimental Immunology, Zurich, Switzerland
| | - Patrick Rämer
- University of Zurich, Viral Immunobiology, Institute of Experimental Immunology, Zurich, Switzerland
| | - Ana Raykova
- University of Zurich, Viral Immunobiology, Institute of Experimental Immunology, Zurich, Switzerland
| | - Vanessa Landtwing
- University of Zurich, Viral Immunobiology, Institute of Experimental Immunology, Zurich, Switzerland
| | - Lisa Rieble
- University of Zurich, Viral Immunobiology, Institute of Experimental Immunology, Zurich, Switzerland
| | - Christian W Keller
- University Hospital of Münster, Department of Neurology with Institute of Translational Neurology, Münster, Germany
| | - Michael Prummer
- Nexus Personalized Health Technologies, ETH Zurich, Zurich Switzerland, and Swiss Institute for Bioinformatics (SIB), Zurich, Switzerland
| | | | - Janice K P Lam
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong
| | - Alan K S Chiang
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong
| | - Friedrich Raulf
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Tarik Azzi
- Division of Infectious Diseases and Hospital Epidemiology, University Children's Hospital Zurich, Zurich, Switzerland
| | - Christoph Berger
- Division of Infectious Diseases and Hospital Epidemiology, University Children's Hospital Zurich, Zurich, Switzerland
| | | | | | - Jan D Lünemann
- University Hospital of Münster, Department of Neurology with Institute of Translational Neurology, Münster, Germany
| | | | - Christian Münz
- University of Zurich, Viral Immunobiology, Institute of Experimental Immunology, Zurich, Switzerland
| |
Collapse
|
38
|
McHugh D, Caduff N, Murer A, Engelmann C, Deng Y, Zdimerova H, Zens K, Chijioke O, Münz C. Infection and immune control of human oncogenic γ-herpesviruses in humanized mice. Philos Trans R Soc Lond B Biol Sci 2020; 374:20180296. [PMID: 30955487 DOI: 10.1098/rstb.2018.0296] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Epstein-Barr virus (EBV) and Kaposi sarcoma-associated herpesvirus (KSHV) comprise the oncogenic human γ-herpesvirus family and are responsible for 2-3% of all tumours in man. With their prominent growth-transforming abilities and high prevalence in the human population, these pathogens have probably shaped the human immune system throughout evolution for near perfect immune control of the respective chronic infections in the vast majority of healthy pathogen carriers. The exclusive tropism of EBV and KSHV for humans has, however, made it difficult in the past to study their infection, tumourigenesis and immune control in vivo. Mice with reconstituted human immune system components (humanized mice) support replication of both viruses with both persisting latent and productive lytic infection. Moreover, B-cell lymphomas can be induced by EBV alone and KSHV co-infection with gene expression hallmarks of human malignancies that are associated with both viruses. Furthermore, cell-mediated immune control by primarily cytotoxic lymphocytes is induced upon infection and can be probed for its functional characteristics as well as putative requirements for its priming. Insights that have been gained from this model and remaining questions will be discussed in this review. This article is part of the theme issue 'Silent cancer agents: multi-disciplinary modelling of human DNA oncoviruses'.
Collapse
Affiliation(s)
- Donal McHugh
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich , Switzerland
| | - Nicole Caduff
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich , Switzerland
| | - Anita Murer
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich , Switzerland
| | - Christine Engelmann
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich , Switzerland
| | - Yun Deng
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich , Switzerland
| | - Hana Zdimerova
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich , Switzerland
| | - Kyra Zens
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich , Switzerland
| | - Obinna Chijioke
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich , Switzerland
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich , Switzerland
| |
Collapse
|
39
|
Keller MD, Bollard CM. Virus-specific T-cell therapies for patients with primary immune deficiency. Blood 2020; 135:620-628. [PMID: 31942610 PMCID: PMC7046606 DOI: 10.1182/blood.2019000924] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 09/23/2019] [Indexed: 02/07/2023] Open
Abstract
Viral infections are common and are potentially life-threatening in patients with moderate to severe primary immunodeficiency disorders. Because T-cell immunity contributes to the control of many viral pathogens, adoptive immunotherapy with virus-specific T cells (VSTs) has been a logical and effective way of combating severe viral disease in immunocompromised patients in multiple phase 1 and 2 clinical trials. Common viral targets include cytomegalovirus, Epstein-Barr virus, and adenovirus, though recent published studies have successfully targeted additional pathogens, including HHV6, BK virus, and JC virus. Though most studies have used VSTs derived from allogenic stem cell donors, the use of banked VSTs derived from partially HLA-matched donors has shown efficacy in multicenter settings. Hence, this approach could shorten the time for patients to receive VST therapy thus improving accessibility. In this review, we discuss the usage of VSTs for patients with primary immunodeficiency disorders in clinical trials, as well as future potential targets and methods to broaden the applicability of virus-directed T-cell immunotherapy for this vulnerable patient population.
