1
|
Zhang Y, Su J, Zhou K, Wang S, Zhang J, Zhang T, Liu S, Lu Y. Indolelactic acid as a potential metabolic biomarker for diagnosing gout. Exp Ther Med 2024; 28:429. [PMID: 39328397 PMCID: PMC11425795 DOI: 10.3892/etm.2024.12717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 07/22/2024] [Indexed: 09/28/2024] Open
Abstract
Gout is a heterogeneous disease caused by the deposition of monosodium urate crystals in joints, but its pathogenesis is currently poorly understood. The discovery of novel biomarkers is necessary for the early detection and diagnosis of gout. The present study aimed to characterize the metabolic profile of patients with gout using metabolomics, and to uncover the underlying pathological mechanisms leading to gout development. Serum samples were collected from 49 healthy participants and 47 patients with gout. Using ultra-high-performance liquid chromatography Orbitrap Exploris mass spectrometer non-target metabolomics technology, with a variable importance in the projection >1 and a false discovery rate adjusted P<0.05 was used, while a biomarker panel was screened using receiver operating characteristic (ROC) analysis. The potential differentially expressed markers related to gout were identified by ROC analysis, and the erythrocyte sedimentation rate, uric acid, alanine transaminase, aspartate aminotransferase, creatinine, triglyceride, total cholesterol, high-density lipoprotein and low-density lipoprotein levels were significantly different in the group of patients with gout compared with those in healthy individuals. A total of 186 differentially expressed metabolites were identified, with 156 differential metabolites upregulated and 30 downregulated in the patients with gout compared with healthy individuals. Pathway analysis demonstrated that D-glutamine and D-glutamate metabolism may serve key roles in gout. Compared with healthy people, the indolelactic acid (ILA) level of patients with gout was significantly higher. ILA may serve as a potential biomarker for the diagnosis of gout and could be used to detect or predict gout progression in the future.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Pharmacy, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Jiayu Su
- Department of Pharmacy, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Ke Zhou
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, P.R. China
| | - Shuangshuang Wang
- Department of Pharmacy, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Jingwei Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, P.R. China
| | - Tiannan Zhang
- Department of Pharmacy, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Shijia Liu
- Department of Pharmacy, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Yan Lu
- Department of Rheumatology and Immunology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
2
|
Khelifi R, Latelli N, Charifi Z, Morell C, Chermette H. Predicting the activity of methoxyphenol derivatives antioxidants: II-Importance of the nature of the solvent on the mechanism, a DFT study. J Comput Chem 2024; 45:886-897. [PMID: 38156812 DOI: 10.1002/jcc.27284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/25/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024]
Abstract
The various mechanisms of primary antioxidant action of a series of 2-Methoxyphenols are investigated in the present work. The electronic properties have just been studied in a joint article, so that we focus here on Hydrogen Atom Transfer (HAT), Single Electron Transfer-Proton Transfer (SET-PT) and Sequential Proton-Loss Electron-Transfer (SPLET) mechanisms. The two computational approaches used in the previous study of the structure and reactivity of these compounds [Computational and Theoretical Chemistry 1229 (2023) 114287] provide identical mechanisms trends in gas phase. In gas media, hydrogen atom transfer (HAT) is more favored. On the contrary, the solvent polarity has a significant effect on the mechanism of the antioxidant activity, since the polarity of the solvent increases the contribution of the SPLET mechanism.
Collapse
Affiliation(s)
- Roumaissa Khelifi
- Faculté des sciences, Département de chimie, Université de Msila, M'sila, Algeria
- Laboratoire des Matériaux Inorganiques (LMI), Université de Msila, M'sila, Algeria
| | - Nadjia Latelli
- Faculté des sciences, Département de chimie, Université de Msila, M'sila, Algeria
- Laboratoire chimie des matériaux et des vivants: activité, réactivité, Université El-Hadj Lakhdar Batna, Batna, Algeria
| | - Zoulikha Charifi
- Department of Physics, Faculty of Science, University of M'sila, M'sila, Algeria
- Laboratory of Physics and Chemistry of Materials, University of M'sila, M'sila, Algeria
| | - Christophe Morell
- Université de Lyon, Université Lyon 1 et CNRS UMR 5280, Institut des Sciences Analytiques, Villeurbanne, France
| | - Henry Chermette
- Université de Lyon, Université Lyon 1 et CNRS UMR 5280, Institut des Sciences Analytiques, Villeurbanne, France
| |
Collapse
|
3
|
Huang JJ, Feng YM, Zheng SM, Yu CL, Zhou RG, Liu MJ, Bo RN, Yu J, Li JG. Eugenol Possesses Colitis Protective Effects: Impacts on the TLR4/MyD88/NF-[Formula: see text]B Pathway, Intestinal Epithelial Barrier, and Macrophage Polarization. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:493-512. [PMID: 38480500 DOI: 10.1142/s0192415x24500216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
Eugenol (EU) has been shown to ameliorate experimental colitis due to its anti-oxidant and anti-inflammatory bioactivities. In this study, DSS-induced acute colitis was established and applied to clarify the regulation efficacy of EU on intestinal barrier impairment and macrophage polarization imbalance along with the inflammatory response. Besides, the adjusting effect of EU on macrophages was further investigated in vitro. The results confirmed that EU intervention alleviated DSS-induced colitis through methods such as restraining weight loss and colonic shortening and decreasing DAI scores. Microscopic observation manifested that EU maintained the intestinal barrier integrity in line with the mucus barrier and tight junction protection. Furthermore, EU intervention significantly suppressed the activation of TLR4/MyD88/NF-[Formula: see text]B signaling pathways and pro-inflammatory cytokines gene expressions, while enhancing the expressions of anti-inflammatory cytokines. Simultaneously, WB and FCM analyses of the CD86 and CD206 showed that EU could regulate the DSS-induced macrophage polarization imbalance. Overall, our data further elucidated the mechanism of EU's defensive effect on experimental colitis, which is relevant to the protective efficacy of intestinal barriers, inhibition of oxidative stress and excessive inflammatory response, and reprogramming of macrophage polarization. Hence, this study may facilitate a better understanding of the protective action of the EU against UC.
Collapse
Affiliation(s)
- Jun-Jie Huang
- College of Veterinary Medicine, Yangzhou University, Wenhui East Road 48, Yangzhou 225009, P. R. China
| | - Yue-Min Feng
- College of Veterinary Medicine, Yangzhou University, Wenhui East Road 48, Yangzhou 225009, P. R. China
| | - Shu-Mei Zheng
- College of Veterinary Medicine, Yangzhou University, Wenhui East Road 48, Yangzhou 225009, P. R. China
| | - Cheng-Long Yu
- College of Veterinary Medicine, Yangzhou University, Wenhui East Road 48, Yangzhou 225009, P. R. China
| | - Rui-Gang Zhou
- College of Veterinary Medicine, Yangzhou University, Wenhui East Road 48, Yangzhou 225009, P. R. China
| | - Ming-Jiang Liu
- College of Veterinary Medicine, Yangzhou University, Wenhui East Road 48, Yangzhou 225009, P. R. China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, P. R. China
| | - Ruo-Nan Bo
- College of Veterinary Medicine, Yangzhou University, Wenhui East Road 48, Yangzhou 225009, P. R. China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, P. R. China
| | - Jie Yu
- The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suzhi Road 120, Suqian 223800, P. R. China
| | - Jin-Gui Li
- College of Veterinary Medicine, Yangzhou University, Wenhui East Road 48, Yangzhou 225009, P. R. China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, P. R. China
| |
Collapse
|
4
|
Gomaa S, Nassef M, El-Naggar R, Massoud A, El-Kholy M. Anti-tumoral Immunity and Chemo-preventive Effectiveness of Herbal Extracts of Curcumin, Ginger, Clove and Amygdaline in Ehrlich Ascites Carcinoma-Challenging Mice. Anticancer Agents Med Chem 2024; 24:826-835. [PMID: 38623979 DOI: 10.2174/0118715206269038231203151111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/15/2023] [Accepted: 10/19/2023] [Indexed: 04/17/2024]
Abstract
BACKGROUND Due to its systemic toxicity, traditional chemotherapy of tumors is being taken into consideration. Herbal therapy, containing phytochemical polyphenol derivatives such as Curcumin (Cur), Ginger (Gin), Cloves (Clov) and Amygdaline (Amyg), is one of the numerous complementary and alternative approaches as an anti-cancer therapy and holds great promise for cancer chemo-prevention with fewer side effects. AIM The current study was designated to assess anti-tumoral immunity and anti-cancer and chemo-preventive effectiveness of herbal extracts of Cur, Ginger, Clov and Amyg in Ehrlich Ascites Carcinoma (EAC)-challenging mice. METHODS Chemo-preventive efficacy of herbal extracts of Cur, Gin, Clov and Amyg were analyzed in vivo by examination of the apoptosis rate of EAC tumor cells by flow cytometry. The total numbers of EAC cells, splenocytes counts and leucocytes count with their differentials relative % in peripheral blood (PB) of EACchallenging mice were investigated. RESULTS EAC-challenging mice treated with herbal extracts of Cur, Gin, Clov and Amyg showed a marked decline in EAC tumor cell count and a noticeable increase in apoptosis rate of EAC tumor cells, a remarkable decrease in serum level of cancer antigen 125 (CA-125) with an obvious increase in the number of splenocytes comparing to that in EAC-challenging mice treated with PBS alone. Moreover, the data indicated an insignificant change in the total leucocytes count and their differentials relative % of eosinophil, neutrophils, monocytes and lymphocytes in EAC-challenging mice treated with Cur and Amyg, but these parameters were markedly increased in EAC-challenging mice injected with Gin and Clov compared to that in EAC-challenging mice treated with PBS alone. CONCLUSION To conclude, the herbal extracts of Cur, Gin, Clov and Amyg may have anti-tumoral immunity and anti-cancer potency and potential to reduce the resistance to cancer conventional chemotherapy and exert cancer chemo-protective approaches with low adverse effects. Further research is necessary to determine the regimen's toxicity on various tissues and organs and to connect the diagnostic and therapeutic approaches used in the regimen's biomedical use.
Collapse
Affiliation(s)
- Soha Gomaa
- Department of Zoology, Faculty of Science, Tanta University, Tanta, Egypt
| | - Mohamed Nassef
- Department of Zoology, Faculty of Science, Tanta University, Tanta, Egypt
| | - Randa El-Naggar
- Department of Zoology, Faculty of Science, Tanta University, Tanta, Egypt
| | - Ahmed Massoud
- Department of Zoology, Faculty of Science, Tanta University, Tanta, Egypt
| | - Mona El-Kholy
- Department of Zoology, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
5
|
Liu X, Tao Q, Shen Y, Liu X, Yang Y, Ma N, Li J. Aspirin eugenol ester ameliorates LPS-induced inflammatory responses in RAW264.7 cells and mice. Front Pharmacol 2023; 14:1220780. [PMID: 37705535 PMCID: PMC10495573 DOI: 10.3389/fphar.2023.1220780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/18/2023] [Indexed: 09/15/2023] Open
Abstract
Introduction: Inflammation is a defensive response of the body and the pathological basis of many diseases. However, excessive inflammation and chronic inflammation impair the homeostasis of the organism. Arachidonic acid (AA) has a close relationship with inflammation and is the main mediator of the pro-inflammatory response. Based on the prodrug principle, the new pharmaceutical compound aspirin eugenol ester (AEE) was designed and synthesized. However, the effects of AEE on key enzymes, metabolites and inflammatory signaling pathways in the AA metabolic network have not been reported. Methods: In this study, the anti-inflammation effects of AEE were first investigated in mice and RAW264.7 cells in LPS induced inflammation model. Then, the changes of the key enzymes and AA metabolites were explored by RT-PCR and targeted metabolomics. Moreover, the regulatory effects on NF-kB and MAPKS signaling pathways were explored by Western Blotting. Results: Results indicated that AEE significantly reduced the number of leukocyte and increased the lymphocyte percentage. AEE decreased the expression levels of IL-1β, IL-6, IL-8 and TNF-α both in vivo and in vitro. In the liver of mice, AEE downregulated the levels of AA, prostaglandin D2 (PGD2) and upregulated 12- hydroxyeicosatetraenoic acid (12-HETE). However, the changes of PGE2, PGF2α, 6-keto-prostaglandin F1α (6-KETO-PGF1α), 9-hydroxy-octadecenoic acid (9- HODE), 13-HODE, 15-HETE, docosahexaenoic acid (DHA) and thromboxane B2 (TXB2) were not significant. Additionally, it was found that AEE decreased the relative mRNA expression levels of p65 and p38 and the ratio of p-p65/p65. Discussion: It was concluded that AEE might inhibit the LPS-induced inflammatory response through the regulation of AA metabolism. This study provides the theoretical foundation for the development of AEE as a medicinal anti-inflammatory drug.
