1
|
Baytas O, Davidson SM, Kauer JA, Morrow EM. Loss of mitochondrial enzyme GPT2 leads to reprogramming of synaptic glutamate metabolism. Mol Brain 2024; 17:87. [PMID: 39604975 PMCID: PMC11600823 DOI: 10.1186/s13041-024-01154-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024] Open
Abstract
Recessive loss-of-function mutations in the mitochondrial enzyme Glutamate Pyruvate Transaminase 2 (GPT2) cause intellectual disability in children. Given this cognitive disorder, and because glutamate metabolism is tightly regulated to sustain excitatory neurotransmission, here we investigate the role of GPT2 in synaptic function. GPT2 catalyzes a reversible reaction interconverting glutamate and pyruvate with alanine and alpha-ketoglutarate, a TCA cycle intermediate; thereby, GPT2 may play an important role in linking mitochondrial tricarboxylic acid (TCA) cycle with synaptic transmission. In mouse brain, we find that GPT2 is enriched in mitochondria of synaptosomes (isolated synaptic terminals). Loss of Gpt2 in mouse appears to lead to reprogramming of glutamate and glutamine metabolism, and to decreased glutamatergic synaptic transmission. Whole-cell patch-clamp recordings in pyramidal neurons of CA1 hippocampal slices from Gpt2-null mice reveal decreased excitatory post-synaptic currents (mEPSCs) without changes in mEPSC frequency, or importantly, changes in inhibitory post-synaptic currents (mIPSCs). Additional evidence of defective glutamate release included reduced levels of glutamate released from Gpt2-null synaptosomes measured biochemically. Glutamate release from synaptosomes was rescued to wild-type levels by alpha-ketoglutarate supplementation. Additionally, we observed evidence of altered metabolism in isolated Gpt2-null synaptosomes: decreased TCA cycle intermediates, and increased glutamate dehydrogenase activity. Notably, alterations in the TCA cycle and the glutamine pool were alleviated by alpha-ketoglutarate supplementation. In conclusion, our data support a model whereby GPT2 mitochondrial activity may contribute to glutamate availability in pre-synaptic terminals, thereby highlighting potential interactions between pre-synaptic mitochondrial metabolism and synaptic transmission.
Collapse
Affiliation(s)
- Ozan Baytas
- Department of Molecular Biology, Cell Biology and Biochemistry, Laboratories for Molecular Medicine, Brown University, 70 Ship Street, Providence, RI, 02912, USA
- Center for Translational Neuroscience, Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University, Providence, RI, 02912, USA
- Neuroscience Graduate Program, Brown University, Providence, RI, 02912, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Shawn M Davidson
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08540, USA
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Julie A Kauer
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94035, USA
| | - Eric M Morrow
- Department of Molecular Biology, Cell Biology and Biochemistry, Laboratories for Molecular Medicine, Brown University, 70 Ship Street, Providence, RI, 02912, USA.
- Center for Translational Neuroscience, Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University, Providence, RI, 02912, USA.
| |
Collapse
|
2
|
Nascimento JDF, Damasceno FS, Marsiccobetre S, Vitorino FNDL, Achjian RW, da Cunha JPC, Silber AM. Branched-chain amino acids modulate the proteomic profile of Trypanosoma cruzi metacyclogenesis induced by proline. PLoS Negl Trop Dis 2024; 18:e0012588. [PMID: 39383181 PMCID: PMC11493278 DOI: 10.1371/journal.pntd.0012588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/21/2024] [Accepted: 09/30/2024] [Indexed: 10/11/2024] Open
Abstract
Trypanosoma cruzi, the causative agent of Chagas disease, has a complex life cycle that involves triatomine insects as vectors and mammals as hosts. The differentiation of epimastigote forms into metacyclic trypomastigotes within the insect vector is crucial for the parasite's life cycle progression. Factors influencing this process, including temperature, pH, and nutritional stress, along with specific metabolite availability, play a pivotal role. Amino acids like proline, histidine, and glutamine support cell differentiation, while branched-chain amino acids (BCAAs) inhibit it. Interestingly, combining the pro-metacyclogenic amino acid proline with one of the anti-metacyclogenic BCAAs results in viable metacyclics with significantly reduced infectivity. To explore the characteristics of metacyclic parasites differentiated in the presence of BCAAs, proteomics analyses were conducted. Metacyclics obtained in triatomine artificial urine (TAU) supplemented with proline alone and in combination with leucine, isoleucine, or valine were compared. The analyses revealed differential regulation of 40 proteins in TAU-Pro-Leu, 131 in TAU-Pro-Ile, and 179 in TAU-Pro-Val, as compared to metacyclics from TAU-Pro. Among these, 22%, 11%, and 13% of the proteins were associated with metabolic processes, respectively. Notably, enzymes related to glycolysis and the tricarboxylic acid (TCA) cycle were reduced in metacyclics with Pro-BCAAs, while enzymes involved in amino acid and purine metabolic pathways were increased. Furthermore, metacyclics with Pro-Ile and Pro-Val exhibited elevated enzymes linked to lipid and redox metabolism. The results revealed five proteins that were increased and four that were decreased in common in the presence of Pro+BCAAs, indicating their possible participation in key processes related to metacyclogenesis. These findings suggest that the presence of BCAAs can reshape the metabolism of metacyclics, contributing to the observed reduction in infectivity in these parasites.
Collapse
Affiliation(s)
- Janaina de Freitas Nascimento
- Laboratory of Biochemistry of Tryps - LaBTryps - Department of Parasitology, Instituto de Ciências Biomédicas II, Universidade de São Paulo, São Paulo, Brazil
| | - Flávia Silva Damasceno
- Laboratory of Biochemistry of Tryps - LaBTryps - Department of Parasitology, Instituto de Ciências Biomédicas II, Universidade de São Paulo, São Paulo, Brazil
| | - Sabrina Marsiccobetre
- Laboratory of Biochemistry of Tryps - LaBTryps - Department of Parasitology, Instituto de Ciências Biomédicas II, Universidade de São Paulo, São Paulo, Brazil
| | - Francisca Natália de Luna Vitorino
- Laboratório de Ciclo Celular - Instituto Butantan, São Paulo-SP, Brazil; Centro de Toxinas, Resposta Imune e Sinalização Celular (CeTICS), Instituto Butantan, São Paulo, Brazil
| | - Renan Weege Achjian
- Laboratory of Biochemistry of Tryps - LaBTryps - Department of Parasitology, Instituto de Ciências Biomédicas II, Universidade de São Paulo, São Paulo, Brazil
| | - Julia Pinheiro Chagas da Cunha
- Laboratório de Ciclo Celular - Instituto Butantan, São Paulo-SP, Brazil; Centro de Toxinas, Resposta Imune e Sinalização Celular (CeTICS), Instituto Butantan, São Paulo, Brazil
| | - Ariel Mariano Silber
- Laboratory of Biochemistry of Tryps - LaBTryps - Department of Parasitology, Instituto de Ciências Biomédicas II, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
3
|
Gondáš E, Baranovičová E, Šofranko J, Murín R. Hyperglycemia Stimulates the Irreversible Catabolism of Branched-Chain Amino Acids and Generation of Ketone Bodies by Cultured Human Astrocytes. Biomedicines 2024; 12:1803. [PMID: 39200266 PMCID: PMC11351101 DOI: 10.3390/biomedicines12081803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/22/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Astrocytes are considered to possess a noticeable role in brain metabolism and, as a partners in neuron-glia cooperation, to contribute to the synthesis, bioconversion, and regulation of the flux of substrates for neuronal metabolism. With the aim of investigating to what extent human astrocytes are metabolizing amino acids and by which compounds are they enriching their surroundings, we employed a metabolomics analysis of their culture media by 1H-NMR. In addition, we compared the composition of media with either 5 mM or 25 mM glucose. The quantitative analysis of culture media by 1H-NMR revealed that astrocytes readily dispose from their milieu glutamine, branched-chain amino acids, and pyruvate with significantly high rates, while they enrich the culture media with lactate, branched-chain keto acids, citrate, acetate, ketone bodies, and alanine. Hyperglycemia suppressed the capacity of astrocytes to release branched-chain 2-oxo acids, while stimulating the generation of ketone bodies. Our results highlight the active involvement of astrocytes in the metabolism of several amino acids and the regulation of key metabolic intermediates. The observed metabolic activities of astrocytes provide valuable insights into their roles in supporting neuronal function, brain metabolism, and intercellular metabolic interactions within the brain. Understanding the complex metabolic interactions between astrocytes and neurons is essential for elucidating brain homeostasis and the pathophysiology of neurological disorders. The observed metabolic activities of astrocytes provide hints about their putative metabolic roles in brain metabolism.
Collapse
Affiliation(s)
- Eduard Gondáš
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Malá Hora 4D, 036 01 Martin, Slovakia;
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Malá Hora 4D, 036 01 Martin, Slovakia;
| | - Eva Baranovičová
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Malá Hora 4D, 036 01 Martin, Slovakia;
| | - Jakub Šofranko
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Malá Hora 4D, 036 01 Martin, Slovakia;
| | - Radovan Murín
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Malá Hora 4D, 036 01 Martin, Slovakia;
| |
Collapse
|
4
|
Aldosari DI, Alshawakir YA, Alanazi IO, Alhomida AS, Ola MS. Differential Expression of Branched-Chain Aminotransferase in the Rat Ocular Tissues. J Histochem Cytochem 2024; 72:551-568. [PMID: 39212098 PMCID: PMC11452883 DOI: 10.1369/00221554241272338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 07/12/2024] [Indexed: 09/04/2024] Open
Abstract
Branched-chain amino acids (BCAAs) play vital roles in metabolic and physiological processes, with their catabolism initiated by two branched-chain aminotransferase isozymes: cytosolic (BCATc) and mitochondrial (BCATm). These enzymes have tissue and cell-specific compartmentalization and are believed to shuttle metabolites between cells and tissues. Although their expression and localization have been established in most tissues, ocular tissues remain unknown. In this study, we used immunohistochemical analyses to investigate the expression and localization of BCAT enzymes in the normal eye tissues. As expected, BCATc was highly expressed in the neuronal cells of the retina, particularly in the ganglion cell layers, inner nuclear layer, and plexiform layer, with little to no expression in Müller cells. BCATc was also present in the cornea, retinal pigment epithelium (RPE), choroid, ciliary body, and iris but not in the lens. In contrast, BCATm was expressed across all ocular tissues, with strong expression in the Muller cells of the retina, the endothelial and epithelial layers of the cornea, the choroid and iris, and the epithelial cells at the lens's front. The extensive expression and distribution of BCAT isozymes in the ocular tissue, suggests that BCAA transamination is widespread in the eye, potentially aiding in metabolite transport between ocular tissues. The findings provide new insights into the physiological role of BCATs in the eye, particularly within the neuronal retina.