Collapse
Affiliation(s)
- Michael D Keller
- Center for Cancer and Immunology Research and
- Division of Allergy and Immunology, Children's National Health System, Washington, DC
- GW Cancer Center, George Washington University, Washington, DC; and
| | - Catherine M Bollard
- Center for Cancer and Immunology Research and
- GW Cancer Center, George Washington University, Washington, DC; and
- Division of Blood and Marrow Transplantation, Children's National Health System, Washington, DC
| |
Collapse
|
40
|
Huang L, Ye K, McGee MC, Nidetz NF, Elmore JP, Limper CB, Southard TL, Russell DG, August A, Huang W. Interleukin-2-Inducible T-Cell Kinase Deficiency Impairs Early Pulmonary Protection Against Mycobacterium tuberculosis Infection. Front Immunol 2020; 10:3103. [PMID: 32038633 PMCID: PMC6993117 DOI: 10.3389/fimmu.2019.03103] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 12/19/2019] [Indexed: 11/13/2022] Open
Abstract
Interleukin-2 (IL-2) inducible T-cell kinase (ITK) is a non-receptor tyrosine kinase highly expressed in T-cell lineages and regulates multiple aspects of T-cell development and function, mainly through its function downstream of the T-cell receptor. Itk deficiency can lead to CD4 lymphopenia and Epstein-Bar virus (EBV)-associated lymphoproliferation and recurrent pulmonary infections in humans. However, the role of the ITK signaling pathway in pulmonary responses in active tuberculosis due to Mtb infection is not known. We show here that human lungs with active tuberculosis exhibit altered T-cell receptor/ITK signaling and that Itk deficiency impaired early protection against Mtb in mice, accompanied by defective development of IL-17A-producing γδ T cells in the lungs. These findings have important implications of human genetics associated with susceptibility to Mtb due to altered immune responses and molecular signals modulating host immunity that controls Mtb activity. Enhancing ITK signaling pathways may be an alternative strategy to target Mtb infection, especially in cases with highly virulent strains in which IL-17A plays an essential protective role.
Collapse
Affiliation(s)
- Lu Huang
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Kaixiong Ye
- Department of Genetics, University of Georgia, Athens, GA, United States.,Institute of Bioinformatics, University of Georgia, Athens, GA, United States
| | - Michael C McGee
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Natalie F Nidetz
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Jessica P Elmore
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Candice B Limper
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Teresa L Southard
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - David G Russell
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Avery August
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Weishan Huang
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States.,Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| |
Collapse
|
41
|
Cohen JI, Iwatsuki K, Ko YH, Kimura H, Manoli I, Ohshima K, Pittaluga S, Quintanilla-Martinez L, Jaffe ES. Epstein-Barr virus NK and T cell lymphoproliferative disease: report of a 2018 international meeting. Leuk Lymphoma 2019; 61:808-819. [PMID: 31833428 DOI: 10.1080/10428194.2019.1699080] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Epstein-Barr virus (EBV) normally infects B cells, but in some persons the virus infects T or NK cells. Infection of B cells can result in infectious mononucleosis, and the virus is associated with several B cell malignancies including Hodgkin lymphoma, Burkitt lymphoma, and diffuse large B cell lymphoma. Infection of T or NK cells with EBV is associated with extranodal NK/T cell lymphoma, aggressive NK-cell leukemia, systemic EBV-associated T-cell lymphoma, and chronic active EBV disease, which in some cases can include hydroa vacciniforme-like lymphoproliferative disease and severe mosquito bite allergy. While NK and T cell lymphoproliferative disease is more common in Asia and Latin America, increasing numbers of cases are being reported from the United States and Europe. This review focuses on classification, clinical findings, pathogenesis, and recent genetic advances in NK and T cell lymphoproliferative diseases associated with EBV.
