1
|
Gudneppanavar R, Di Pietro C, H Öz H, Zhang PX, Cheng EC, Huang PH, Tebaldi T, Biancon G, Halene S, Hoppe AD, Kim C, Gonzalez AL, Krause DS, Egan ME, Gupta N, Murray TS, Bruscia EM. Ezrin drives adaptation of monocytes to the inflamed lung microenvironment. Cell Death Dis 2024; 15:864. [PMID: 39613751 DOI: 10.1038/s41419-024-07255-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 12/01/2024]
Abstract
Ezrin, an actin-binding protein, orchestrates the organization of the cortical cytoskeleton and plasma membrane during cell migration, adhesion, and proliferation. Its role in monocytes/macrophages (MΦs) is less understood. Here, we used a monocyte/MΦ-specific ezrin knock-out mouse model to investigate the contribution of ezrin to monocyte recruitment and adaptation to the lung extracellular matrix (ECM) in response to lipopolysaccharide (LPS). Our study revealed that LPS induces ezrin expression in monocytes/MΦs and is essential for monocytes to adhere to lung ECM, proliferate, and differentiate into tissue-resident interstitial MΦs. Mechanistically, the loss of ezrin in monocytes disrupts activation of focal adhesion kinase and AKT serine-threonine protein kinase signaling, essential for lung-recruited monocytes and monocyte-derived MΦs to adhere to the ECM, proliferate, and survive. In summary, our data show that ezrin plays a role beyond structural cellular support, influencing diverse monocytes/MΦ processes and signaling pathways during inflammation, facilitating their differentiation into tissue-resident macrophages.
Collapse
Affiliation(s)
| | - Caterina Di Pietro
- Department of Pediatrics, School of Medicine, Yale University, New Haven, CT, USA
| | - Hasan H Öz
- Department of Pediatrics, School of Medicine, Yale University, New Haven, CT, USA
| | - Ping-Xia Zhang
- Department of Pediatrics, School of Medicine, Yale University, New Haven, CT, USA
- Yale Stem Cell Center, School of Medicine, Yale University, New Haven, CT, USA
- Department of Laboratory Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - Ee-Chun Cheng
- Department of Pediatrics, School of Medicine, Yale University, New Haven, CT, USA
| | - Pamela H Huang
- Department of Pediatrics, School of Medicine, Yale University, New Haven, CT, USA
| | - Toma Tebaldi
- Yale Stem Cell Center, School of Medicine, Yale University, New Haven, CT, USA
- Department of Hematology, School of Medicine, Yale University, New Haven, CT, USA
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Giulia Biancon
- Yale Stem Cell Center, School of Medicine, Yale University, New Haven, CT, USA
- Department of Hematology, School of Medicine, Yale University, New Haven, CT, USA
| | - Stephanie Halene
- Yale Stem Cell Center, School of Medicine, Yale University, New Haven, CT, USA
- Department of Hematology, School of Medicine, Yale University, New Haven, CT, USA
| | - Adam D Hoppe
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD, USA
| | - Catherine Kim
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | | | - Diane S Krause
- Yale Stem Cell Center, School of Medicine, Yale University, New Haven, CT, USA
- Department of Laboratory Medicine, School of Medicine, Yale University, New Haven, CT, USA
- Department of Pathology, School of Medicine, Yale University, New Haven, CT, USA
| | - Marie E Egan
- Department of Pediatrics, School of Medicine, Yale University, New Haven, CT, USA
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT, USA
| | - Neetu Gupta
- Department of Inflammation and Immunity, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Thomas S Murray
- Department of Pediatrics, School of Medicine, Yale University, New Haven, CT, USA
| | - Emanuela M Bruscia
- Department of Pediatrics, School of Medicine, Yale University, New Haven, CT, USA.
- Yale Stem Cell Center, School of Medicine, Yale University, New Haven, CT, USA.
| |
Collapse
|
2
|
Anitua E, Troya M, Alkhraisat MH. Immunoregulatory role of platelet derivatives in the macrophage-mediated immune response. Front Immunol 2024; 15:1399130. [PMID: 38983851 PMCID: PMC11231193 DOI: 10.3389/fimmu.2024.1399130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/07/2024] [Indexed: 07/11/2024] Open
Abstract
Background Macrophages are innate immune cells that display remarkable phenotypic heterogeneity and functional plasticity. Due to their involvement in the pathogenesis of several human conditions, macrophages are considered to be an attractive therapeutic target. In line with this, platelet derivatives have been successfully applied in many medical fields and as active participants in innate immunity, cooperation between platelets and macrophages is essential. In this context, the aim of this review is to compile the current evidence regarding the effects of platelet derivatives on the phenotype and functions of macrophages to identify the advantages and shortcomings for feasible future clinical applications. Methods A total of 669 articles were identified during the systematic literature search performed in PubMed and Web of Science databases. Results A total of 27 articles met the inclusion criteria. Based on published findings, platelet derivatives may play an important role in inducing a dynamic M1/M2 balance and promoting a timely M1-M2 shift. However, the differences in procedures regarding platelet derivatives and macrophages polarization and the occasional lack of information, makes reproducibility and comparison of results extremely challenging. Furthermore, understanding the differences between human macrophages and those derived from animal models, and taking into account the peculiarities of tissue resident macrophages and their ontogeny seem essential for the design of new therapeutic strategies. Conclusion Research on the combination of macrophages and platelet derivatives provides relevant information on the function and mechanisms of the immune response.
Collapse
Affiliation(s)
- Eduardo Anitua
- Regenerative Medicine Laboratory, BTI-Biotechnology Institute, Vitoria, Spain
- University Institute for Regenerative Medicine & Oral Implantology, UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain
| | - María Troya
- Regenerative Medicine Laboratory, BTI-Biotechnology Institute, Vitoria, Spain
- University Institute for Regenerative Medicine & Oral Implantology, UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain
| | - Mohammad H. Alkhraisat
- Regenerative Medicine Laboratory, BTI-Biotechnology Institute, Vitoria, Spain
- University Institute for Regenerative Medicine & Oral Implantology, UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain
| |
Collapse
|
3
|
Chen J, Wen Y, Lin L, Cui Y, Chen Z, Gao J, Zhuang Y, Chen Q. Fosl2 Deficiency Predisposes Mice to Osteopetrosis, Leading to Bone Marrow Failure. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1081-1093. [PMID: 38380993 DOI: 10.4049/jimmunol.2300592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/16/2024] [Indexed: 02/22/2024]
Abstract
Arthritis causes Fos-like 2 (Fosl2) inactivation, and various immune cells contribute to its pathogenesis. However, little is known about the role of Fosl2 in hematopoiesis and the possible pathological role of Fosl2 inactivation in the hematopoietic system in arthritis. In this study, we show that Fosl2 maintains hematopoietic stem cell (HSC) quiescence and differentiation while controlling the inflammatory response via macrophages. Fosl2-specific deletion in the hematopoietic system caused the expansion of HSCs and myeloid cell growth while affecting erythroid and B cell differentiation. Fosl2 inactivation enhanced macrophage M1 polarization and stimulated proinflammatory cytokines and myeloid growth factors, skewing HSCs toward myeloid cell differentiation, similar to hematopoietic alterations in arthritic mice. Loss of Fosl2 mediated by Vav-iCre also displays an unexpected deletion in embryonic erythro-myeloid progenitor-derived osteoclasts, leading to osteopetrosis and anemia. The reduced bone marrow cellularity in Vav-iCreFosl2f/f mice is a consequence of the reduced bone marrow space in osteopetrotic mice rather than a direct role of Fosl2 in hematopoiesis. Thus, Fosl2 is indispensable for erythro-myeloid progenitor-derived osteoclasts to maintain the medullary cavity to ensure normal hematopoiesis. These findings improve our understanding of the pathogenesis of bone-destructive diseases and provide important implications for developing therapeutic approaches for these diseases.
Collapse
Affiliation(s)
- Jinfeng Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Yi Wen
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Lili Lin
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Yuchen Cui
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Zhenyu Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Jing Gao
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Yifang Zhuang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Qi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| |
Collapse
|
4
|
Casagrande V, Menini S, Internò C, Pugliese G, Federici M, Menghini R. TIMP3 overexpression in myeloid lineage alleviates pancreatic damage and confers resistance to the development of type 1 diabetes in the MLDS -induced model. Front Endocrinol (Lausanne) 2024; 14:1297847. [PMID: 38313841 PMCID: PMC10835381 DOI: 10.3389/fendo.2023.1297847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/27/2023] [Indexed: 02/06/2024] Open
Abstract
Introduction Type 1 diabetes mellitus (T1DM) development involves a complex interplay of genetic, environmental, and immunological factors. By modulating the activity of proteases and receptors, the protein tissue inhibitor of metalloproteinase 3 (TIMP3) plays a role in limiting the expression and function of pro-inflammatory cytokines, which have been implicated in the advancement of T1DM. This study was aimed at examining the effect of TIMP3 overexpression in myeloid cells on the development of T1DM. Methods and results Twelve weeks after multiple low doses of streptozotocin (MLDS) treatment, diabetic mice overexpressing TIMP3 specifically in myeloid cells under the CD68 promoter (MacT3 mice) showed improved insulin secretion, islet morphology and vascularization, antioxidant defense system, and regulatory factors of mitochondrial biosynthesis and function. To get mechanistic insights into the origin of this protection, the severity of insulitis and inflammatory parameters were evaluated in pancreatic tissues 11 days after MLSD treatment, showing significantly reduced insulitis and levels of the pro-inflammatory cytokine tumor necrosis factor-α, interleukin -1β, and interferon -γ in MacT3 mice. Discussion The results indicate that TIMP3 is involved in maintaining islet architecture and functions, at least in part, through modulation of pro-inflammatory cytokine production associated with insulitis and may represent a novel therapeutic strategy for T1DM.