Collapse
Affiliation(s)
| | | | - Ibrahim O. Alanazi
- King Saud University, Riyadh, Saudi Arabia and Healthy Aging Research Institute, Health Sector, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | | | | |
Collapse
|
5
|
Rothman DL, Behar KL, Dienel GA. Mechanistic stoichiometric relationship between the rates of neurotransmission and neuronal glucose oxidation: Reevaluation of and alternatives to the pseudo-malate-aspartate shuttle model. J Neurochem 2024; 168:555-591. [PMID: 36089566 DOI: 10.1111/jnc.15619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 04/08/2022] [Accepted: 04/15/2022] [Indexed: 11/26/2022]
Abstract
The ~1:1 stoichiometry between the rates of neuronal glucose oxidation (CMRglc-ox-N) and glutamate (Glu)/γ-aminobutyric acid (GABA)-glutamine (Gln) neurotransmitter (NT) cycling between neurons and astrocytes (VNTcycle) has been firmly established. However, the mechanistic basis for this relationship is not fully understood, and this knowledge is critical for the interpretation of metabolic and brain imaging studies in normal and diseased brain. The pseudo-malate-aspartate shuttle (pseudo-MAS) model established the requirement for glycolytic metabolism in cultured glutamatergic neurons to produce NADH that is shuttled into mitochondria to support conversion of extracellular Gln (i.e., astrocyte-derived Gln in vivo) into vesicular neurotransmitter Glu. The evaluation of this model revealed that it could explain half of the 1:1 stoichiometry and it has limitations. Modifications of the pseudo-MAS model were, therefore, devised to address major knowledge gaps, that is, submitochondrial glutaminase location, identities of mitochondrial carriers for Gln and other model components, alternative mechanisms to transaminate α-ketoglutarate to form Glu and shuttle glutamine-derived ammonia while maintaining mass balance. All modified models had a similar 0.5 to 1.0 predicted mechanistic stoichiometry between VNTcycle and the rate of glucose oxidation. Based on studies of brain β-hydroxybutyrate oxidation, about half of CMRglc-ox-N may be linked to glutamatergic neurotransmission and localized in pre-synaptic structures that use pseudo-MAS type mechanisms for Glu-Gln cycling. In contrast, neuronal compartments that do not participate in transmitter cycling may use the MAS to sustain glucose oxidation. The evaluation of subcellular compartmentation of neuronal glucose metabolism in vivo is a critically important topic for future studies to understand glutamatergic and GABAergic neurotransmission.
Collapse
Affiliation(s)
- Douglas L Rothman
- Magnetic Resonance Research Center and Departments of Radiology and Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| | - Kevin L Behar
- Magnetic Resonance Research Center and Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Gerald A Dienel
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| |
Collapse
|
6
|
Ng D, Pawling J, Dennis JW. Gene purging and the evolution of Neoave metabolism and longevity. J Biol Chem 2023; 299:105409. [PMID: 37918802 PMCID: PMC10722388 DOI: 10.1016/j.jbc.2023.105409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/19/2023] [Accepted: 10/25/2023] [Indexed: 11/04/2023] Open
Abstract
Maintenance of the proteasome requires oxidative phosphorylation (ATP) and mitigation of oxidative damage, in an increasingly dysfunctional relationship with aging. SLC3A2 plays a role on both sides of this dichotomy as an adaptor to SLC7A5, a transporter of branched-chain amino acids (BCAA: Leu, Ile, Val), and to SLC7A11, a cystine importer supplying cysteine to the synthesis of the antioxidant glutathione. Endurance in mammalian muscle depends in part on oxidation of BCAA; however, elevated serum levels are associated with insulin resistance and shortened lifespans. Intriguingly, the evolution of modern birds (Neoaves) has entailed the purging of genes including SLC3A2, SLC7A5, -7, -8, -10, and SLC1A4, -5, largely removing BCAA exchangers and their interacting Na+/Gln symporters in pursuit of improved energetics. Additional gene purging included mitochondrial BCAA aminotransferase (BCAT2), pointing to reduced oxidation of BCAA and increased hepatic conversion to triglycerides and glucose. Fat deposits are anhydrous and highly reduced, maximizing the fuel/weight ratio for prolonged flight, but fat accumulation in muscle cells of aging humans contributes to inflammation and senescence. Duplications of the bidirectional α-ketoacid transporters SLC16A3, SLC16A7, the cystine transporters SLC7A9, SLC7A11, and N-glycan branching enzymes MGAT4B, MGAT4C in Neoaves suggests a shift to the transport of deaminated essential amino acid, and stronger mitigation of oxidative stress supported by the galectin lattice. We suggest that Alfred Lotka's theory of natural selection as a maximum power organizer (PNAS 8:151,1922) made an unusually large contribution to Neoave evolution. Further molecular analysis of Neoaves may reveal novel rewiring with applications for human health and longevity.
Collapse
Affiliation(s)
- Deanna Ng
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Judy Pawling
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - James W Dennis
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto Ontario, Canada.
| |
Collapse
|
7
|
Cooper AJL, Dorai T, Pinto JT, Denton TT. Metabolic Heterogeneity, Plasticity, and Adaptation to "Glutamine Addiction" in Cancer Cells: The Role of Glutaminase and the GTωA [Glutamine Transaminase-ω-Amidase (Glutaminase II)] Pathway. BIOLOGY 2023; 12:1131. [PMID: 37627015 PMCID: PMC10452834 DOI: 10.3390/biology12081131] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/06/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023]
Abstract
Many cancers utilize l-glutamine as a major energy source. Often cited in the literature as "l-glutamine addiction", this well-characterized pathway involves hydrolysis of l-glutamine by a glutaminase to l-glutamate, followed by oxidative deamination, or transamination, to α-ketoglutarate, which enters the tricarboxylic acid cycle. However, mammalian tissues/cancers possess a rarely mentioned, alternative pathway (the glutaminase II pathway): l-glutamine is transaminated to α-ketoglutaramate (KGM), followed by ω-amidase (ωA)-catalyzed hydrolysis of KGM to α-ketoglutarate. The name glutaminase II may be confused with the glutaminase 2 (GLS2) isozyme. Thus, we recently renamed the glutaminase II pathway the "glutamine transaminase-ω-amidase (GTωA)" pathway. Herein, we summarize the metabolic importance of the GTωA pathway, including its role in closing the methionine salvage pathway, and as a source of anaplerotic α-ketoglutarate. An advantage of the GTωA pathway is that there is no net change in redox status, permitting α-ketoglutarate production during hypoxia, diminishing cellular energy demands. We suggest that the ability to coordinate control of both pathways bestows a metabolic advantage to cancer cells. Finally, we discuss possible benefits of GTωA pathway inhibitors, not only as aids to studying the normal biological roles of the pathway but also as possible useful anticancer agents.
Collapse
Affiliation(s)
- Arthur J. L. Cooper
- Department of Biochemistry and Molecular Biology, New York Medical College, 15 Dana Road, Valhalla, NY 10595, USA; (T.D.); (J.T.P.)
| | - Thambi Dorai
- Department of Biochemistry and Molecular Biology, New York Medical College, 15 Dana Road, Valhalla, NY 10595, USA; (T.D.); (J.T.P.)
- Department of Urology, New York Medical College, Valhalla, NY 10595, USA
| | - John T. Pinto
- Department of Biochemistry and Molecular Biology, New York Medical College, 15 Dana Road, Valhalla, NY 10595, USA; (T.D.); (J.T.P.)
| | - Travis T. Denton
- Department Pharmaceutical Sciences, College of Pharmacy & Pharmaceutical Sciences, Washington State University Health Sciences Spokane, Spokane, WA 99202, USA
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University Health Sciences Spokane, Spokane, WA 99164, USA
- Steve Gleason Institute for Neuroscience, Washington State University Health Sciences Spokane, Spokane, WA 99164, USA
| |
Collapse
|
8
|
Ghatak S, Nakamura T, Lipton SA. Aberrant protein S-nitrosylation contributes to hyperexcitability-induced synaptic damage in Alzheimer's disease: Mechanistic insights and potential therapies. Front Neural Circuits 2023; 17:1099467. [PMID: 36817649 PMCID: PMC9932935 DOI: 10.3389/fncir.2023.1099467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
Alzheimer's disease (AD) is arguably the most common cause of dementia in the elderly and is marked by progressive synaptic degeneration, which in turn leads to cognitive decline. Studies in patients and in various AD models have shown that one of the early signatures of AD is neuronal hyperactivity. This excessive electrical activity contributes to dysregulated neural network function and synaptic damage. Mechanistically, evidence suggests that hyperexcitability accelerates production of reactive oxygen species (ROS) and reactive nitrogen species (RNS) that contribute to neural network impairment and synapse loss. This review focuses on the pathways and molecular changes that cause hyperexcitability and how RNS-dependent posttranslational modifications, represented predominantly by protein S-nitrosylation, mediate, at least in part, the deleterious effects of hyperexcitability on single neurons and the neural network, resulting in synaptic loss in AD.
Collapse
Affiliation(s)
- Swagata Ghatak
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India
| | - Tomohiro Nakamura
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States,*Correspondence: Tomohiro Nakamura,
| | - Stuart A. Lipton
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States,Department of Neurosciences, School of Medicine, University of California, San Diego, La Jolla, CA, United States,Stuart A. Lipton,
| |
Collapse
|
9
|
Abstract
Nutrients can impact and regulate cellular metabolism and cell function which is particularly important for the activation and function of diverse immune subsets. Among the critical nutrients for immune cell function and fate, glutamine is possibly the most widely recognised immunonutrient, playing key roles in TCA cycle, heat shock protein responses and antioxidant systems. In addition, glutamine is also involved with inter-organ ammonia transport, and this is particularly important for not only immune cells, but also to the brain, especially in catabolic situations such as critical care and extenuating exercise. The well characterised fall in blood glutamine availability has been the main reason for studies to investigate the possible effects of glutamine replacement via supplementation but many of the results are in poor agreement. At the same time, a range of complex pathways involved in glutamine metabolism have been revealed via supplementation studies. This article will briefly review the function of glutamine in the immune system, with emphasis on metabolic mechanisms, and the emerging role of glutamine in the brain glutamate/gamma-amino butyric acid cycle. In addition, relevant aspects of glutamine supplementation are discussed.
