1
|
Zhao H, Wu J, Wu Q, Shu P. Systemic immune-inflammation index values are associated with non-melanoma skin cancers: evidence from the National Health and Nutrition Examination Survey 2010-2018. Arch Med Sci 2024; 20:1128-1137. [PMID: 39439686 PMCID: PMC11493044 DOI: 10.5114/aoms/177345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/20/2023] [Indexed: 10/25/2024] Open
Abstract
Introduction The systemic immune-inflammation index (SII), based on peripheral lymphocyte, neutrophil, and platelet counts, has recently been investigated as a prognostic marker in several tumors. However, the SII has rarely been reported in skin cancers. In this study, we aimed to assess the association between SII values and the risk of occurrence of skin cancers. Material and methods This cross-sectional study was based on National Health and Nutrition Examination Survey data from 2010 to 2018 and involved 32,012 participants. The SII was calculated as the platelet count × neutrophil count/lymphocyte count. A weighted multivariate logistic analysis was conducted to examine the relationship between SII values and the occurrence of skin cancers. In addition, a subgroup analysis and a sensitivity analysis were conducted to identify underlying moderators and the stability of the relationship, respectively. Results Compared with participants in the lowest quartile of SII values, the odds ratios for non-melanoma skin cancer were 1.650 (95% CI: 1.158-2.352) for participants in the quartile with the highest SII values after multivariate adjustments. In subgroup analyses, we found significant interactions between log-transformed SII values and age (p < 0.001 for interaction), race (p < 0.001 for interaction), education level (p < 0.001 for interaction), marital status (p < 0.001 for interaction), and annual household incomes (p < 0.001 for interaction) in the association with non-melanoma skin cancer. Conclusions Our findings suggest a positive association between high SII values and skin cancers in the U.S. population. Age, levels of education, marital status, and annual household incomes affect the positive association between high SII values and non-melanoma skin cancers.
Collapse
Affiliation(s)
- Honglei Zhao
- Department of Dermatology, Beilun District People’s Hospital, Ningbo, Zhejiang, China
| | - Ji Wu
- Department of Dermatology, Beilun District People’s Hospital, Ningbo, Zhejiang, China
| | - Qianqian Wu
- Department of Dermatology, Beilun District People’s Hospital, Ningbo, Zhejiang, China
| | - Peng Shu
- Precision Medicine Research Center, Beilun District People’s Hospital, Ningbo, Zhejiang, China
| |
Collapse
|
2
|
Dyzmann-Sroka A. Assessment of educational services by Patient Target Group participating in the National Skin Cancer Prevention Programme (OPPNS) based on the example of the Wielkopolska region. Rep Pract Oncol Radiother 2024; 29:294-299. [PMID: 39144274 PMCID: PMC11321786 DOI: 10.5603/rpor.100776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/02/2024] [Indexed: 08/16/2024] Open
Abstract
Background Skin melanoma is one of the three main types of skin cancer along with basal cell carcinoma (BCC) and squamous cell carcinoma (SCC), and develops from melanocytes. 2019 saw the beginning of the National Skin Cancer Prevention Programme (OPPNS) in Poland. One of the tasks performed was a health promotion campaign for patients. To effectively educate the public, the project was preceded by a survey assessing knowledge on skin cancer prevention methods. Then, the survey was repeated to evaluate the effectiveness of the awareness raising campaign. Materials and methods both studies were conducted based on an author-developed survey. A representative sample size was determined based on the calculator available at www.cem.pl/pl/analizy/wielkość-proby. In addition, each participant filled in a knowledge upgrade declaration. The analysis employed basic statistical data, such as absolute numbers and structural indicators. Results and Conclusions Knowledge upgrade score of 9.16 (out of 10) was declared by 99.7% of the respondents. As many as 99.0% of them declared an intent to change their lifestyle to a healthier one. Thus, the education provided to the Programme participants was confirmed to have raised their awareness of skin cancer prevention and self-examination methods.
Collapse
Affiliation(s)
- Agnieszka Dyzmann-Sroka
- Epidemiology and Cancer Prevention Department, Greater Poland Cancer Centre, Poznań, Poland
- Department and Unit of Electroradiology, Karol Marcinkowski University of Medical Sciences, Poznań, Poland
| |
Collapse
|
3
|
Yuan R, Bai Y, Du H. Screening of key modules and key genes in the prevention of skin cancer development based on gene volcano plot and WGCNA. Skin Res Technol 2024; 30:e13873. [PMID: 39073152 DOI: 10.1111/srt.13873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/04/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Skin cancer, a prevalent form of cancer that is on the rise worldwide, requires proactive prevention strategies to reduce the burden of screening, treatment, and mortality. The KEGG research highlighted the significant involvement of red module genes in protein digestion and absorption. These findings provide valuable insights into the underlying molecular mechanisms associated with skin cancer susceptibility, offering potential targets for further research and development of preventive strategies. MATERIALS AND METHODS Hub genes numbered 130. "limma" in R found 600 DEGs from GSE66359 dataset. DEGs are enriched in BP: chromosome segregation, CC: chromosomal region, and MF: DNA replication origin binding, according to GO analysis. Cell cycle was enriched in DEGs by KEGG and GSEA. Finally, significant genes were COL5A1, CTHRC1, ECM1, FSTL1, KDELR3, and WIPI1. RESULTS ECM1 and WIPI1 greatly prevented skin cancer. This study created a coexpression network using WGCNA to investigate skin cancer susceptibility modules and cardiovascular disease genes. CONCLUSION Our study finds a module and many important genes that are essential building blocks in the etiology of skin cancer, which may help us understand the molecular mechanisms of disease prevention.