Collapse
Affiliation(s)
- Xu Liu
- Hebei Veterinary Biotechnology Innovation Center, College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei, China
| | - Qi Tao
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Youming Shen
- Quality Inspection and Test Center for Fruit and Nursery Stocks, Ministry of Agriculture and Rural Affairs (Xingcheng), Research Institute of Pomology Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, China
| | - Xiwang Liu
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Yajun Yang
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Ning Ma
- Hebei Veterinary Biotechnology Innovation Center, College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei, China
| | - Jianyong Li
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| |
Collapse
|
6
|
Gonçalves-Santos E, Caldas IS, Fernandes VÂ, Franco LL, Pelozo MF, Feltrim F, Maciel JS, Machado JVC, Gonçalves RV, Novaes RD. Pharmacological potential of new metronidazole/eugenol/dihydroeugenol hybrids against Trypanosoma cruzi in vitro and in vivo. Int Immunopharmacol 2023; 121:110416. [PMID: 37295025 DOI: 10.1016/j.intimp.2023.110416] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/17/2023] [Accepted: 05/30/2023] [Indexed: 06/11/2023]
Abstract
AIMS From well-delimited immunomodulatory, redox and antimicrobial properties; metronidazole and eugenol were used as structural platforms to assembly two new molecular hybrids (AD06 and AD07), whose therapeutic relevance was analyzed on T. cruzi infection in vitro and in vivo. METHODS Non-infected, T. cruzi-infected H9c2 cardiomyocytes, and mice non-treated and treated with vehicle, benznidazole (Bz - reference drug), AD06 and AD07 were investigated. Parasitological, prooxidant, antioxidant, microstructural, immunological, and hepatic function markers were analyzed. RESULTS Our findings indicated that in addition to having a direct antiparasitic effect on T. cruzi, metronidazole/eugenol hybrids (especially AD07) attenuated cellular parasitism, reactive species biosynthesis and oxidative stress in infected cardiomyocytes in vitro. Although AD06 and AD07 exerted no relevant impact on antioxidant enzymes activity (CAT, SOD, GR and GPx) in host cells, these drugs (especially AD07) attenuated trypanothione reductase activity in T. cruzi, which increased parasite's susceptibility to in vitro pro-oxidant challenge. AD06 and AD07 were well tolerated and do not determine humoral response suppression, mortality (100 % survival) or hepatotoxicity in mice, as indicated by transaminases plasma levels. AD07 also induced relevant in vivo antiparasitic and cardioprotective effects, attenuating parasitemia, cardiac parasite load and myocarditis in T. cruzi-infected mice. Although this cardioprotective response is potentially related to AD07 antiparasitic effect, a direct anti-inflammatory potential of this molecular hybrid cannot be ruled out. CONCLUSION Taken together, our findings indicated that the new molecular hybrid AD07 stood out as a potentially relevant candidate for the development of new, safe and more effective drug regimens for T. cruzi infection treatment.
Collapse
Affiliation(s)
- Elda Gonçalves-Santos
- Programa de Pós-Graduação em Biociências Aplicadas à Saúde, Universidade Federal de Alfenas, Alfenas 37130-001, Minas Gerais, Brazil
| | - Ivo S Caldas
- Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal de Alfenas, Alfenas 37130-001, Minas Gerais, Brazil; Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas 37130-001, Minas Gerais, Brazil
| | - Valquiria  Fernandes
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Alfenas, Alfenas 37130-001, Minas Gerais, Brazil
| | - Lucas L Franco
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Alfenas, Alfenas 37130-001, Minas Gerais, Brazil; Faculdade de Ciências Farmacêuticas, Departamento de Alimentos e Medicamentos, Universidade Federal de Alfenas, Alfenas 37130-001, Minas Gerais, Brazil
| | - Mônica F Pelozo
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Alfenas, Alfenas 37130-001, Minas Gerais, Brazil; Faculdade de Ciências Farmacêuticas, Departamento de Alimentos e Medicamentos, Universidade Federal de Alfenas, Alfenas 37130-001, Minas Gerais, Brazil
| | - Fernando Feltrim
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Alfenas, Alfenas 37130-001, Minas Gerais, Brazil; Faculdade de Ciências Farmacêuticas, Departamento de Alimentos e Medicamentos, Universidade Federal de Alfenas, Alfenas 37130-001, Minas Gerais, Brazil
| | - Juliana S Maciel
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Alfenas, Alfenas 37130-001, Minas Gerais, Brazil; Faculdade de Ciências Farmacêuticas, Departamento de Alimentos e Medicamentos, Universidade Federal de Alfenas, Alfenas 37130-001, Minas Gerais, Brazil
| | - Jose Vaz C Machado
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Alfenas, Alfenas 37130-001, Minas Gerais, Brazil
| | - Reggiani V Gonçalves
- Departamento de Biologia Animal, Programa de Pós-Graduação em Biologia Animal, Universidade Federal de Viçosa, Viçosa 36570-900, Minas Gerais, Brazil
| | - Rômulo D Novaes
- Programa de Pós-Graduação em Biociências Aplicadas à Saúde, Universidade Federal de Alfenas, Alfenas 37130-001, Minas Gerais, Brazil; Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal de Alfenas, Alfenas 37130-001, Minas Gerais, Brazil; Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas 37130-001, Minas Gerais, Brazil; Departamento de Biologia Animal, Programa de Pós-Graduação em Biologia Animal, Universidade Federal de Viçosa, Viçosa 36570-900, Minas Gerais, Brazil.
| |
Collapse
|
7
|
Alharthy KM, Balaha MF, Devi S, Altharawi A, Yusufoglu HS, Aldossari RM, Alam A, di Giacomo V. Ameliorative Effects of Isoeugenol and Eugenol against Impaired Nerve Function and Inflammatory and Oxidative Mediators in Diabetic Neuropathic Rats. Biomedicines 2023; 11:1203. [PMID: 37189822 PMCID: PMC10135797 DOI: 10.3390/biomedicines11041203] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/08/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Diabetic polyneuropathy is characterized by structural abnormalities, oxidative stress, and neuroinflammation. The current study aimed to determine the antinociceptive effects of isoeugenol and eugenol and their combinations in neuropathic pain resulting from streptozotocin (STZ)-induced diabetes and neuroinflammation. Female SD rats were categorized into normal control, diabetic control, and treatment groups. On the 28th day and 45th day, behavioral studies (allodynia and hyperalgesia) were performed to analyze the development and protection of diabetic polyneuropathy. The levels of inflammatory and oxidative mediators, such as superoxide dismutase (SOD), tumor necrosis factor-α (TNF-α), catalase, reduced glutathione, and thiobarbituric acid reactive substances (TBARS), were estimated. In addition, the level of nerve growth factor (NGF) was estimated at the end of the study in different groups. The anti-NGF treatment decreased its upregulation in the dorsal root ganglion significantly. The results showed that isoeugenol, eugenol, and their combination have therapeutic potential against neuronal and oxidative damage induced by diabetes. In particular, both compounds significantly affected behavioral function in treated rats and showed neuroprotection against diabetic neuropathy, and their combination had synergistic effects.
Collapse
Affiliation(s)
- Khalid M. Alharthy
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (K.M.A.); (R.M.A.)
| | - Mohamed F. Balaha
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
- Pharmacology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Sushma Devi
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India;
| | - Ali Altharawi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Hasan S. Yusufoglu
- Department of Pharmacognosy & Pharmaceutical Chemistry, College of Dentistry & Pharmacy, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia;
| | - Rana M. Aldossari
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (K.M.A.); (R.M.A.)
| | - Aftab Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Viviana di Giacomo
- Department of Pharmacy, “Gabriele d’Annunzio” University, Via dei Vestini 31, 66100 Chieti, Italy;
| |
Collapse
|
8
|
Li X, Ouyang X, Chen B, Liu S, Zeng J. Linkage and Stereochemistry Characters of Phenolic Antioxidant Product Formation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5382-5390. [PMID: 36693163 DOI: 10.1021/acs.jafc.2c06563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The present study developed a smart and novel strategy to elucidate the linkage and stereochemistry characters during phenolic antioxidant product formation. A series of phenolic isomers or analogues were treated with 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide radical, to create 16 antioxidant dimerization reactions in aqueous solution. The products were rapidly identified by ultraperformance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass-spectrometry. Through a systematic function-structure relationship analysis of these reactions and theoretical calculations, it is concluded that the phenolic antioxidant product is formed via linear linkage or furanocyclic linkage. The linear linkage is fulfilled via a radical coupling and controlled by the O-O linkage exclusion, meta-linkage exclusion, and catechol-activated principles. However, when an exocyclic π-bond conjugates with the phenolic core and is affixed at the -OH para-position, the furanocyclic linkage may occur via a subsequent intramolecular Michael addition. The intramolecular addition always lacks Re-attack to show "α,β diastereoselectivity." The α,β diastereoselectivity is the stereochemistry character of furanocyclic linkage during phenolic antioxidant product formation. All these novel findings can benefit not only the field food science but also other fields as well.
Collapse
Affiliation(s)
- Xican Li
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, Waihuang East Road No. 232, Guangzhou510006, People's Republic of China
| | - Xiaojian Ouyang
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, Waihuang East Road No. 232, Guangzhou510006, People's Republic of China
| | - Ban Chen
- School of Biological Engineering and Food, Hubei University of Technology, Wuhan430068, People's Republic of China
| | - Shuqin Liu
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, Waihuang East Road No. 232, Guangzhou510006, People's Republic of China
| | - Jingyuan Zeng
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, Waihuang East Road No. 232, Guangzhou510006, People's Republic of China
| |
Collapse
|
9
|
Al-Quraine NT, Al-Ibraheem JFA, Zyara YHE, Abdulridha WM. In vitro assessment of antibacterial activity in four endodontic sealers against Staphylococcus aureus and Kocuria rhizophila using agar diffusion test. J Med Life 2023; 16:610-615. [PMID: 37305836 PMCID: PMC10251385 DOI: 10.25122/jml-2022-0337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/06/2023] [Indexed: 06/13/2023] Open
Abstract
In this in vitro study, we assessed the antibacterial efficacy of four endodontic sealers-resin AH26, EndoRez, calcium hydroxide (Apexit), and pure zinc oxide-against Enterococcus faecalis. The agar diffusion test was employed to evaluate the antibacterial efficacy of the sealers in vitro, with distilled water serving as a control. The sealers were prepared following the manufacturer's instructions and placed in wells of 50 agar plates, each inoculated with 15 samples of Kocuria rhizophila and Staphylococcus aureus. Inhibition zones were assessed after 72, 120, and 168 hours of anaerobic incubation at 37°C for 196 hours. Kruskal-Wallis and Friedman tests were used for data analysis. Positive control plates exhibited bacterial growth in all specified periods. AH26 demonstrated significantly higher antibacterial effectiveness against both bacterium types compared to the other sealers (P<0.01). Pure zinc oxide exhibited moderate antibacterial activity, while Apexit and EndoRez showed the lowest activity against S. aureus and no activity against K. rhizophila. AH26 had the highest antibacterial effect, and EndoRez had the lowest (P<0.05). In terms of inhibiting bacterial growth, the effectiveness of root canal sealers was ranked as follows: AH26 > Pure Zinc Oxide >Apexit/EndoRez.