Collapse
Affiliation(s)
- Jeffrey I Cohen
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Keiji Iwatsuki
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Young-Hyeh Ko
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hiroshi Kimura
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Irini Manoli
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Koichi Ohshima
- Department of Pathology, Kurume University School of Medicine, Niigata University, Niigata, Japan
| | - Stefania Pittaluga
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Elaine S Jaffe
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
42
|
Schejter YD, Even-Or E, Shadur B, NaserEddin A, Stepensky P, Zaidman I. The Broad Clinical Spectrum and Transplant Results of PNP Deficiency. J Clin Immunol 2019; 40:123-130. [PMID: 31707514 DOI: 10.1007/s10875-019-00698-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 09/25/2019] [Indexed: 12/11/2022]
Abstract
PURPOSE Purine nucleoside phosphorylase (PNP) is a known yet rare cause of combined immunodeficiency with a heterogeneous clinical presentation. We aim to add to the expanding clinical spectrum of disease, and to summarize the available data on bone marrow transplant for this condition. METHODS Data was collected from patient files retrospectively. A review of the literature of hematopoietic stem cell transplantation (HSCT) for PNP deficiency was conducted. RESULTS Four patients were treated in two centers in Israel. One patient died of EBV-related lymphoma with CNS involvement prior to transplant. The other three patients underwent successful HSCT with good immune reconstitution post-transplant (follow-up 8-108 months) and excellent neurological outcomes. CONCLUSION PNP is a variable immunodeficiency and should be considered in various clinical contexts, with or without neurological manifestations. HSCT offers a good treatment option, with excellent clinical outcomes, when preformed in a timely manner.
Collapse
Affiliation(s)
- Yael Dinur Schejter
- Bone Marrow Transplantation Department, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.
| | - Ehud Even-Or
- Bone Marrow Transplantation Department, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Bella Shadur
- Bone Marrow Transplantation Department, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.,Immunology Division, Garvan Institute of Medical Research, Sydney, Australia.,Graduate Research School, University of New South Wales, Sydney, Australia
| | - Adeeb NaserEddin
- Bone Marrow Transplantation Department, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Polina Stepensky
- Bone Marrow Transplantation Department, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Irina Zaidman
- Bone Marrow Transplantation Department, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
43
|
Rodriguez R, Fournier B, Cordeiro DJ, Winter S, Izawa K, Martin E, Boutboul D, Lenoir C, Fraitag S, Kracker S, Watts TH, Picard C, Bruneau J, Callebaut I, Fischer A, Neven B, Latour S. Concomitant PIK3CD and TNFRSF9 deficiencies cause chronic active Epstein-Barr virus infection of T cells. J Exp Med 2019; 216:2800-2818. [PMID: 31537641 PMCID: PMC6888974 DOI: 10.1084/jem.20190678] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/23/2019] [Accepted: 08/29/2019] [Indexed: 12/13/2022] Open
Abstract
Identification of biallelic loss-of-function mutations in TNFRSF9 and PIK3CD in a kindred with chronic active Epstein-Barr virus infection of T cells (CAEBV) suggests that CAEBV is the consequence of factors providing growth advantage to EBV-infected T cells combined with defective cell immunity toward EBV-infected cells. Infection of T cells by Epstein-Barr virus (EBV) causes chronic active EBV infection (CAEBV) characterized by T cell lymphoproliferative disorders (T-LPD) of unclear etiology. Here, we identified two homozygous biallelic loss-of-function mutations in PIK3CD and TNFRSF9 in a patient who developed a fatal CAEBV. The mutation in TNFRSF9 gene coding CD137/4-1BB, a costimulatory molecule expressed by antigen-specific activated T cells, resulted in a complete loss of CD137 expression and impaired T cell expansion toward CD137 ligand–expressing cells. Isolated as observed in one sibling, CD137 deficiency resulted in persistent EBV-infected T cells but without clinical manifestations. The mutation in PIK3CD gene that encodes the catalytic subunit p110δ of the PI3K significantly reduced its kinase activity. Deficient T cells for PIK3CD exhibited reduced AKT signaling, while calcium flux, RAS-MAPK activation, and proliferation were increased, suggestive of an imbalance between the PLCγ1 and PI3K pathways. These skewed signals in T cells may sustain accumulation of EBV-infected T cells, a process controlled by the CD137–CD137L pathway, highlighting its critical role in immunity to EBV.