Collapse
Affiliation(s)
- Rui Yuan
- Department of Dermatology, The People's Hospital of Yubei District of Chongqing, Chongqing, China
| | - Yaqiong Bai
- Department of Dermatology, The People's Hospital of Yubei District of Chongqing, Chongqing, China
| | - Hanghang Du
- Chongqing Meilun Meihuan Plastic Surgery Hospital, Chongqing, China
| |
Collapse
|
4
|
Wu LY, Park SH, Jakobsson H, Shackleton M, Möller A. Immune Regulation and Immune Therapy in Melanoma: Review with Emphasis on CD155 Signalling. Cancers (Basel) 2024; 16:1950. [PMID: 38893071 PMCID: PMC11171058 DOI: 10.3390/cancers16111950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
Melanoma is commonly diagnosed in a younger population than most other solid malignancies and, in Australia and most of the world, is the leading cause of skin-cancer-related death. Melanoma is a cancer type with high immunogenicity; thus, immunotherapies are used as first-line treatment for advanced melanoma patients. Although immunotherapies are working well, not all the patients are benefitting from them. A lack of a comprehensive understanding of immune regulation in the melanoma tumour microenvironment is a major challenge of patient stratification. Overexpression of CD155 has been reported as a key factor in melanoma immune regulation for the development of therapy resistance. A more thorough understanding of the actions of current immunotherapy strategies, their effects on immune cell subsets, and the roles that CD155 plays are essential for a rational design of novel targets of anti-cancer immunotherapies. In this review, we comprehensively discuss current anti-melanoma immunotherapy strategies and the immune response contribution of different cell lineages, including tumour endothelial cells, myeloid-derived suppressor cells, cytotoxic T cells, cancer-associated fibroblast, and nature killer cells. Finally, we explore the impact of CD155 and its receptors DNAM-1, TIGIT, and CD96 on immune cells, especially in the context of the melanoma tumour microenvironment and anti-cancer immunotherapies.
Collapse
Affiliation(s)
- Li-Ying Wu
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4059, Australia;
- JC STEM Lab, Department of Otorhinolaryngology, Chinese University of Hong Kong, Shatin, Hong Kong SAR, China;
- Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Su-Ho Park
- JC STEM Lab, Department of Otorhinolaryngology, Chinese University of Hong Kong, Shatin, Hong Kong SAR, China;
- Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Haakan Jakobsson
- Department of Medical Oncology, Paula Fox Melanoma and Cancer Centre, Alfred Health, Melbourne, VIC 3004, Australia;
| | - Mark Shackleton
- Department of Medical Oncology, Paula Fox Melanoma and Cancer Centre, Alfred Health, Melbourne, VIC 3004, Australia;
- School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Andreas Möller
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4059, Australia;
- JC STEM Lab, Department of Otorhinolaryngology, Chinese University of Hong Kong, Shatin, Hong Kong SAR, China;
- Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
5
|
Yoon YE, Jung YJ, Lee SJ. The Anticancer Activities of Natural Terpenoids That Inhibit Both Melanoma and Non-Melanoma Skin Cancers. Int J Mol Sci 2024; 25:4423. [PMID: 38674007 PMCID: PMC11050645 DOI: 10.3390/ijms25084423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
The prevalence of two major types of skin cancer, melanoma and non-melanoma skin cancer, has been increasing worldwide. Skin cancer incidence is estimated to rise continuously over the next 20 years due to ozone depletion and an increased life expectancy. Chemotherapeutic agents could affect healthy cells, and thus may be toxic to them and cause numerous side effects or drug resistance. Phytochemicals that are naturally occurring in fruits, plants, and herbs are known to possess various bioactive properties, including anticancer properties. Although the effects of phytochemicals are relatively milder than chemotherapeutic agents, the long-term intake of phytochemicals may be effective and safe in preventing tumor development in humans. Diverse phytochemicals have shown anti-tumorigenic activities for either melanoma or non-melanoma skin cancer. In this review, we focused on summarizing recent research findings of the natural and dietary terpenoids (eucalyptol, eugenol, geraniol, linalool, and ursolic acid) that have anticancer activities for both melanoma and non-melanoma skin cancers. These terpenoids may be helpful to protect skin collectively to prevent tumorigenesis of both melanoma and nonmelanoma skin cancers.
Collapse
Affiliation(s)
- Ye Eun Yoon
- Department of Biotechnology, Graduate School of Life Sciences & Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02855, Republic of Korea;
| | - Young Jae Jung
- Department of Biotechnology, Graduate School of Life Sciences & Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02855, Republic of Korea;
| | - Sung-Joon Lee
- Department of Food Bioscience and Technology, College of Life Sciences and Biotechnology, Korea University, Seoul 02855, Republic of Korea
- Interdisciplinary Program in Precision Public Health, BK21 Four Institute of Precision Public Health, Korea University, Seoul 02846, Republic of Korea
| |
Collapse
|
6
|
Tang X, Yang T, Yu D, Xiong H, Zhang S. Current insights and future perspectives of ultraviolet radiation (UV) exposure: Friends and foes to the skin and beyond the skin. ENVIRONMENT INTERNATIONAL 2024; 185:108535. [PMID: 38428192 DOI: 10.1016/j.envint.2024.108535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/25/2024] [Accepted: 02/25/2024] [Indexed: 03/03/2024]
Abstract
Ultraviolet (UV) radiation is ubiquitous in the environment, which has been classified as an established human carcinogen. As the largest and outermost organ of the body, direct exposure of skin to sunlight or UV radiation can result in sunburn, inflammation, photo-immunosuppression, photoaging and even skin cancers. To date, there are tactics to protect the skin by preventing UV radiation and reducing the amount of UV radiation to the skin. Nevertheless, deciphering the essential regulatory mechanisms may pave the way for therapeutic interventions against UV-induced skin disorders. Additionally, UV light is considered beneficial for specific skin-related conditions in medical UV therapy. Recent evidence indicates that the biological effects of UV exposure extend beyond the skin and include the treatment of inflammatory diseases, solid tumors and certain abnormal behaviors. This review mainly focuses on the effects of UV on the skin. Moreover, novel findings of the biological effects of UV in other organs and systems are also summarized. Nevertheless, the mechanisms through which UV affects the human organism remain to be fully elucidated to achieve a more comprehensive understanding of its biological effects.