Collapse
|
10
|
Liu S, Kormos BL, Knafels JD, Sahasrabudhe PV, Rosado A, Sommese RF, Reyes AR, Ward J, Roth Flach RJ, Wang X, Buzon LM, Reese MR, Bhattacharya SK, Omoto K, Filipski KJ. Structural studies identify angiotensin II receptor blocker-like compounds as branched-chain ketoacid dehydrogenase kinase inhibitors. J Biol Chem 2023; 299:102959. [PMID: 36717078 PMCID: PMC9976451 DOI: 10.1016/j.jbc.2023.102959] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 01/19/2023] [Accepted: 01/25/2023] [Indexed: 01/30/2023] Open
Abstract
The mammalian mitochondrial branched-chain ketoacid dehydrogenase (BCKD) complex is a multienzyme complex involved in the catabolism of branched-chain amino acids. BCKD is regulated by the BCKD kinase, or BCKDK, which binds to the E2 subunit of BCKD, phosphorylates its E1 subunit, and inhibits enzymatic activity. Inhibition of the BCKD complex results in increased levels of branched-chain amino acids and branched-chain ketoacids, and this buildup has been associated with heart failure, type 2 diabetes mellitus, and nonalcoholic fatty liver disease. To find BCKDK inhibitors for potential treatment of these diseases, we performed both NMR and virtual fragment screening and identified tetrazole-bearing fragments that bind BCKDK at multiple sites. Through structure-based virtual screening expanding from these fragments, the angiotensin receptor blocker class antihypertension drugs and angiotensin receptor blocker-like compounds were discovered to be potent BCKDK inhibitors, suggesting potential new avenues for heart failure treatment combining BCKDK inhibition and antihypertension.
Collapse
Affiliation(s)
- Shenping Liu
- Medicine Design, Pfizer Inc, Groton, Connecticut, USA.
| | | | | | | | - Amy Rosado
- Medicine Design, Pfizer Inc, Groton, Connecticut, USA
| | | | - Allan R Reyes
- Internal Medicine Research Unit, Pfizer Inc, Cambridge, Massachusetts, USA
| | - Jessica Ward
- Internal Medicine Research Unit, Pfizer Inc, Cambridge, Massachusetts, USA
| | | | - Xiaochun Wang
- Medicine Design, Pfizer Inc, Groton, Connecticut, USA
| | | | | | | | - Kiyoyuki Omoto
- Medicine Design, Pfizer Inc, Cambridge, Massachusetts, USA
| | | |
Collapse
|
11
|
Andersen JV, Schousboe A, Verkhratsky A. Astrocyte energy and neurotransmitter metabolism in Alzheimer's disease: integration of the glutamate/GABA-glutamine cycle. Prog Neurobiol 2022; 217:102331. [PMID: 35872221 DOI: 10.1016/j.pneurobio.2022.102331] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 02/06/2023]
Abstract
Astrocytes contribute to the complex cellular pathology of Alzheimer's disease (AD). Neurons and astrocytes function in close collaboration through neurotransmitter recycling, collectively known as the glutamate/GABA-glutamine cycle, which is essential to sustain neurotransmission. Neurotransmitter recycling is intimately linked to astrocyte energy metabolism. In the course of AD, astrocytes undergo extensive metabolic remodeling, which may profoundly affect the glutamate/GABA-glutamine cycle. The consequences of altered astrocyte function and metabolism in relation to neurotransmitter recycling are yet to be comprehended. Metabolic alterations of astrocytes in AD deprive neurons of metabolic support, thereby contributing to synaptic dysfunction and neurodegeneration. In addition, several astrocyte-specific components of the glutamate/GABA-glutamine cycle, including glutamine synthesis and synaptic neurotransmitter uptake, are perturbed in AD. Integration of the complex astrocyte biology within the context of AD is essential for understanding the fundamental mechanisms of the disease, while restoring astrocyte metabolism may serve as an approach to arrest or even revert clinical progression of AD.
Collapse
Affiliation(s)
- Jens V Andersen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
| | - Arne Schousboe
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK; Achucarro Center for Neuroscience, IKERBASQUE, 48011 Bilbao, Spain; Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102 Vilnius, Lithuania.
| |
Collapse
|
12
|
Aldosari DI, Malik A, Alhomida AS, Ola MS. Implications of Diabetes-Induced Altered Metabolites on Retinal Neurodegeneration. Front Neurosci 2022; 16:938029. [PMID: 35911994 PMCID: PMC9328693 DOI: 10.3389/fnins.2022.938029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/09/2022] [Indexed: 11/13/2022] Open
Abstract
Diabetic retinopathy (DR) is one of the major complications of diabetic eye diseases, causing vision loss and blindness worldwide. The concept of diabetic retinopathy has evolved from microvascular disease into more complex neurovascular disorders. Early in the disease progression of diabetes, the neuronal and glial cells are compromised before any microvascular abnormalities clinically detected by the ophthalmoscopic examination. This implies understanding the pathophysiological mechanisms at the early stage of disease progression especially due to diabetes-induced metabolic alterations to damage the neural retina so that early intervention and treatments options can be identified to prevent and inhibit the progression of DR. Hyperglycemia has been widely considered the major contributor to the progression of the retinal damage, even though tight control of glucose does not seem to have a bigger effect on the incidence or progression of retinal damage that leads to DR. Emerging evidence suggests that besides diabetes-induced hyperglycemia, dyslipidemia and amino acid defects might be a major contributor to the progression of early neurovascular retinal damage. In this review, we have discussed recent advances in the alterations of key metabolites of carbohydrate, lipid, and amino acids and their implications for neurovascular damage in DR.
Collapse
|
13
|
Koper K, Han SW, Pastor DC, Yoshikuni Y, Maeda HA. Evolutionary Origin and Functional Diversification of Aminotransferases. J Biol Chem 2022; 298:102122. [PMID: 35697072 PMCID: PMC9309667 DOI: 10.1016/j.jbc.2022.102122] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 11/30/2022] Open
Abstract
Aminotransferases (ATs) are pyridoxal 5′-phosphate–dependent enzymes that catalyze the transamination reactions between amino acid donor and keto acid acceptor substrates. Modern AT enzymes constitute ∼2% of all classified enzymatic activities, play central roles in nitrogen metabolism, and generate multitude of primary and secondary metabolites. ATs likely diverged into four distinct AT classes before the appearance of the last universal common ancestor and further expanded to a large and diverse enzyme family. Although the AT family underwent an extensive functional specialization, many AT enzymes retained considerable substrate promiscuity and multifunctionality because of their inherent mechanistic, structural, and functional constraints. This review summarizes the evolutionary history, diverse metabolic roles, reaction mechanisms, and structure–function relationships of the AT family enzymes, with a special emphasis on their substrate promiscuity and multifunctionality. Comprehensive characterization of AT substrate specificity is still needed to reveal their true metabolic functions in interconnecting various branches of the nitrogen metabolic network in different organisms.
Collapse
Affiliation(s)
- Kaan Koper
- Department of Botany, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Sang-Woo Han
- The US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | - Yasuo Yoshikuni
- The US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Global Center for Food, Land, and Water Resources, Research Faculty of Agriculture, Hokkaido University, Hokkaido 060-8589, Japan
| | - Hiroshi A Maeda
- Department of Botany, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
14
|
Is the Brain Undernourished in Alzheimer's Disease? Nutrients 2022; 14:nu14091872. [PMID: 35565839 PMCID: PMC9102563 DOI: 10.3390/nu14091872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 01/27/2023] Open
Abstract
Cerebrospinal fluid (CSF) amino acid (AA) levels and CSF/plasma AA ratios in Alzheimer Disease (AD) in relation to nutritional state are not known. Methods: In 30 fasting patients with AD (46% males, 74.4 ± 8.2 years; 3.4 ± 3.2 years from diagnosis) and nine control (CTRL) matched subjects, CSF and venous blood samples were drawn for AA measurements. Patients were stratified according to nutritional state (Mini Nutritional Assessment, MNA, scores). Results: Total CSF/plasma AA ratios were lower in the AD subpopulations than in NON-AD (p < 0.003 to 0.017. In combined malnourished (16.7%; MNA < 17) and at risk for malnutrition (36.6%, MNA 17−24) groups (CG), compared to CTRL, all essential amino acids (EAAs) and 30% of non-EAAs were lower (p < 0.018 to 0.0001), whereas in normo-nourished ADs (46.7%, MNA > 24) the CSF levels of 10% of EAAs and 25% of NON-EAAs were decreased (p < 0.05 to 0.00021). CG compared to normo-nourished ADs, had lower CSF aspartic acid, glutamic acid and Branched-Chain AA levels (all, p < 0.05 to 0.003). CSF/plasma AA ratios were <1 in NON-AD but even lower in the AD population. Conclusions: Compared to CTRL, ADs had decreased CSF AA Levels and CSF/plasma AA ratios, the degree of which depended on nutritional state.
Collapse
|
15
|
Boemer F, Josse C, Luis G, Di Valentin E, Thiry J, Cello C, Caberg JH, Dadoumont C, Harvengt J, Lumaka A, Bours V, Debray FG. Novel Loss of Function Variant in BCKDK Causes a Treatable Developmental and Epileptic Encephalopathy. Int J Mol Sci 2022; 23:ijms23042253. [PMID: 35216372 PMCID: PMC8878489 DOI: 10.3390/ijms23042253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/10/2022] [Accepted: 02/16/2022] [Indexed: 12/19/2022] Open
Abstract
Branched-chain amino acids (BCAA) are essential amino acids playing crucial roles in protein synthesis and brain neurotransmission. Branched-chain ketoacid dehydrogenase (BCKDH), the flux-generating step of BCAA catabolism, is tightly regulated by reversible phosphorylation of its E1α-subunit. BCKDK is the kinase responsible for the phosphorylation-mediated inactivation of BCKDH. In three siblings with severe developmental delays, microcephaly, autism spectrum disorder and epileptic encephalopathy, we identified a new homozygous in-frame deletion (c.999_1001delCAC; p.Thr334del) of BCKDK. Plasma and cerebrospinal fluid concentrations of BCAA were markedly reduced. Hyperactivity of BCKDH and over-consumption of BCAA were demonstrated by functional tests in cells transfected with the mutant BCKDK. Treatment with pharmacological doses of BCAA allowed the restoring of BCAA concentrations and greatly improved seizure control. Behavioral and developmental skills of the patients improved to a lesser extent. Importantly, a retrospective review of the newborn screening results allowed the identification of a strong decrease in BCAA concentrations on dried blood spots, suggesting that BCKDK is a new treatable metabolic disorder probably amenable to newborn screening programs.
Collapse
Affiliation(s)
- François Boemer
- Biochemical Genetics Laboratory, Department of Human Genetics, CHU of Liege, University of Liege, 4000 Liege, Belgium; (G.L.); (C.C.)
- Correspondence: ; Tel.: +32-4-366-76-96; Fax: +32-4-366-84-74
| | - Claire Josse
- Department of Medical Oncology, CHU of Liege, University of Liege, 4000 Liege, Belgium; (C.J.); (J.T.)