Collapse
Affiliation(s)
- Rémy Rodriguez
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, Institut National de la Santé et la Recherche Médicale, Unité Mixte de Recherche 1163, Paris, France.,University Paris Descartes Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - Benjamin Fournier
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, Institut National de la Santé et la Recherche Médicale, Unité Mixte de Recherche 1163, Paris, France.,University Paris Descartes Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - Debora Jorge Cordeiro
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, Institut National de la Santé et la Recherche Médicale, Unité Mixte de Recherche 1163, Paris, France.,University Paris Descartes Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - Sarah Winter
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, Institut National de la Santé et la Recherche Médicale, Unité Mixte de Recherche 1163, Paris, France.,University Paris Descartes Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - Kazushi Izawa
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, Institut National de la Santé et la Recherche Médicale, Unité Mixte de Recherche 1163, Paris, France
| | - Emmanuel Martin
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, Institut National de la Santé et la Recherche Médicale, Unité Mixte de Recherche 1163, Paris, France
| | - David Boutboul
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, Institut National de la Santé et la Recherche Médicale, Unité Mixte de Recherche 1163, Paris, France.,University Paris Descartes Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - Christelle Lenoir
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, Institut National de la Santé et la Recherche Médicale, Unité Mixte de Recherche 1163, Paris, France
| | - Sylvie Fraitag
- Department of Pathology, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Sven Kracker
- University Paris Descartes Sorbonne Paris Cité, Imagine Institute, Paris, France.,Laboratory of Human Lymphohematopoiesis, Institut National de la Santé et la Recherche Médicale, Unité Mixte de Recherche 1163, Paris, France
| | - Tania H Watts
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Capucine Picard
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, Institut National de la Santé et la Recherche Médicale, Unité Mixte de Recherche 1163, Paris, France.,University Paris Descartes Sorbonne Paris Cité, Imagine Institute, Paris, France.,Centre d'Etude des Déficits Immunitaires, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France.,Department of Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Julie Bruneau
- University Paris Descartes Sorbonne Paris Cité, Imagine Institute, Paris, France.,Department of Pathology, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Isabelle Callebaut
- Sorbonne Université, Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Paris, France
| | - Alain Fischer
- University Paris Descartes Sorbonne Paris Cité, Imagine Institute, Paris, France.,Department of Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France.,Collège de France, Paris, France.,Institut National de la Santé et la Recherche Médicale, Unité Mixte de Recherche 1163, Paris, France
| | - Bénédicte Neven
- University Paris Descartes Sorbonne Paris Cité, Imagine Institute, Paris, France.,Department of Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Sylvain Latour
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, Institut National de la Santé et la Recherche Médicale, Unité Mixte de Recherche 1163, Paris, France .,University Paris Descartes Sorbonne Paris Cité, Imagine Institute, Paris, France
| |
Collapse
|
44
|
Shannon-Lowe C, Rickinson A. The Global Landscape of EBV-Associated Tumors. Front Oncol 2019; 9:713. [PMID: 31448229 PMCID: PMC6691157 DOI: 10.3389/fonc.2019.00713] [Citation(s) in RCA: 279] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/18/2019] [Indexed: 12/12/2022] Open
Abstract
Epstein-Barr virus (EBV), a gamma-1 herpesvirus, is carried as a life-long asymptomatic infection by the great majority of individuals in all human populations. Yet this seemingly innocent virus is aetiologically linked to two pre-malignant lymphoproliferative diseases (LPDs) and up to nine distinct human tumors; collectively these have a huge global impact, being responsible for some 200,000 new cases of cancer arising worldwide each year. EBV replicates in oral epithelium but persists as a latent infection within the B cell system and several of its diseases are indeed of B cell origin; these include B-LPD of the immunocompromised, Hodgkin Lymphoma (HL), Burkitt Lymphoma (BL), Diffuse Large B cell Lymphoma (DLBCL) and two rarer tumors associated with profound immune impairment, plasmablastic lymphoma (PBL) and primary effusion lymphoma (PEL). Surprisingly, the virus is also linked to tumors arising in other cellular niches which, rather than being essential reservoirs of virus persistence in vivo, appear to represent rare cul-de-sacs of latent infection. These non-B cell tumors include LPDs and malignant lymphomas of T or NK cells, nasopharyngeal carcinoma (NPC) and gastric carcinoma of epithelial origin, and leiomyosarcoma, a rare smooth muscle cell tumor of the immunocompromised. Here we describe the main characteristics of these tumors, their distinct epidemiologies, histological features and degrees of EBV association, then consider how their different patterns of EBV latency may reflect the alternative latency programmes through which the virus first colonizes and then persists in immunocompetent host. For each tumor, we discuss current understanding of EBV's role in the oncogenic process, the identity (where known) of host genetic and environmental factors predisposing tumor development, and the recent evidence from cancer genomics identifying somatic changes that either complement or in some cases replace the contribution of the virus. Thereafter we look for possible connections between the pathogenesis of these apparently different malignancies and point to new research areas where insights may be gained.