Collapse
Affiliation(s)
- Viviana Casagrande
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Stefano Menini
- Department of Clinical and Molecular Medicine, Sapienza University, Rome, Italy
| | - Chiara Internò
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Giuseppe Pugliese
- Department of Clinical and Molecular Medicine, Sapienza University, Rome, Italy
| | - Massimo Federici
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Center for Atherosclerosis, Department of Medical Sciences, University Hospital Policlinico Tor Vergata, Rome, Italy
| | - Rossella Menghini
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
5
|
Cui H, Culty M. Do macrophages play a role in the adverse effects of endocrine disrupting chemicals (EDCs) on testicular functions? FRONTIERS IN TOXICOLOGY 2023; 5:1242634. [PMID: 37720385 PMCID: PMC10501733 DOI: 10.3389/ftox.2023.1242634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/18/2023] [Indexed: 09/19/2023] Open
Abstract
During the past decades, several endocrine disrupting chemicals (EDCs) have been confirmed to affect male reproductive function and fertility in animal studies. EDCs are suspected to exert similar effects in humans, based on strong associations between levels of antiandrogenic EDCs in pregnant women and adverse reproductive effects in infants. Testicular macrophages (tMΦ) play a vital role in modulating immunological privilege and maintaining normal testicular homeostasis as well as fetal development. Although tMΦ were not historically studied in the context of endocrine disruption, they have emerged as potential targets to consider due to their critical role in regulating cells such as spermatogonial stem cells (SSCs) and Leydig cells. Few studies have examined the impact of EDCs on the ability of testicular cells to communicate and regulate each other's functions. In this review, we recapitulate what is known about tMΦ functions and interactions with other cell types in the testis that support spermatogenesis and steroidogenesis. We also surveyed the literature for reports on the effects of the EDCs genistein and DEHP on tMΦ, SSCs, Sertoli and Leydig cells. Our goal is to explore the possibility that EDC disruption of tMΦ interactions with other cell types may play a role in their adverse effects on testicular developmental programming and functions. This approach will highlight gaps of knowledge, which, once resolved, should improve the risk assessment of EDC exposure and the development of safeguards to protect male reproductive functions.
Collapse
Affiliation(s)
| | - Martine Culty
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
6
|
Ge X, Xue G, Ding Y, Li R, Hu K, Xu T, Sun M, Liao W, Zhao B, Wen C, Du J. The Loss of YTHDC1 in Gut Macrophages Exacerbates Inflammatory Bowel Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205620. [PMID: 36922750 PMCID: PMC10190588 DOI: 10.1002/advs.202205620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 02/16/2023] [Indexed: 05/18/2023]
Abstract
The nuclear N6 -methyladenosine (m6 A) reader YT521-B homology-domain-containing protein 1 (YTHDC1) is required to maintain embryonic stem cell identity. However, little is known about its biological functions in intestinal-resident macrophages and inflammatory bowel disease (IBD). Herein, it is demonstrated that macrophage-specific depletion or insufficiency of YTHDC1 accelerates IBD development in animal models. On the molecular basis, YTHDC1 reduction in IBD-derived macrophages is attributed to Zinc finger protein 36 (ZFP36)-induced mRNA degradation. Importantly, transcriptome profiling and mechanistic assays unveil that YTHDC1 in macrophages regulates Ras homolog family member H (RHOH) to suppress inflammatory responses and fine-tunes NME nucleoside diphosphate kinase 1 (NME1) to enhance the integrity of colonic epithelial barrier, respectively. Collectively, this study identifies YTHDC1 as an important factor for the resolution of inflammatory responses and restoration of colonic epithelial barrier in the setting of IBD.
Collapse
Affiliation(s)
- Xuejun Ge
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New MaterialsShanxi Medical University School and Hospital of StomatologyTaiyuanShanxi030001China
| | - Gang Xue
- Department of GastroenterologySecond Hospital of Shanxi Medical UniversityTaiyuanShanxi030001China
| | - Yan Ding
- Department of DermatologyHainan Provincial Hospital of Skin DiseaseHaikouHainan570000China
- Department of DermatologyHainan Medical University Affiliated Dermatology Hospital of Hainan Medical CollegeHaikouHainan570000China
| | - Ran Li
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New MaterialsShanxi Medical University School and Hospital of StomatologyTaiyuanShanxi030001China
| | - Kaining Hu
- Department of Human GeneticsThe University of ChicagoChicagoIL60637USA
| | - Tengjiao Xu
- Department of DermatologyHainan Medical University Affiliated Dermatology Hospital of Hainan Medical CollegeHaikouHainan570000China
| | - Ming Sun
- College of Life SciencesMudanjiang Medical UniversityMudanjiangHeilongjiang157011China
| | - Wang Liao
- Department of CardiologyHainan General Hospital and Hainan Affiliated Hospital of Hainan Medical UniversityHaikou570311China
| | - Bin Zhao
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New MaterialsShanxi Medical University School and Hospital of StomatologyTaiyuanShanxi030001China
| | - Chuangyu Wen
- Central LaboratoryAffiliated Dongguan HospitalSouthern Medical UniversityDongguanGuangdong523108China
| | - Jie Du
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New MaterialsShanxi Medical University School and Hospital of StomatologyTaiyuanShanxi030001China
- Institute of Biomedical ResearchShanxi Medical UniversityTaiyuanShanxi030001China
| |
Collapse
|
7
|
Simón-Fuentes M, Herrero C, Acero-Riaguas L, Nieto C, Lasala F, Labiod N, Luczkowiak J, Alonso B, Delgado R, Colmenares M, Corbí ÁL, Domínguez-Soto Á. TLR7 Activation in M-CSF-Dependent Monocyte-Derived Human Macrophages Potentiates Inflammatory Responses and Prompts Neutrophil Recruitment. J Innate Immun 2023; 15:517-530. [PMID: 37040733 PMCID: PMC10315069 DOI: 10.1159/000530249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 03/15/2023] [Indexed: 04/13/2023] Open
Abstract
Toll-like receptor 7 (TLR7) is an endosomal pathogen-associated molecular pattern (PAMP) receptor that senses single-stranded RNA (ssRNA) and whose engagement results in the production of type I IFN and pro-inflammatory cytokines upon viral exposure. Recent genetic studies have established that a dysfunctional TLR7-initiated signaling is directly linked to the development of inflammatory responses. We present evidence that TLR7 is preferentially expressed by monocyte-derived macrophages generated in the presence of M-CSF (M-MØ). We now show that TLR7 activation in M-MØ triggers a weak MAPK, NFκB, and STAT1 activation and results in low production of type I IFN. Of note, TLR7 engagement reprograms MAFB+ M-MØ towards a pro-inflammatory transcriptional profile characterized by the expression of neutrophil-attracting chemokines (CXCL1-3, CXCL5, CXCL8), whose expression is dependent on the transcription factors MAFB and AhR. Moreover, TLR7-activated M-MØ display enhanced pro-inflammatory responses and a stronger production of neutrophil-attracting chemokines upon secondary stimulation. As aberrant TLR7 signaling and enhanced pulmonary neutrophil/lymphocyte ratio associate with impaired resolution of virus-induced inflammatory responses, these results suggest that targeting macrophage TLR7 might be a therapeutic strategy for viral infections where monocyte-derived macrophages exhibit a pathogenic role.
Collapse
Affiliation(s)
- Miriam Simón-Fuentes
- Myeloid Cell Laboratory, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Cristina Herrero
- Myeloid Cell Laboratory, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Lucia Acero-Riaguas
- Myeloid Cell Laboratory, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Concha Nieto
- Myeloid Cell Laboratory, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Fatima Lasala
- Instituto de Investigación Hospital Universitario 12 de Octubre (imas12), Universidad Complutense School of Medicine, Madrid, Spain
| | - Nuria Labiod
- Instituto de Investigación Hospital Universitario 12 de Octubre (imas12), Universidad Complutense School of Medicine, Madrid, Spain
| | - Joanna Luczkowiak
- Instituto de Investigación Hospital Universitario 12 de Octubre (imas12), Universidad Complutense School of Medicine, Madrid, Spain
| | - Bárbara Alonso
- Myeloid Cell Laboratory, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Rafael Delgado
- Instituto de Investigación Hospital Universitario 12 de Octubre (imas12), Universidad Complutense School of Medicine, Madrid, Spain
| | - Maria Colmenares
- Myeloid Cell Laboratory, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Ángel L Corbí
- Myeloid Cell Laboratory, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | | |
Collapse
|
8
|
Vaughan-Jackson A, Stodolak S, Ebrahimi KH, Johnson E, Reardon PK, Dupont M, Zhang S, McCullagh JSO, James WS. Density dependent regulation of inflammatory responses in macrophages. Front Immunol 2022; 13:895488. [PMID: 36591218 PMCID: PMC9800520 DOI: 10.3389/fimmu.2022.895488] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Macrophage distribution density is tightly regulated within the body, yet the importance of macrophage crowding during in vitro culture is largely unstudied. Using a human induced pluripotent stem cell (iPSC)-derived macrophage model of tissue resident macrophages, we characterize how increasing macrophage culture density changes their morphology and phenotype before and after inflammatory stimulation. In particular, density drives changes in macrophage inflammatory cytokine and chemokine secretion in both resting and activated states. This density regulated inflammatory state is also evident in blood monocyte derived-macrophages, the human monocytic THP-1 immortalized cell line, and iPSC-derived microglia. Density-dependent changes appear to be driven by a transferable soluble factor, yet the precise mechanism remains unknown. Our findings highlight cell plating density as an important but frequently overlooked consideration of in vitro macrophage research relevant to a variety of fields ranging from basic macrophage cell biology to disease studies.