Collapse
Affiliation(s)
- Xiaoyou Tang
- Medical College of Tibet University, Lasa 850000, China; Laboratory of Radiation Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Tingyi Yang
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Daojiang Yu
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu 610051, China
| | - Hai Xiong
- Medical College of Tibet University, Lasa 850000, China; West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China.
| | - Shuyu Zhang
- Medical College of Tibet University, Lasa 850000, China; Laboratory of Radiation Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu 610051, China; NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang 621099, China.
| |
Collapse
|
7
|
Pisharodi M. Portable and Air Conditioner-Based Bio-Protection Devices to Prevent Airborne Infections in Acute and Long-Term Healthcare Facilities, Public Gathering Places, Public Transportation, and Similar Entities. Cureus 2024; 16:e55950. [PMID: 38469370 PMCID: PMC10926937 DOI: 10.7759/cureus.55950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2024] [Indexed: 03/13/2024] Open
Abstract
The nature in which the coronavirus disease 2019 (COVID-19) pandemic started and spread all over the world has surprised and shocked experts and the general population alike. This has brought out a worldwide desire and serious efforts to prevent, or at least reduce, the severity of another airborne viral infection and protect individuals gathering for various reasons. Toward this main purpose, a novel method to disinfect the air, using graded, predictable, safe, and reliable dosage of ultraviolet C (UVC), with specially designed devices, is described here. Individuals exclusively breathing this disinfected air can prevent infection, thus destroying the airborne virus or any other pathogens outside the human body to prevent acute and chronic damage to the organs and provide a sense of security to congregate, use public transport, and be protected in acute and long-term healthcare facilities. The study involved designing and testing a unit with one UVC chamber and another unit with six UVC chambers both enclosed in UVC-opaque housings that could be used to destroy airborne pathogens. Wild-type severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was used as a representative pathogen. The virus was fed into these units and in both units, the virus was destroyed to undetectable levels. Such disinfected air can be made available for individuals to breathe at an individual and a community level. The two units that were studied were able to destroy the SARS-CoV-2 virus completely in UVC-opaque housings, making them safe for human use. By employing the air to bring the virus to the UVC, the problem of the virus getting protected behind structures was avoided. The individuals get to breathe totally disinfected air through a mask or a ventilator. To protect individuals who are unable or unwilling to use these units meant for individual use, the same principle can be expanded for use with air conditioners to provide community protection. It is envisaged that this method can prevent airborne infections from turning into pandemics and is a clear example of advocating prevention, rather than treatment. These units are expandable and the UVC dosage to the pathogen can be adjusted and predictable, thereby making it a standard technique to study the dosage needed to inactivate different pathogens.
Collapse
|
8
|
Zambrano‐Román M, Padilla‐Gutiérrez JR, Valle Y, Muñoz‐Valle JF, Guevara‐Gutiérrez E, Martínez‐Fernández DE, Valdés‐Alvarado E. PTCH1 gene variants rs357564, rs2236405, rs2297086 and rs41313327, mRNA and tissue expression in basal cell carcinoma patients from Western Mexico. J Clin Lab Anal 2024; 38:e25010. [PMID: 38287479 PMCID: PMC10873687 DOI: 10.1002/jcla.25010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 01/08/2024] [Accepted: 01/14/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Basal cell carcinoma (BCC) represents about 80% of all cases of skin cancer. The PTCH1 is a transmembrane protein of the Sonic Hedgehog signaling pathway that regulates cell proliferation. Genetic variants in PTCH1 gene have been previously described in association with BCC development. In addition, PTCH1 mRNA and protein expression analysis are also significant to understand its role in skin cancer physiopathology. METHODS An analytical cross-sectional study was performed, and a total of 250 BCC patients and 290 subjects from the control group (CG) were included, all born in western Mexico. The genotypes and relative expression of the mRNA were determined by TaqMan® assay. The protein expression was investigated in 70 BCC paraffin-embedded samples with PTCH1 antibodies. Semi-quantitative analysis was performed to determine the expression level in the immunostained cells. RESULTS We did not find evidence of an association between PTCH1 rs357564, rs2297086, rs2236405, and rs41313327 genetic variants and susceptibility to BCC. Likewise, no statistically significant differences were found in the comparison of the mRNA level expression between BCC and CG (p > 0.05). The PTCH1 protein showed a low expression in 6 of the analyzed samples and moderate expression in 1 sample. No association was found between genetic variants, protein expression, and demographic-clinical characteristics (p > 0.05). CONCLUSION The studied PTCH1 variants may not be associated with BCC development in the Western Mexico population. The PTCH1 mRNA levels were lower in patients with BCC compared to the control group, but its protein was underexpressed in the tissue samples.