Collapse
Affiliation(s)
- Claire Shannon-Lowe
- Institute for Immunology and Immunotherapy, The University of Birmingham, Birmingham, United Kingdom
| | - Alan Rickinson
- Institute for Immunology and Immunotherapy, The University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
45
|
Cohen JI, Manoli I, Dowdell K, Krogmann TA, Tamura D, Radecki P, Bu W, Turk SP, Liepshutz K, Hornung RL, Fassihi H, Sarkany RP, Bonnycastle LL, Chines PS, Swift AJ, Myers TG, Levoska MA, DiGiovanna JJ, Collins FS, Kraemer KH, Pittaluga S, Jaffe ES. Hydroa vacciniforme-like lymphoproliferative disorder: an EBV disease with a low risk of systemic illness in whites. Blood 2019; 133:2753-2764. [PMID: 31064750 PMCID: PMC6598378 DOI: 10.1182/blood.2018893750] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 03/25/2019] [Indexed: 12/15/2022] Open
Abstract
Patients with classic hydroa vacciniforme-like lymphoproliferative disorder (HVLPD) typically have high levels of Epstein-Barr virus (EBV) DNA in T cells and/or natural killer (NK) cells in blood and skin lesions induced by sun exposure that are infiltrated with EBV-infected lymphocytes. HVLPD is very rare in the United States and Europe but more common in Asia and South America. The disease can progress to a systemic form that may result in fatal lymphoma. We report our 11-year experience with 16 HVLPD patients from the United States and England and found that whites were less likely to develop systemic EBV disease (1/10) than nonwhites (5/6). All (10/10) of the white patients were generally in good health at last follow-up, while two-thirds (4/6) of the nonwhite patients required hematopoietic stem cell transplantation. Nonwhite patients had later age of onset of HVLPD than white patients (median age, 8 vs 5 years) and higher levels of EBV DNA (median, 1 515 000 vs 250 000 copies/ml) and more often had low numbers of NK cells (83% vs 50% of patients) and T-cell clones in the blood (83% vs 30% of patients). RNA-sequencing analysis of an HVLPD skin lesion in a white patient compared with his normal skin showed increased expression of interferon-γ and chemokines that attract T cells and NK cells. Thus, white patients with HVLPD were less likely to have systemic disease with EBV and had a much better prognosis than nonwhite patients. This trial was registered at www.clinicaltrials.gov as #NCT00369421 and #NCT00032513.
Collapse
Affiliation(s)
- Jeffrey I Cohen
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Irini Manoli
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Kennichi Dowdell
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Tammy A Krogmann
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Deborah Tamura
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Pierce Radecki
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Wei Bu
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Siu-Ping Turk
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Kelly Liepshutz
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Ronald L Hornung
- Clinical Services Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Hiva Fassihi
- Department of Photodermatology, St John's Institute of Dermatology, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Robert P Sarkany
- Department of Photodermatology, St John's Institute of Dermatology, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Lori L Bonnycastle
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Peter S Chines
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Amy J Swift
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Timothy G Myers
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Melissa A Levoska
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - John J DiGiovanna
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Francis S Collins
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
- Office of the Director, National Institutes of Health, Bethesda, MD; and
| | - Kenneth H Kraemer
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Stefania Pittaluga
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Elaine S Jaffe
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
46
|
Keller MD, Darko S, Lang H, Ransier A, Lazarski CA, Wang Y, Hanley PJ, Davila BJ, Heimall JR, Ambinder RF, Barrett AJ, Rooney CM, Heslop HE, Douek DC, Bollard CM. T-cell receptor sequencing demonstrates persistence of virus-specific T cells after antiviral immunotherapy. Br J Haematol 2019; 187:206-218. [PMID: 31219185 DOI: 10.1111/bjh.16053] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 04/02/2019] [Indexed: 12/13/2022]
Abstract
Viral infections are a serious cause of morbidity and mortality following haematopoietic stem cell transplantation (HSCT). Adoptive cellular therapy with virus-specific T cells (VSTs) has been successful in preventing or treating targeted viruses in prior studies, but the composition of ex vivo expanded VST and the critical cell populations that mediate antiviral activity in vivo are not well defined. We utilized deep sequencing of the T-cell receptor beta chain (TCRB) in order to classify and track VST populations in 12 patients who received VSTs following HSCT to prevent or treat viral infections. TCRB sequencing was performed on sorted VST products and patient peripheral blood mononuclear cells samples. TCRB diversity was gauged using the Shannon entropy index, and repertoire similarity determined using the Morisita-Horn index. Similarity indices reflected an early change in TCRB diversity in eight patients, and TCRB clonotypes corresponding to targeted viral epitopes expanded in eight patients. TCRB repertoire diversity increased in nine patients, and correlated with cytomegalovirus (CMV) viral load following VST infusion (P = 0·0071). These findings demonstrate that allogeneic VSTs can be tracked via TCRB sequencing, and suggests that T-cell receptor repertoire diversity may be critical for the control of CMV reactivation after HSCT.