Collapse
|
10
|
Wu Z, Wang Y, Yan G, Wu C. Eugenol protects chondrocytes and articular cartilage by downregulating the JAK3/STAT4 signaling pathway. J Orthop Res 2023; 41:747-758. [PMID: 35880357 DOI: 10.1002/jor.25420] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/05/2022] [Accepted: 07/23/2022] [Indexed: 02/04/2023]
Abstract
Osteoarthritis (OA) is a chronic degenerative bone and joint disease common in middle-aged and elderly people. Currently, there is no satisfactory pharmacological treatment. Eugenol is a phenolic compound that has been shown to exert biological anti-inflammatory, antioxidant, and antiapoptotic effects in multiple systems and organs of the human body. However, its therapeutic effect on OA is unclear. This study examined the effect of eugenol on OA using an anterior cruciate ligament transection (ACLT) model in mice and its related signaling pathways in interleukin-1β (IL-1β)-stimulated human chondrocytes. A certain concentration of eugenol inhibited the decrease in cell viability induced by IL-1β or carbonyl cyanide 3-chlorophenylhydrazone (CCCP). In vitro, eugenol effectively inhibited CCCP-induced chondrocyte apoptosis and mitochondrial membrane potential changes and inhibited the expressions of ADAMTS4 and MMP13 upregulated by IL-1β. In vivo, ACLT induced destruction of the articular cartilage and subchondral bone of the mouse tibial plateau, while eugenol effectively protected the cartilage and subchondral bone from such damage. At the same time, eugenol reduced the ACLT-induced upregulation of ADAMTS4 and MMP13 and the downregulation of type II collagen (COLII) and aggrecan in the mouse knee cartilage. Eugenol also inhibited the increased expression of cartilage metabolism signaling molecules such as C-telopeptides of COLII (CTX-II) in ACLT-induced mouse serum. Consistent with the specific changes in the messenger RNA chip, eugenol inhibited the phosphorylation of JAK3 and STAT4 induced by IL-1β. Together, these results suggest eugenol as an effective new drug for the prevention and treatment of OA.
Collapse
Affiliation(s)
- Zhimin Wu
- Beijing Laboratory of Biomedical Materials, Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, China
| | - Ying Wang
- Beijing Laboratory of Biomedical Materials, Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, China
| | - Guoqiang Yan
- Beijing Laboratory of Biomedical Materials, Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, China
| | - Chengai Wu
- Beijing Laboratory of Biomedical Materials, Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, China
| |
Collapse
|
11
|
Liu Y. Integrative network pharmacology and in silico analyses identify the anti-omicron SARS-CoV-2 potential of eugenol. Heliyon 2023; 9:e13853. [PMID: 36845041 PMCID: PMC9937729 DOI: 10.1016/j.heliyon.2023.e13853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 02/06/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
Eugenol as a natural product is the source of isoniazid, and purified eugenol is extensively used in the cosmetics industry and the productive processes of edible spices. Accumulating evidence suggested that eugenol exerted potent anti-microorganism and anti-inflammation effects. Application of eugenol effectively reduced the risk of atherosclerosis, arterial embolism, and Type 2 diabetes. A previous study confirmed that treatment with eugenol attenuated lung inflammation and improved heart functions in SARS-CoV-2 spike S1-intoxicated mice. In addition to the study, based on a series of public datasets, computational analyses were conducted to characterize the acting targets of eugenol and the functional roles of these targets in COVID-19. The binding capacities of eugenol to conservative sites of SARS-CoV-2 like RNA-dependent RNA polymerase (RdRp) and mutable site as spike (S) protein, were calculated by using molecular docking following the molecular dynamics simulation with RMSD, RMSF, and MM-GBSA methods. The results of network pharmacology indicated that six targets, including PLAT, HMOX1, NUP88, CTSL, ITGB1 andTMPRSS2 were eugenol-SARS-CoV-2 interacting proteins. The omics results of in-silico study further implicated that eugenol increased the expression of SCARB1, HMOX1 and GDF15, especially HMOX1, which were confirmed the potential interacting targets between eugenol and SARS-CoV-2 antigens. Enrichment analyses indicated that eugenol exerted extensive biological effects such as regulating immune infiltration of macrophage, lipid localization, monooxyenase activity, iron ion binding and PPAR signaling. The results of the integrated analysis of eugenol targets and immunotranscription profile of COVID-19 cases shows that eugenol also plays an important role in strengthen of immunologic functions and regulating cytokine signaling. As a complement to the integrated analysis, the results of molecular docking indicated the potential binding interactions between eugenol and four proteins relating to cytokine production/release and the function of T type lymphocytes, including human TLR-4, TCR, NF-κB, JNK and AP-1. Furthermore, results of molecular docking and molecular dynamics (100ns) simulations implicated that stimulated modification of eugenol to the SARS-CoV-2 Omicron Spike-ACE2 complex, especially for human ACE2, and the molecular interaction of eugenol to SARS-CoV-2 RdRp, were no less favorable than two positive controls, molnupiravir and nilotinib. Dynamics (200ns) simulations indicated that the binding capacities and stabilities of eugenol to finger subdomain of RdRp is no less than molnupiravir. However, the simulated binding capacity of eugenol to SARS-CoV-2 wild type RBD and Omicron mutant RBD were less than nilotinib. Eugenol was predicted to have more favor LD50 value and lower cytotoxicity than two positive controls, and eugenol can pass through the blood-brain barrier (BBB). In a brief, eugenol is helpful for attenuating systemic inflammation induced by SARS-CoV-2 infection, due to the direct interaction of eugenol to SARS-CoV-2 proteins and extensive bio-manipulation of pro-inflammatory factors. This study carefully suggests eugenol is a candidate compound of developing drugs and supplement agents against SARS-CoV-2 and its Omicron variants.
Collapse
Affiliation(s)
- Yang Liu
- Graduated Student of Harbin Medical University, Cardiology. Baojian Road105, Nangang Distinct, Harbin, Heilongjiang, China
| |
Collapse
|
12
|
Therapeutic potential of Indian medicinal plants against Leishmania donovani: a review. PROCEEDINGS OF THE INDIAN NATIONAL SCIENCE ACADEMY 2023. [DOI: 10.1007/s43538-023-00153-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
13
|
Di Consiglio M, Sturabotti E, Brugnoli B, Piozzi A, Migneco LM, Francolini I. Synthesis of sustainable eugenol/hydroxyethylmethacrylate-based polymers with antioxidant and antimicrobial properties. Polym Chem 2023. [DOI: 10.1039/d2py01183b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Eugenol is a phenolic monoterpenoid, emplyed in this study to obtain bio-based antimicrobial and antioxidant methacrylate polymers.
Collapse
|
14
|
Zhang X, Liang S, Wang E, Tao N. Fibroblasts and mouse breast cancer cells can form cellular aggregates in improved soft agar culture medium. Mol Cell Biochem 2022; 478:1457-1464. [DOI: 10.1007/s11010-022-04603-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 10/28/2022] [Indexed: 11/12/2022]
|
15
|
Clarence DD, Paudel KR, Manandhar B, Singh SK, Devkota HP, Panneerselvam J, Gupta V, Chitranshi N, Verma N, Saad S, Gupta G, Hansbro PM, Oliver BG, Madheswaran T, Dua K, Chellappan DK. Unravelling the Therapeutic Potential of Nano-Delivered Functional Foods in Chronic Respiratory Diseases. Nutrients 2022; 14:3828. [PMID: 36145202 PMCID: PMC9503475 DOI: 10.3390/nu14183828] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/04/2022] [Accepted: 09/11/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic inflammation of the respiratory tract is one of the most concerning public health issues, as it can lead to chronic respiratory diseases (CRDs), some of which are more detrimental than others. Chronic respiratory diseases include chronic obstructive pulmonary disease (COPD), asthma, lung cancer, and pulmonary fibrosis. The conventional drug therapies for the management and treatment of CRDs only address the symptoms and fail to reverse or recover the chronic-inflammation-mediated structural and functional damage of the respiratory tract. In addition, the low efficacy and adverse effects of these drugs have directed the attention of researchers towards nutraceuticals in search of potential treatment strategies that can not only ameliorate CRD symptoms but also can repair and reverse inflammatory damage. Hence, there is a growing interest toward investigating the medicinal benefits of nutraceuticals, such as rutin, curcumin, zerumbone, and others. Nutraceuticals carry many nutritional and therapeutic properties, including anti-inflammatory, antioxidant, anticancer, antidiabetic, and anti-obesity properties, and usually do not have as many adverse effects, as they are naturally sourced. Recently, the use of nanoparticles has also been increasingly studied for the nano drug delivery of these nutraceuticals. The discrete size of nanoparticles holds great potential for the level of permeability that can be achieved when transporting these nutraceutical compounds. This review is aimed to provide an understanding of the use of nutraceuticals in combination with nanoparticles against CRDs and their mechanisms involved in slowing down or reversing the progression of CRDs by inhibiting pro-inflammatory signaling pathways.
Collapse
Affiliation(s)
- Dvya Delilaa Clarence
- School of Postgraduate Studies, International Medical University (IMU), Kuala Lumpur 57000, Malaysia
| | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia
| | - Bikash Manandhar
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
- Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Sachin Kumar Singh
- Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara 144411, India
| | - Hari Prasad Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
- Pharmacy Program, Gandaki University, Pokhara 33700, Nepal
| | - Jithendra Panneerselvam
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Vivek Gupta
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
| | - Nitin Chitranshi
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
| | - Nitin Verma
- Chitkara School of Pharmacy, Chitkara University, Atal Nagar 174103, India
| | - Sonia Saad
- Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jaipur 302017, India
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun 248007, India
| | - Philip Michael Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia
| | - Brian Gregory Oliver
- Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW 2006, Australia
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Thiagarajan Madheswaran
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
- Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| |
Collapse
|
16
|
Li M, Zhao Y, Wang Y, Geng R, Fang J, Kang SG, Huang K, Tong T. Eugenol, A Major Component of Clove Oil, Attenuates Adiposity and Modulates Gut Microbiota in High-Fat Diet-fed Mice. Mol Nutr Food Res 2022; 66:e2200387. [PMID: 36029106 DOI: 10.1002/mnfr.202200387] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Indexed: 11/09/2022]
Abstract
SCOPE Eugenol (EU), the major aromatic compound derived from clove oil, is being focused recently due to its potential in preventing several chronic conditions. Herein, we aimed to evaluate the potential of EU in obesity prevention and to delineate the mechanisms involved. METHODS AND RESULTS Five-week-old male C57BL/6J mice were fed with high-fat diet (HFD) or HFD supplemented with EU (0.2%, w/w) for 13 weeks. EU significantly reduced obesity-related indexes including final body weight, body weight gain, adipocyte size, visceral fat-pad weight, and fasting blood glucose. EU prevented HFD-induced gut dysbiosis, as indicated by the increase of Firmicutes and decrease of Desulfobacterota at phylum level, and the increase of Dubosiella, Blautia, unclassified_f_Oscillospiraceae, and unclassified_f_Ruminococcaceae, and the decrease of Alistipes, Alloprevotella, and Bilophila at genus level. Notably, the obesity-related indexes were positively correlated with the relative abundances of Bacteroides, unclassified_f_Lachnospiraceae, Colidextribacter, and Bilophila, and negatively correlated with the relative abundances of norank_f_Muribaculaceae and Lachnospiraceae_NK4A136_group. Moreover, the preventive effects of EU on obesity were accompanied by the transcriptomic reprogramming of white adipose tissue. CONCLUSION These findings demonstrated that EU prevents the HFD-induced adiposity and modulates gut dysbiosis, and highlighted the potential of EU in obesity intervention as a functional dietary supplement. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mengjie Li
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.,Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), the Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing, 100083, China.,Beijing Laboratory for Food Quality and Safety, Beijing, 100083, China
| | - Yuhan Zhao
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.,Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), the Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing, 100083, China.,Beijing Laboratory for Food Quality and Safety, Beijing, 100083, China
| | - Yanan Wang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.,Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), the Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing, 100083, China.,Beijing Laboratory for Food Quality and Safety, Beijing, 100083, China
| | - Ruixuan Geng
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.,Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), the Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing, 100083, China.,Beijing Laboratory for Food Quality and Safety, Beijing, 100083, China
| | - Jingjing Fang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.,Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), the Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing, 100083, China.,Beijing Laboratory for Food Quality and Safety, Beijing, 100083, China
| | - Seong-Gook Kang
- Department of Food Engineering, Mokpo National University, Muangun, 58554, Korea
| | - Kunlun Huang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.,Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), the Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing, 100083, China.,Beijing Laboratory for Food Quality and Safety, Beijing, 100083, China
| | - Tao Tong
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.,Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), the Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing, 100083, China.,Beijing Laboratory for Food Quality and Safety, Beijing, 100083, China
| |
Collapse
|
17
|
Wang K, Chen D, Yu B, He J, Mao X, Huang Z, Yan H, Wu A, Luo Y, Zheng P, Yu J, Luo J. Eugenol alleviates transmissible gastroenteritis virus-induced intestinal epithelial injury by regulating NF-κB signaling pathway. Front Immunol 2022; 13:921613. [PMID: 36052062 PMCID: PMC9427193 DOI: 10.3389/fimmu.2022.921613] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 07/29/2022] [Indexed: 01/13/2023] Open
Abstract
Increasing evidence supports the ability of eugenol to maintain intestinal barrier integrity and anti-inflammatory in vitro and in vivo; however, whether eugenol alleviates virus-mediated intestinal barrier damage and inflammation remains a mystery. Transmissible gastroenteritis virus (TGEV), a coronavirus, is one of the main causative agents of diarrhea in piglets and significantly impacts the global swine industry. Here, we found that eugenol could alleviate TGEV-induced intestinal functional impairment and inflammatory responses in piglets. Our results indicated that eugenol improved feed efficiency in TGEV-infected piglets. Eugenol not only increased serum immunoglobulin concentration (IgG) but also significantly decreased serum inflammatory cytokine concentration (TNF-α) in TGEV-infected piglets. In addition, eugenol also significantly decreased the expression of NF-κB mRNA and the phosphorylation level of NF-κB P65 protein in the jejunum mucosa of TGEV-infected piglets. Eugenol increased villus height and the ratio of villus height to crypt depth in the jejunum and ileum, and decreased serum D-lactic acid levels. Importantly, eugenol increased tight junction protein (ZO-1) and mRNA expression levels of nutrient transporter-related genes (GluT-2 and CaT-1) in the jejunum mucosa of TGEV-infected piglets. Meanwhile, compared with TGEV-infected IPEC-J2 cells, treatment with eugenol reduced the cell cytopathic effect, attenuated the inflammatory response. Interestingly, eugenol did not increase the expression of ZO-1 and Occludin in IPEC-J2 cells. However, western blot and immunofluorescence results showed that eugenol restored TGEV-induced down-regulation of ZO-1 and Occludin, while BAY11-7082 (The NF-κB specific inhibitor) enhanced the regulatory ability of eugenol. Our findings demonstrated that eugenol attenuated TGEV-induced intestinal injury by increasing the expression of ZO-1 and Occludin, which may be related to the inhibition of NF-κB signaling pathway. Eugenol may offer some therapeutic opportunities for coronavirus-related diseases.