- Laboratory of Human Genetics, Department of Biomedical and Preclinical Sciences, Groupe Interdisciplinaire de Génoprotéomique Appliquée-Recherche (GIGA-R), University of Liege, 4000 Liege, Belgium;
| | - Géraldine Luis
- Biochemical Genetics Laboratory, Department of Human Genetics, CHU of Liege, University of Liege, 4000 Liege, Belgium; (G.L.); (C.C.)
| | - Emmanuel Di Valentin
- Viral Vector Platform, Groupe Interdisciplinaire de Génoprotéomique Appliquée-Recherche (GIGA-R), University of Liege, 4000 Liege, Belgium;
| | - Jérôme Thiry
- Department of Medical Oncology, CHU of Liege, University of Liege, 4000 Liege, Belgium; (C.J.); (J.T.)
| | - Christophe Cello
- Biochemical Genetics Laboratory, Department of Human Genetics, CHU of Liege, University of Liege, 4000 Liege, Belgium; (G.L.); (C.C.)
| | - Jean-Hubert Caberg
- Molecular Genetics Laboratory, Department of Human Genetics, CHU of Liege, University of Liege, 4000 Liege, Belgium;
| | | | - Julie Harvengt
- Center of Genetics, Department of Human Genetics, CHU of Liege, University of Liege, 4000 Liege, Belgium; (J.H.); (V.B.)
| | - Aimé Lumaka
- Laboratory of Human Genetics, Department of Biomedical and Preclinical Sciences, Groupe Interdisciplinaire de Génoprotéomique Appliquée-Recherche (GIGA-R), University of Liege, 4000 Liege, Belgium;
| | - Vincent Bours
- Center of Genetics, Department of Human Genetics, CHU of Liege, University of Liege, 4000 Liege, Belgium; (J.H.); (V.B.)
| | - François-Guillaume Debray
- Metabolic Unit, Department of Human Genetics, CHU of Liege, University of Liege, 4000 Liege, Belgium;
| |
Collapse
|
16
|
Shida Y, Endo H, Owada S, Inagaki Y, Sumiyoshi H, Kamiya A, Eto T, Tatemichi M. Branched-chain amino acids govern the high learning ability phenotype in Tokai high avoider (THA) rats. Sci Rep 2021; 11:23104. [PMID: 34845278 PMCID: PMC8630195 DOI: 10.1038/s41598-021-02591-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 11/19/2021] [Indexed: 11/09/2022] Open
Abstract
To fully understand the mechanisms governing learning and memory, animal models with minor interindividual variability and higher cognitive function are required. THA rats established by crossing those with high learning capacity exhibit excellent learning and memory abilities, but the factors underlying their phenotype are completely unknown. In the current study, we compare the hippocampi of parental strain Wistar rats to those of THA rats via metabolomic analysis in order to identify molecules specific to the THA rat hippocampus. Higher branched-chain amino acid (BCAA) levels and enhanced activation of BCAA metabolism-associated enzymes were observed in THA rats, suggesting that acetyl-CoA and acetylcholine are synthesized through BCAA catabolism. THA rats maintained high blood BCAA levels via uptake of BCAAs in the small intestine and suppression of BCAA catabolism in the liver. Feeding THA rats with a BCAA-reduced diet decreased acetylcholine levels and learning ability, thus, maintaining high BCAA levels while their proper metabolism in the hippocampus is the mechanisms underlying the high learning ability in THA rats. Identifying appropriate BCAA nutritional supplements and activation methods may thus hold potential for the prevention and amelioration of higher brain dysfunction, including learning disabilities and dementia.
Collapse
Affiliation(s)
- Yukari Shida
- Center for Molecular Prevention and Environmental Medicine, Department of Preventive Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Hitoshi Endo
- Center for Molecular Prevention and Environmental Medicine, Department of Preventive Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan.
| | - Satoshi Owada
- Center for Molecular Prevention and Environmental Medicine, Department of Preventive Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Yutaka Inagaki
- Center for Matrix Biology and Medicine, Department of Innovative Medical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Hideaki Sumiyoshi
- Center for Matrix Biology and Medicine, Department of Innovative Medical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Akihide Kamiya
- Department of Molecular Life Sciences, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Tomoo Eto
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-0821, Japan
| | - Masayuki Tatemichi
- Center for Molecular Prevention and Environmental Medicine, Department of Preventive Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| |
Collapse
|
17
|
Salcedo C, Andersen JV, Vinten KT, Pinborg LH, Waagepetersen HS, Freude KK, Aldana BI. Functional Metabolic Mapping Reveals Highly Active Branched-Chain Amino Acid Metabolism in Human Astrocytes, Which Is Impaired in iPSC-Derived Astrocytes in Alzheimer's Disease. Front Aging Neurosci 2021; 13:736580. [PMID: 34603012 PMCID: PMC8484639 DOI: 10.3389/fnagi.2021.736580] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/04/2021] [Indexed: 01/04/2023] Open
Abstract
The branched-chain amino acids (BCAAs) leucine, isoleucine, and valine are important nitrogen donors for synthesis of glutamate, the main excitatory neurotransmitter in the brain. The glutamate carbon skeleton originates from the tricarboxylic acid (TCA) cycle intermediate α-ketoglutarate, while the amino group is derived from nitrogen donors such as the BCAAs. Disturbances in neurotransmitter homeostasis, mainly of glutamate, are strongly implicated in the pathophysiology of Alzheimer's disease (AD). The divergent BCAA metabolism in different cell types of the human brain is poorly understood, and so is the involvement of astrocytic and neuronal BCAA metabolism in AD. The goal of this study is to provide the first functional characterization of BCAA metabolism in human brain tissue and to investigate BCAA metabolism in AD pathophysiology using astrocytes and neurons derived from human-induced pluripotent stem cells (hiPSCs). Mapping of BCAA metabolism was performed using mass spectrometry and enriched [15N] and [13C] isotopes of leucine, isoleucine, and valine in acutely isolated slices of surgically resected cerebral cortical tissue from human brain and in hiPSC-derived brain cells carrying mutations in either amyloid precursor protein (APP) or presenilin-1 (PSEN-1). We revealed that both human astrocytes of acutely isolated cerebral cortical slices and hiPSC-derived astrocytes were capable of oxidatively metabolizing the carbon skeleton of BCAAs, particularly to support glutamine synthesis. Interestingly, hiPSC-derived astrocytes with APP and PSEN-1 mutations exhibited decreased amino acid synthesis of glutamate, glutamine, and aspartate derived from leucine metabolism. These results clearly demonstrate that there is an active BCAA metabolism in human astrocytes, and that leucine metabolism is selectively impaired in astrocytes derived from the hiPSC models of AD. This impairment in astrocytic BCAA metabolism may contribute to neurotransmitter and energetic imbalances in the AD brain.
Collapse
Affiliation(s)
- Claudia Salcedo
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens V Andersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kasper Tore Vinten
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lars H Pinborg
- Epilepsy Clinic and Neurobiology Research Unit, Copenhagen University Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Helle S Waagepetersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kristine K Freude
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Blanca I Aldana
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
18
|
Mann G, Mora S, Madu G, Adegoke OAJ. Branched-chain Amino Acids: Catabolism in Skeletal Muscle and Implications for Muscle and Whole-body Metabolism. Front Physiol 2021; 12:702826. [PMID: 34354601 PMCID: PMC8329528 DOI: 10.3389/fphys.2021.702826] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/24/2021] [Indexed: 12/20/2022] Open
Abstract
Branched-chain amino acids (BCAAs) are critical for skeletal muscle and whole-body anabolism and energy homeostasis. They also serve as signaling molecules, for example, being able to activate mammalian/mechanistic target of rapamycin complex 1 (mTORC1). This has implication for macronutrient metabolism. However, elevated circulating levels of BCAAs and of their ketoacids as well as impaired catabolism of these amino acids (AAs) are implicated in the development of insulin resistance and its sequelae, including type 2 diabetes, cardiovascular disease, and of some cancers, although other studies indicate supplements of these AAs may help in the management of some chronic diseases. Here, we first reviewed the catabolism of these AAs especially in skeletal muscle as this tissue contributes the most to whole body disposal of the BCAA. We then reviewed emerging mechanisms of control of enzymes involved in regulating BCAA catabolism. Such mechanisms include regulation of their abundance by microRNA and by post translational modifications such as phosphorylation, acetylation, and ubiquitination. We also reviewed implications of impaired metabolism of BCAA for muscle and whole-body metabolism. We comment on outstanding questions in the regulation of catabolism of these AAs, including regulation of the abundance and post-transcriptional/post-translational modification of enzymes that regulate BCAA catabolism, as well the impact of circadian rhythm, age and mTORC1 on these enzymes. Answers to such questions may facilitate emergence of treatment/management options that can help patients suffering from chronic diseases linked to impaired metabolism of the BCAAs.
Collapse
Affiliation(s)
| | | | | | - Olasunkanmi A. J. Adegoke
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| |
Collapse
|
19
|
Andersen JV, Markussen KH, Jakobsen E, Schousboe A, Waagepetersen HS, Rosenberg PA, Aldana BI. Glutamate metabolism and recycling at the excitatory synapse in health and neurodegeneration. Neuropharmacology 2021; 196:108719. [PMID: 34273389 DOI: 10.1016/j.neuropharm.2021.108719] [Citation(s) in RCA: 180] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/01/2021] [Accepted: 07/13/2021] [Indexed: 02/08/2023]
Abstract
Glutamate is the primary excitatory neurotransmitter of the brain. Cellular homeostasis of glutamate is of paramount importance for normal brain function and relies on an intricate metabolic collaboration between neurons and astrocytes. Glutamate is extensively recycled between neurons and astrocytes in a process known as the glutamate-glutamine cycle. The recycling of glutamate is closely linked to brain energy metabolism and is essential to sustain glutamatergic neurotransmission. However, a considerable amount of glutamate is also metabolized and serves as a metabolic hub connecting glucose and amino acid metabolism in both neurons and astrocytes. Disruptions in glutamate clearance, leading to neuronal overstimulation and excitotoxicity, have been implicated in several neurodegenerative diseases. Furthermore, the link between brain energy homeostasis and glutamate metabolism is gaining attention in several neurological conditions. In this review, we provide an overview of the dynamics of synaptic glutamate homeostasis and the underlying metabolic processes with a cellular focus on neurons and astrocytes. In particular, we review the recently discovered role of neuronal glutamate uptake in synaptic glutamate homeostasis and discuss current advances in cellular glutamate metabolism in the context of Alzheimer's disease and Huntington's disease. Understanding the intricate regulation of glutamate-dependent metabolic processes at the synapse will not only increase our insight into the metabolic mechanisms of glutamate homeostasis, but may reveal new metabolic targets to ameliorate neurodegeneration.