Collapse
Affiliation(s)
- Alun Vaughan-Jackson
- James & Lillian Martin Centre, Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Szymon Stodolak
- James & Lillian Martin Centre, Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | | | - Errin Johnson
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Paul K. Reardon
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Maeva Dupont
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Shengpan Zhang
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | | | - William S. James
- James & Lillian Martin Centre, Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
9
|
Dias AMM, Courteau A, Bellaye PS, Kohli E, Oudot A, Doulain PE, Petitot C, Walker PM, Decréau R, Collin B. Superparamagnetic Iron Oxide Nanoparticles for Immunotherapy of Cancers through Macrophages and Magnetic Hyperthermia. Pharmaceutics 2022; 14:2388. [PMID: 36365207 PMCID: PMC9694944 DOI: 10.3390/pharmaceutics14112388] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 07/30/2023] Open
Abstract
Cancer immunotherapy has tremendous promise, but it has yet to be clinically applied in a wider variety of tumor situations. Many therapeutic combinations are envisaged to improve their effectiveness. In this way, strategies capable of inducing immunogenic cell death (e.g., doxorubicin, radiotherapy, hyperthermia) and the reprogramming of the immunosuppressive tumor microenvironment (TME) (e.g., M2-to-M1-like macrophages repolarization of tumor-associated macrophages (TAMs)) are particularly appealing to enhance the efficacy of approved immunotherapies (e.g., immune checkpoint inhibitors, ICIs). Due to their modular construction and versatility, iron oxide-based nanomedicines such as superparamagnetic iron oxide nanoparticles (SPIONs) can combine these different approaches in a single agent. SPIONs have already shown their safety and biocompatibility and possess both drug-delivery (e.g., chemotherapy, ICIs) and magnetic capabilities (e.g., magnetic hyperthermia (MHT), magnetic resonance imaging). In this review, we will discuss the multiple applications of SPIONs in cancer immunotherapy, focusing on their theranostic properties to target TAMs and to generate MHT. The first section of this review will briefly describe immune targets for NPs. The following sections will deal with the overall properties of SPIONs (including MHT). The last section is dedicated to the SPION-induced immune response through its effects on TAMs and MHT.
Collapse
Affiliation(s)
- Alexandre M. M. Dias
- Centre George-François Leclerc, Service de Médecine Nucléaire, Plateforme d’Imagerie et de Radiothérapie Précliniques, 1 rue du Professeur Marion, 21079 Dijon, France
| | - Alan Courteau
- Centre George-François Leclerc, Service de Médecine Nucléaire, Plateforme d’Imagerie et de Radiothérapie Précliniques, 1 rue du Professeur Marion, 21079 Dijon, France
- ImViA Laboratory, EA 7535, University of Burgundy, 21000 Dijon, France
| | - Pierre-Simon Bellaye
- Centre George-François Leclerc, Service de Médecine Nucléaire, Plateforme d’Imagerie et de Radiothérapie Précliniques, 1 rue du Professeur Marion, 21079 Dijon, France
- UMR INSERM/uB/AGROSUP 1231, Labex LipSTIC, Faculty of Health Sciences, Université de Bourgogne Franche-Comté, 21079 Dijon, France
| | - Evelyne Kohli
- UMR INSERM/uB/AGROSUP 1231, Labex LipSTIC, Faculty of Health Sciences, Université de Bourgogne Franche-Comté, 21079 Dijon, France
- University Hospital Centre François Mitterrand, 21000 Dijon, France
| | - Alexandra Oudot
- Centre George-François Leclerc, Service de Médecine Nucléaire, Plateforme d’Imagerie et de Radiothérapie Précliniques, 1 rue du Professeur Marion, 21079 Dijon, France
| | | | - Camille Petitot
- Centre George-François Leclerc, Service de Médecine Nucléaire, Plateforme d’Imagerie et de Radiothérapie Précliniques, 1 rue du Professeur Marion, 21079 Dijon, France
| | - Paul-Michael Walker
- Centre George-François Leclerc, Service de Médecine Nucléaire, Plateforme d’Imagerie et de Radiothérapie Précliniques, 1 rue du Professeur Marion, 21079 Dijon, France
- ImViA Laboratory, EA 7535, University of Burgundy, 21000 Dijon, France
- University Hospital Centre François Mitterrand, 21000 Dijon, France
| | - Richard Decréau
- Institut de Chimie Moléculaire de l’Université de Bourgogne, UMR CNRS/uB 6302, Université de Bourgogne Franche-Comté, 21079 Dijon, France
| | - Bertrand Collin
- Centre George-François Leclerc, Service de Médecine Nucléaire, Plateforme d’Imagerie et de Radiothérapie Précliniques, 1 rue du Professeur Marion, 21079 Dijon, France
- Institut de Chimie Moléculaire de l’Université de Bourgogne, UMR CNRS/uB 6302, Université de Bourgogne Franche-Comté, 21079 Dijon, France
| |
Collapse
|
10
|
Yahara Y, Nguyen T, Ishikawa K, Kamei K, Alman BA. The origins and roles of osteoclasts in bone development, homeostasis and repair. Development 2022; 149:275249. [PMID: 35502779 PMCID: PMC9124578 DOI: 10.1242/dev.199908] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The mechanisms underlying bone development, repair and regeneration are reliant on the interplay and communication between osteoclasts and other surrounding cells. Osteoclasts are multinucleated monocyte lineage cells with resorptive abilities, forming the bone marrow cavity during development. This marrow cavity, essential to hematopoiesis and osteoclast-osteoblast interactions, provides a setting to investigate the origin of osteoclasts and their multi-faceted roles. This Review examines recent developments in the embryonic understanding of osteoclast origin, as well as interactions within the immune environment to regulate normal and pathological bone development, homeostasis and repair.
Collapse
Affiliation(s)
- Yasuhito Yahara
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, United States.,Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, Toyama, 930-0194, Japan.,Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, Toyama, 930-0194, Japan
| | - Tuyet Nguyen
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, United States.,Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, United States
| | - Koji Ishikawa
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, United States.,Department of Orthopaedic Surgery, Showa University School of Medicine, Tokyo, 142-8666, Japan
| | - Katsuhiko Kamei
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, Toyama, 930-0194, Japan
| | - Benjamin A Alman
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, United States.,Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, United States
| |
Collapse
|
11
|
O’Mahony C, Amamou A, Ghosh S. Diet-Microbiota Interplay: An Emerging Player in Macrophage Plasticity and Intestinal Health. Int J Mol Sci 2022; 23:3901. [PMID: 35409260 PMCID: PMC8998881 DOI: 10.3390/ijms23073901] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 02/04/2023] Open
Abstract
Inflammatory bowel diseases (IBD) are chronic disorders of the gastrointestinal tract with an increasing prevalence worldwide. Targeted therapies for IBD are limited by several factors, including the therapeutic ceiling and the high incidence of non-responders or loss-of-response. In order to improve therapeutic efficacy, there is critical need to decipher disease pathogenesis, currently not well understood. Macrophages, innate immune cells that exhibit high plasticity, perpetuate inflammatory signalling in IBD through excessive release of inflammatory mediators. In recent years, pioneering research has revealed the importance of the interplay between macrophages and gut microbiota in maintaining intestinal homeostasis. Particular attention is focusing on microbiota-derived metabolites, believed to possess immunomodulatory properties capable of manipulating macrophage plasticity. Microbiota-derived short-chain fatty acids (SCFAs) and indole compounds, along with dietary sourced omega-3 (ω-3) polyunsaturated fatty acids (PUFA), exert anti-inflammatory effects, attributable to interactions with macrophages. Before we can effectively incorporate these metabolites into IBD therapies, a deeper understanding of microbiota-macrophage interactions at a molecular level is necessary. Therefore, the aim of this review is firstly to detail current knowledge regarding how diet and microbiota-derived metabolites modify macrophage plasticity. Later, we discuss the concept of therapeutic strategies directed at microbiota-macrophage interactions, which could be highly valuable for IBD therapies in the future.