Collapse
Affiliation(s)
- Marianela Zambrano‐Román
- Centro Universitario de Ciencias de la Salud, Instituto de Investigación en Ciencias Biomédicas (IICB)Universidad de GuadalajaraGuadalajaraMexico
- Doctorado en Genética Humana, Departamento de Biología Molecular y GenómicaUniversidad de GuadalajaraGuadalajaraMexico
| | - Jorge R. Padilla‐Gutiérrez
- Centro Universitario de Ciencias de la Salud, Instituto de Investigación en Ciencias Biomédicas (IICB)Universidad de GuadalajaraGuadalajaraMexico
| | - Yeminia Valle
- Centro Universitario de Ciencias de la Salud, Instituto de Investigación en Ciencias Biomédicas (IICB)Universidad de GuadalajaraGuadalajaraMexico
| | - José F. Muñoz‐Valle
- Centro Universitario de Ciencias de la Salud, Instituto de Investigación en Ciencias Biomédicas (IICB)Universidad de GuadalajaraGuadalajaraMexico
| | - Elizabeth Guevara‐Gutiérrez
- Departamento de Dermatología, Instituto Dermatológico de Jalisco “Dr. José Barba Rubio”Secretaría de Salud JaliscoZapopanJaliscoMexico
| | - Diana Emilia Martínez‐Fernández
- Centro Universitario de Ciencias de la Salud, Instituto de Investigación en Ciencias Biomédicas (IICB)Universidad de GuadalajaraGuadalajaraMexico
| | - Emmanuel Valdés‐Alvarado
- Centro Universitario de Ciencias de la Salud, Instituto de Investigación en Ciencias Biomédicas (IICB)Universidad de GuadalajaraGuadalajaraMexico
| |
Collapse
|
9
|
Xiang H, Jia X, Duan X, Xu Q, Zhang R, He Y, Yang Z. Q-switched 1064 nm Nd: YAG laser restores skin photoageing by activating autophagy by TGFβ1 and ITGB1. Exp Dermatol 2024; 33:e15006. [PMID: 38284200 DOI: 10.1111/exd.15006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/30/2024]
Abstract
Excessive ultraviolet B ray (UVB) exposure to sunlight results in skin photoageing. Our previous research showed that a Q-switched 1064 nm Nd: YAG laser can alleviate skin barrier damage through miR-24-3p. However, the role of autophagy in the laser treatment of skin photoageing is still unclear. This study aims to investigate whether autophagy is involved in the mechanism of Q-switched 1064 nm Nd: YAG in the treatment of skin ageing. In vitro, primary human dermal fibroblast (HDF) cells were irradiated with different doses of UVB to establish a cell model of skin photoageing. In vivo, SKH-1 hairless mice were irradiated with UVB to establish a skin photoageing mouse model and irradiated with laser. The oxidative stress and autophagy levels were detected by western blot, immunofluorescence and flow cytometer. String was used to predict the interaction protein of TGF-β1, and CO-IP and GST-pull down were used to detect the binding relationship between TGFβ1 and ITGB1. In vitro, UVB irradiation reduced HDF cell viability, arrested cell cycle, induced cell senescence and oxidative stress compared with the control group. Laser treatment reversed cell viability, senescence and oxidative stress induced by UVB irradiation and activated autophagy. Autophagy agonists or inhibitors can enhance or attenuate the changes induced by laser treatment, respectively. In vivo, UVB irradiation caused hyperkeratosis, dermis destruction, collagen fibres reduction, increased cellular senescence and activation of oxidative stress in hairless mice. Laser treatment thinned the stratum corneum of skin tissue, increased collagen synthesis and autophagy in the dermis, and decreased the level of oxidative stress. Autophagy agonist rapamycin and autophagy inhibitor 3-methyladenine (3-MA) can enhance or attenuate the effects of laser treatment on the skin, respectively. Also, we identified a direct interaction between TGFB1 and ITGB1 and participated in laser irradiation-activated autophagy, thereby inhibiting UVB-mediated oxidative stress further reducing skin ageing. Q-switched 1064 nm Nd: YAG laser treatment inhibited UVB-induced oxidative stress and restored skin photoageing by activating autophagy, and TGFβ1 and ITGB1 directly incorporated and participated in this process.
Collapse
Affiliation(s)
- Huiyi Xiang
- Department of Dermatology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiaorong Jia
- Department of Dermatology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiaoxia Duan
- Department of Dermatology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Qi Xu
- Department of Dermatology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ruiqi Zhang
- Department of Dermatology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yunting He
- Department of Dermatology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zhi Yang
- Department of Dermatology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
10
|
Ali F, Alom S, Ali SR, Kondoli B, Sadhu P, Borah C, Kakoti BB, Ghosh SK, Shakya A, Ahmed AB, Singh UP, Bhat HR. Ebselen: A Review on its Synthesis, Derivatives, Anticancer Efficacy and Utility in Combating SARS-COV-2. Mini Rev Med Chem 2024; 24:1203-1225. [PMID: 37711004 DOI: 10.2174/1389557523666230914103339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/26/2023] [Accepted: 06/16/2023] [Indexed: 09/16/2023]
Abstract
Ebselen is a selenoorganic chiral compound with antioxidant properties comparable to glutathione peroxidase. It is also known as 2-phenyl-1,2-benzisoselenazol-3(2H)-one. In studies examining its numerous pharmacological activities, including antioxidant, anticancer, antiviral, and anti- Alzheimer's, ebselen has demonstrated promising results. This review's primary objective was to emphasize the numerous synthesis pathways of ebselen and their efficacy in fighting cancer. The data were collected from multiple sources, including Scopus, PubMed, Google Scholar, Web of Science, and Publons. The starting reagents for the synthesis of ebselen are 2-aminobenzoic acid and N-phenyl benzamide. It was discovered that ebselen has the ability to initiate apoptosis in malignant cells and prevent the formation of new cancer cells by scavenging free radicals. In addition, ebselen increases tumor cell susceptibility to apoptosis by inhibiting TNF-α mediated NF-kB activation. Ebselen can inhibit both doxorubicin and daunorubicin-induced cardiotoxicity. Allopurinol and ebselen administered orally can be used to suppress renal ototoxicity and nephrotoxicity. Due to excessive administration, diclofenac can induce malignancy of the gastrointestinal tract, which ebselen can effectively suppress. Recent research has demonstrated ebselen to inhibit viral function by binding to cysteinecontaining catalytic domains of various viral proteases. It was discovered that ebselen could inhibit the catalytic dyad function of Mpro by forming an irreversible covalent bond between Se and Cys145, thereby altering protease function and inhibiting SARS-CoV-2. Ebselen may also inhibit the activation of endosomal NADPH oxidase of vascular endothelial cells, which is believed to be required for thrombotic complications in COVID-19. In this review, we have included various studies conducted on the anticancer effect of ebselen as well as its inhibition of SARS-CoV-2.