Collapse
Affiliation(s)
- Jens V Andersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| | - Kia H Markussen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Emil Jakobsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Arne Schousboe
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Helle S Waagepetersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Paul A Rosenberg
- Department of Neurology and the F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA; Program in Neuroscience, Harvard Medical School, Boston, MA, USA
| | - Blanca I Aldana
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
20
|
Manta-Vogli PD, Schulpis KH, Loukas YL, Dotsikas Y. Birth weight related essential, non-essential and conditionally essential amino acid blood concentrations in 12,000 breastfed full-term infants perinatally. Scandinavian Journal of Clinical and Laboratory Investigation 2020; 80:571-579. [DOI: 10.1080/00365513.2020.1818280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Penelope D. Manta-Vogli
- Department of Clinical Nutrition & Dietetics, Agia Sofia Children’s Hospital, Athens, Greece
| | | | - Yannis L. Loukas
- Laboratory of Pharmaceutical Analysis, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Yannis Dotsikas
- Laboratory of Pharmaceutical Analysis, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
21
|
Parksepp M, Leppik L, Koch K, Uppin K, Kangro R, Haring L, Vasar E, Zilmer M. Metabolomics approach revealed robust changes in amino acid and biogenic amine signatures in patients with schizophrenia in the early course of the disease. Sci Rep 2020; 10:13983. [PMID: 32814830 PMCID: PMC7438522 DOI: 10.1038/s41598-020-71014-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 08/04/2020] [Indexed: 02/06/2023] Open
Abstract
The primary objective of this study was to evaluate how schizophrenia (SCH) spectrum disorders and applied antipsychotic (AP) treatment affect serum level of amino acids (AAs) and biogenic amines (BAs) in the early course of the disorder. We measured 21 different AAs and 10 BAs in a sample of antipsychotic (AP)-naïve first-episode psychosis (FEP) patients (n = 52) at baseline, after 0.6-year as well as after 5.1-year treatment compared to control subjects (CSs, n = 37). Serum levels of metabolites were determined with AbsoluteIDQ p180 kit using flow injection analysis tandem mass spectrometry and liquid chromatography technique. Elevated level of taurine and reduced level of proline and alpha-aminoadipic acid (alpha-AAA) were established as metabolites with significant change in AP-naïve FEP patients compared to CSs. The following 0.6-year treatment restored these alterations. However, further continuous 5.1-year AP treatment changed the metabolic profile substantially. Significantly elevated levels of asparagine, glutamine, methionine, ornithine and taurine, alongside with decreased levels of aspartate, glutamate and alpha-AAA were observed in the patient group compared to CSs. These biomolecule profile alterations provide further insights into the pathophysiology of SCH spectrum disorders and broaden our understanding of the impact of AP treatment in the early stages of the disease.
Collapse
Affiliation(s)
- Madis Parksepp
- Department of Psychiatry, Institute of Clinical Medicine, University of Tartu, 31 Raja Street, 50417, Tartu, Estonia
- Psychiatry Clinic of Viljandi Hospital, 6 Pargi tee Street, 71024, Viljandi County, Estonia
| | - Liisa Leppik
- Psychiatry Clinic of Viljandi Hospital, 6 Pargi tee Street, 71024, Viljandi County, Estonia
| | - Kadri Koch
- Psychiatry Clinic of Tartu University Hospital, 31 Raja Street, 50417, Tartu, Estonia
| | - Kärt Uppin
- Psychiatry Clinic of Tartu University Hospital, 31 Raja Street, 50417, Tartu, Estonia
| | - Raul Kangro
- Institute of Mathematics and Statistics, University of Tartu, 18 Narva mnt, 51009, Tartu, Estonia
| | - Liina Haring
- Department of Psychiatry, Institute of Clinical Medicine, University of Tartu, 31 Raja Street, 50417, Tartu, Estonia.
- Psychiatry Clinic of Tartu University Hospital, 31 Raja Street, 50417, Tartu, Estonia.
- Institute of Biomedicine and Translational Medicine, Centre of Excellence for Genomics and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia.
| | - Eero Vasar
- Institute of Biomedicine and Translational Medicine, Centre of Excellence for Genomics and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| | - Mihkel Zilmer
- Institute of Biomedicine and Translational Medicine, Centre of Excellence for Genomics and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| |
Collapse
|
22
|
Mizusawa A, Watanabe A, Yamada M, Kamei R, Shimomura Y, Kitaura Y. BDK Deficiency in Cerebral Cortex Neurons Causes Neurological Abnormalities and Affects Endurance Capacity. Nutrients 2020; 12:nu12082267. [PMID: 32751134 PMCID: PMC7469005 DOI: 10.3390/nu12082267] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 12/26/2022] Open
Abstract
Branched-chain amino acid (BCAA) catabolism is regulated by its rate-limiting enzyme, branched-chain α-keto acid dehydrogenase (BCKDH), which is negatively regulated by BCKDH kinase (BDK). Loss of BDK function in mice and humans leads to dysregulated BCAA catabolism accompanied by neurological symptoms such as autism; however, which tissues or cell types are responsible for the phenotype has not been determined. Since BDK is highly expressed in neurons compared to astrocytes, we hypothesized that neurons are the cell type responsible for determining the neurological features of BDK deficiency. To test this hypothesis, we generated mice in which BDK deletion is restricted to neurons of the cerebral cortex (BDKEmx1-KO mice). Although BDKEmx1-KO mice were born and grew up normally, they showed clasped hind limbs when held by the tail and lower brain BCAA concentrations compared to control mice. Furthermore, these mice showed a marked increase in endurance capacity after training compared to control mice. We conclude that BDK in neurons of the cerebral cortex is essential for maintaining normal neurological functions in mice, and that accelerated BCAA catabolism in that region may enhance performance in running endurance following training.
Collapse
Affiliation(s)
- Anna Mizusawa
- Laboratory of Nutritional Biochemistry, Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan; (A.M.); (A.W.); (M.Y.); (R.K.)
| | - Ayako Watanabe
- Laboratory of Nutritional Biochemistry, Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan; (A.M.); (A.W.); (M.Y.); (R.K.)
| | - Minori Yamada
- Laboratory of Nutritional Biochemistry, Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan; (A.M.); (A.W.); (M.Y.); (R.K.)
| | - Rina Kamei
- Laboratory of Nutritional Biochemistry, Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan; (A.M.); (A.W.); (M.Y.); (R.K.)
| | - Yoshiharu Shimomura
- Department of Food and Nutritional Sciences, College of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi 487-8501, Japan;
| | - Yasuyuki Kitaura
- Laboratory of Nutritional Biochemistry, Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan; (A.M.); (A.W.); (M.Y.); (R.K.)
- Correspondence:
| |
Collapse
|
23
|
Shafei MA, Forshaw T, Davis J, Flemban A, Qualtrough D, Dean S, Perks C, Dong M, Newman R, Conway ME. BCATc modulates crosstalk between the PI3K/Akt and the Ras/ERK pathway regulating proliferation in triple negative breast cancer. Oncotarget 2020; 11:1971-1987. [PMID: 32523652 PMCID: PMC7260123 DOI: 10.18632/oncotarget.27607] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/14/2020] [Indexed: 12/12/2022] Open
Abstract
The cytosolic branched chain aminotransferase (BCATc) protein has been found to be highly expressed in breast cancer subtypes, including triple negative breast cancer (TNBC), compared with normal breast tissue. The catabolism of branched-chain amino acids (BCAAs) by BCATc leads to the production of glutamate and key metabolites which further drive the TCA cycle, important for cellular metabolism and growth. Upregulation of BCATc has been associated with increased cell proliferation, cell cycle progression and metastasis in several malignancies including breast, gliomas, ovarian and colorectal cancer but the underlying mechanisms are unclear. As nutrient levels of BCAAs, substrates of BCATc, regulate the PI3K/Akt pathway we hypothesized that increased expression of BCATc would contribute to tumour cell growth through upregulation of the insulin/IGF-1 signalling pathway. This pathway is known to potentiate proliferation and metastasis of malignant cells through the activation of PI3K/Akt and the RAS/ERK signalling cascades. Here we show that knockdown of BCATc significantly reduced insulin and IGF-1-mediated proliferation, migration and invasion of TNBC cells. An analysis of this pathway showed that when overexpressed BCATc regulates proliferation through the PI3K/Akt axis, whilst simultaneously attenuating the Ras/Erk pathway indicating that BCATc acts as a conduit between these two pathways. This ultimately led to an increase in FOXO3a, a key regulator of cell proliferation and Nrf2, which mediates redox homeostasis. Together this data indicates that BCATc regulates TNBC cell proliferation, migration and invasion through the IGF-1/insulin PI3K/Akt pathway, culminating in the upregulation of FOXO3a and Nrf2, pointing to a novel therapeutic target for breast cancer treatment.
Collapse
Affiliation(s)
- Mai Ahmed Shafei
- Faculty of Health and Applied Sciences, University of the West of England, Coldharbor Lane, Bristol, UK
| | - Thomas Forshaw
- Faculty of Health and Applied Sciences, University of the West of England, Coldharbor Lane, Bristol, UK
| | - Jasmine Davis
- Faculty of Health and Applied Sciences, University of the West of England, Coldharbor Lane, Bristol, UK
| | - Arwa Flemban
- Faculty of Health and Applied Sciences, University of the West of England, Coldharbor Lane, Bristol, UK
| | - David Qualtrough
- Faculty of Health and Applied Sciences, University of the West of England, Coldharbor Lane, Bristol, UK
| | - Sarah Dean
- Faculty of Health and Applied Sciences, University of the West of England, Coldharbor Lane, Bristol, UK
| | - Claire Perks
- IGFs and Metabolic Endocrinology Group, University of Bristol, Bristol Medical School, Bristol, UK
| | - Ming Dong
- Department of Chemistry, North Carolina Agricultural and Technical State University, Greensboro, NC, USA
| | - Robert Newman
- Department of Biology, North Carolina Agricultural and Technical State University, Greensboro, NC, USA
| | - Myra Elizabeth Conway
- Faculty of Health and Applied Sciences, University of the West of England, Coldharbor Lane, Bristol, UK
| |
Collapse
|
24
|
Harris M, El Hindy M, Usmari-Moraes M, Hudd F, Shafei M, Dong M, Hezwani M, Clark P, House M, Forshaw T, Kehoe P, Conway ME. BCAT-induced autophagy regulates Aβ load through an interdependence of redox state and PKC phosphorylation-implications in Alzheimer's disease. Free Radic Biol Med 2020; 152:755-766. [PMID: 31982508 DOI: 10.1016/j.freeradbiomed.2020.01.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/16/2020] [Accepted: 01/16/2020] [Indexed: 01/09/2023]
Abstract
Leucine, nutrient signal and substrate for the branched chain aminotransferase (BCAT) activates the mechanistic target of rapamycin (mTORC1) and regulates autophagic flux, mechanisms implicated in the pathogenesis of neurodegenerative conditions such as Alzheimer's disease (AD). BCAT is upregulated in AD, where a moonlighting role, imparted through its redox-active CXXC motif, has been suggested. Here we demonstrate that the redox state of BCAT signals differential phosphorylation by protein kinase C (PKC) regulating the trafficking of cellular pools of BCAT. We show inter-dependence of BCAT expression and proteins associated with the P13K/Akt/mTORC1 and autophagy signalling pathways. In response to insulin or an increase in ROS, BCATc is trafficked to the membrane and docks via palmitoylation, which is associated with BCATc-induced autophagy through PKC phosphorylation. In response to increased levels of BCATc, as observed in AD, amyloid β (Aβ) levels accumulate due to a shift in autophagic flux. This effect was diminished when incubated with leucine, indicating that dietary levels of amino acids show promise in regulating Aβ load. Together these findings show that increased BCATc expression, reported in human AD brain, will affect autophagy and Aβ load through the interdependence of its redox-regulated phosphorylation offering a novel target to address AD pathology.