Collapse
Affiliation(s)
- Kang Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Daiwen Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Xiangbing Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Zhiqing Huang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Hui Yan
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Aimin Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Yuheng Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Ping Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Jie Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Junqiu Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
18
|
Eugenol suppresses the proliferation and invasion of TNF-α-induced fibroblast-like synoviocytes via regulating NF-κB and COX-2. Biochem Biophys Res Commun 2022; 612:63-69. [DOI: 10.1016/j.bbrc.2022.04.074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 04/16/2022] [Indexed: 02/07/2023]
|
19
|
De Anda-Cuéllar CE, Ruíz-Rodríguez S, Ortiz-Magdaleno M, Escobar-García DM, Pozos-Guillén A. Effect of 4-Allyl-1-hydroxy-2-methoxybenzene (eugenol) in the expression of genes involved in cellular cycle and apoptotic process in dental pulp fibroblasts. Acta Odontol Scand 2022; 80:321-327. [PMID: 34843422 DOI: 10.1080/00016357.2021.2009027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
OBJECTIVE This study sought to evaluate the effect of eugenol on the cell morphology and expression of genes involved in the apoptotic process in human dental pulp fibroblasts (hDPFs) from deciduous teeth. MATERIALS AND METHODS hDPFs were cultured with 4 concentrations of eugenol (0.06 nM, 0.6 nM, 6 nM, 12 nM) and compared with a control group. After a 72 h incubation period, the cytotoxic effect on cell morphology by optical microscopy and gene expression by RT-PCR were evaluated. RESULTS At 0.06 nM and 0.6 nM eugenol concentrations, vacuolisation of the cytoplasm was observed with atypical granulation of the hDPFs, and, at 6 nM and 12 nM cytoplasmic extensions disappeared almost completely. Casp-3, Casp-9, and telomerase genes were not expressed at the concentrations evaluated nor in the control group. The relative expression responses of Bcl-2 and TGF-β genes were overexpressed at the 4 concentrations. MAKP's 0.06 nM (p < .001), 0.6 nM (p < .05) and 12 nM (p < .05) and Cyclin 1 at 12 nM showed significant difference versus the control group (p < .05). CONCLUSION Eugenol is capable of causing morphological changes in hDPFs in a dose-dependent manner, higher concentrations may promote overexpression of apoptotic genes.
Collapse
Affiliation(s)
| | - Socorro Ruíz-Rodríguez
- Pediatric Dentistry Postgraduate Program, Faculty of Dentistry, San Luis Potosi University, San Luis Potosí, Mexico
| | - Marine Ortiz-Magdaleno
- Basic Sciences Laboratory, Faculty of Dentistry, San Luis Potosi University, San Luis Potosí, Mexico
| | | | - Amaury Pozos-Guillén
- Pediatric Dentistry Postgraduate Program, Faculty of Dentistry, San Luis Potosi University, San Luis Potosí, Mexico
- Basic Sciences Laboratory, Faculty of Dentistry, San Luis Potosi University, San Luis Potosí, Mexico
| |
Collapse
|
20
|
Talib WH, AlHur MJ, Al.Naimat S, Ahmad RE, Al-Yasari AH, Al-Dalaeen A, Thiab S, Mahmod AI. Anticancer Effect of Spices Used in Mediterranean Diet: Preventive and Therapeutic Potentials. Front Nutr 2022; 9:905658. [PMID: 35774546 PMCID: PMC9237507 DOI: 10.3389/fnut.2022.905658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/16/2022] [Indexed: 01/18/2023] Open
Abstract
Cancer is one of the leading causes of death worldwide, with almost 10 million cancer-related deaths worldwide in 2020, so any investigation to prevent or cure this disease is very important. Spices have been studied widely in several countries to treat different diseases. However, studies that summarize the potential anticancer effect of spices used in Mediterranean diet are very limited. This review highlighted chemo-therapeutic and chemo-preventive effect of ginger, pepper, rosemary, turmeric, black cumin and clove. Moreover, the mechanisms of action for each one of them were figured out such as anti-angiogenesis, antioxidant, altering signaling pathways, induction of cell apoptosis, and cell cycle arrest, for several types of cancer. The most widely used spice in Mediterranean diet is black pepper (Piper nigrum L). Ginger and black cumin have the highest anticancer activity by targeting multiple cancer hallmarks. Apoptosis induction is the most common pathway activated by different spices in Mediterranean diet to inhibit cancer. Studies discussed in this review may help researchers to design and test new anticancer diets enriched with selected spices that have high activities.
Collapse
Affiliation(s)
- Wamidh H. Talib
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman, Jordan
- *Correspondence: Wamidh H. Talib
| | - Mallak J. AlHur
- Office of Scientific Affairs and Research, King Hussein Cancer Center, Amman, Jordan
| | - Sumaiah Al.Naimat
- Office of Scientific Affairs and Research, King Hussein Cancer Center, Amman, Jordan
| | - Rawand E. Ahmad
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman, Jordan
| | | | - Anfal Al-Dalaeen
- Department of Clinical Nutrition and Dietetics, Faculty of Pharmacy, Applied Science Private University, Amman, Jordan
| | - Samar Thiab
- Department of Pharmaceutical Chemistry and Pharmacognosy, Applied Science Private University, Amman, Jordan
| | - Asma Ismail Mahmod
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman, Jordan
| |
Collapse
|
21
|
Anjum NF, Shanmugarajan D, Shivaraju VK, Faizan S, Naishima NL, Prashantha Kumar BR, Javid S, Purohit MN. Novel derivatives of eugenol as potent anti-inflammatory agents via PPARγ agonism: rational design, synthesis, analysis, PPARγ protein binding assay and computational studies. RSC Adv 2022; 12:16966-16978. [PMID: 35754905 PMCID: PMC9172550 DOI: 10.1039/d2ra02116a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/27/2022] [Indexed: 11/21/2022] Open
Abstract
Eugenol is a natural product abundantly found in clove buds known for its pharmacological activities such as anti-inflammatory, antidiabetic, antioxidant, and anticancer activities. It is well known from the literature that peroxisome proliferator-activated receptors (PPARγ) have been reported to regulate inflammatory responses. In this backdrop, we rationally designed semi-synthetic derivatives of eugenol with the aid of computational studies, and synthesized, purified, and analyzed four eugenol derivatives as PPARγ agonists. Compounds were screened for PPARγ protein binding by time-resolved fluorescence (TR-FRET) assay. The biochemical assay results were favorable for 1C which exhibited significant binding affinity with an IC50 value of 10.65 μM as compared to the standard pioglitazone with an IC50 value of 1.052 μM. In addition to the protein binding studies, as a functional assay, the synthesized eugenol derivatives were screened for in vitro anti-inflammatory activity at concentrations ranging from 6.25 μM to 400 μM. Among the four compounds tested 1C shows reasonably good anti-inflammatory activity with an IC50 value of 133.8 μM compared to a standard diclofenac sodium IC50 value of 54.32 μM. Structure-activity relationships are derived based on computational studies. Additionally, molecular dynamics simulations were performed to examine the stability of the protein-ligand complex, the dynamic behavior, and the binding affinity of newly synthesized molecules. Altogether, we identified novel eugenol derivatives as potential anti-inflammatory agents via PPARγ agonism.
Collapse
Affiliation(s)
- Noor Fathima Anjum
- Department of Pharmaceutical Chemistry, Farooqia College of Pharmacy Mysuru 570 015 India
| | - Dhivya Shanmugarajan
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy Mysuru 570 015 India +91-821-2548359 +91-821-2548353
- JSS Academy of Higher Education & Research Mysuru 570 015 India
| | | | - Syed Faizan
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy Mysuru 570 015 India +91-821-2548359 +91-821-2548353
- JSS Academy of Higher Education & Research Mysuru 570 015 India
| | - Namburu Lalitha Naishima
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy Mysuru 570 015 India +91-821-2548359 +91-821-2548353
- JSS Academy of Higher Education & Research Mysuru 570 015 India
| | - B R Prashantha Kumar
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy Mysuru 570 015 India +91-821-2548359 +91-821-2548353
- JSS Academy of Higher Education & Research Mysuru 570 015 India
| | - Saleem Javid
- Department of Pharmaceutical Chemistry, Farooqia College of Pharmacy Mysuru 570 015 India
- JSS Academy of Higher Education & Research Mysuru 570 015 India
| | - Madhusudan N Purohit
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy Mysuru 570 015 India +91-821-2548359 +91-821-2548353
- JSS Academy of Higher Education & Research Mysuru 570 015 India
| |
Collapse
|
22
|
Chirumamilla P, Dharavath SB, Taduri S. GC-MS profiling and antibacterial activity of Solanum khasianum leaf and root extracts. BULLETIN OF THE NATIONAL RESEARCH CENTRE 2022; 46:127. [PMID: 35571364 PMCID: PMC9080643 DOI: 10.1186/s42269-022-00818-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 04/23/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Solanum khasianum is an important medicinal herb of the Solanaceae family. The present study was focused to determine the bioactive compounds in S. khasianum leaf and root extract by GC-MS analysis and their antibacterial activity by agar well diffusion method. RESULTS Sixteen bioactive compounds were detected in leaf extract and thirty-two compounds in root methanolic extract by GC-MS. The major potent compounds identified in leaf and root extracts were heptadecane 9-hexyl (43.65%) and stigmasterol (23.18%). The root extract showed increased antibacterial activity than leaf extract. CONCLUSION These extracts possessed significant antibacterial activity against the tested bacterial isolates in dose-dependent manner. This study provides the phytoconstituents, antibacterial property and scientific evidence for the traditional claim and use of S. khasianum.