Collapse
Affiliation(s)
- Farak Ali
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, 786004, India
- Girijananda Chowdhury Institute of Pharmaceutical Science, Tezpur Medical College and Hospital, Tezpur, Sonitpur Assam, 784501,India
| | - Shahnaz Alom
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, 786004, India
- Girijananda Chowdhury Institute of Pharmaceutical Science, Tezpur Medical College and Hospital, Tezpur, Sonitpur Assam, 784501,India
| | - Sheikh Rezzak Ali
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, 786004, India
| | - Biswanarayan Kondoli
- Department of Pharmacy, Tripura University, Suryamani Nagar, Agartala, Tripura 799022, India
| | - Prativa Sadhu
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, 786004, India
| | - Chinmoyee Borah
- Girijananda Chowdhury Institute of Pharmaceutical Science, Guwahati, Kamrup, Assam, 781017, India
| | - Bibhuti Bushan Kakoti
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, 786004, India
| | - Surajit Kumar Ghosh
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, 786004, India
| | - Anshul Shakya
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, 786004, India
| | - Abdul Baquee Ahmed
- Girijananda Chowdhury Institute of Pharmaceutical Science,Tezpur Medical College and Hospital, Tezpur, Sonitpur-784501, Assam, India
| | - Udaya Pratap Singh
- Drug Design & Discovery Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, Uttar Pradesh, 211007, India
| | - Hans Raj Bhat
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, 786004, India
| |
Collapse
|
11
|
Potapovich AI, Kostyuk TV, Ishutina OV, Shutava TG, Kostyuk VA. Effects of native and particulate polyphenols on DNA damage and cell viability after UV-C exposure. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:1923-1930. [PMID: 36864349 DOI: 10.1007/s00210-023-02443-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 02/22/2023] [Indexed: 03/04/2023]
Abstract
Plant polyphenols have poor water solubility, resulting in low bioavailability. In order to overcome this limitation, the drug molecules can be coated with multiple layers of polymeric materials. Microcrystals of quercetin and resveratrol coated with a (PAH/PSS)4 or (CH/DexS)4 shell were prepared using the layer-by-layer assembly method; cultured human HaCaT keratinocytes were treated with UV-C, and after that, cells were incubated with native and particulate polyphenols. DNA damage, cell viability, and integrity were evaluated by comet assay, using PrestoBlueTM reagent and lactate dehydrogenase (LDH) leakage test. The data obtained indicate that both native and particulate polyphenols added immediately after UV-C exposure increased cell viability in a dose-dependent manner; however, the efficiency of particulate quercetin was more pronounced than that of the native compound; also quercetin coated with a (CH/DexS)4 shell more effectively than the native compound reduced the number of DNA lesions in the nuclei of keratinocytes exposed to UV-C radiation; native and particulate resveratrol were ineffective against DNA damage. Quercetin reduces cell death caused by UV-C radiation and increases DNA repair capacity. Coating quercetin with (CH/DexS)4 shell markedly enhanced its impact on DNA repair.
Collapse
Affiliation(s)
- Alla I Potapovich
- Belarusian State University, Niezaližnasci Avenue, 4, 220030, Minsk, Belarus
| | - Tatyana V Kostyuk
- Belarusian State University, Niezaližnasci Avenue, 4, 220030, Minsk, Belarus
| | - Olga V Ishutina
- Belarusian State University, Niezaližnasci Avenue, 4, 220030, Minsk, Belarus
| | - Tatsiana G Shutava
- Institute of Chemistry of New Materials, National Academy of Sciences of Belarus, 36 F. Skaryny Street, 220141, Minsk, Belarus
| | - Vladimir A Kostyuk
- Belarusian State University, Niezaližnasci Avenue, 4, 220030, Minsk, Belarus.
| |
Collapse
|
12
|
Kolenda T, Poter P, Guglas K, Kozłowska-Masłoń J, Braska A, Kazimierczak U, Teresiak A. Biological role and diagnostic utility of ribosomal protein L23a pseudogene 53 in cutaneous melanoma. Rep Pract Oncol Radiother 2023; 28:255-270. [PMID: 37456695 PMCID: PMC10348336 DOI: 10.5603/rpor.a2023.0030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/02/2023] [Indexed: 07/18/2023] Open
Abstract
Background Skin melanoma is one of the deadliest types of skin cancer and develops from melanocytes. The genetic aberrations in protein-coding genes are well characterized, but little is known about changes in non-coding RNAs (ncRNAs) such as pseudogenes. Ribosomal protein pseudogenes (RPPs) have been described as the largest group of pseudogenes which are dispersed in the human genome. Materials and methids We looked deeply at the role of one of them, ribosomal protein L23a pseudogene 53 (RPL23AP53), and its potential diagnostic use. The expression level of RPL23AP53 was profiled in melanoma cell lines using real time quantitative reverse transcription polymerase chain reaction (qRT-PCR) and analyzed based on the Cancer Genome Atlas (TCGA) data depending on BRAF status and clinicopathological parameters. Cellular phenotype, which was associated with RPL23AP53 levels, was described based on the REACTOME pathway browser, Gene Set Enrichment Analysis (GSEA) analysis as well as Immune and ESTIMATE Scores. Results We indicted in vitro changes in RPL23AP53 level depending on a cell line, and based on in silico analysis of TCGA samples demonstrated significant differences in RPL23AP53 expression between primary and metastatic melanoma, as well as correlation between RPL23AP53 and overall survival. No differences depending on BRAF status were observed. RPL23AP53 is associated with several signaling pathways and cellular processes. Conclusions This study showed that patients with higher expression of RPL23AP53 displayed changed infiltration of lymphocytes, macrophages, and neutrophils compared to groups with lower expression of RPL23AP53. RPL23AP53 pseudogene is differently expressed in melanoma compared with normal tissue and its expression is associated with cellular proliferation. Thus, it may be considered as an indicator of patients' survival and a marker for the immune profile assessment.