Collapse
Affiliation(s)
- M Harris
- Faculty of Health and Applied Sciences, University of the West of England, Coldharbor Lane, Bristol, BS16 1QY, UK
| | - M El Hindy
- Faculty of Health and Applied Sciences, University of the West of England, Coldharbor Lane, Bristol, BS16 1QY, UK
| | - M Usmari-Moraes
- Faculty of Health and Applied Sciences, University of the West of England, Coldharbor Lane, Bristol, BS16 1QY, UK
| | - F Hudd
- Faculty of Health and Applied Sciences, University of the West of England, Coldharbor Lane, Bristol, BS16 1QY, UK
| | - M Shafei
- Faculty of Health and Applied Sciences, University of the West of England, Coldharbor Lane, Bristol, BS16 1QY, UK
| | - M Dong
- Department of Chemistry, North Carolina Agricultural and Technical State University, Market Street, Greensboro, NC, 27411, USA
| | - M Hezwani
- Faculty of Health and Applied Sciences, University of the West of England, Coldharbor Lane, Bristol, BS16 1QY, UK
| | - P Clark
- Faculty of Health and Applied Sciences, University of the West of England, Coldharbor Lane, Bristol, BS16 1QY, UK
| | - M House
- Faculty of Health and Applied Sciences, University of the West of England, Coldharbor Lane, Bristol, BS16 1QY, UK
| | - T Forshaw
- Faculty of Health and Applied Sciences, University of the West of England, Coldharbor Lane, Bristol, BS16 1QY, UK
| | - P Kehoe
- Institute of Clinical Neurosciences, Learning and Research Building, Southmead Hospital, Bristol, United Kingdom
| | - M E Conway
- Faculty of Health and Applied Sciences, University of the West of England, Coldharbor Lane, Bristol, BS16 1QY, UK.
| |
Collapse
|
25
|
Conway ME. Alzheimer's disease: targeting the glutamatergic system. Biogerontology 2020; 21:257-274. [PMID: 32048098 PMCID: PMC7196085 DOI: 10.1007/s10522-020-09860-4] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/29/2020] [Indexed: 12/21/2022]
Abstract
Alzheimer’s disease (AD) is a debilitating neurodegenerative disease that causes a progressive decline in memory, language and problem solving. For decades mechanism-based therapies have primarily focused on amyloid β (Aβ) processing and pathways that govern neurofibrillary tangle generation. With the potential exception to Aducanumab, a monotherapy to target Aβ, clinical trials in these areas have been challenging and have failed to demonstrate efficacy. Currently, the prescribed therapies for AD are those that target the cholinesterase and glutamatergic systems that can moderately reduce cognitive decline, dependent on the individual. In the brain, over 40% of neuronal synapses are glutamatergic, where the glutamate level is tightly regulated through metabolite exchange in neuronal, astrocytic and endothelial cells. In AD brain, Aβ can interrupt effective glutamate uptake by astrocytes, which evokes a cascade of events that leads to neuronal swelling, destruction of membrane integrity and ultimately cell death. Much work has focussed on the post-synaptic response with little insight into how glutamate is regulated more broadly in the brain and the influence of anaplerotic pathways that finely tune these mechanisms. The role of blood branched chain amino acids (BCAA) in regulating neurotransmitter profiles under disease conditions also warrant discussion. Here, we review the importance of the branched chain aminotransferase proteins in regulating brain glutamate and the potential consequence of dysregulated metabolism in the context of BCAA or glutamate accumulation. We explore how the reported benefits of BCAA supplementation or restriction in improving cognitive function in other neurological diseases may have potential application in AD. Given that memantine, the glutamate receptor agonist, shows clinical relevance it is now timely to research related pathways, an understanding of which could identify novel approaches to treatment of AD.
Collapse
Affiliation(s)
- Myra E Conway
- Faculty of Health and Applied Sciences, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK. .,Faculty of Health and Life Sciences, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK.
| |
Collapse
|
26
|
Cryan JF, O'Riordan KJ, Cowan CSM, Sandhu KV, Bastiaanssen TFS, Boehme M, Codagnone MG, Cussotto S, Fulling C, Golubeva AV, Guzzetta KE, Jaggar M, Long-Smith CM, Lyte JM, Martin JA, Molinero-Perez A, Moloney G, Morelli E, Morillas E, O'Connor R, Cruz-Pereira JS, Peterson VL, Rea K, Ritz NL, Sherwin E, Spichak S, Teichman EM, van de Wouw M, Ventura-Silva AP, Wallace-Fitzsimons SE, Hyland N, Clarke G, Dinan TG. The Microbiota-Gut-Brain Axis. Physiol Rev 2019; 99:1877-2013. [PMID: 31460832 DOI: 10.1152/physrev.00018.2018] [Citation(s) in RCA: 2450] [Impact Index Per Article: 408.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The importance of the gut-brain axis in maintaining homeostasis has long been appreciated. However, the past 15 yr have seen the emergence of the microbiota (the trillions of microorganisms within and on our bodies) as one of the key regulators of gut-brain function and has led to the appreciation of the importance of a distinct microbiota-gut-brain axis. This axis is gaining ever more traction in fields investigating the biological and physiological basis of psychiatric, neurodevelopmental, age-related, and neurodegenerative disorders. The microbiota and the brain communicate with each other via various routes including the immune system, tryptophan metabolism, the vagus nerve and the enteric nervous system, involving microbial metabolites such as short-chain fatty acids, branched chain amino acids, and peptidoglycans. Many factors can influence microbiota composition in early life, including infection, mode of birth delivery, use of antibiotic medications, the nature of nutritional provision, environmental stressors, and host genetics. At the other extreme of life, microbial diversity diminishes with aging. Stress, in particular, can significantly impact the microbiota-gut-brain axis at all stages of life. Much recent work has implicated the gut microbiota in many conditions including autism, anxiety, obesity, schizophrenia, Parkinson’s disease, and Alzheimer’s disease. Animal models have been paramount in linking the regulation of fundamental neural processes, such as neurogenesis and myelination, to microbiome activation of microglia. Moreover, translational human studies are ongoing and will greatly enhance the field. Future studies will focus on understanding the mechanisms underlying the microbiota-gut-brain axis and attempt to elucidate microbial-based intervention and therapeutic strategies for neuropsychiatric disorders.
Collapse
Affiliation(s)
- John F. Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Kenneth J. O'Riordan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Caitlin S. M. Cowan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Kiran V. Sandhu
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Thomaz F. S. Bastiaanssen
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Marcus Boehme
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Martin G. Codagnone
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Sofia Cussotto
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Christine Fulling
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Anna V. Golubeva
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Katherine E. Guzzetta
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Minal Jaggar
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Caitriona M. Long-Smith
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Joshua M. Lyte
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Jason A. Martin
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Alicia Molinero-Perez
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Gerard Moloney
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Emanuela Morelli
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Enrique Morillas
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Rory O'Connor
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Joana S. Cruz-Pereira
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Veronica L. Peterson
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Kieran Rea
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Nathaniel L. Ritz
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Eoin Sherwin
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Simon Spichak
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Emily M. Teichman
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Marcel van de Wouw
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Ana Paula Ventura-Silva
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Shauna E. Wallace-Fitzsimons
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Niall Hyland
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Timothy G. Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| |
Collapse
|
27
|
Andersen JV, Skotte NH, Aldana BI, Nørremølle A, Waagepetersen HS. Enhanced cerebral branched-chain amino acid metabolism in R6/2 mouse model of Huntington's disease. Cell Mol Life Sci 2019; 76:2449-2461. [PMID: 30830240 PMCID: PMC11105563 DOI: 10.1007/s00018-019-03051-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 01/23/2019] [Accepted: 02/19/2019] [Indexed: 01/01/2023]
Abstract
Huntington's disease (HD) is a hereditary and fatal disease causing profound neurodegeneration. Deficits in cerebral energy and neurotransmitter metabolism have been suggested to play a central role in the neuronal dysfunction and death associated with HD. The branched-chain amino acids (BCAAs), leucine, isoleucine and valine, are important for cerebral nitrogen homeostasis, neurotransmitter recycling and can be utilized as energy substrates in the tricarboxylic acid (TCA) cycle. Reduced levels of BCAAs in HD have been validated by several reports. However, it is still unknown how cerebral BCAA metabolism is regulated in HD. Here we investigate the metabolism of leucine and isoleucine in the R6/2 mouse model of HD. Acutely isolated cerebral cortical and striatal slices of control and R6/2 mice were incubated in media containing 15N- or 13C-labeled leucine or isoleucine and slice extracts were analyzed by gas chromatography-mass spectrometry (GC-MS) to determine isotopic enrichment of derived metabolites. Elevated BCAA transamination was found from incubations with [15N]leucine and [15N]isoleucine, in both cerebral cortical and striatal slices of R6/2 mice compared to controls. Metabolism of [U-13C]leucine and [U-13C]isoleucine, entering oxidative metabolism as acetyl CoA, was maintained in R6/2 mice. However, metabolism of [U-13C]isoleucine, entering the TCA cycle as succinyl CoA, was elevated in both cerebral cortical and striatal slices of R6/2 mice, suggesting enhanced metabolic flux via this anaplerotic pathway. To support the metabolic studies, expression of enzymes in the BCAA metabolic pathway was assessed from a proteomic resource. Several enzymes related to BCAA metabolism were found to exhibit augmented expression in the R6/2 brain, particularly related to isoleucine metabolism, suggesting an increase in the BCAA metabolic machinery. Our results show that the capacity for cerebral BCAA metabolism, predominantly of isoleucine, is amplified in the R6/2 brain and indicates that perturbations in cerebral BCAA homeostasis could have functional consequences for HD pathology.