Collapse
Affiliation(s)
- Pavani Chirumamilla
- Department of Biotechnology, Kakatiya University, Warangal, Telangana 506009 India
| | | | - Shasthree Taduri
- Department of Biotechnology, Kakatiya University, Warangal, Telangana 506009 India
| |
Collapse
|
23
|
Zhang Y, Gao S, Zhang P, Sun H, Lu R, Yu R, Li Y, Zhang K, Li B. Response of xenobiotic biodegradation and metabolic genes in Tribolium castaneum following eugenol exposure. Mol Genet Genomics 2022; 297:801-815. [PMID: 35419714 DOI: 10.1007/s00438-022-01890-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 03/22/2022] [Indexed: 11/30/2022]
Abstract
Eugenol, a plant-derived component possessing small side effects, has an insecticidal activity to Tribolium castaneum; however, the underlying molecular mechanisms of eugenol acting on T. castaneum are currently unclear. Here, a nerve conduction carboxylesterase and a detoxifying glutathione S-transferase were significantly inhibited after eugenol exposure, resulting in the paralysis or death of beetles. Then, RNA-sequencing of eugenol-exposed and control samples identified 362 differentially expressed genes (DEGs), containing 206 up-regulated and 156 down-regulated genes. RNA-seq data were validated further by qRT-PCR. GO analysis revealed that DEGs were associated with 1308 GO terms of which the most enriched GO terms were catalytic activity, and integral component of membrane; KEGG pathway analysis showed that these DEGs were distributed in 151 different pathways, of which some pathways associated with metabolism of xenobiotics or drug were significantly enriched, which indicated that eugenol most likely disturbed the processes of metabolism, and detoxication. Moreover, several DEGs including Hexokinase type 2, Isocitrate dehydrogenase, and Cytochrome b-related protein, might participate in the respiratory metabolism of eugenol-exposed beetles. Some DEGs encoding CYP, UGT, GST, OBP, CSP, and ABC transporter were involved in the xenobiotic or drug metabolism pathway, which suggested that these genes of T. castaneum participated in the response to eugenol exposure. Additionally, TcOBPC11/ TcGSTs7, detected by qRT-PCR and RNA-interference against these genes, significantly increased the mortality of eugenol-treated T. castaneum, providing further evidence for the involvement of OBP/GST in eugenol metabolic detoxification in T. castaneum. These results aid eugenol insecticidal mechanisms and provide the basis of insect control.
Collapse
Affiliation(s)
- Yonglei Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Shanshan Gao
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, China
| | - Ping Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Haidi Sun
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, China
| | - Ruixue Lu
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, China
| | - Runnan Yu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Yanxiao Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Kunpeng Zhang
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, China.
| | - Bin Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
24
|
Liu W, Wang X, Chen Y, Zhang H, Chen J, Zhang J, Wu T, Li J. A combination containing natural extracts of clove, Sophora flower bud, and yam improves fertility in aged female mice via multiple mechanisms. Front Endocrinol (Lausanne) 2022; 13:945690. [PMID: 36483000 PMCID: PMC9724743 DOI: 10.3389/fendo.2022.945690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/31/2022] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION With society development, the age at which women choose to have children has been gradually delayed. To improve the reduced fertility in women at advanced maternal age, we developed a combination containing natural extracts from clove, Sophora flower bud and Chinese yam with a mass ratio 15:6:10 and named it as DACHAO. METHODS AND RESULTS We then gavage DACHAO at a dose of 310 mg/kg BW to female mice at 10 month of age and investigated its effects on ovarian functions. Using MitoTracker probes, ROS, and JC-1 staining, we found that DACHAO treatment improved mitochondria functions in oocytes from aged mice. We also observed increased blastocyst formation when mature oocytes from control and DACHAO treated mice were for IVF and in vitro embryo culture. Cell counting and TUNEL assay further revealed increased cell numbers and decreased apoptosis in blastocysts of DACHAO group. After control or DACHAO treated mice being mated with fertile male mice, fertility test revealed a greater first litter size in the DACHAO group. Further studies demonstrated that DACHAO treatment could alleviate the retarded ovarian function in aged mice via changes in serum hormone levels, over-expression of antioxidant factors, under-expression of inflammation-related factors, and reduced apoptosis in the ovaries. DISCUSSION Thus, the new combination DACHAO will be a good choice in clinic to improve ovarian functions for women at advanced maternal age.
Collapse
Affiliation(s)
- Wei Liu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xinyu Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yating Chen
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Huiyu Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jing Chen
- Reproductive Research and Development Center, Hainan Leyun Biotechnology Co., Ltd., Qionghai, Hainan, China
| | - Jing Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tinghe Wu
- Tinghe Wu, State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Pharmaceutical Co., Ltd., Nanjing, Jiangsu, China
- Department of Biotechnology and Biomedicine, Yangtze Delta Region Institutes of Tsinghua University, Jiaxing, Zhejiang, China
- *Correspondence: Jing Li, ; Tinghe Wu,
| | - Jing Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- *Correspondence: Jing Li, ; Tinghe Wu,
| |
Collapse
|
25
|
Ugbogu OC, Emmanuel O, Agi GO, Ibe C, Ekweogu CN, Ude VC, Uche ME, Nnanna RO, Ugbogu EA. A review on the traditional uses, phytochemistry, and pharmacological activities of clove basil ( Ocimum gratissimum L.). Heliyon 2021; 7:e08404. [PMID: 34901489 PMCID: PMC8642617 DOI: 10.1016/j.heliyon.2021.e08404] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 07/29/2021] [Accepted: 11/11/2021] [Indexed: 01/03/2023] Open
Abstract
In traditional medicine, Ocimum gratissimum (clove basil) is used in the treatment of various diseases such as diabetes, cancer, inflammation, anaemia, diarrhoea, pains, and fungal and bacterial infections. The present study reviewed the phytochemicals, essential oils, and pharmacological activities of O. gratissimum. The bioactive compounds extracted from O. gratissimum include phytochemicals (oleanolic acid, caffeic acid, ellagic acid, epicatechin, sinapic acid, rosmarinic acid, chlorogenic acid, luteolin, apigenin, nepetoidin, xanthomicrol, nevadensin, salvigenin, gallic acid, catechin, quercetin, rutin, and kaempfero) and essential oils (camphene, β-caryophyllene, α- and β-pinene, α-humulene, sabinene, β-myrcene, limonene, 1,8-cineole, trans-β-ocimene, linalool, α- and δ-terpineol, eugenol, α-copaene, β-elemene, p-cymene, thymol, and carvacrol). Various in vivo and in vitro studies have shown that O. gratissimum and its bioactive constituents possess pharmacological properties such as antioxidant, anti-inflammatory, anticancer, hepatoprotective, antidiabetic, antihypertensive, antidiarrhoeal, and antimicrobial properties. This review demonstrated that O. gratissimum has a strong preventive and therapeutic effect against several diseases. The effectiveness of O. gratissimum to ameliorate various diseases may be attributed to its antimicrobial and antioxidant properties as well as its capacity to improve the antioxidant systems. However, despite the widespread pharmacological activities of O. gratissimum, further experiments in human clinical trial studies are needed to establish effective and safe doses for the treatment of various diseases.
Collapse
Affiliation(s)
| | - Okezie Emmanuel
- Department of Biochemistry, Abia State University, PMB 2000, Uturu, Abia State, Nigeria
| | - Grace Oka Agi
- Department of Human Nutrition and Dietetics, University of Ibadan, Nigeria
| | - Chibuike Ibe
- Department of Microbiology, Abia State University, Uturu, PMB 2000, Uturu, Abia State, Nigeria
| | - Celestine Nwabu Ekweogu
- Department of Medical Biochemistry, Imo State University, PMB 2000, Owerri, Imo State, Nigeria
| | - Victor Chibueze Ude
- Department of Medical Biochemistry, College of Medicine Enugu State University of Science and Technology, PMB 01660, Enugu, Nigeria
| | - Miracle Ebubechi Uche
- Department of Biochemistry, Abia State University, PMB 2000, Uturu, Abia State, Nigeria
| | | | | |
Collapse
|
26
|
Paidi RK, Jana M, Raha S, McKay M, Sheinin M, Mishra RK, Pahan K. Eugenol, a Component of Holy Basil (Tulsi) and Common Spice Clove, Inhibits the Interaction Between SARS-CoV-2 Spike S1 and ACE2 to Induce Therapeutic Responses. J Neuroimmune Pharmacol 2021; 16:743-755. [PMID: 34677731 PMCID: PMC8531902 DOI: 10.1007/s11481-021-10028-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/06/2021] [Indexed: 12/12/2022]
Abstract
Spike S1 of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) binds to angiotensin-converting enzyme 2 (ACE2) on host cells to enter the cell and initiate COVID-19. Since ACE2 is a favorable enzyme, we were interested in finding a molecule capable of binding spike S1, but not ACE2, and inhibiting the interaction between spike S1 and ACE2. Holy basil (Tulsi) has a long history as a medicine for different human disorders. Therefore, we screened different components of Tulsi leaf and found that eugenol, but not other major components (e.g. ursolic acid, oleanolic acid and β-caryophylline), inhibited the interaction between spike S1 and ACE2 in an AlphaScreen-based assay. By in silico analysis and thermal shift assay, we also observed that eugenol associated with spike S1, but not ACE2. Accordingly, eugenol strongly suppressed the entry of pseudotyped SARS-CoV-2, but not vesicular stomatitis virus (VSV), into human ACE2-expressing HEK293 cells. Eugenol also reduced SARS-CoV-2 spike S1-induced activation of NF-κB and the expression of IL-6, IL-1β and TNFα in human A549 lung cells. Moreover, oral treatment with eugenol reduced lung inflammation, decreased fever, improved heart function, and enhanced locomotor activities in SARS-CoV-2 spike S1-intoxicated mice. Therefore, selective targeting of SARS-CoV-2 spike S1, but not ACE2, by eugenol may be beneficial for COVID-19 treatment.
Collapse
Affiliation(s)
- Ramesh Kumar Paidi
- Department of Neurological Sciences, Rush University Medical Center, IL, Chicago, USA
| | - Malabendu Jana
- Department of Neurological Sciences, Rush University Medical Center, IL, Chicago, USA
| | - Sumita Raha
- Department of Neurological Sciences, Rush University Medical Center, IL, Chicago, USA
| | - Mary McKay
- Department of Neurological Sciences, Rush University Medical Center, IL, Chicago, USA
| | - Monica Sheinin
- Department of Neurological Sciences, Rush University Medical Center, IL, Chicago, USA
| | - Rama K Mishra
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, USA
| | - Kalipada Pahan
- Department of Neurological Sciences, Rush University Medical Center, IL, Chicago, USA. .,Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, USA.
| |
Collapse
|
27
|
Peroral Clove Essential Oil Treatment Ameliorates Acute Campylobacteriosis-Results from a Preclinical Murine Intervention Study. Microorganisms 2021; 9:microorganisms9040735. [PMID: 33807493 PMCID: PMC8066448 DOI: 10.3390/microorganisms9040735] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/23/2022] Open
Abstract
Campylobacter (C.) jejuni infections pose progressively emerging threats to human health worldwide. Given the rise in antibiotic resistance, antibiotics-independent options are required to fight campylobacteriosis. Since the health-beneficial effects of clove have been known for long, we here analyzed the antimicrobial and immune-modulatory effects of clove essential oil (EO) during acute experimental campylobacteriosis. Therefore, microbiota-depleted interleukin-10 deficient (IL-10-/-) mice were perorally infected with C. jejuni and treated with clove EO via drinking water starting on day 2 post-infection. On day 6 post-infection, lower small- and large-intestinal pathogen loads could be assessed in clove EO as compared to placebo treated mice. Although placebo mice suffered from severe campylobacteriosis as indicated by wasting and bloody diarrhea, clove EO treatment resulted in a better clinical outcome and in less severe colonic histopathological and apoptotic cell responses in C. jejuni infected mice. Furthermore, lower colonic numbers of macrophages, monocytes, and T lymphocytes were detected in mice from the verum versus the placebo cohort that were accompanied by lower intestinal, extra-intestinal, and even systemic proinflammatory cytokine concentrations. In conclusion, our preclinical intervention study provides first evidence that the natural compound clove EO constitutes a promising antibiotics-independent treatment option of acute campylobacteriosis in humans.