Collapse
Affiliation(s)
- Michael D Keller
- Division of Allergy & Immunology, Children's National Health System, Washington, DC, USA.,Center for Cancer and Immunology Research, Children's National Health System, Washington, DC, USA
| | - Sam Darko
- Vaccine Research Center, National Institute of Allergy and Infectious Disease, Bethesda, MD, USA
| | - Haili Lang
- Center for Cancer and Immunology Research, Children's National Health System, Washington, DC, USA
| | - Amy Ransier
- Vaccine Research Center, National Institute of Allergy and Infectious Disease, Bethesda, MD, USA
| | - Christopher A Lazarski
- Center for Cancer and Immunology Research, Children's National Health System, Washington, DC, USA
| | - Yunfei Wang
- Clinical and Translational Sciences Institute, Children's National Health System, Washington, DC, USA
| | - Patrick J Hanley
- Center for Cancer and Immunology Research, Children's National Health System, Washington, DC, USA.,Division of Blood and Marrow Transplantation, Children's National Health System, Washington, DC, USA
| | - Blachy J Davila
- Division of Blood and Marrow Transplantation, Children's National Health System, Washington, DC, USA
| | - Jennifer R Heimall
- Division of Allergy & Immunology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Richard F Ambinder
- Division of Blood and Marrow Transplantation, Johns Hopkins Hospital, Baltimore, MD, USA
| | - A John Barrett
- GW Cancer Center, George Washington University, Washington, DC, USA
| | - Cliona M Rooney
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children's Hospital, Houston, TX, USA
| | - Helen E Heslop
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children's Hospital, Houston, TX, USA
| | - Daniel C Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Disease, Bethesda, MD, USA
| | - Catherine M Bollard
- Center for Cancer and Immunology Research, Children's National Health System, Washington, DC, USA.,Division of Blood and Marrow Transplantation, Children's National Health System, Washington, DC, USA
| |
Collapse
|
47
|
Chatterjee B, Deng Y, Holler A, Nunez N, Azzi T, Vanoaica LD, Müller A, Zdimerova H, Antsiferova O, Zbinden A, Capaul R, Dreyer JH, Nadal D, Becher B, Robinson MD, Stauss H, Münz C. CD8+ T cells retain protective functions despite sustained inhibitory receptor expression during Epstein-Barr virus infection in vivo. PLoS Pathog 2019; 15:e1007748. [PMID: 31145756 PMCID: PMC6542544 DOI: 10.1371/journal.ppat.1007748] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 04/04/2019] [Indexed: 12/15/2022] Open
Abstract
Epstein Barr virus (EBV) is one of the most ubiquitous human pathogens in the world, persistently infecting more than 90% of the adult human population. It drives some of the strongest human CD8+ T cell responses, which can be observed during symptomatic primary infection known as infectious mononucleosis (IM). Despite high viral loads and prolonged CD8+ T cell stimulation during IM, EBV enters latency and is under lifelong immune control in most individuals that experience this disease. We investigated whether changes in T cell function, as frequently characterized by PD-1 up-regulation, occur during IM due to the prolonged exposure to high antigen levels. We readily detected the expansion of PD-1 positive CD8+ T cells together with high frequencies of Tim-3, 2B4, and KLRG1 expression during IM and in mice with reconstituted human immune system components (huNSG mice) that had been infected with a high dose of EBV. These PD-1 positive CD8+ T cells, however, retained proliferation, cytokine production, and cytotoxic abilities. Multiple subsets of CD8+ T cells expanded during EBV infection, including PD-1+Tim-3+KLRG1+ cells that express CXCR5 and TCF-1 germinal center homing and memory markers, and may also contain BATF3. Moreover, blocking the PD-1 axis compromised EBV specific immune control and resulted in virus-associated lymphomagenesis. Finally, PD-1+, Tim-3+, and KLRG1+ CD8+ T cell expansion coincided with declining viral loads during low dose EBV infection. These findings suggest that EBV infection primes PD-1 positive CD8+ T cell populations that rely on this receptor axis for the efficient immune control of this ubiquitous human tumor virus. Since its discovery as a tumor virus by Epstein and colleagues in 1964, Epstein-Barr virus (EBV) has been implicated in many serious diseases, including infectious mononucleosis, Burkitt’s