Collapse
Affiliation(s)
- Cian O’Mahony
- APC Microbiome Ireland, College of Medicine and Health, University College Cork, T12 YT20 Cork, Ireland; (A.A.); (S.G.)
| | | | | |
Collapse
|
12
|
Kinetics of LYVE-1-positive M2-like macrophages in developing and repairing dental pulp in vivo and their pro-angiogenic activity in vitro. Sci Rep 2022; 12:5176. [PMID: 35338195 PMCID: PMC8956626 DOI: 10.1038/s41598-022-08987-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/08/2022] [Indexed: 12/24/2022] Open
Abstract
Tissue-resident macrophages expressing lymphatic vessel endothelial hyaluronan receptor-1 (LYVE-1) are found in multiple tissues and organs. We aimed to evaluate the dynamics and biological functions of LYVE-1+ macrophages in dental pulp during post-injury tissue remodeling. Immunofluorescence staining of mouse embryos revealed that LYVE-1+ macrophages colonized dental pulp before birth. In mature rat molar dental pulp, LYVE-1+ macrophages were the main subset of macrophages expressing CD163, an M2 marker, and were distributed throughout the tissue. In response to dental pulp injury induced by cavity preparation, LYVE-1+ macrophages quickly disappeared from the affected area of the pulp and gradually repopulated during the wound healing process. RAW264.7 mouse macrophages cultured with a mixture of macrophage colony-stimulating factor, interleukin-4, and dexamethasone increased LYVE-1 expression, whereas lipopolysaccharide-stimulation decreased LYVE-1 expression. Enforced expression of Lyve1 in RAW264.7 cells resulted in increased mRNA expression of matrix metalloproteinase 2 (Mmp2), Mmp9, and vascular endothelial growth factor A (Vegfa). Lyve1-expressing macrophages promoted the migration and tube formation of human umbilical vein endothelial cells. In conclusion, LYVE-1+ tissue-resident M2-like macrophages in dental pulp showed dynamism in response to pulp injury, and possibly play an important role in angiogenesis during wound healing and tissue remodeling.
Collapse
|
13
|
Hernandez C, Mabilangan C, Burton C, Doucette K, Preiksaitis J. Cytomegalovirus transmission in mismatched solid organ transplant recipients: Are factors other than anti-viral prophylaxis at play? Am J Transplant 2021; 21:3958-3970. [PMID: 34174153 DOI: 10.1111/ajt.16734] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 01/25/2023]
Abstract
Although antiviral prophylaxis has reduced cytomegalovirus (CMV) DNAemia and disease in seronegative solid organ transplant (SOT) recipients (R-) receiving seropositive donor organs (D+), its impact on CMV transmission is uncertain. Transmission, defined as CMV antigenemia/CMV DNAemia and/or seroconversion by year 2, and associated demographic risk factors were studied retrospectively in 428 D+/R- and 429 D-/R- patients receiving a SOT at our center. The cumulative transmission incidence was higher for lung (90.5%) and liver recipients (85.1%) than heart (72.7%), kidney (63.9%), and pancreas (56.2%) recipients (p < .001) and was significantly lower in living (50.1%) versus deceased donor (77.4%, p < .001) kidney recipients despite identical antiviral prophylaxis. In multivariate analysis, only allograft type predicted transmission risk (HR [CI] lung 1.609 [1.159, 2.234] and liver 1.644 [1.209, 2.234] vs kidney). For 53 D+ donating to >1 R- with adequate follow-up, 43 transmitted to all, three transmitted to none, and seven transmitted inconsistently with lungs and livers always transmitting but donor-matched heart, kidney or kidney-pancreas allografts sometimes not. Kidney pairs transmitted concordantly. CMV transmission risk is allograft-specific and unchanged despite antiviral prophylaxis. Tracking transmission and defining donor factors associated with transmission escape may provide novel opportunities for more targeted CMV prevention and improve outcome analysis in antiviral and vaccine trials.
Collapse
Affiliation(s)
| | | | - Catherine Burton
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Karen Doucette
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | | |
Collapse
|
14
|
Rittchen S, Jandl K, Lanz I, Reiter B, Ferreirós N, Kratz D, Lindenmann J, Brcic L, Bärnthaler T, Atallah R, Olschewski H, Sturm EM, Heinemann A. Monocytes and Macrophages Serve as Potent Prostaglandin D 2 Sources during Acute, Non-Allergic Pulmonary Inflammation. Int J Mol Sci 2021; 22:ijms222111697. [PMID: 34769126 PMCID: PMC8584273 DOI: 10.3390/ijms222111697] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/20/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022] Open
Abstract
Acute respiratory inflammation, most commonly resulting from bacterial or viral infection, is one of the leading causes of death and disability worldwide. The inflammatory lipid mediator prostaglandin D2 (PGD2) and its rate-limiting enzyme, hematopoietic PGD synthase (hPGDS), are well-known drivers of allergic pulmonary inflammation. Here, we sought to investigate the source and role of hPGDS-derived PGD2 in acute pulmonary inflammation. Murine bronchoalveolar monocytes/macrophages from LPS- but not OVA-induced lung inflammation released significant amounts of PGD2. Accordingly, human monocyte-derived macrophages expressed high basal levels of hPGDS and released significant levels of PGD2 after LPS/IFN-γ, but not IL-4 stimulation. Human peripheral blood monocytes secreted significantly more PGD2 than monocyte-derived macrophages. Using human precision-cut lung slices (PCLS), we observed that LPS/IFN-γ but not IL-4/IL-13 drive PGD2 production in the lung. HPGDS inhibition prevented LPS-induced PGD2 release by human monocyte-derived macrophages and PCLS. As a result of hPGDS inhibition, less TNF-α, IL-6 and IL-10 could be determined in PCLS-conditioned medium. Collectively, this dataset reflects the time-dependent release of PGD2 by human phagocytes, highlights the importance of monocytes and macrophages as PGD2 sources and suggests that hPGDS inhibition might be a potential therapeutic option for acute, non-allergic lung inflammation.
Collapse
Affiliation(s)
- Sonja Rittchen
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria; (S.R.); (K.J.); (I.L.); (B.R.); (T.B.); (R.A.); (E.M.S.)
- Ludwig Boltzmann Institute for Lung Vascular Research, 8010 Graz, Austria;
| | - Katharina Jandl
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria; (S.R.); (K.J.); (I.L.); (B.R.); (T.B.); (R.A.); (E.M.S.)
- Ludwig Boltzmann Institute for Lung Vascular Research, 8010 Graz, Austria;
| | - Ilse Lanz
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria; (S.R.); (K.J.); (I.L.); (B.R.); (T.B.); (R.A.); (E.M.S.)
| | - Bernhard Reiter
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria; (S.R.); (K.J.); (I.L.); (B.R.); (T.B.); (R.A.); (E.M.S.)
| | - Nerea Ferreirós
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe University Frankfurt, 60596 Frankfurt am Main, Germany; (N.F.); (D.K.)
| | - Daniel Kratz
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe University Frankfurt, 60596 Frankfurt am Main, Germany; (N.F.); (D.K.)
| | - Jörg Lindenmann
- Department of Surgery, Divison of Thoracic and Hyperbaric Surgery, Medical University of Graz, 8010 Graz, Austria;
| | - Luka Brcic
- Diagnostic and Research Institute of Pathology, Medical University of Graz, 8010 Graz, Austria;
| | - Thomas Bärnthaler
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria; (S.R.); (K.J.); (I.L.); (B.R.); (T.B.); (R.A.); (E.M.S.)
| | - Reham Atallah
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria; (S.R.); (K.J.); (I.L.); (B.R.); (T.B.); (R.A.); (E.M.S.)
| | - Horst Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, 8010 Graz, Austria;
- Department of Internal Medicine, Division of Pulmonology, Medical University of Graz, 8010 Graz, Austria
| | - Eva M. Sturm
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria; (S.R.); (K.J.); (I.L.); (B.R.); (T.B.); (R.A.); (E.M.S.)
| | - Akos Heinemann
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria; (S.R.); (K.J.); (I.L.); (B.R.); (T.B.); (R.A.); (E.M.S.)