Collapse
|
28
|
Pleiotropic Effects of Eugenol: The Good, the Bad, and the Unknown. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3165159. [PMID: 33747344 PMCID: PMC7943301 DOI: 10.1155/2021/3165159] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 01/21/2021] [Accepted: 02/11/2021] [Indexed: 12/11/2022]
Abstract
Phytocompounds and medicinal herbs were used in traditional ancient medicine and are nowadays increasingly screened in both experimental and clinical settings due to their beneficial effects in several major pathologies. Similar to the drug industry, phytotherapy is interested in using nanobased delivery systems to view the identification and characterization of the cellular and molecular therapeutic targets of plant components. Eugenol, the major phenolic constituent of clove essential oil, is a particularly versatile phytochemical with a vast range of therapeutic properties, among which the anti-inflammatory, antioxidant, and anticarcinogenic effects have been systematically addressed. In the past decade, with the emerging understanding of the role of mitochondria as critical organelles in the pathophysiology of noncommunicable diseases, research regarding the role of phytochemicals as modulators of bioenergetics and metabolism is on a rise. Here, we present a brief overview of the major pharmacological properties of eugenol, with special emphasis on its applications in dental medicine, and provide preliminary data regarding its effects, alone, and included in polyurethane nanostructures, on mitochondrial bioenergetics, and glycolysis in human HaCaT keratinocytes.
Collapse
|
29
|
Antioxidant Effects of Eugenol on Oxidative Stress Induced by Hydrogen Peroxide in Islets of Langerhans Isolated from Male Mouse. Int J Hepatol 2020; 2020:5890378. [PMID: 33457017 PMCID: PMC7787786 DOI: 10.1155/2020/5890378] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 12/14/2020] [Accepted: 12/17/2020] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The antioxidant system in islets of Langerhans is weak, which can lead to diabetes. Meanwhile, the main component of cloves that produce antioxidant effects is eugenol. Accordingly, the present study was conducted to investigate the antioxidant effect of eugenol on oxidative stress induced by hydrogen peroxide (H2O2) in islets of Langerhans isolated from the male mice. MATERIALS AND METHODS In this experimental study, adult Naval Medical Research Institute (NMRI) mice (20-25 g) were prepared. The collagenase digestion method was used for dissecting the islets of Langerhans. H2O2 50 μM was administered for 30 min to induce oxidative stress, with 50, 100, and 200 μM of eugenol employed for 2 hours before the administration of H2O2. The experimental groups were divided into five groups: (control, H2O2, and H2O2+eugenol 50, 100, and 200 μM). Finally, the islet's lipid peroxidation and antioxidants levels were measured by the ELISA assay method. RESULTS Malondialdehyde (MDA), total antioxidant capacity (TAC), superoxide dismutase (SOD), and catalase (CAT) increased in all groups when compared to the control (P < 0.05). MDA diminished in H2O2+eugenol 50, 100, and 200 μM (P < 0.01) groups versus the H2O2. TAC was elevated when eugenol 50, 100, and 200 μM was administered in oxidative stress-induced islets (P < 0.001). Also, CAT increased in the H2O2+eugenol 50 (P < 0.05) group in comparison with the H2O2 group. CONCLUSIONS In conclusion, H2O2 induced oxidative stress and lipid peroxidation in the islets, and administration of eugenol recovered these alterations by raising the level of TAC and CAT, while reducing MDA as a lipid peroxidation biomarker.
Collapse
|
30
|
Computational analysis of eugenol inhibitory activity in lipoxygenase and cyclooxygenase pathways. Sci Rep 2020; 10:16204. [PMID: 33004893 PMCID: PMC7530671 DOI: 10.1038/s41598-020-73203-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 09/04/2020] [Indexed: 02/06/2023] Open
Abstract
Chronic inflammation is triggered by numerous diseases such as osteoarthritis, Crohn's disease and cancer. The control of the pro-inflammatory process can prevent, mitigate and/or inhibit the evolution of these diseases. Therefore, anti-inflammatory drugs have been studied as possible compounds to act in these diseases. This paper proposes a computational analysis of eugenol in relation to aspirin and diclofenac and analyzing the ADMET profile and interactions with COX-2 and 5-LOX enzymes, important enzymes in the signaling pathway of pro-inflammatory processes. Through the analysis of ADMET in silico, it was found that the pharmacokinetic results of eugenol are similar to NSAIDs, such as diclofenac and aspirin. Bioinformatics analysis using coupling tests showed that eugenol can bind to COX-2 and 5-LOX. These results corroborate with different findings in the literature that demonstrate anti-inflammatory activity with less gastric irritation, bleeding and ulcerogenic side effects of eugenol. The results of bioinformatics reinforce studies that try to propose eugenol as an anti-inflammatory compound that can act in the COX-2/5-LOX pathways, replacing some NSAIDs in different diseases.
Collapse
|
31
|
KOMABAYASHI T, COLMENAR D, CVACH N, BHAT A, PRIMUS C, IMAI Y. Comprehensive review of current endodontic sealers. Dent Mater J 2020; 39:703-720. [DOI: 10.4012/dmj.2019-288] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
| | | | | | - Aparna BHAT
- University of New England College of Dental Medicine
| | | | | |
Collapse
|
32
|
Josson Akkara P, Sabina EP. A biochemical approach to the anti-inflammatory, antioxidant and antiapoptotic potential of beta-carotene as a protective agent against bromobenzene-induced hepatotoxicity in female Wistar albino rats. J Appl Biomed 2020; 18:87-95. [PMID: 34907730 DOI: 10.32725/jab.2020.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 07/28/2020] [Indexed: 11/05/2022] Open
Abstract
Bromobenzene is a compound which has contributed much in understanding the mechanisms involved in xenobiotic hepatotoxicity induced by drugs and environment pollutants. In the present study, the protective and ameliorative effect of beta-carotene was investigated against bromobenzene-induced hepatotoxicity and compared with silymarin, a standard hepatoprotective reference drug. Beta-carotene (10 mg/kg b.w. p.o.) was administered to the rats for 9 days before intragastric intubation of bromobenzene (10 mmol/kg b.w.). Liver marker enzymes (aspartate transaminase, alanine transaminase and alkaline phosphatase), total protein content, bilirubin, total cholesterol, high-density lipoproteins, triglycerides, antioxidant status (reduced glutathione, superoxide dismutase, catalase, glutathione-S-transferase and glutathione peroxidase) were assessed along with histopathological analysis. ELISA was performed for analysing the levels of cytokines such as TNF-α, IL-1β and IL-6 in serum and in the liver. Caspase-3, COX-2 and NF-κB were evaluated by Western blotting. Administration of bromobenzene resulted in elevated levels of liver marker enzymes, bilirubin, lipid peroxidation and cytokines but deterioration in total protein content, antioxidant levels and histopathological conditions. Pre-treatment with beta-carotene not only significantly decreased the levels of liver markers, lipid peroxidation and cytokines but also improved histo-architecture and increased antioxidant levels minimising oxidative stress, and reduced factors contributing to apoptosis. This significant reversal of the biochemical changes on pre-treatment with beta-carotene in comparison with rats administered with bromobenzene clearly demonstrates that beta-carotene possesses promising hepatoprotective effect through its antioxidant, anti-inflammatory and antiapoptotic activity and hence is suggested as a potential therapeutic agent for protection from bromobenzene.
Collapse
Affiliation(s)
- Priya Josson Akkara
- Vellore Institute of Technology, School of Bio Sciences and Technology, Vellore, India.,Kristu Jayanti College (Autonomous), Bengaluru, India
| | - Evan Prince Sabina
- Vellore Institute of Technology, School of Bio Sciences and Technology, Vellore, India
| |
Collapse
|
33
|
Ohbuchi K, Sakurai N, Kitagawa H, Sato M, Suzuki H, Kushida H, Nishi A, Yamamoto M, Hanazaki K, Arita M. Differential annotation of converted metabolites (DAC-Met): Exploration of Maoto (Ma-huang-tang)-derived metabolites in plasma using high-resolution mass spectrometry. Metabolomics 2020; 16:63. [PMID: 32335721 PMCID: PMC7183508 DOI: 10.1007/s11306-020-01681-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/15/2020] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Traditional herbal medicine (THM) contains a vast number of natural compounds with varying degrees of pharmacological activity. To elucidate the mode of action, comprehensive metabolite profiling in the plasma before and after administration of THM is essential. OBJECTIVE The aim of this study was to explore and identify/annotate converted metabolites after administration of THM in humans. METHODS We performed untargeted metabolome analysis of human plasma collected before and after administration of maoto (ma-huang-tang), a traditional Japanese Kampo medicine. Maoto-derived metabolites were then selected and annotated following the DAC-Met strategy, which is an annotation method that uses mass differences of major metabolic reactions among the detected peaks and a differential network analysis. RESULTS About 80% of maoto-derived components were found to be converted forms. Following DAC-Met, the structures of 15 previously unidentified metabolites were determined, and five of these were later confirmed with authentic standards. Using published literature, we also reconstructed the metabolic pathway of maoto components in humans. A kinetic time-course analysis revealed their diverse kinetic profiles. CONCLUSION The results demonstrated that time-resolved comprehensive metabolite profiling in plasma using the DAC-Met strategy is highly useful for elucidating the complex nature of THM.
Collapse
Affiliation(s)
- Katsuya Ohbuchi
- Tsumura Kampo Research Laboratories, Tsumura & CO, Ibaraki, 300-1192, Japan.
| | - Nozomu Sakurai
- National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
- Kazusa DNA Research Institute, Kisarazu, Chiba, 292-0818, Japan
| | - Hiroyuki Kitagawa
- Department of Surgery, Kochi Medical School, Kochi University, Kochi, 783-8505, Japan
| | - Masaru Sato
- Kazusa DNA Research Institute, Kisarazu, Chiba, 292-0818, Japan
| | - Hideyuki Suzuki
- Kazusa DNA Research Institute, Kisarazu, Chiba, 292-0818, Japan
| | - Hirotaka Kushida
- Tsumura Kampo Research Laboratories, Tsumura & CO, Ibaraki, 300-1192, Japan
| | - Akinori Nishi
- Tsumura Kampo Research Laboratories, Tsumura & CO, Ibaraki, 300-1192, Japan
| | - Masahiro Yamamoto
- Tsumura Kampo Research Laboratories, Tsumura & CO, Ibaraki, 300-1192, Japan
| | - Kazuhiro Hanazaki
- Department of Surgery, Kochi Medical School, Kochi University, Kochi, 783-8505, Japan
| | - Masanori Arita
- National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
| |
Collapse
|
34
|
de Oliveira AS, Gazolla PAR, Oliveira AFCDS, Pereira WL, de S. Viol LC, Maia AFDS, Santos EG, da Silva ÍEP, Mendes TADO, da Silva AM, Dias RS, da Silva CC, Polêto MD, Teixeira RR, de Paula SO. Discovery of novel West Nile Virus protease inhibitor based on isobenzonafuranone and triazolic derivatives of eugenol and indan-1,3-dione scaffolds. PLoS One 2019; 14:e0223017. [PMID: 31557229 PMCID: PMC6762200 DOI: 10.1371/journal.pone.0223017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 09/11/2019] [Indexed: 02/06/2023] Open
Abstract
The West Nile Virus (WNV) NS2B-NS3 protease is an attractive target for the development of therapeutics against this arboviral pathogen. In the present investigation, the screening of a small library of fifty-eight synthetic compounds against the NS2-NB3 protease of WNV is described. The following groups of compounds were evaluated: 3-(2-aryl-2-oxoethyl)isobenzofuran-1(3H)-ones; eugenol derivatives bearing 1,2,3-triazolic functionalities; and indan-1,3-diones with 1,2,3-triazolic functionalities. The most promising of these was a eugenol derivative, namely 4-(3-(4-allyl-2-methoxyphenoxy)-propyl)-1-(2-bromobenzyl)-1H-1,2,3-triazole (35), which inhibited the protease with IC50 of 6.86 μmol L-1. Enzyme kinetic assays showed that this derivative of eugenol presents competitive inhibition behaviour. Molecular docking calculations predicted a recognition pattern involving the residues His51 and Ser135, which are members of the catalytic triad of the WNV NS2B-NS3 protease.