Collapse
Affiliation(s)
- Tomasz Kolenda
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Poznan, Poland
- Research and Implementation Unit, Greater Poland Cancer Centre, Poznan, Poland
| | - Paulina Poter
- Department of Oncologic Pathology and Prophylaxis, Poznan University of Medical Sciences, Greater Poland Cancer Center, Poznan, Poland
- Department of Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Kacper Guglas
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Poznan, Poland
- Research and Implementation Unit, Greater Poland Cancer Centre, Poznan, Poland
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warszawa, Poland
| | - Joanna Kozłowska-Masłoń
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Poznan, Poland
- Research and Implementation Unit, Greater Poland Cancer Centre, Poznan, Poland
- Faculty of Biology, Institute of Human Biology and Evolution, Adam Mickiewicz University, Poznań, Poland
| | - Alicja Braska
- Research and Implementation Unit, Greater Poland Cancer Centre, Poznan, Poland
| | - Urszula Kazimierczak
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Center, Poznan, Poland
| | - Anna Teresiak
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Poznan, Poland
- Research and Implementation Unit, Greater Poland Cancer Centre, Poznan, Poland
| |
Collapse
|
13
|
Vanella L, Consoli V, Burò I, Gulisano M, Giglio MS, Maugeri L, Petralia S, Castellano A, Sorrenti V. Standardized Extract from Wastes of Edible Flowers and Snail Mucus Ameliorate Ultraviolet B-Induced Damage in Keratinocytes. Int J Mol Sci 2023; 24:10185. [PMID: 37373341 DOI: 10.3390/ijms241210185] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Several studies have highlighted the ability of snail mucus in maintaining healthy skin conditions due to its emollient, regenerative, and protective properties. In particular, mucus derived from Helix aspersa muller has already been reported to have beneficial properties such as antimicrobial activity and wound repair capacity. In order to enhance the beneficial effects of snail mucus, a formulation enriched with antioxidant compounds derived from edible flower waste (Acmella oleracea L., Centaurea cyanus L., Tagetes erecta L., Calendula officinalis L., and Moringa oleifera Lam.) was obtained. UVB damage was used as a model to investigate in vitro the cytoprotective effects of snail mucus and edible flower extract. Results demonstrated that polyphenols from the flower waste extract boosted the antioxidant activity of snail mucus, providing cytoprotective effects in keratinocytes exposed to UVB radiation. Additionally, glutathione content, reactive oxygen species (ROS), and lipid peroxidation levels were reduced following the combined treatment with snail mucus and edible flower waste extract. We demonstrated that flower waste can be considered a valid candidate for cosmeceutical applications due to its potent antioxidant activity. Thus, a new formulation of snail mucus enriched in extracts of edible flower waste could be useful to design innovative and sustainable broadband natural UV-screen cosmeceutical products.
Collapse
Affiliation(s)
- Luca Vanella
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
- CERNUT-Research Centre for Nutraceuticals and Health Products, University of Catania, 95125 Catania, Italy
| | - Valeria Consoli
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
- CERNUT-Research Centre for Nutraceuticals and Health Products, University of Catania, 95125 Catania, Italy
| | - Ilaria Burò
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
| | - Maria Gulisano
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
| | | | - Ludovica Maugeri
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
| | - Salvatore Petralia
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
| | - Angela Castellano
- Mediterranean Nutraceutical Extracts (Medinutrex), Via Vincenzo Giuffrida 202, 95128 Catania, Italy
| | - Valeria Sorrenti
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
- CERNUT-Research Centre for Nutraceuticals and Health Products, University of Catania, 95125 Catania, Italy
| |
Collapse
|
14
|
Balaji P, Hung BT, Chakrabarti P, Chakrabarti T, Elngar AA, Aluvalu R. A novel artificial intelligence-based predictive analytics technique to detect skin cancer. PeerJ Comput Sci 2023; 9:e1387. [PMID: 37346565 PMCID: PMC10280503 DOI: 10.7717/peerj-cs.1387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/20/2023] [Indexed: 06/23/2023]
Abstract
One of the leading causes of death among people around the world is skin cancer. It is critical to identify and classify skin cancer early to assist patients in taking the right course of action. Additionally, melanoma, one of the main skin cancer illnesses, is curable when detected and treated at an early stage. More than 75% of fatalities worldwide are related to skin cancer. A novel Artificial Golden Eagle-based Random Forest (AGEbRF) is created in this study to predict skin cancer cells at an early stage. Dermoscopic images are used in this instance as the dataset for the system's training. Additionally, the dermoscopic image information is processed using the established AGEbRF function to identify and segment the skin cancer-affected area. Additionally, this approach is simulated using a Python program, and the current research's parameters are assessed against those of earlier studies. The results demonstrate that, compared to other models, the new research model produces better accuracy for predicting skin cancer by segmentation.
Collapse
Affiliation(s)
- Prasanalakshmi Balaji
- Data Science Laboratory, Faculty of Information Technology, Industrial University of Ho Chi Minh City, Vietnam
| | - Bui Thanh Hung
- Data Science Laboratory, Faculty of Information Technology, Industrial University of Ho Chi Minh City, Vietnam
| | | | | | - Ahmed A. Elngar
- Faculty of Computers and Artificial Intelligence, Beni-Suef University, Beni-Suef, Egypt
| | - Rajanikanth Aluvalu
- Department of IT, Chaitanya Bharathi Institute of Technology, Hyderabad, India
| |
Collapse
|
15
|
Gag O, Dinu Ș, Manea H, Marcovici I, Pînzaru I, Popovici R, Crăiniceanu Z, Gyori Z, Iovănescu G, Chiriac S. UVA/UVB Irradiation Exerts a Distinct Phototoxic Effect on Human Keratinocytes Compared to Human Malignant Melanoma Cells. Life (Basel) 2023; 13:life13051144. [PMID: 37240789 DOI: 10.3390/life13051144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Solar ultraviolet radiation (UVR) is responsible for the development of many skin diseases, including malignant melanoma (MM). This study assessed the phototoxic effects of UVA, and UVB radiations on healthy and pathologic skin cells by evaluating the behavior of human keratinocytes (HaCaT) and MM cells (A375) at 24 h post-irradiation. The main results showed that UVA 10 J/cm2 exerted no cytotoxicity on HaCaT and A375 cells, while UVB 0.5 J/cm2 significantly reduced cell viability and confluence, induced cell shrinkage and rounding, generated nuclear and F-actin condensation, and induced apoptosis by modulating the expressions of Bax and Bcl-2. The association of UVA 10 J/cm2 with UVB 0.5 J/cm2 (UVA/UVB) induced the highest cytotoxicity in both cell lines (viability < 40%). However, the morphological changes were different-HaCaT cells showed signs of necrosis, while in A375 nuclear polarization and expulsion from the cells were observed, features that indicate enucleation. By unraveling the impact of different UVR treatments on the behavior of normal and cancer skin cells and describing enucleation as a novel process involved in the cytotoxicity of UVA/UVB irradiation, these findings bridge the gap between the current and the future status of research in the field.