- BioTechMed, 8010 Graz, Austria
- Correspondence: ; Tel.: +43-316-385-74112
| |
Collapse
|
15
|
Cuevas VD, Simón-Fuentes M, Orta-Zavalza E, Samaniego R, Sánchez-Mateos P, Escribese M, Cimas FJ, Bustos M, Pérez-Diego M, Ocaña A, Domínguez-Soto Á, Vega MA, Corbí ÁL. The Gene Signature of Activated M-CSF-Primed Human Monocyte-Derived Macrophages Is IL-10-Dependent. J Innate Immun 2021; 14:243-256. [PMID: 34670213 DOI: 10.1159/000519305] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 08/30/2021] [Indexed: 11/19/2022] Open
Abstract
During inflammatory responses, monocytes are recruited into inflamed tissues, where they become monocyte-derived macrophages and acquire pro-inflammatory and tissue-damaging effects in response to the surrounding environment. In fact, monocyte-derived macrophage subsets are major pathogenic cells in inflammatory pathologies. Strikingly, the transcriptome of pathogenic monocyte-derived macrophage subsets resembles the gene profile of macrophage colony-stimulating factor (M-CSF)-primed monocyte-derived human macrophages (M-MØ). As M-MØ display a characteristic cytokine profile after activation (IL10high TNFlow IL23low IL6low), we sought to determine the transcriptional signature of M-MØ upon exposure to pathogenic stimuli. Activation of M-MØ led to the acquisition of a distinctive transcriptional profile characterized by the induction of a group of genes (Gene set 1) highly expressed by pathogenic monocyte-derived macrophages in COVID-19 and whose presence in tumor-associated macrophages (TAM) correlates with the expression of macrophage-specific markers (CD163, SPI1) and IL10. Indeed, Gene set 1 expression was primarily dependent on ERK/p38 and STAT3 activation, and transcriptional analysis and neutralization experiments revealed that IL-10 is not only required for the expression of a subset of genes within Gene set 1 but also significantly contributes to the idiosyncratic gene signature of activated M-MØ. Our results indicate that activation of M-CSF-dependent monocyte-derived macrophages induces a distinctive gene expression profile, which is partially dependent on IL-10, and identifies a gene set potentially helpful for macrophage-centered therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | - Rafael Samaniego
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Laboratorio de Inmuno-Oncología, Madrid, Spain
| | - Paloma Sánchez-Mateos
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Laboratorio de Inmuno-Oncología, Madrid, Spain
| | - María Escribese
- Institute for Applied Molecular Medicine, School of Medicine, Universidad CEU San Pablo, Madrid, Spain
| | - Francisco J Cimas
- Instituto de Investigación Sanitaria (IdISSC) and CIBERONC, Medical Oncology Department, Experimental Therapeutics Unit, Hospital Clínico San Carlos (HCSC), Madrid, Spain
| | - Matilde Bustos
- Institute of Biomedicine in Seville (IBiS), Campus del Hospital "Virgen del Rocío", Sevilla, Spain
| | | | - Alberto Ocaña
- Instituto de Investigación Sanitaria (IdISSC) and CIBERONC, Medical Oncology Department, Experimental Therapeutics Unit, Hospital Clínico San Carlos (HCSC), Madrid, Spain
| | | | - Miguel A Vega
- Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Ángel L Corbí
- Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| |
Collapse
|
16
|
Emam M, Tabatabaei S, Sargolzaei M, Mallard B. Response to Oxidative Burst-Induced Hypoxia Is Associated With Macrophage Inflammatory Profiles as Revealed by Cellular Genome-Wide Association. Front Immunol 2021; 12:688503. [PMID: 34220845 PMCID: PMC8253053 DOI: 10.3389/fimmu.2021.688503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/03/2021] [Indexed: 12/27/2022] Open
Abstract
Background In mammalian species, hypoxia is a prominent feature of inflammation. The role of hypoxia in regulating macrophage responses via alteration in metabolic pathways is well established. Recently, oxidative burst-induced hypoxia has been shown in murine macrophages after phagocytosis. Despite the available detailed information on the regulation of macrophage function at transcriptomic and epigenomic levels, the association of genetic polymorphism and macrophage function has been less explored. Previously, we have shown that host genetics controls approximately 80% of the variation in an oxidative burst as measured by nitric oxide (NO-). Further studies revealed two clusters of transcription factors (hypoxia-related and inflammatory-related) are under the genetic control that shapes macrophages’ pro-inflammatory characteristics. Material and Methods In the current study, the association between 43,066 autosomal Single Nucleic Polymorphism (SNPs) and the ability of MDMs in production of NO- in response to E. coli was evaluated in 58 Holstein cows. The positional candidate genes near significant SNPs were selected to perform functional analysis. In addition, the interaction between the positional candidate genes and differentially expressed genes from our previous study was investigated. Results Sixty SNPs on 22 chromosomes of the bovine genome were found to be significantly associated with NO- production of macrophages. The functional genomic analysis showed a significant interaction between positional candidate genes and mitochondria-related differentially expressed genes from the previous study. Further examination showed 7 SNPs located in the vicinity of genes with roles in response to hypoxia, shaping approximately 73% of the observed individual variation in NO- production by MDM. Regarding the normoxic condition of macrophage culture in this study, it was hypothesized that oxidative burst is responsible for causing hypoxia at the cellular level. Conclusion The results suggest that the genetic polymorphism via regulation of response to hypoxia is a candidate step that perhaps shapes macrophage functional characteristics in the pathway of phagocytosis leading to oxidative burst, hypoxia, cellular response to hypoxia and finally the pro-inflammatory responses. Since all cells in one individual carry the same alleles, the effect of genetic predisposition of sensitivity to hypoxia will likely be notable on the clinical outcome to a broad range of host-pathogen interactions.
Collapse
Affiliation(s)
- Mehdi Emam
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada.,Department of Human Genetics, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Saeid Tabatabaei
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Mehdi Sargolzaei
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada.,Select Sires Inc., Plain City, OH, United States
| | - Bonnie Mallard
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada.,Center for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
17
|
IL-5 mediates monocyte phenotype and pain outcomes in fibromyalgia. Pain 2021; 162:1468-1482. [PMID: 33003107 PMCID: PMC7987864 DOI: 10.1097/j.pain.0000000000002089] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/18/2020] [Indexed: 01/09/2023]
Abstract
ABSTRACT Fibromyalgia (FM) is characterized by widespread chronic pain, fatigue, and somatic symptoms. The influence of phenotypic changes in monocytes on symptoms associated with FM is not fully understood. The primary aim of this study was to take a comprehensive whole-body to molecular approach in characterizing relationships between monocyte phenotype and FM symptoms in relevant clinical populations. Lipopolysaccharide-evoked and spontaneous secretion of IL-5 and other select cytokines from circulating monocytes was higher in women with FM compared to women without pain. In addition, greater secretion of IL-5 was significantly associated with pain and other clinically relevant psychological and somatic symptoms of FM. Furthermore, higher levels of pain and pain-related symptoms were associated with a lower percentage of intermediate monocytes (CD14++/CD16+) and a greater percentage of nonclassical monocytes (CD14+/CD16++) in women with FM. Based on findings from individuals with FM, we examined the role of IL-5, an atypical cytokine secreted from monocytes, in an animal model of widespread muscle pain. Results from the animal model show that IL-5 produces analgesia and polarizes monocytes toward an anti-inflammatory phenotype (CD206+). Taken together, our data suggest that monocyte phenotype and their cytokine profiles are associated with pain-related symptoms in individuals with FM. Furthermore, our data show that IL-5 has a potential role in analgesia in an animal model of FM. Thus, targeting anti-inflammatory cytokines such as IL-5 secreted by circulating leukocytes could serve as a promising intervention to control pain and other somatic symptoms associated with FM.
Collapse
|
18
|
Schuster R, Rockel JS, Kapoor M, Hinz B. The inflammatory speech of fibroblasts. Immunol Rev 2021; 302:126-146. [PMID: 33987902 DOI: 10.1111/imr.12971] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/18/2021] [Accepted: 04/23/2021] [Indexed: 02/06/2023]
Abstract
Activation of fibroblasts is a key event during normal tissue repair after injury and the dysregulated repair processes that result in organ fibrosis. To most researchers, fibroblasts are rather unremarkable spindle-shaped cells embedded in the fibrous collagen matrix of connective tissues and/or deemed useful to perform mechanistic studies with adherent cells in culture. For more than a century, fibroblasts escaped thorough classification due to the lack of specific markers and were treated as the leftovers after all other cells have been identified from a tissue sample. With novel cell lineage tracing and single cell transcriptomics tools, bona fide fibroblasts emerge as only one heterogeneous sub-population of a much larger group of partly overlapping cell types, including mesenchymal stromal cells, fibro-adipogenic progenitor cells, pericytes, and/or perivascular cells. All these cells are activated to contribute to tissue repair after injury and/or chronic inflammation. "Activation" can entail various functions, such as enhanced proliferation, migration, instruction of inflammatory cells, secretion of extracellular matrix proteins and organizing enzymes, and acquisition of a contractile myofibroblast phenotype. We provide our view on the fibroblastic cell types and activation states playing a role during physiological and pathological repair and their crosstalk with inflammatory macrophages. Inflammation and fibrosis of the articular synovium during rheumatoid arthritis and osteoarthritis are used as specific examples to discuss inflammatory fibroblast phenotypes. Ultimately, delineating the precursors and functional roles of activated fibroblastic cells will contribute to better and more specific intervention strategies to treat fibroproliferative and fibrocontractive disorders.
Collapse
Affiliation(s)
- Ronen Schuster
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada.,PhenomicAI, MaRS Centre, Toronto, ON, Canada
| | - Jason S Rockel
- Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada.,Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Department of Surgery, University of Toronto, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Mohit Kapoor
- Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada.,Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Department of Surgery, University of Toronto, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Boris Hinz
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
19
|
Lin P, Ji HH, Li YJ, Guo SD. Macrophage Plasticity and Atherosclerosis Therapy. Front Mol Biosci 2021; 8:679797. [PMID: 34026849 PMCID: PMC8138136 DOI: 10.3389/fmolb.2021.679797] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/12/2021] [Indexed: 12/15/2022] Open
Abstract
Atherosclerosis is a chronic disease starting with the entry of monocytes into the subendothelium and the subsequent differentiation into macrophages. Macrophages are the major immune cells in atherosclerotic plaques and are involved in the dynamic progression of atherosclerotic plaques. The biological properties of atherosclerotic plaque macrophages determine lesion size, composition, and stability. The heterogenicity and plasticity of atherosclerotic macrophages have been a hotspot in recent years. Studies demonstrated that lipids, cytokines, chemokines, and other molecules in the atherosclerotic plaque microenvironment regulate macrophage phenotype, contributing to the switch of macrophages toward a pro- or anti-atherosclerosis state. Of note, M1/M2 classification is oversimplified and only represent two extreme states of macrophages. Moreover, M2 macrophages in atherosclerosis are not always protective. Understanding the phenotypic diversity and functions of macrophages can disclose their roles in atherosclerotic plaques. Given that lipid-lowering therapy cannot completely retard the progression of atherosclerosis, macrophages with high heterogeneity and plasticity raise the hope for atherosclerosis regression. This review will focus on the macrophage phenotypic diversity, its role in the progression of the dynamic atherosclerotic plaque, and finally discuss the possibility of treating atherosclerosis by targeting macrophage microenvironment.