Collapse
Affiliation(s)
- André S. de Oliveira
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, MG, Brazil
- Instituto Federal de Educação, Ciência e Tecnologia do Norte de Minas Gerais, Fazenda Biribiri, MG, Brazil
| | - Poliana A. R. Gazolla
- Instituto Federal de Educação, Ciência e Tecnologia do Norte de Minas Gerais, Fazenda Biribiri, MG, Brazil
| | - Ana Flávia C. da S. Oliveira
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, MG, Brazil
- Instituto Federal de Educação, Ciência e Tecnologia do Norte de Minas Gerais, Fazenda Biribiri, MG, Brazil
| | - Wagner L. Pereira
- Instituto Federal de Educação, Ciência e Tecnologia do Norte de Minas Gerais, Fazenda Biribiri, MG, Brazil
| | - Lívia C. de S. Viol
- Instituto Federal de Educação, Ciência e Tecnologia do Norte de Minas Gerais, Fazenda Biribiri, MG, Brazil
| | - Angélica F. da S. Maia
- Instituto Federal de Educação, Ciência e Tecnologia do Norte de Minas Gerais, Fazenda Biribiri, MG, Brazil
| | - Edjon G. Santos
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Ítalo E. P. da Silva
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | | | - Adalberto M. da Silva
- Departamento de Química, Universidade Federal de Viçosa, Viçosa, MG, Brazil
- Instituto Federal de Educação, Ciência e Tecnologia Catarinense, Araquari, SC, Brazil
| | - Roberto S. Dias
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Cynthia C. da Silva
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Marcelo D. Polêto
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Róbson R. Teixeira
- Departamento de Química, Universidade Federal de Viçosa, Viçosa, MG, Brazil
- * E-mail: (SOP); (RRT)
| | - Sergio O. de Paula
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, MG, Brazil
- * E-mail: (SOP); (RRT)
| |
Collapse
|
35
|
Zhang Y, Sun L, Liu E, Wang A, Yan J. The olfactory stimulation slows down the substance clearance in the extracellular space of the hippocampus in rat brain. Biochem Biophys Res Commun 2019; 515:429-435. [PMID: 31155295 DOI: 10.1016/j.bbrc.2019.05.159] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 05/26/2019] [Indexed: 12/25/2022]
Abstract
Accelerating the clearance of toxin in the brain extracellular space (ECS) has grown a promising strategy for treating some central nervous system diseases. As oldest sensory system, we know little about the influence of olfaction on the brain, but preclinical studies such as treatment of neurological diseases through it are in the ascendant. This makes it important to clarify the effects of olfaction on brain ECS and interstitial fluid (ISF) drainage. In this study, the effect of olfactory stimulation (eugenol, EUG) on ISF flow in hippocampus and its association with aquaporin 4 (Aqp4) had been investigated. The results show that eugenol can significantly increase the activity of hippocampal neurons, but reduce the clearance and diffusion rates of Gd-DTPA and A-594 in hippocampus. Similarly, eugenol inhalation slows down the rate of Gd-DTPA in CSF entering the hippocampus and its clearance. And knockout of Aqp4 gene aggravated these processes. In vitro results showed that after Aqp4 gene silencing, astrocytes grew slowly, with significantly decreased cells number, less nuclei, atrophied bodies and shorter processes. These results concluded that olfactory stimulation can change the ECS structure of the hippocampus, slow down the ISF drainage, and improve the function of neurons, while Aqp4 plays important roles.
Collapse
Affiliation(s)
- Yixuan Zhang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Linlin Sun
- Department of Anatomy and Histology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - E Liu
- Department of Anatomy and Histology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Aibo Wang
- Department of Radiology, Peking University Third Hospital, Beijing, 100191, China; Beijing Key Lab of Magnetic Resonance Imaging Technology, Beijing, 100191, China
| | - Junhao Yan
- Department of Anatomy and Histology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China; Beijing Key Lab of Magnetic Resonance Imaging Technology, Beijing, 100191, China.
| |
Collapse
|
36
|
Murakami Y, Kawata A, Suzuki S, Fujisawa S. Cytotoxicity and Pro-/Anti-inflammatory Properties of Cinnamates, Acrylates and Methacrylates Against RAW264.7 Cells. In Vivo 2019; 32:1309-1322. [PMID: 30348683 DOI: 10.21873/invivo.11381] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 07/17/2018] [Accepted: 07/19/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND/AIM Periodontitis is a chronic inflammatory disease linked to various systemic age-related conditions. It is known that α,β-unsaturated carbonyl compounds such as dietary cinnamates (β-phenyl acrylates) and related (meth)acrylates can have various positive and negative health effects, including cytotoxicity, allergic activity, pro-and anti-inflammatory activity, and anticancer activity. To clarify the anti-inflammatory properties of α,β-unsaturated carbonyl compounds without a phenolic group in the context of periodontal tissue inflammation and alveolar bone loss, we investigated the cytotoxicity and up-regulatory/down-regulatory effect of three trans-cinnamates (trans-cinnamic acid, methyl cinnamate, trans-cinnamaldehyde), two acrylates (ethyl acrylate, 2-hydroxyethyl acrylate), and three methacrylates (methyl methacrylate, 2-hydroxyethyl methacrylate, and triethyleneglycol dimethacrylate) using RAW264.7 cells. MATERIALS AND METHODS Cytotoxicity was determined using a cell counting kit (CCK-8) and mRNA expression was determined using real-time reverse transcriptase-polymerase chain reaction (RT-PCR). Pro-inflammatory and anti-inflammatory properties were assessed in terms of expression of mRNAs for cyclo-oxygenase-2 (Cox2), nitric oxide synthase 2 (Nos2), tumor necrosis factor-alpha (Tnfa) and heme oxygenase 1 (Ho1). RESULTS The most cytotoxic compound was 2-hydroxyethyl acrylate, followed by ethyl acrylate and cinnamaldehyde (50% lethal cytotoxic concentration, LC50=0.2-0.5 mM). Cox2 mRNA expression was up-regulated by cinnamaldehyde and 2-hydroxyethyl acrylate, particularly by the former. In contrast, the up-regulatory effect on Nos2 mRNA expression was in the order: cinnamaldehyde >> ethyl acrylate ≈ triethyleneglycol dimethacrylate >> methyl methacrylate ≈ methyl cinnamate. On the other hand, cinnamic acid and 2-hydroxyethyl methacrylate had no effect on gene expression. The two acrylates, but not cinnamates and methacrylates, up-regulated the expression of Ho1 mRNA at a non-cytotoxic concentration of 0.1 mM. Expression of Cox2, Nos2 and Tnfa mRNAs induced by Porphyromonas gingivalis lipopolysaccharide was greatly suppressed by cinnamaldehyde, methyl cinnamate and the two acrylates at 0.1 mM (p<0.05), and slightly, but significantly suppressed by cinnamic acid and methacrylates at 0.1-1 mM (p<0.05). CONCLUSION Cinnamaldehyde and acrylates exhibited both anti-inflammatory and pro-inflammatory properties, possibly due to their marked ability to act as Michael reaction acceptors, as estimated from the beta-carbon 13C-nuclear magnetic resonance spectra. Methyl cinnamate exhibited potent anti-inflammatory activity with less cytotoxicity and pro-inflammatory activity, suggesting that this compound may be useful for treatment of periodontal disease and related systemic diseases.
Collapse
Affiliation(s)
- Yukio Murakami
- Division of Oral Diagnosis and General Dentistry, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry, Sakado, Japan
| | - Akifumi Kawata
- Division of Oral Diagnosis and General Dentistry, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry, Sakado, Japan
| | - Seiji Suzuki
- Division of Oral Diagnosis and General Dentistry, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry, Sakado, Japan
| | - Seiichiro Fujisawa
- Division of Oral Diagnosis and General Dentistry, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry, Sakado, Japan
| |
Collapse
|
37
|
Adefegha SA, Oyeleye SI, Okeke BM, Oboh G. Influence of eugenol on oxidative stress biomarkers in the liver of carrageenan-induced arthritis rats. J Basic Clin Physiol Pharmacol 2018; 30:185-193. [PMID: 30422801 DOI: 10.1515/jbcpp-2018-0060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 08/04/2018] [Indexed: 11/15/2022]
Abstract
Background Eugenol is the foremost constituent of clove oil and widely distributed in many plants. It possesses many pharmaceutical applications, including antioxidant, anti-inflammatory, and anti-tumorigenic properties, among others. This study evaluates the influence of eugenol on oxidative stress biomarkers in the liver of carrageenan-induced arthritis (CIA) rats. Methods Sixty albino rats were randomly divided into 10 (n=6) groups. Group I is the control group that received saline solution orally. Groups II and VII rats received 2.5 mg/kg of eugenol orally (EUG-2.5). Rats in groups III/VIII and IV/IX received 5 and 10 mg/kg of eugenol orally (EUG-5 and EUG-10), respectively. Groups V and X received 0.2 mg/kg of dexamethasone (DEX-0.2) orally. Groups VI to X were injected with 1% carrageenan intra-articularly. Behavioral studies were conducted after 21 days of treatment. Thereafter, the animals were sacrificed, and the livers were isolated and used for biochemical analysis. Results Reduced body weight in arthritic rats was recorded compared to normal controls. Reduced tibiofemoral joint edema and increased spontaneous movement were observed in CIA rats with decreased superoxide dismutase, catalase, reduced glutathione (GSH), glutathione peroxidase, and GSH S-transferase activities compared with the normal control group. Increased endogenous enzyme activities and decreased elevated lipid peroxidation were also observed after eugenol treatment. Conclusion Eugenol ameliorates carrageenan-induced oxidative stress in the liver of arthritic rats.
Collapse
Affiliation(s)
- Stephen Adeniyi Adefegha
- Functional Foods, Nutraceuticals and Phytomedicine Laboratory, Department of Biochemistry, Federal University of Technology, P.M.B. 704, Akure, Nigeria
| | - Sunday I Oyeleye
- Department of Biomedical Technology, Federal University of Technology, P.M.B. 704, Akure, Nigeria
| | - Bathlomew M Okeke
- Functional Foods, Nutraceuticals and Phytomedicine Laboratory, Department of Biochemistry, Federal University of Technology, P.M.B. 704, Akure, Nigeria
| | - Ganiyu Oboh
- Functional Foods, Nutraceuticals and Phytomedicine Laboratory, Department of Biochemistry, Federal University of Technology, P.M.B. 704, Akure, Nigeria
| |
Collapse
|
38
|
Kawata A, Murakami Y, Suzuki S, Fujisawa S. Anti-inflammatory Activity of β-Carotene, Lycopene and Tri- n-butylborane, a Scavenger of Reactive Oxygen Species. ACTA ACUST UNITED AC 2018; 32:255-264. [PMID: 29475907 DOI: 10.21873/invivo.11232] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 12/16/2017] [Accepted: 12/20/2017] [Indexed: 12/17/2022]
Abstract
BACKGROUND/AIM The polyene carotenoids β-carotene and lycopene are antioxidants that not only quench singlet oxygen but also inhibit lipid peroxidation. Tri-n-butyl borane (TBB) is used as an initiator for dental resin materials and is extremely reactive with oxygen and reactive oxygen species (ROS). This reactionability of TBB may be analogous to that of carotenoids with ROS. To clarify the biological activity of such ROS scavengers, we investigated the anti-inflammatory activity of β-carotene, lycopene and TBB in terms of the expression of RNA for lipopolysaccharide (LPS)-induced cyclooxygenase-2 (Cox2), nitric oxide synthase 2 (Nos2) and tumor necrosis factor-alpha (Tnfa), and mRNA expression and up-regulation of heme oxygenase 1 (Hmox1) mRNA in RAW264.7 cells. MATERIALS AND METHODS mRNA expression was investigated using real-time reverse transcriptase-polymerase chain reaction (PCR). The antioxidant activity of carotenoids was evaluated using the induction period method in the azobisisobutyronitrile or benzoyl peroxide-methyl methacrylate system. RESULTS Hmox1 mRNA, but not Cox2 and Nos2 mRNA, was up-regulated by 100 μM β-carotene and lycopene, and by 0.125% TBB. LPS-stimulated Cox2, Nos2 and Tnfa gene expression was inhibited by 50 μM β-carotene and lycopene, and by 0.5-1% TBB. Both β-carotene and lycopene had weak antioxidant activity, but β-carotene showed pro-oxidant activity at higher concentrations. CONCLUSION The anti-inflammatory activity of β-carotene, lycopene and TBB may be related to their ROS-scavenging activity. Additionally, the activity of carotenoids and TBB may be attributed to the electrophilicity of ROS-induced carotenoid intermediates and boranes, respectively. Their anti-inflammatory activity may be attributable to enhancement of the potency of the electrophile/antioxidant response element transcription system in view of their up-regulation of Hmox1 mRNA expression.