lymphoma, and post-transplant lymphoproliferative disease. Currently, in vivo studies are lacking to understand the comprehensive immune control of EBV in most healthy virus carriers, and, in particular, the characteristics of the CD8+ T cells involved in this process. We find that even though CD8+ T cells express multiple inhibitory receptors including PD-1 during primary EBV infection, they appear to retain an ability to produce cytokines, to kill infected cells, and to proliferate. Importantly, blocking the PD-1 pathway leads to defects in EBV-specific control and increased virus-induced tumor formation, indicating that this axis is important for viral control. This is in contrast to previous studies where releasing an inhibitory block is important for reinvigorating immune responses against cancer. Because PD-1 function is required to keep EBV in check, this study provides evidence against blocking co-inhibitory pathways in disease settings that require improved immune control of chronic virus infections.
Collapse
Affiliation(s)
- Bithi Chatterjee
- Viral Immunobiology, Institute of Experimental Immunology, University of Zurich, Switzerland
| | - Yun Deng
- Viral Immunobiology, Institute of Experimental Immunology, University of Zurich, Switzerland
| | - Angelika Holler
- Institute of Immunity and Transplantation, Royal Free Campus, University College London, United Kingdom
| | - Nicolas Nunez
- Inflammation Research, Institute of Experimental Immunology, University of Zurich, Switzerland
| | - Tarik Azzi
- Division of Infectious Diseases and Hospital Epidemiology, Children’s Research Center, University Children’s Hospital Zurich, Switzerland
| | | | - Anne Müller
- Viral Immunobiology, Institute of Experimental Immunology, University of Zurich, Switzerland
| | - Hana Zdimerova
- Viral Immunobiology, Institute of Experimental Immunology, University of Zurich, Switzerland
| | - Olga Antsiferova
- Viral Immunobiology, Institute of Experimental Immunology, University of Zurich, Switzerland
| | - Andrea Zbinden
- Institute of Medical Virology, University of Zurich, Switzerland
| | - Riccarda Capaul
- Institute of Medical Virology, University of Zurich, Switzerland
| | | | - David Nadal
- Inflammation Research, Institute of Experimental Immunology, University of Zurich, Switzerland
| | - Burkhard Becher
- Inflammation Research, Institute of Experimental Immunology, University of Zurich, Switzerland
| | - Mark D. Robinson
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- SIB Swiss Institute of Bioinformatics, Zurich, Switzerland
| | - Hans Stauss
- Institute of Immunity and Transplantation, Royal Free Campus, University College London, United Kingdom
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zurich, Switzerland
- * E-mail:
| |
Collapse
|
48
|
Damania B, Münz C. Immunodeficiencies that predispose to pathologies by human oncogenic γ-herpesviruses. FEMS Microbiol Rev 2019; 43:181-192. [PMID: 30649299 PMCID: PMC6435449 DOI: 10.1093/femsre/fuy044] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/30/2018] [Indexed: 12/13/2022] Open
Abstract
Human γ-herpesviruses include the closely related tumor viruses Epstein Barr virus (EBV) and Kaposi sarcoma-associated herpesvirus (KSHV). EBV is the most growth-transforming pathogen known and is linked to at least seven human malignancies. KSHV is also associated with three human cancers. Most EBV- and KSHV-infected individuals fortunately remain disease-free despite persistent infection and this is likely due to the robustness of the immune control that they mount against these tumor viruses. However, upon immune suppression EBV- and KSHV-associated malignancies emerge at increased frequencies. Moreover, primary immunodeficiencies with individual mutations that predispose to EBV or KSHV disease allow us to gain insights into a catalog of molecules that are required for the immune control of these tumor viruses. Curiously, there is little overlap between the mutation targets that predispose individuals to EBV versus KSHV disease, even so both viruses can infect the same host cell, human B cells. These differences will be discussed in this review. A better understanding of the crucial components in the near-perfect life-long immune control of EBV and KSHV should allow us to target malignancies that are associated with these viruses, but also induce similar immune responses against other tumors.