Collapse
Affiliation(s)
- Ping Lin
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang, China
| | - Hong-Hai Ji
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang, China
| | - Yan-Jie Li
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang, China
| | - Shou-Dong Guo
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang, China
| |
Collapse
|
20
|
Yahara Y, Ma X, Gracia L, Alman BA. Monocyte/Macrophage Lineage Cells From Fetal Erythromyeloid Progenitors Orchestrate Bone Remodeling and Repair. Front Cell Dev Biol 2021; 9:622035. [PMID: 33614650 PMCID: PMC7889961 DOI: 10.3389/fcell.2021.622035] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/12/2021] [Indexed: 12/21/2022] Open
Abstract
A third of the population sustains a bone fracture, and the pace of fracture healing slows with age. The slower pace of repair is responsible for the increased morbidity in older individuals who sustain a fracture. Bone healing progresses through overlapping phases, initiated by cells of the monocyte/macrophage lineage. The repair process ends with remodeling. This last phase is controlled by osteoclasts, which are bone-specific multinucleated cells also of the monocyte/macrophage lineage. The slower rate of healing in aging can be rejuvenated by macrophages from young animals, and secreted proteins from macrophage regulate undifferentiated mesenchymal cells to become bone-forming osteoblasts. Macrophages can derive from fetal erythromyeloid progenitors or from adult hematopoietic progenitors. Recent studies show that fetal erythromyeloid progenitors are responsible for the osteoclasts that form the space in bone for hematopoiesis and the fetal osteoclast precursors reside in the spleen postnatally, traveling through the blood to participate in fracture repair. Differences in secreted proteins between macrophages from old and young animals regulate the efficiency of osteoblast differentiation from undifferentiated mesenchymal precursor cells. Interestingly, during the remodeling phase osteoclasts can form from the fusion between monocyte/macrophage lineage cells from the fetal and postnatal precursor populations. Data from single cell RNA sequencing identifies specific markers for populations derived from the different precursor populations, a finding that can be used in future studies. Here, we review the diversity of macrophages and osteoclasts, and discuss recent finding about their developmental origin and functions, which provides novel insights into their roles in bone homeostasis and repair.
Collapse
Affiliation(s)
- Yasuhito Yahara
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, United States.,Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, Toyama, Japan.,Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Xinyi Ma
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, United States.,Department of Cell Biology, Duke University School of Medicine, Durham, NC, United States
| | - Liam Gracia
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, United States.,Department of Cell Biology, Duke University School of Medicine, Durham, NC, United States
| | - Benjamin A Alman
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, United States.,Department of Cell Biology, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
21
|
Yang F, Feng W, Wang H, Wang L, Liu X, Wang R, Chen C, Yang X, Zhang D, Ren Q, Zheng G. Monocyte-Derived Leukemia-Associated Macrophages Facilitate Extramedullary Distribution of T-cell Acute Lymphoblastic Leukemia Cells. Cancer Res 2020; 80:3677-3691. [PMID: 32651260 DOI: 10.1158/0008-5472.can-20-0034] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/13/2020] [Accepted: 06/26/2020] [Indexed: 11/16/2022]
Abstract
Macrophages play important roles in both physiologic and pathologic processes and arise from successive waves of embryonic and adult hematopoiesis. Monocyte-derived macrophages (MOMF) exert distinct functions under pathologic conditions, and leukemia-associated macrophages (LAM) show considerable diversities in activation and functional phenotype. However, their origin and pathologic roles have not been well elucidated. Here we used wild-type and CCR2-/- mice to study the pathologic roles of monocyte-derived LAM in extramedullary tissues in models of Notch1-induced T-cell acute lymphoblastic leukemia (T-ALL). MOMF existed in the resting liver and spleen. In the spleen, Ly6C+ monocytes gave rise to the Ly6C+ macrophage subset. Furthermore, an increase of monocyte-derived LAM, including the Ly6C+ subset, was detected in the extramedullary tissues in leukemic mice. More monocyte-derived LAM, including Ly6C+ LAM, was detected in the spleens of leukemic mice transplanted with exogeneous mononuclear cells. Moreover, Ly6C+ LAM exhibited increased M1-related characteristics and contributed to sterile inflammation. In CCR2-/- leukemic mice, reduced Ly6C+ LAM, relieved sterile inflammation, and reduced distribution of leukemia cells were detected in extramedullary tissues. In addition, monocyte-derived Ly6C+ LAM expressed high levels of CCL8 and CCL9/10. Blocking CCR1 and CCR2 relieved hepatosplenomegaly and inhibited the extramedullary distribution of leukemia cells in T-ALL mice. Collectively, our findings reveal the multifaceted pathologic roles of monocyte-derived LAM in T-ALL progression. SIGNIFICANCE: This study links monocyte-derived leukemia-associated macrophages with noninfectious inflammation and extramedullary distribution of leukemia cells during leukemia progression, providing new insight into macrophage-based immunotherapy in leukemia.
Collapse
Affiliation(s)
- Feifei Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Wenli Feng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Hao Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Lina Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Xiaoli Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Rong Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Chong Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Xiao Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Dongyue Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Qian Ren
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Guoguang Zheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.
| |
Collapse
|
22
|
Abaricia JO, Shah AH, Chaubal M, Hotchkiss KM, Olivares-Navarrete R. Wnt signaling modulates macrophage polarization and is regulated by biomaterial surface properties. Biomaterials 2020; 243:119920. [PMID: 32179303 PMCID: PMC7191325 DOI: 10.1016/j.biomaterials.2020.119920] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 02/15/2020] [Accepted: 02/25/2020] [Indexed: 12/28/2022]
Abstract
Macrophages are among the first cells to interact with biomaterials and ultimately determine their integrative fate. Biomaterial surface characteristics like roughness and hydrophilicity can activate macrophages to an anti-inflammatory phenotype. Wnt signaling, a key cell proliferation and differentiation pathway, has been associated with dysregulated macrophage activity in disease. However, the role Wnt signaling plays in macrophage activation and response to biomaterials is unknown. The aim of this study was to characterize the regulation of Wnt signaling in macrophages during classical pro- and anti-inflammatory polarization and in their response to smooth, rough, and rough-hydrophilic titanium (Ti) surfaces. Peri-implant Wnt signaling in macrophage-ablated (MaFIA) mice instrumented with intramedullary Ti rods was significantly attenuated compared to untreated controls. Wnt ligand mRNA were upregulated in a surface modification-dependent manner in macrophages isolated from the surface of Ti implanted in C57Bl/6 mice. In vitro, Wnt mRNAs were regulated in primary murine bone-marrow-derived macrophages cultured on Ti in a surface modification-dependent manner. When macrophageal Wnt secretion was inhibited, macrophage sensitivity to both physical and biological stimuli was abrogated. Loss of macrophage-derived Wnts also impaired recruitment of mesenchymal stem cells and T-cells to Ti implants in vivo. Finally, inhibition of integrin signaling decreased surface-dependent upregulation of Wnt genes. These results suggest that Wnt signaling regulates macrophage response to biomaterials and that macrophages are an important source of Wnt ligands during inflammation and healing.
Collapse
Affiliation(s)
- Jefferson O Abaricia
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Arth H Shah
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Manotri Chaubal
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Kelly M Hotchkiss
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Rene Olivares-Navarrete
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA, United States.
| |
Collapse
|
23
|
Transcriptomic Profiles of Monocyte-Derived Macrophages in Response to Escherichia coli is Associated with the Host Genetics. Sci Rep 2020; 10:271. [PMID: 31937813 PMCID: PMC6959288 DOI: 10.1038/s41598-019-57089-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 12/21/2019] [Indexed: 01/05/2023] Open
Abstract
Reactive Nitrogen Species (RNS) are a group of bactericidal molecules produced by macrophages in response to pathogens in a process called oxidative burst. Nitric oxide (NO-) is a member of RNS produced from arginine by inducible Nitric Oxide Synthase (iNOS) enzyme. The activity of iNOS and production of NO- by macrophages following stimulation is one of the indicators of macrophage polarization towards M1/proinflammatory. Production of NO- by bovine monocyte-derived macrophage (MDM) and mouse peritoneal macrophages has been shown to be strongly associated with host genetic with the heritability of 0.776 in bovine MDM and 0.8 in mouse peritoneal macrophages. However, the mechanism of genetic regulation of macrophage response has remained less explored. In the current study, the transcriptome of bovine MDMs was compared between two extreme phenotypes that had been classified as high and low responder based on NO- production. The results showed that 179 and 392 genes were differentially expressed (DE) between high and low responder groups at 3 and 18 hours after exposure to Escherichia coli, respectively. A set of 11 Transcription Factors (TFs) (STAT1, IRF7, SPI1, STAT4, IRF1, HIF1A, FOXO3, REL, NFAT5, HIC1, and IRF4) at 3 hours and a set of 13 TFs (STAT1, IRF1, HIF1A, STAT4, ATF4, TP63, EGR1, CDKN2A, RBL1, E2F1, PRDM1, GATA3, and IRF4) at 18 hours after exposure to E. coli were identified to be differentially regulated between the high and low responder phenotypes. These TFs were found to be divided into two clusters of inflammatory- and hypoxia-related TFs. Functional analysis revealed that some key canonical pathways such as phagocytosis, chemotaxis, antigen presentation, and cell-to-cell signalling are enriched among the over-expressed genes by high responder phenotype. Based on the results of this study, it was inferred that the functional characteristics of bovine MDMs are associated with NO-based classification. Since NO- production is strongly associated with host genetics, this study for the first time shows the distinct proinflammatory profiles of macrophages are controlled by the natural genetic polymorphism in an outbred population. In addition, the results suggest that genetics can be considered as a new dimension in the current model of macrophage polarization which is currently described by the combination of stimulants, only.