Collapse
Affiliation(s)
- Akifumi Kawata
- Division of Oral Diagnosis and General Dentistry, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry, Sakado, Japan
| | - Yukio Murakami
- Division of Oral Diagnosis and General Dentistry, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry, Sakado, Japan
| | - Seiji Suzuki
- Division of Oral Diagnosis and General Dentistry, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry, Sakado, Japan
| | - Seiichiro Fujisawa
- Division of Oral Diagnosis and General Dentistry, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry, Sakado, Japan
| |
Collapse
|
39
|
Murakami Y, Kawata A, Fujisawa S. Expression of Cyclooxygenase-2, Nitric Oxide Synthase 2 and Heme Oxygenase-1 mRNA Induced by Bis-Eugenol in RAW264.7 Cells and their Antioxidant Activity Determined Using the Induction Period Method. ACTA ACUST UNITED AC 2018; 31:819-831. [PMID: 28882947 DOI: 10.21873/invivo.11135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 06/05/2017] [Accepted: 06/06/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND/AIM To clarify the mechanisms responsible for the anti-inflammatory/proinflammatory activities of eugenol-related compounds, we investigated the cytotoxicity and up-regulatory/down-refgulatory effects of the biphenols curcumin, bis-eugenol, magnolol and honokiol, and the monophenols eugenol and isoeugenol, on major regulators of cyclooxygenase-2 (Cox-2), nitric oxide synthase 2 (Nos2) and heme oxygenase-1 (HO-1) mRNA in RAW264.7 cells. MATERIALS AND METHODS mRNA expression was investigated using real-time reverse transcriptase-polymerase chain reaction (RT-PCR), and the theoretical parameters were calculated using the DFT/B3LYP/6-31* method. Also, the antioxidant activity of eugenol-related compounds in combination with 2-mercapto-1-methylimidazole (MMI, as a model for glutathione (GSH)) was investigated using the induction period method for polymerization of methyl methacrylate initiated by benzoyl peroxide (BPO). RESULTS The cytotoxicity of eugenol-related compounds showed a linear relationship with their softness (σ) and electrophilicity (ω). At a concentration of 50 μM, biphenols except for bis-eugenol elicited the expression of mRNA for both Cox-2 and Nos2, but monophenols did not. In contrast, bis-eugenol elicited Cox-2 gene expression, but down-regulated Nos2 gene expression. bis-Eugenol alone induced the expression of HO-1 mRNA, and when combined with MMI it showed a potent antagonistic effect on BPO-induced antioxidant activity. The ability of methoxyphenols to inhibit LPS-stimulated Cox-2 gene expression declined in the order curcumin >> isoeugenol > bis-eugenol >> eugenol, and the rank of ability was related to their ω value. CONCLUSION Most eugenol-related compounds had proinflammatory activity at high concentrations. However, they had also anti-inflammatory activity at lower concentrations. Eugenol-related compounds may exert antioxidant and anti-inflammatory activity in LPS-stimulated RAW264.7 cells possibly by inhibiting the activation of nuclear factor-kappa B (Nf-ĸB), whereas bis-eugenol requires induction of HO-1 expression. bis-Eugenol as well as curcumin, may have anti-inflammatory and anticancer therapeutic applications.
Collapse
Affiliation(s)
- Yukio Murakami
- Division of Oral Diagnosis and General Dentistry, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry, Sakado, Japan
| | - Akifumi Kawata
- Division of Oral Diagnosis and General Dentistry, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry, Sakado, Japan
| | - Seiichiro Fujisawa
- Division of Oral Diagnosis and General Dentistry, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry, Sakado, Japan
| |
Collapse
|
40
|
Ding Y, Yang Z, Zhang W, Xu Y, Wang Y, Hu M, Ma F, Long H, Tao N, Qin Z. Eugenol triggers CD11b+Gr1+myeloid-derived suppressor cell apoptosisviaendogenous apoptosis pathway. RSC Adv 2018; 8:3833-3838. [PMID: 35542913 PMCID: PMC9077712 DOI: 10.1039/c7ra13499a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 01/12/2018] [Indexed: 01/10/2023] Open
Abstract
To study the effect and underlying molecular mechanism of eugenol on CD11b+Gr1+ myeloid-derived suppressor cells (MDSCs). The effect of eugenol on the inhibition of immortalized MDSC cell line MSC-2 and murine peritoneal macrophages was detected by MTT. Flow cytometry was used to detect the pro-apoptosis effect of eugenol on MDSCs. The expression levels of apoptosis-related proteins were detected by western blot. Eugenol has a selective inhibitory effect on MDSCs in a dose-dependent manner, which activates an endogenous apoptosis pathway, leading to apoptosis. Eugenol promotes the apoptosis of MDSCs via the intrinsic pathway. To study the effect and underlying molecular mechanism of eugenol on CD11b+Gr1+ myeloid-derived suppressor cells (MDSCs).![]()
Collapse
Affiliation(s)
- Ying Ding
- School of Basic Medical Sciences of Southwest Medical University
- Luzhou
- China
| | - Zecheng Yang
- College of Life Science
- University of the Chinese Academy of Sciences
- Beijing
- China
| | - Wensheng Zhang
- Department of Microbiology and Immunology
- Shanxi Medical University
- Taiyuan
- China
| | - Yuwei Xu
- College of Life Science
- University of the Chinese Academy of Sciences
- Beijing
- China
| | - Yuanyuan Wang
- Infinitus Chinese Herbal Immunity Research Centre
- Infinitus China Company Ltd
- Guangzhou
- China
| | - Minghua Hu
- Infinitus Chinese Herbal Immunity Research Centre
- Infinitus China Company Ltd
- Guangzhou
- China
| | - Fangli Ma
- Infinitus Chinese Herbal Immunity Research Centre
- Infinitus China Company Ltd
- Guangzhou
- China
| | - Hanan Long
- Department of Pathology
- The Affiliated Hospital of Southwest Medical University
- Luzhou
- China
- Department of Science and Technology
| | - Ning Tao
- Key Laboratory of Protein and Peptide Pharmaceuticals
- Institute of Biophysics
- Chinese Academy of Sciences
- Beijing
- China
| | - Zhihai Qin
- School of Basic Medical Sciences of Southwest Medical University
- Luzhou
- China
- Key Laboratory of Protein and Peptide Pharmaceuticals
- Institute of Biophysics
| |
Collapse
|
41
|
Kubatka P, Uramova S, Kello M, Kajo K, Kruzliak P, Mojzis J, Vybohova D, Adamkov M, Jasek K, Lasabova Z, Zubor P, Fialova S, Dokupilova S, Solar P, Pec M, Adamicova K, Danko J, Adamek M, Busselberg D. Antineoplastic effects of clove buds (Syzygium aromaticum L.) in the model of breast carcinoma. J Cell Mol Med 2017; 21:2837-2851. [PMID: 28524540 PMCID: PMC5661249 DOI: 10.1111/jcmm.13197] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 03/22/2017] [Indexed: 12/31/2022] Open
Abstract
It is supposed that plant functional foods, rich in phytochemicals, may potentially have preventive effects in carcinogenesis. In this study, the anticancer effects of cloves in the in vivo and in vitro mammary carcinoma model were assessed. Dried flower buds of cloves (CLOs) were used at two concentrations of 0.1% and 1% through diet during 13 weeks after the application of chemocarcinogen. After autopsy, histopathological and immunohistochemical analyses of rat mammary carcinomas were performed. Moreover, in vitro evaluation using MCF‐7 cells was carried out. Dietary administered CLO caused the dose‐dependent decrease in tumour frequency by 47.5% and 58.5% when compared to control. Analysis of carcinoma cells in animals showed bcl‐2, Ki67, VEGFA, CD24 and CD44 expression decrease and Bax, caspase‐3 and ALDH1 expression increase after high‐dose CLO administration. MDA levels were substantially decreased in rat carcinomas in both CLO groups. The evaluation of histone modifications revealed increase in lysine trimethylations and acetylations (H4K20me3, H4K16ac) in carcinomas after CLO administration. TIMP3 promoter methylation levels of CpG3, CpG4, CpG5 islands were altered in treated cancer cells. An increase in total RASSF1A promoter methylation (three CpG sites) in CLO 1 group was found. In vitro studies showed antiproliferative and pro‐apoptotic effects of CLO extract in MCF‐7 cells (analyses of cytotoxicity, Brdu, cell cycle, annexin V/PI, caspase‐7, Bcl‐2 and mitochondrial membrane potential). This study showed a significant anticancer effect of clove buds in the mammary carcinoma model in vivo and in vitro.
Collapse
Affiliation(s)
- Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia.,Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Sona Uramova
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Martin Kello
- Department of Pharmacology, Faculty of Medicine, P. J. Šafárik University, Košice, Slovakia
| | - Karol Kajo
- Department of Pathology, Slovak Medical University and St. Elisabeth Oncology Institute, Bratislava, Slovakia
| | - Peter Kruzliak
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Jan Mojzis
- Department of Pharmacology, Faculty of Medicine, P. J. Šafárik University, Košice, Slovakia
| | - Desanka Vybohova
- Department of Anatomy, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Marian Adamkov
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Karina Jasek
- Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Zora Lasabova
- Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Pavol Zubor
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Silvia Fialova
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovakia
| | - Svetlana Dokupilova
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Toxicological and Antidoping Center, Comenius University in Bratislava, Bratislava, Slovakia
| | - Peter Solar
- Institute of Biology and Ecology, Faculty of Science, Laboratory of Cell Biology, P. J. Safarik University, Kosice, Slovakia
| | - Martin Pec
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Katarina Adamicova
- Department of Pathological Anatomy, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Jan Danko
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Mariusz Adamek
- Department of Thoracic Surgery, Faculty of Medicine and Dentistry, Medical University of Silesia, Katowice, Poland
| | - Dietrich Busselberg
- Qatar Foundation-Education City, Weill Cornell Medicine in Qatar, Doha, Qatar
| |
Collapse
|
42
|
Ahn S, Song TJ, Park SU, Jeon S, Kim J, Oh JY, Jang J, Hong S, Song MA, Shin HS, Jung YR, Park HJ. Effects of a combination treatment of KD5040 and L-dopa in a mouse model of Parkinson's disease. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:220. [PMID: 28424060 PMCID: PMC5395961 DOI: 10.1186/s12906-017-1731-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 04/07/2017] [Indexed: 12/31/2022]
Abstract
Background Although the dopamine precursor L-3, 4-dihydroxyphenylalanine (l-dopa) remains the gold standard pharmacological therapy for patients with Parkinson’s disease (PD), long-term treatment with this drug has been known to result in several adverse effects, including l-dopa-induced dyskinesia (LID). Recently, our group reported that KD5040, a modified herbal remedy, had neuroprotective effects in both in vitro and in vivo models of PD. Thus, the present study investigated whether KD5040 would have synergistic effects with l-dopa and antidyskinetic effects caused by l-dopa as well. Methods The effects of KD5040 and l-dopa on motor function, expression levels of substance P (SP) and enkephalin (ENK) in the basal ganglia, and glutamate content in the motor cortex were assessed using behavioral assays, immunohistochemistry, Western blot analyses, and liquid chromatography tandem mass spectrometry in a mouse model of PD induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). In addition, the antidyskinetic effects of KD5040 on pathological movements triggered by l-dopa were investigated by testing abnormal involuntary movements (AIMs) and measuring the activations of FosB, cAMP-dependent phosphor protein of 32 kDa (DARPP-32), extracellular signal-regulated kinases (ERK), and cAMP response element-binding (CREB) protein in the striatum. Results KD5040 synergistically improved the motor function when low-dose l-dopa (LL) was co-administered. In addition, it significantly reversed MPTP-induced lowering of SP, improved ENK levels in the basal ganglia, and ameliorated abnormal reduction in glutamate content in the motor cortex. Furthermore, KD5040 significantly lowered AIMs and controlled abnormal levels of striatal FosB, pDARPP-32, pERK, and pCREB induced by high-dose l-dopa. Conclusions KD5040 lowered the effective dose of l-dopa and alleviated LID. These findings suggest that KD5040 may be used as an adjunct therapy to enhance the efficacy of l-dopa and alleviate its adverse effects in patients with PD.
Collapse
|