Collapse
Affiliation(s)
- Otilia Gag
- Faculty of Dental Medicine, "Victor Babes" University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No.2, 300041 Timisoara, Romania
| | - Ștefania Dinu
- Faculty of Dental Medicine, "Victor Babes" University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No.2, 300041 Timisoara, Romania
| | - Horațiu Manea
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No.2, 300041 Timisoara, Romania
| | - Iasmina Marcovici
- Faculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No.2, 300041 Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No.2, 300041 Timisoara, Romania
| | - Iulia Pînzaru
- Faculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No.2, 300041 Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No.2, 300041 Timisoara, Romania
| | - Ramona Popovici
- Faculty of Dental Medicine, "Victor Babes" University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No.2, 300041 Timisoara, Romania
| | - Zorin Crăiniceanu
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No.2, 300041 Timisoara, Romania
| | - Zsolt Gyori
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No.2, 300041 Timisoara, Romania
| | - Gheorghe Iovănescu
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No.2, 300041 Timisoara, Romania
| | - Sorin Chiriac
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No.2, 300041 Timisoara, Romania
| |
Collapse
|
16
|
Venzel R, Campos MCP, de Oliveira LP, Dan Lins RV, Siena ÁDD, Mesquita KT, Moreira Dos Santos TP, Nohata N, Arruda LCM, Sales-Campos H, Neto MPC. Clinical and molecular overview of immunotherapeutic approaches for malignant skin melanoma: Past, present and future. Crit Rev Oncol Hematol 2023; 186:103988. [PMID: 37086955 DOI: 10.1016/j.critrevonc.2023.103988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/25/2023] [Accepted: 04/11/2023] [Indexed: 04/24/2023] Open
Abstract
Traditional therapeutic approaches for malignant melanoma, have proved to be limited and/or ineffective, especially with respect to their role in improving patient survival and tumor recurrence. In this regard, immunotherapy has been demonstrated to be a promising therapeutic alternative, boosting antitumor responses through the modulation of cell signaling pathways involved in the effector mechanisms of the immune system, particularly, the so-called "immunological checkpoints". Clinical studies on the efficacy and safety of immunotherapeutic regimens, alone or in combination with other antitumor approaches, have increased dramatically in recent decades, with very encouraging results. Hence, this review will discuss the current immunotherapeutic regimens used to treat malignant melanoma, as well as the molecular and cellular mechanisms involved. In addition, current clinical studies that have investigated the use, efficacy, and adverse events of immunotherapy in melanoma will also be discussed.
Collapse
Affiliation(s)
- Raphaelly Venzel
- Institute of Health and Biotechnology, Federal University of Amazonas, Coari, Brazil
| | | | | | | | | | | | - Tálita Pollyana Moreira Dos Santos
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY, USA; Head & Neck Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Nijiro Nohata
- Oncology Science Unit, MSD K.K, Chiyoda-ku, Tokyo, Japan
| | | | - Helioswilton Sales-Campos
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, GO, Brazil
| | | |
Collapse
|
17
|
Rezaie Y, Fattahi F, Mashinchi B, Kamyab Hesari K, Montazeri S, Kalantari E, Madjd Z, Saeednejad Zanjani L. High expression of Talin-1 is associated with tumor progression and recurrence in melanoma skin cancer patients. BMC Cancer 2023; 23:302. [PMID: 37013489 PMCID: PMC10069040 DOI: 10.1186/s12885-023-10771-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/26/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND Talin-1 as a component of multi-protein adhesion complexes plays a role in tumor formation and migration in various malignancies. This study investigated Talin-1 in protein levels as a potential prognosis biomarker in skin tumors. METHODS Talin-1 was evaluated in 106 skin cancer (33 melanomas and 73 non-melanomas skin cancer (NMSC)) and 11 normal skin formalin-fixed paraffin-embedded (FFPE) tissue samples using immunohistochemical technique on tissue microarrays (TMAs). The association between the expression of Talin-1 and clinicopathological parameters, as well as survival outcomes, were assessed. RESULTS Our findings from data minings through bioinformatics tools indicated dysregulation of Talin-1 in mRNA levels for skin cancer samples. In addition, there was a statistically significant difference in Talin-1 expression in terms of intensity of staining, percentage of positive tumor cells, and H-score in melanoma tissues compared to NMSC (P = 0.001, P < 0.001, and P < 0.001, respectively). Moreover, high cytoplasmic expression of Talin-1 was found to be associated with significantly advanced stages (P = 0.024), lymphovascular invasion (P = 0.023), and recurrence (P = 0.006) in melanoma cancer tissues. Our results on NMSC showed a statistically significant association between high intensity of staining and the poor differentiation (P = 0.044). No significant associations were observed between Talin-1 expression levels and survival outcomes of melanoma and NMSC patients. CONCLUSION Our observations showed that higher expression of Talin1 in protein level may be significantly associated with more aggressive tumor behavior and advanced disease in patients with skin cancer. However, further studies are required to find the mechanism of action of Talin-1 in skin cancers.
Collapse
Affiliation(s)
- Yasaman Rezaie
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14535, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fahimeh Fattahi
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14535, Iran
| | - Baharnaz Mashinchi
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14535, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kambiz Kamyab Hesari
- Department of Dermatopathology, Razi Hospital, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Sahar Montazeri
- Department of Dermatopathology, Razi Hospital, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Elham Kalantari
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14535, Iran
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14535, Iran.
| | - Leili Saeednejad Zanjani
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14535, Iran.