Collapse
|
24
|
Yahara Y, Barrientos T, Tang YJ, Puviindran V, Nadesan P, Zhang H, Gibson JR, Gregory SG, Diao Y, Xiang Y, Qadri YJ, Souma T, Shinohara ML, Alman BA. Erythromyeloid progenitors give rise to a population of osteoclasts that contribute to bone homeostasis and repair. Nat Cell Biol 2020; 22:49-59. [PMID: 31907410 PMCID: PMC6953622 DOI: 10.1038/s41556-019-0437-8] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 11/18/2019] [Indexed: 12/24/2022]
Abstract
Osteoclasts are multinucleated cells of the monocyte/macrophage lineage that degrade bone. Here, we used lineage tracing studies-labelling cells expressing Cx3cr1, Csf1r or Flt3-to identify the precursors of osteoclasts in mice. We identified an erythromyeloid progenitor (EMP)-derived osteoclast precursor population. Yolk-sac macrophages of EMP origin produced neonatal osteoclasts that can create a space for postnatal bone marrow haematopoiesis. Furthermore, EMPs gave rise to long-lasting osteoclast precursors that contributed to postnatal bone remodelling in both physiological and pathological settings. Our single-cell RNA-sequencing data showed that EMP-derived osteoclast precursors arose independently of the haematopoietic stem cell (HSC) lineage and the data from fate tracking of EMP and HSC lineages indicated the possibility of cell-cell fusion between these two lineages. Cx3cr1+ yolk-sac macrophage descendants resided in the adult spleen, and parabiosis experiments showed that these cells migrated through the bloodstream to the remodelled bone after injury.
Collapse
Affiliation(s)
- Yasuhito Yahara
- Department of Orthopaedic Surgery and Regeneration Next Initiative, Duke University, Durham, NC, USA
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Tomasa Barrientos
- Department of Orthopaedic Surgery and Regeneration Next Initiative, Duke University, Durham, NC, USA
| | - Yuning J Tang
- Department of Orthopaedic Surgery and Regeneration Next Initiative, Duke University, Durham, NC, USA
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Vijitha Puviindran
- Department of Orthopaedic Surgery and Regeneration Next Initiative, Duke University, Durham, NC, USA
| | - Puviindran Nadesan
- Department of Orthopaedic Surgery and Regeneration Next Initiative, Duke University, Durham, NC, USA
| | - Hongyuan Zhang
- Department of Orthopaedic Surgery and Regeneration Next Initiative, Duke University, Durham, NC, USA
- Department of Cell Biology and Regeneration Next Initiative, Duke University School of Medicine, Durham, NC, USA
| | - Jason R Gibson
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | - Simon G Gregory
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | - Yarui Diao
- Department of Orthopaedic Surgery and Regeneration Next Initiative, Duke University, Durham, NC, USA
- Department of Cell Biology and Regeneration Next Initiative, Duke University School of Medicine, Durham, NC, USA
| | - Yu Xiang
- Department of Cell Biology and Regeneration Next Initiative, Duke University School of Medicine, Durham, NC, USA
| | - Yawar J Qadri
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Tomokazu Souma
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Mari L Shinohara
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Benjamin A Alman
- Department of Orthopaedic Surgery and Regeneration Next Initiative, Duke University, Durham, NC, USA.
| |
Collapse
|
25
|
Nagel S, Scherr M, MacLeod RAF, Pommerenke C, Koeppel M, Meyer C, Kaufmann M, Dallmann I, Drexler HG. NKL homeobox gene activities in normal and malignant myeloid cells. PLoS One 2019; 14:e0226212. [PMID: 31825998 PMCID: PMC6905564 DOI: 10.1371/journal.pone.0226212] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 11/21/2019] [Indexed: 12/30/2022] Open
Abstract
Recently, we have documented a hematopoietic NKL-code mapping physiological expression patterns of NKL homeobox genes in early hematopoiesis and in lymphopoiesis, which spotlights genes deregulated in lymphoid malignancies. Here, we enlarge this map to include normal NKL homeobox gene expressions in myelopoiesis by analyzing public expression profiling data and primary samples from developing and mature myeloid cells. We thus uncovered differential activities of six NKL homeobox genes, namely DLX2, HHEX, HLX, HMX1, NKX3-1 and VENTX. We further examined public expression profiling data of 251 acute myeloid leukemia (AML) and 183 myelodysplastic syndrome (MDS) patients, thereby identifying 24 deregulated genes. These results revealed frequent deregulation of NKL homeobox genes in myeloid malignancies. For detailed analysis we focused on NKL homeobox gene NANOG, which acts as a stem cell factor and is correspondingly expressed alone in hematopoietic progenitor cells. We detected aberrant expression of NANOG in a small subset of AML patients and in AML cell line NOMO-1, which served as a model. Karyotyping and genomic profiling discounted rearrangements of the NANOG locus at 12p13. But gene expression analyses of AML patients and AML cell lines after knockdown and overexpression of NANOG revealed regulators and target genes. Accordingly, NKL homeobox genes HHEX, DLX5 and DLX6, stem cell factors STAT3 and TET2, and the NOTCH-pathway were located upstream of NANOG while NKL homeobox genes HLX and VENTX, transcription factors KLF4 and MYB, and anti-apoptosis-factor MIR17HG represented target genes. In conclusion, we have extended the NKL-code to the myeloid lineage and thus identified several NKL homeobox genes deregulated in AML and MDS. These data indicate a common oncogenic role of NKL homeobox genes in both lymphoid and myeloid malignancies. For misexpressed NANOG we identified an aberrant regulatory network, which contributes to the understanding of the oncogenic activity of NKL homeobox genes.
Collapse
Affiliation(s)
- Stefan Nagel
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ–German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
- * E-mail:
| | - Michaela Scherr
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Roderick A. F. MacLeod
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ–German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Claudia Pommerenke
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ–German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Max Koeppel
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ–German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Corinna Meyer
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ–German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Maren Kaufmann
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ–German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Iris Dallmann
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Hans G. Drexler
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ–German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| |
Collapse
|
26
|
Wang F, Sun F, Luo J, Yue T, Chen L, Zhou H, Zhang J, Yang C, Luo X, Zhou Q, Zhu H, Li J, Yang P, Xiong F, Yu Q, Zhang H, Zhang W, Xu A, Zhou Z, Lu Q, Eizirik DL, Zhang S, Wang CY. Loss of ubiquitin-conjugating enzyme E2 (Ubc9) in macrophages exacerbates multiple low-dose streptozotocin-induced diabetes by attenuating M2 macrophage polarization. Cell Death Dis 2019; 10:892. [PMID: 31767832 PMCID: PMC6877645 DOI: 10.1038/s41419-019-2130-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/31/2019] [Accepted: 11/07/2019] [Indexed: 02/07/2023]
Abstract
Type 1 diabetes (T1D) is characterized by the selective autoimmune destruction of the islet β cells, and macrophages play a significant role in this process. Small ubiquitin-like modification (SUMOylation) is an important posttranslational modification involved in T1D pathogenesis, but its function in macrophages remains unexplored. We presently developed and used macrophage-specific ubiquitin-conjugating enzyme E2 (Ubc9) knockout (LyzM-Cre-Ubc9fl/fl, KO) mice to address the impact of SUMOylation on macrophage function in a T1D model. We observed that blocking Ubc9 in macrophages exacerbated multiple-low dose streptozotocin (MLD-STZ)-induced diabetes. Specifically, after STZ treatment, blood glucose levels were consistently elevated in the KO mice. The KO mice exhibited a higher diabetes incidence than WT controls (85% vs. 55%, P < 0.01) along with a higher insulitis severity. The loss of Ubc9 impaired macrophage energy metabolism and attenuated macrophage M2 program, thereby enhancing T cell activation. Pancreas-resident macrophages, rather than migrant macrophages, played a predominant role in MLD-STZ-induced diabetes. Mechanistically, Ubc9-mediated SUMOylation of interferon regulator factor 4 (IRF4) enhanced its nuclear localization and stability, thereby transcribing IL-4 and arginase 1 (Arg1) to promote the macrophage M2 program. Ubc9-mediated SUMOylation modulates T1D risk at least in part by regulating macrophage function. Modulation of disturbed SUMOylation process in macrophages, either through cell adoptive transfer or targeted drug-delivery, could help to establish a tolerant pancreatic microenvironment and promote inflammation resolution in early insulitis stage, thus hindering T1D progression.