Collapse
Affiliation(s)
- Jens V Andersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Niels H Skotte
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Blanca I Aldana
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Anne Nørremølle
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Helle S Waagepetersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark.
| |
Collapse
|
28
|
Dolatabad MR, Guo LL, Xiao P, Zhu Z, He QT, Yang DX, Qu CX, Guo SC, Fu XL, Li RR, Ge L, Hu KJ, Liu HD, Shen YM, Yu X, Sun JP, Zhang PJ. Crystal structure and catalytic activity of the PPM1K N94K mutant. J Neurochem 2019; 148:550-560. [DOI: 10.1111/jnc.14631] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 11/02/2018] [Accepted: 11/06/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Meisam Rostaminasab Dolatabad
- Key Laboratory Experimental Teratology of the Ministry of Education; Department of Biochemistry and Molecular Biology; Shandong University School of Medicine; Jinan Shandong China
| | - Lu-lu Guo
- Key Laboratory Experimental Teratology of the Ministry of Education; Department of Biochemistry and Molecular Biology; Shandong University School of Medicine; Jinan Shandong China
| | - Peng Xiao
- Key Laboratory Experimental Teratology of the Ministry of Education; Department of Biochemistry and Molecular Biology; Shandong University School of Medicine; Jinan Shandong China
- Key Laboratory of Chemical Biology; Ministry of Education; Shandong University School of Pharmaceutical Science; Jinan Shandong China
| | - Zhongliang Zhu
- School of Life Sciences; University of Science and Technology of China; Hefei Anhui China
| | - Qing-tao He
- Key Laboratory Experimental Teratology of the Ministry of Education; Department of Biochemistry and Molecular Biology; Shandong University School of Medicine; Jinan Shandong China
| | - Du-xiao Yang
- Key Laboratory Experimental Teratology of the Ministry of Education; Department of Biochemistry and Molecular Biology; Shandong University School of Medicine; Jinan Shandong China
| | - Chang-xiu Qu
- Key Laboratory Experimental Teratology of the Ministry of Education; Department of Biochemistry and Molecular Biology; Shandong University School of Medicine; Jinan Shandong China
| | - Sheng-chao Guo
- Key Laboratory Experimental Teratology of the Ministry of Education; Department of Biochemistry and Molecular Biology; Shandong University School of Medicine; Jinan Shandong China
| | - Xiao-lei Fu
- Key Laboratory Experimental Teratology of the Ministry of Education; Department of Biochemistry and Molecular Biology; Shandong University School of Medicine; Jinan Shandong China
| | - Rui-rui Li
- Key Laboratory Experimental Teratology of the Ministry of Education; Department of Biochemistry and Molecular Biology; Shandong University School of Medicine; Jinan Shandong China
| | - Lin Ge
- Key Laboratory Experimental Teratology of the Ministry of Education; Department of Biochemistry and Molecular Biology; Shandong University School of Medicine; Jinan Shandong China
| | - Ke-jia Hu
- Key Laboratory Experimental Teratology of the Ministry of Education; Department of Biochemistry and Molecular Biology; Shandong University School of Medicine; Jinan Shandong China
| | - Hong-da Liu
- Key Laboratory Experimental Teratology of the Ministry of Education; Department of Biochemistry and Molecular Biology; Shandong University School of Medicine; Jinan Shandong China
- Department of Pharmacology and Chemical Biology; School of Medicine; University of Pittsburgh; Pittsburgh Pennsylvania USA
| | - Yue-mao Shen
- Key Laboratory of Chemical Biology; Ministry of Education; Shandong University School of Pharmaceutical Science; Jinan Shandong China
| | - Xiao Yu
- Department of Physiology; Shandong University; School of Medicine; Jinan Shandong China
| | - Jin-peng Sun
- Key Laboratory Experimental Teratology of the Ministry of Education; Department of Biochemistry and Molecular Biology; Shandong University School of Medicine; Jinan Shandong China
- Department of Physiology and Pathophysiology; School of Basic Medical Sciences; Peking University; Key Laboratory of Molecular Cardiovascular Science; Ministry of Education; Beijing China
| | - Peng-ju Zhang
- Key Laboratory Experimental Teratology of the Ministry of Education; Department of Biochemistry and Molecular Biology; Shandong University School of Medicine; Jinan Shandong China
| |
Collapse
|
29
|
Yao X, Xu C, Cao Y, Lin L, Wu H, Wang C. Early metabolic characterization of brain tissues after whole body radiation based on gas chromatography–mass spectrometry in a rat model. Biomed Chromatogr 2018; 33:e4448. [DOI: 10.1002/bmc.4448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 11/12/2018] [Accepted: 11/24/2018] [Indexed: 01/02/2023]
Affiliation(s)
- Xueting Yao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, School for Radiological and Interdisciplinary Sciences (RAD‐X)Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection Suzhou P. R. China
| | - Chao Xu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, School for Radiological and Interdisciplinary Sciences (RAD‐X)Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection Suzhou P. R. China
| | - Yurong Cao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, School for Radiological and Interdisciplinary Sciences (RAD‐X)Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection Suzhou P. R. China
| | - Lin Lin
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, School for Radiological and Interdisciplinary Sciences (RAD‐X)Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection Suzhou P. R. China
| | - Hanxu Wu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, School for Radiological and Interdisciplinary Sciences (RAD‐X)Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection Suzhou P. R. China
| | - Chang Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, School for Radiological and Interdisciplinary Sciences (RAD‐X)Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection Suzhou P. R. China
| |
Collapse
|
30
|
Hladky SB, Barrand MA. Elimination of substances from the brain parenchyma: efflux via perivascular pathways and via the blood-brain barrier. Fluids Barriers CNS 2018; 15:30. [PMID: 30340614 PMCID: PMC6194691 DOI: 10.1186/s12987-018-0113-6] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/30/2018] [Indexed: 02/06/2023] Open
Abstract
This review considers efflux of substances from brain parenchyma quantified as values of clearances (CL, stated in µL g-1 min-1). Total clearance of a substance is the sum of clearance values for all available routes including perivascular pathways and the blood-brain barrier. Perivascular efflux contributes to the clearance of all water-soluble substances. Substances leaving via the perivascular routes may enter cerebrospinal fluid (CSF) or lymph. These routes are also involved in entry to the parenchyma from CSF. However, evidence demonstrating net fluid flow inwards along arteries and then outwards along veins (the glymphatic hypothesis) is still lacking. CLperivascular, that via perivascular routes, has been measured by following the fate of exogenously applied labelled tracer amounts of sucrose, inulin or serum albumin, which are not metabolized or eliminated across the blood-brain barrier. With these substances values of total CL ≅ 1 have been measured. Substances that are eliminated at least partly by other routes, i.e. across the blood-brain barrier, have higher total CL values. Substances crossing the blood-brain barrier may do so by passive, non-specific means with CLblood-brain barrier values ranging from < 0.01 for inulin to > 1000 for water and CO2. CLblood-brain barrier values for many small solutes are predictable from their oil/water partition and molecular weight. Transporters specific for glucose, lactate and many polar substrates facilitate efflux across the blood-brain barrier producing CLblood-brain barrier values > 50. The principal route for movement of Na+ and Cl- ions across the blood-brain barrier is probably paracellular through tight junctions between the brain endothelial cells producing CLblood-brain barrier values ~ 1. There are large fluxes of amino acids into and out of the brain across the blood-brain barrier but only small net fluxes have been observed suggesting substantial reuse of essential amino acids and α-ketoacids within the brain. Amyloid-β efflux, which is measurably faster than efflux of inulin, is primarily across the blood-brain barrier. Amyloid-β also leaves the brain parenchyma via perivascular efflux and this may be important as the route by which amyloid-β reaches arterial walls resulting in cerebral amyloid angiopathy.
Collapse
Affiliation(s)
- Stephen B. Hladky
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD UK
| | - Margery A. Barrand
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD UK
| |
Collapse
|
31
|
Prehabilitation and functional recovery for colorectal cancer patients. Eur J Surg Oncol 2018; 44:919-926. [PMID: 29754828 DOI: 10.1016/j.ejso.2018.04.016] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/16/2018] [Accepted: 04/18/2018] [Indexed: 01/24/2023] Open
|
32
|
Abstract
PURPOSE OF REVIEW The current review aims to provide an update on the recent biomedical interest in oncogenic branched-chain amino acid (BCAA) metabolism, and discusses the advantages of using BCAAs and expression of BCAA-related enzymes in the treatment and diagnosis of cancers. RECENT FINDINGS An accumulating body of evidence demonstrates that BCAAs are essential nutrients for cancer growth and are used by tumors in various biosynthetic pathways and as a source of energy. In addition, BCAA metabolic enzymes, such as the cytosolic branched-chain aminotransferase 1 (BCAT1) and mitochondrial branched-chain aminotransferase 2, have emerged as useful prognostic cancer markers. BCAT1 expression commonly correlates with more aggressive cancer growth and progression, and has attracted substantial scientific attention in the past few years. These studies have found the consequences of BCAT1 disruption to be heterogeneous; not all cancers share the same requirements for BCAA metabolites and the function of BCAT1 appears to vary between cancer types. SUMMARY Both oncogenic mutations and cancer tissue-of-origin influence BCAA metabolism and expression of BCAA-associated metabolic enzymes. These new discoveries need to be taken into consideration during the development of new cancer therapies that target BCAA metabolism.
Collapse
Affiliation(s)
- Elitsa A. Ananieva
- Department of Biochemistry and Nutrition, Des Moines University, Des Moines, Iowa
| | - Adam C. Wilkinson
- Department of Genetics, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Lorry I. Lokey Stem Cell Research Building, Stanford, California, USA
| |
Collapse
|
33
|
Jirakkakul J, Roytrakul S, Srisuksam C, Swangmaneecharern P, Kittisenachai S, Jaresitthikunchai J, Punya J, Prommeenate P, Senachak J, So L, Tachaleat A, Tanticharoen M, Cheevadhanarak S, Wattanachaisaereekul S, Amnuaykanjanasin A. Culture degeneration in conidia of Beauveria bassiana and virulence determinants by proteomics. Fungal Biol 2017; 122:156-171. [PMID: 29458719 DOI: 10.1016/j.funbio.2017.12.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 12/04/2017] [Accepted: 12/15/2017] [Indexed: 01/18/2023]
Abstract
The quality of Beauveria bassiana conidia directly affects the virulence against insects. In this study, continuous subculturing of B. bassiana on both rice grains and potato dextrose agar (PDA) resulted in 55 and 49 % conidial yield reduction after 12 passages and 68 and 60 % virulence reduction after 20 and 12 passages at four d post-inoculation, respectively. The passage through Tenebrio molitor and Spodoptera exigua restored the virulence of rice and PDA subcultures, respectively. To explore the molecular mechanisms underlying the conidial quality and the decline of virulence after multiple subculturing, we investigated the conidial proteomic changes. Successive subculturing markedly increased the protein levels in oxidative stress response, autophagy, amino acid homeostasis, and apoptosis, but decreased the protein levels in DNA repair, ribosome biogenesis, energy metabolism, and virulence. The nitro blue tetrazolium assay verified that the late subculture's colony and conidia had a higher oxidative stress level than the early subculture. A 2A-type protein phosphatase and a Pleckstrin homology domain protein Slm1, effector proteins of the target of rapamycin (TOR) complex 1 and 2, respectively, were dramatically increased in the late subculture. These results suggest that TOR signalling might be associated with ageing in B. bassiana late subculture, in turn affecting its physiological characteristics and virulence.