Collapse
Affiliation(s)
- Blossom Damania
- Lineberger Cancer Research Center and Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, 8057 Zürich, Switzerland
| |
Collapse
|
49
|
Rühl J, Citterio C, Engelmann C, Haigh T, Dzionek A, Dreyer J, Khanna R, Taylor GS, Wilson JB, Leung CS, Münz C. Heterologous prime-boost vaccination protects against EBV antigen-expressing lymphomas. J Clin Invest 2019; 129:2071-2087. [PMID: 31042161 DOI: 10.1172/jci125364] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 03/05/2019] [Indexed: 02/06/2023] Open
Abstract
The Epstein-Barr virus (EBV) is one of the predominant tumor viruses in humans, but so far no therapeutic or prophylactic vaccination against this transforming pathogen is available. We demonstrated that heterologous prime-boost vaccination with the nuclear antigen 1 of EBV (EBNA1), either targeted to the DEC205 receptor on DCs or expressed from a recombinant modified vaccinia virus Ankara (MVA) vector, improved priming of antigen-specific CD4+ T cell help. This help supported the expansion and maintenance of EBNA1-specific CD8+ T cells that are most efficiently primed by recombinant adenoviruses that encode EBNA1. These combined CD4+ and CD8+ T cell responses protected against EBNA1-expressing T and B cell lymphomas, including lymphoproliferations that emerged spontaneously after EBNA1 expression. In particular, the heterologous EBNA1-expressing adenovirus, boosted by EBNA1-encoding MVA vaccination, demonstrated protection as a prophylactic and therapeutic treatment for the respective lymphoma challenges. Our study shows that such heterologous prime-boost vaccinations against EBV-associated malignancies as well as symptomatic primary EBV infection should be further explored for clinical development.
Collapse
Affiliation(s)
- Julia Rühl
- Viral Immunobiology, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Carmen Citterio
- Viral Immunobiology, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Christine Engelmann
- Viral Immunobiology, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Tracey Haigh
- Cancer Immunology and Immunotherapy Centre, University of Birmingham, Birmingham, United Kingdom
| | | | - Johannes Dreyer
- Institute for Pathology, Unfallkrankenhaus Berlin, Berlin, Germany
| | - Rajiv Khanna
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Tumour Immunology Laboratory, Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Graham S Taylor
- Cancer Immunology and Immunotherapy Centre, University of Birmingham, Birmingham, United Kingdom
| | - Joanna B Wilson
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Carol S Leung
- University of Oxford, Nuffield Department of Medicine, Ludwig Institute for Cancer Research, Oxford, United Kingdom
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
50
|
Sheng L, Zhang W, Gu J, Shen K, Luo H, Yang Y. Novel mutations of STXBP2 and LYST associated with adult haemophagocytic lymphohistiocytosis with Epstein-Barr virus infection: a case report. BMC MEDICAL GENETICS 2019; 20:34. [PMID: 30782130 PMCID: PMC6379998 DOI: 10.1186/s12881-019-0765-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 02/13/2019] [Indexed: 12/15/2022]
Abstract
Background Haemophagocytic lymphohistiocytosis is a life-threatening disease resulting from primary or secondary hyper-inflammatory disorders. The typical symptoms include persistent fever, splenomegaly, cytopenia and significant elevation of serum ferritin. Case presentation We report a 30-year-old Chinese female patient who was diagnosed with chronic active Epstein-Barr virus infection more than 9 months prior and has since been presenting with cutaneous lymphoproliferative disorders mimicking hydroa vacciniforme and subsequent haemophagocytic lymphohistiocytosis. Exome sequencing suggested novel digenic heterozygous STXBP2 (c.592A > C, p.Thr198Pro) and LYST (c.830A > T, p.His277Leu) mutations. Conclusions This is the first case report in which adult HLH was associated with novel digenic mutations of STXBP2 and LYST combined with Epstein-Barr virus infection. It could also be the first polygenic model report, given that the pathogenicity of other mutated genes still remains unclear. We additionally conducted an in-depth, two-generation pedigree analysis to further illustrate the mode of inheritance in this case.
Collapse
Affiliation(s)
- Lingshuang Sheng
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Wei Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Jia Gu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Kefeng Shen
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Hui Luo
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Yang Yang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|