Collapse
Affiliation(s)
- Faxi Wang
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences,Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Fei Sun
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences,Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Jiahui Luo
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences,Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Tiantian Yue
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences,Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Longmin Chen
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences,Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Haifeng Zhou
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences,Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Jing Zhang
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences,Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Chunliang Yang
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences,Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Xi Luo
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences,Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Qing Zhou
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences,Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - He Zhu
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences,Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Jinxiu Li
- Shenzhen Third People's Hospital, 29 Bujibulan Road, Longgang District, 518000, Shenzhen, Guangdong, China
| | - Ping Yang
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences,Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Fei Xiong
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences,Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Qilin Yu
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences,Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Huilan Zhang
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Wanguang Zhang
- Department of Abdominal Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Aimin Xu
- The State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, 21 Sassoon Road, Laboratory Block, Pokfulam, Hong Kong, China
- Department of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Zhiguang Zhou
- Diabetes Center, The Second Xiangya Hospital, Institute of Metabolism and Endocrinology, Central South University, Changsha, China
| | - Qianjin Lu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital of Central South University, Changsha, China
| | - Decio L Eizirik
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Shu Zhang
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences,Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China.
| | - Cong-Yi Wang
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences,Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China.
| |
Collapse
|
27
|
Emam M, Tabatabaei S, Sargolzaei M, Sharif S, Schenkel F, Mallard B. The effect of host genetics on in vitro performance of bovine monocyte-derived macrophages. J Dairy Sci 2019; 102:9107-9116. [PMID: 31400895 DOI: 10.3168/jds.2018-15960] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 05/17/2019] [Indexed: 12/11/2022]
Abstract
The dynamic interaction between the host and pathogens, along with environmental factors, influences the regulation of mammalian immune responses. Therefore, comprehensive in vivo immune-phenotyping during an active response to a pathogen can be complex and prone to confounding effects. Evaluating critical fundamental aspects of the immune system at a cellular level is an alternative approach to reduce this complexity. Therefore, the objective of the current study was to examine an in vitro model for functional phenotyping of bovine monocyte-derived macrophages (MDM), cells which play a crucial role at all phases of inflammation, as well influence downstream immune responses. As indicators of MDM function, phagocytosis and nitric oxide (NO-) production were tested in MDM of 16 cows in response to 2 common bacterial pathogens of dairy cows, Escherichia coli and Staphylococcus aureus. Notable functional variations were observed among the individuals (coefficient of variation: 33% for phagocytosis and 70% in the production of NO-). The rank correlation analysis revealed a significant, positive, and strong correlation (rho = 0.92) between NO- production in response to E. coli and S. aureus, and a positive but moderate correlation (rho = 0.58) between phagocytosis of E. coli and S. aureus. To gain further insight into this trait, another 58 cows were evaluated solely for NO- response against E. coli. The pedigree of the tested animals was added to the statistical model and the heritability was estimated to be 0.776. Overall, the finding of this study showed a strong effect of host genetics on the in vitro activities of MDM and the possibility of ranking Holstein cows based on the in vitro functional variation of MDM.
Collapse
Affiliation(s)
- Mehdi Emam
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada; Center for Genetic Improvement of Livestock, Department of Animal Bioscience, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| | - Saeid Tabatabaei
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Mehdi Sargolzaei
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada; Select Sires Inc., Plain City, OH 43064
| | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Flavio Schenkel
- Center for Genetic Improvement of Livestock, Department of Animal Bioscience, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Bonnie Mallard
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada; Center for Genetic Improvement of Livestock, Department of Animal Bioscience, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|
28
|
Mantuano NR, Oliveira-Nunes MC, Alisson-Silva F, Dias WB, Todeschini AR. Emerging role of glycosylation in the polarization of tumor-associated macrophages. Pharmacol Res 2019; 146:104285. [PMID: 31132403 DOI: 10.1016/j.phrs.2019.104285] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 05/02/2019] [Accepted: 05/23/2019] [Indexed: 12/20/2022]
Abstract
Tumors are formed by several cell types interacting in a complex environment of soluble and matrix molecules. The crosstalk between the cells and extracellular components control tumor fate. Macrophages are highly plastic and diverse immune cells that are known to be key regulators of this complex network, which is mostly because they can adjust their metabolism and reprogram their phenotype and effector function. Here, we review the studies that disclose the central role of metabolism and tumor microenvironment in shaping the phenotype and function of macrophages, highlighting the importance of the hexosamine biosynthetic pathway. We further discuss growing evidence of nutrient-sensitive protein modifications such as O-GlcNAcylation and extracellular glycosylation in the function and polarization of tumor-associated macrophages.
Collapse
Affiliation(s)
- Natalia Rodrigues Mantuano
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Bloco D sala 03 CCS, UFRJ, Ilha do Fundão, Rio de Janeiro, 21941-902, Brazil
| | - Maria Cecilia Oliveira-Nunes
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Bloco D sala 03 CCS, UFRJ, Ilha do Fundão, Rio de Janeiro, 21941-902, Brazil
| | - Frederico Alisson-Silva
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Bloco D sala 03 CCS, UFRJ, Ilha do Fundão, Rio de Janeiro, 21941-902, Brazil
| | - Wagner Barbosa Dias
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Bloco D sala 03 CCS, UFRJ, Ilha do Fundão, Rio de Janeiro, 21941-902, Brazil.
| | - Adriane Regina Todeschini
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Bloco D sala 03 CCS, UFRJ, Ilha do Fundão, Rio de Janeiro, 21941-902, Brazil.
| |
Collapse
|
29
|
Rua R, Lee JY, Silva AB, Swafford IS, Maric D, Johnson KR, McGavern DB. Infection drives meningeal engraftment by inflammatory monocytes that impairs CNS immunity. Nat Immunol 2019; 20:407-419. [PMID: 30886419 PMCID: PMC6481670 DOI: 10.1038/s41590-019-0344-y] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 02/08/2019] [Indexed: 11/20/2022]
Abstract
Tissue macrophages have an embryonic origin and can be replenished in some tissues under steady-state conditions by blood monocytes. However, little is known about the residency and properties of infiltrating monocytes after an inflammatory challenge. The meninges of the central nervous system (CNS) are populated by a dense network of macrophages that act as resident immune sentinels. Here we show that, following lymphocytic choriomeningitis virus infection, resident meningeal macrophages (MMs) acquired viral antigen and interacted directly with infiltrating cytotoxic T lymphocytes, which led to macrophage depletion. Concurrently, the meninges were infiltrated by inflammatory monocytes that engrafted the meningeal niche and remained in situ for months after viral clearance. This engraftment led to interferon-γ-dependent functional changes in the pool of MMs, including loss of bacterial and immunoregulatory sensors. Collectively, these data indicate that peripheral monocytes can engraft the meninges after an inflammatory challenge, imprinting the compartment with long-term defects in immune function.
Collapse
Affiliation(s)
- Rejane Rua
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Jane Y Lee
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Alexander B Silva
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Isabella S Swafford
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Dragan Maric
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Kory R Johnson
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Dorian B McGavern
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
30
|
Graziano F, Vicenzi E, Poli G. The ATP/P2X7 axis in human immunodeficiency virus infection of macrophages. Curr Opin Pharmacol 2019; 47:46-52. [PMID: 30901736 DOI: 10.1016/j.coph.2019.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/12/2019] [Accepted: 02/18/2019] [Indexed: 12/20/2022]
Abstract
HIV-1 infects CD4+ T lymphocytes with a 'helper' function and myeloid cells, mostly tissue-resident macrophages. While infection of CD4 T lymphocytes in the absence of combination antiretroviral therapy (cART) leads to their depletion and to a profound immunodeficiency, macrophages are resistant to virus-induced cytopathicity and are a source of infectious virus, particularly in the central nervous system (CNS). Infected macrophages are characterized by accumulating newly formed viral particles (virions) in subcellular vacuoles defined as 'virus-containing compartments (VCC)', derived from invaginations of the plasma membrane, that are poorly accessible to antiretroviral agents and anti-HIV antibodies. Several factors favor the accumulation of HIV-1 virions in VCC in vitro, whereas extracellular ATP, via binding to its receptor P2X7, is the only agent described thus far as capable of triggering the rapid release of VCC-sequestered virions without simultaneously causing the death of infected macrophages. Thus, the eATP/P2X7 axis could be exploited to achieve a pharmacological control of VCC-associated viral reservoir in individuals under effective cART.
Collapse
Affiliation(s)
- Francesca Graziano
- AIDS Immunopathogenesis Unit, San Raffaele Scientific Institute, Milano, Italy; Institute Curie Laboratoire Immunité et Cancer, INSERM U932 Equipe Benaroch, Transport Intracellulaire et Immunité, 75005, Paris, France
| | - Elisa Vicenzi
- Viral Pathogens and Biosafety Unit, San Raffaele Scientific Institute, Milano, Italy
| | - Guido Poli
- Viral Pathogens and Biosafety Unit, San Raffaele Scientific Institute, Milano, Italy; Vita-Salute San Raffaele University School of Medicine, Milano, Italy.
| |
Collapse
|
31
|
Taylor JM. Tissue resident macrophages are sufficient for demyelination during peripheral nerve myelin induced experimental autoimmune neuritis? J Neuroimmunol 2017; 313:69-76. [PMID: 29153611 DOI: 10.1016/j.jneuroim.2017.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/15/2017] [Accepted: 10/16/2017] [Indexed: 12/01/2022]
Abstract
The contribution of resident endoneurial tissue macrophages versus recruited monocyte derived macrophages to demyelination and disease during Experimental Autoimmune Neuritis (EAN) was investigated using passive transfer of peripheral nerve myelin (PNM) specific serum antibodies or adoptive co-transfer of PNM specific T and B cells from EAN donors to leukopenic and normal hosts. Passive transfer of PNM specific serum antibodies or adoptive co-transfer of myelin specific T and B cells into leukopenic recipients resulted in a moderate reduction in nerve conduction block or in the disease severity compared to the normal recipients. This was despite at least a 95% decrease in the number of circulating mononuclear cells during the development of nerve conduction block and disease and a 50% reduction in the number of infiltrating endoneurial macrophages in the nerve lesions of the leukopenic recipients. These observations suggest that during EAN in Lewis rats actively induced by immunization with peripheral nerve myelin, phagocytic macrophages originating from the resident endoneurial population may be sufficient to engage in demyelination initiated by anti-myelin antibodies in this model.
Collapse
|