Collapse
Affiliation(s)
- Jiraporn Jirakkakul
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi (KMUTT), Bangkhuntien, Bangkok 10150, Thailand
| | - Sittiruk Roytrakul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand
| | - Chettida Srisuksam
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand
| | - Pratchya Swangmaneecharern
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand
| | - Suthathip Kittisenachai
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand
| | - Janthima Jaresitthikunchai
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand
| | - Juntira Punya
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand
| | - Peerada Prommeenate
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand
| | - Jittisak Senachak
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand
| | - Laihong So
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Kowloon, Hong Kong
| | - Anuwat Tachaleat
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi (KMUTT), Bangkhuntien, Bangkok 10150, Thailand
| | - Morakot Tanticharoen
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi (KMUTT), Bangkhuntien, Bangkok 10150, Thailand
| | - Supapon Cheevadhanarak
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi (KMUTT), Bangkhuntien, Bangkok 10150, Thailand
| | - Songsak Wattanachaisaereekul
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi (KMUTT), Bangkhuntien, Bangkok 10150, Thailand.
| | - Alongkorn Amnuaykanjanasin
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand.
| |
Collapse
|
34
|
Yuan S, Zhang ZW, Li ZL. Cell Death-Autophagy Loop and Glutamate-Glutamine Cycle in Amyotrophic Lateral Sclerosis. Front Mol Neurosci 2017; 10:231. [PMID: 28785203 PMCID: PMC5519524 DOI: 10.3389/fnmol.2017.00231] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 07/06/2017] [Indexed: 12/11/2022] Open
Abstract
Although we know that amyotrophic lateral sclerosis (ALS) is correlated with the glutamate-mediated corticomotor neuronal hyperexcitability, detailed ALS pathology remains largely unexplained. While a number of drugs have been developed, no cure exists so far. Here, we propose a hypothesis of neuronal cell death—incomplete autophagy positive-feedback loop—and summarize the role of the neuron-astrocyte glutamate-glutamine cycle in ALS. The disruption of these two cycles might ideally retard ALS progression. Cerebrovascular injuries (such as multiple embolization sessions and strokes) induce neuronal cell death and the subsequent autophagy. ALS impairs autophagosome-lysosome fusion and leads to magnified cell death. Trehalose rescues this impaired fusion step, significantly delaying the onset of the disease, although it does not affect the duration of the disease. Therefore, trehalose might be a prophylactic drug for ALS. Given that a major part of neuronal glutamate is converted from glutamine through neuronal glutaminase (GA), GA inhibitors may decrease the neuronal glutamate accumulation, and, therefore, might be therapeutic ALS drugs. Of these, Ebselen is the most promising one with strong antioxidant properties.
Collapse
Affiliation(s)
- Shu Yuan
- College of Resources, Sichuan Agricultural UniversityChengdu, China
| | - Zhong-Wei Zhang
- College of Resources, Sichuan Agricultural UniversityChengdu, China
| | - Zi-Lin Li
- Department of Cardiovascular Surgery, General Hospital of Lanzhou Military RegionLanzhou, China
| |
Collapse
|
35
|
Umehara H, Numata S, Watanabe SY, Hatakeyama Y, Kinoshita M, Tomioka Y, Nakahara K, Nikawa T, Ohmori T. Altered KYN/TRP, Gln/Glu, and Met/methionine sulfoxide ratios in the blood plasma of medication-free patients with major depressive disorder. Sci Rep 2017; 7:4855. [PMID: 28687801 PMCID: PMC5501805 DOI: 10.1038/s41598-017-05121-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 05/24/2017] [Indexed: 12/19/2022] Open
Abstract
Capillary electrophoresis-time-of-flight mass spectrometry (CE-TOFMS) is a comprehensive, quantitative, and high throughput tool used to analyze metabolite profiles. In the present study, we used CE-TOFMS to profile metabolites found in the blood plasma of 33 medication-free patients with major depressive disorder (MDD) and 33 non-psychiatric control subjects. We then investigated changes which occurred in the metabolite levels during an 8-week treatment period. The medication-free MDD patients and control subjects showed significant differences in their mean levels of 33 metabolites, including kynurenine (KYN), glutamate (Glu), glutamine (Gln), methionine sulfoxide, and methionine (Met). In particular, the ratios of KYN to tryptophan (TRP), Gln to Glu, and Met to methionine sulfoxide were all significantly different between the two groups. Among the 33 metabolites with altered levels in MDD patients, the levels of KYN and Gln, as well as the ratio of Gln to Glu, were significantly normalized after treatment. Our findings suggest that imbalances in specific metabolite levels may be involved in the pathogenesis of MDD, and provide insight into the mechanisms by which antidepressant agents work in MDD patients.
Collapse
Affiliation(s)
- Hidehiro Umehara
- Department of Psychiatry, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Shusuke Numata
- Department of Psychiatry, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan.
| | - Shin-Ya Watanabe
- Department of Psychiatry, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Yutaka Hatakeyama
- Center of Medical Information Science, Kochi Medical School, Kochi University, Kohasu, Oko-cho, Nankoku, Japan
| | - Makoto Kinoshita
- Department of Psychiatry, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Yukiko Tomioka
- Department of Psychiatry, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Kiyoshi Nakahara
- Research Institute, Kochi University of Technology, 185 Miyanokuchi, Tosayamada-cho, Kami-shi, Kochi, Japan
| | - Takeshi Nikawa
- Department of Nutritional Physiology, Institute of Medical Nutrition, Tokushima University Graduate School, Tokushima, Japan
| | - Tetsuro Ohmori
- Department of Psychiatry, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| |
Collapse
|
36
|
Shafei MA, Harris M, Conway ME. Divergent Metabolic Regulation of Autophagy and mTORC1-Early Events in Alzheimer's Disease? Front Aging Neurosci 2017. [PMID: 28626421 PMCID: PMC5454035 DOI: 10.3389/fnagi.2017.00173] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive disease associated with the production and deposition of amyloid β-peptide (Aβ) aggregates and neurofibrillary tangles, which lead to synaptic and neuronal damage. Reduced autophagic flux has been widely associated with the accumulation of autophagic vacuoles (AV), which has been proposed to contribute to aggregate build-up observed in AD. As such, targeting autophagy regulation has received wide review, where an understanding as to how this mechanism can be controlled will be important to neuronal health. The mammalian target of rapamycin complex 1 (mTORC1), which was found to be hyperactive in AD brain, regulates autophagy and is considered to be mechanistically important to aberrant autophagy in AD. Hormones and nutrients such as insulin and leucine, respectively, positively regulate mTORC1 activation and are largely considered to inhibit autophagy. However, in AD brain there is a dysregulation of nutrient metabolism, linked to insulin resistance, where a role for insulin treatment to improve cognition has been proposed. Recent studies have highlighted that mitochondrial proteins such as glutamate dehydrogenase and the human branched chain aminotransferase protein, through metabolism of leucine and glutamate, differentially regulate mTORC1 and autophagy. As the levels of the hBCAT proteins are significantly increased in AD brain relative to aged-matched controls, we discuss how these metabolic pathways offer new potential therapeutic targets. In this review article, we highlight the core regulation of autophagy through mTORC1, focusing on how insulin and leucine will be important to consider in particular with respect to our understanding of nutrient load and AD pathogenesis.
Collapse
Affiliation(s)
- Mai A Shafei
- Department of Applied Science, The University of the West of EnglandBristol, United Kingdom
| | - Matthew Harris
- Department of Applied Science, The University of the West of EnglandBristol, United Kingdom
| | - Myra E Conway
- Department of Applied Science, The University of the West of EnglandBristol, United Kingdom
| |
Collapse
|
37
|
Pallottini AC, Sales CH, Vieira DADS, Marchioni DM, Fisberg RM. Dietary BCAA Intake Is Associated with Demographic, Socioeconomic and Lifestyle Factors in Residents of São Paulo, Brazil. Nutrients 2017; 9:E449. [PMID: 28468321 PMCID: PMC5452179 DOI: 10.3390/nu9050449] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 04/21/2017] [Accepted: 04/26/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Identifying which risk groups have a higher intake of branched chain amino acids (BCAA) is important for the planning of public policies. This study was undertaken to investigate BCAA consumption, the foods contributing to that consumption and their association with demographic, socioeconomic and lifestyle factors. METHODS Data from the Health Survey of São Paulo, a cross-sectional population-based survey (n = 1662; age range 12-97 years), were used. Dietary intake was measured using 24-h dietary recalls. Baseline characteristics were collected. Associations between BCAA intake and demographic, socioeconomic and lifestyle factors were determined using linear regression. RESULTS Total BCAA intake was 217.14 mg/kg·day (Leu: 97.16 mg/kg·day; Ile: 56.44 mg/kg·day; Val: 63.54 mg/kg·day). BCAA intake was negatively associated with female sex in adolescents and adult groups, with no white race in adolescents, and with former smoker status in adults. Conversely, BCAA was positively associated with household per capita income in adolescents and adults. No associations were observed in the older adults group. Main food contributors to BCAA were unprocessed red meat, unprocessed poultry, bread and toast, beans and rice. CONCLUSIONS Adolescents and adults were the most vulnerable to having their BCCA intake influenced by demographic, socioeconomic and lifestyle factors.
Collapse
Affiliation(s)
- Ana Carolina Pallottini
- Department of Nutrition, School of Public Health, University of Sao Paulo, Av. Dr. Arnaldo, 715, Cerqueira César, São Paulo CEP 01246-904, Brazil.
| | - Cristiane Hermes Sales
- Department of Nutrition, School of Public Health, University of Sao Paulo, Av. Dr. Arnaldo, 715, Cerqueira César, São Paulo CEP 01246-904, Brazil.
| | - Diva Aliete Dos Santos Vieira
- Department of Nutrition, School of Public Health, University of Sao Paulo, Av. Dr. Arnaldo, 715, Cerqueira César, São Paulo CEP 01246-904, Brazil.
| | - Dirce Maria Marchioni
- Department of Nutrition, School of Public Health, University of Sao Paulo, Av. Dr. Arnaldo, 715, Cerqueira César, São Paulo CEP 01246-904, Brazil.
| | - Regina Mara Fisberg
- Department of Nutrition, School of Public Health, University of Sao Paulo, Av. Dr. Arnaldo, 715, Cerqueira César, São Paulo CEP 01246-904, Brazil.
| |
Collapse
|
38
|
Sperringer JE, Addington A, Hutson SM. Branched-Chain Amino Acids and Brain Metabolism. Neurochem Res 2017; 42:1697-1709. [DOI: 10.1007/s11064-017-2261-5] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 04/03/2017] [Accepted: 04/04/2017] [Indexed: 12/11/2022]
|
39
|
Abstract
Transient multienzyme and/or multiprotein complexes (metabolons) direct substrates toward specific pathways and can significantly influence the metabolism of glutamate and glutamine in the brain. Glutamate is the primary excitatory neurotransmitter in brain. This neurotransmitter has essential roles in normal brain function including learning and memory. Metabolism of glutamate involves the coordinated activity of astrocytes and neurons and high affinity transporter proteins that are selectively distributed on these cells. This chapter describes known and possible metabolons that affect the metabolism of glutamate and related compounds in the brain, as well as some factors that can modulate the association and dissociation of such complexes, including protein modifications by acylation reactions (e.g., acetylation, palmitoylation, succinylation, SUMOylation, etc.) of specific residues. Development of strategies to modulate transient multienzyme and/or enzyme-protein interactions may represent a novel and promising therapeutic approach for treatment of diseases involving dysregulation of glutamate metabolism.
Collapse
|