- Department of Pathology and Genomic Medicine, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
18
|
El Hanbuli HM, Abou Sari MA, Dawoud NM. Basal Cell Carcinoma in Xeroderma Pigmentosa: Reduced CD1a Expression as a Sensitive Predictor of Recurrence. Appl Immunohistochem Mol Morphol 2023; 31:245-254. [PMID: 36867735 DOI: 10.1097/pai.0000000000001107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/19/2023] [Indexed: 03/05/2023]
Abstract
Xeroderma pigmentosa (XP) is a rare genetic disorder that is characterized by defective DNA repair after ultraviolet induced damage with a great tendency for recurrent cutaneous malignancies including basal cell carcinoma (BCC). BCC is frequently linked to impaired local immune response with a major role played by Langerhans cells (LCs). The current study aims at investigating LCs in BCC specimens of XP and non-XP patients, in a trial to study its possible impact on tumor recurrence. It included 48 retrospective cases of primary facial BCC (18 for XP patients and 30 for non-XP controls). Each group was subdivided, based on the 5 years follow-up data, into recurrent and non-recurrent BCC groups. LCs were assessed immunohistochemically using the sensitive marker; CD1a. Results showed significantly reduced LCs count (intratumoral, peritumoral, and in perilesional epidermis) in XP patients compared with non-XP controls ( P ˂0.001 for all). Intratumoral ( P =0.008), peritumoral ( P =0.005), and perilesional epidermal ( P =0.02) LCs mean values were significantly lower in recurrent versus non-recurrent BCC specimens. Also, within each group (XP and controls), LCs were of significantly lower means in recurrent versus non-recurrent cases ( P ≤0.001 for all). Regarding recurrent BCC cases, peritumoral LCs showed a significant positive correlation with 1ry BCC duration ( P =0.05). Also, intratumoral and peritumoral LCs correlated positively with BCC relapse interval ( P =0.04 for both). Among non-XP controls, periocular tumors had the least LCs count (22.00±3.56), whereas tumors located in the rest of the face had the greatest count (29.00±0.00) ( P =0.02). Sensitivity and specificity of LCs to predict BCC recurrence in XP patients reached 100% in intartumoral area and perilesional epidermis when cutoff points were less than 9.5 and 20.5, respectively. In conclusion; reduced LC count in primary BCC specimens of XP patients and also in normal subjects could help to predict its recurrence. Thus, it might be identified as a risk factor for relapse to apply new strict therapeutic and preventive measures. This presents new avenue for the immunosurveillance against skin cancer relapse. However, being the first study to investigate that link in XP patients recommends further research to confirm.
Collapse
Affiliation(s)
- Hala M El Hanbuli
- Pathology Department, Faculty of Medicine, Fayoum University, Al Fayoum
| | | | - Noha M Dawoud
- Dermatology, Andrology and STDs Department, Faculty of Medicine, Menoufia University, Shebine Elkom, Egypt
| |
Collapse
|
19
|
Sutopo NC, Kim JH, Cho JY. Role of histone methylation in skin cancers: Histone methylation-modifying enzymes as a new class of targets for skin cancer treatment. Biochim Biophys Acta Rev Cancer 2023; 1878:188865. [PMID: 36841366 DOI: 10.1016/j.bbcan.2023.188865] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/17/2023] [Accepted: 02/17/2023] [Indexed: 02/27/2023]
Abstract
Histone methylation, one of the most prominent epigenetic modifications, plays a vital role in gene transcription, and aberrant histone methylation levels cause tumorigenesis. Histone methylation is a reversible enzyme-dependent reaction, and histone methyltransferases and demethylases are involved in this reaction. This review addresses the biological and clinical relevance of these histone methylation-modifying enzymes for skin cancer. In particular, the roles of histone lysine methyltransferases, histone arginine methyltransferase, lysine-specific demethylases, and JmjC demethylases in skin cancer are discussed in detail. In addition, we summarize the efficacy of several epigenetic inhibitors targeting histone methylation-modifying enzymes in cutaneous cancers, such as basal cell carcinoma (BCC), squamous cell carcinoma (SCC), and melanoma. In conclusion, we propose histone methylation-modifying enzymes as novel targets for next-generation pharmaceuticals in the treatment of skin cancers and further provide a rationale for the development of epigenetic drugs (epidrugs) that target specific histone methylases/demethylases in cutaneous tumors.
Collapse
Affiliation(s)
| | - Ji Hye Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea; Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Jae Youl Cho
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Republic of Korea; Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea; Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
20
|
Sharma A, Sharma L, Nandy SK, Payal N, Yadav S, Vargas-De-La-Cruz C, Anwer MK, Khan H, Behl T, Bungau SG. Molecular Aspects and Therapeutic Implications of Herbal Compounds Targeting Different Types of Cancer. Molecules 2023; 28:750. [PMID: 36677808 PMCID: PMC9867434 DOI: 10.3390/molecules28020750] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/05/2023] [Accepted: 01/08/2023] [Indexed: 01/15/2023] Open
Abstract
Due to genetic changes in DNA (deoxyribonucleic acid) sequences, cancer continues to be the second most prevalent cause of death. The traditional target-directed approach, which is confronted with the importance of target function in healthy cells, is one of the most significant challenges in anticancer research. Another problem with cancer cells is that they experience various mutations, changes in gene duplication, and chromosomal abnormalities, all of which have a direct influence on the potency of anticancer drugs at different developmental stages. All of these factors combine to make cancer medication development difficult, with low clinical licensure success rates when compared to other therapy categories. The current review focuses on the pathophysiology and molecular aspects of common cancer types. Currently, the available chemotherapeutic drugs, also known as combination chemotherapy, are associated with numerous adverse effects, resulting in the search for herbal-based alternatives that attenuate resistance due to cancer therapy and exert chemo-protective actions. To provide new insights, this review updated the list of key compounds that may enhance the efficacy of cancer treatment.
Collapse
Affiliation(s)
- Aditi Sharma
- Department of Pharmacology, School of Pharmaceutical Sciences, Shoolini University, Solan 173229, Himachal Pradesh, India
| | - Lalit Sharma
- Department of Pharmacology, School of Pharmaceutical Sciences, Shoolini University, Solan 173229, Himachal Pradesh, India
| | - Shouvik Kumar Nandy
- Department of Pharmacology, School of Pharmaceutical Sciences, Shoolini University, Solan 173229, Himachal Pradesh, India
| | - Nazrana Payal
- School of Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, Himachal Pradesh, India
| | - Shivam Yadav
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, Chhatrapati Shahu ji Maharaj University, Kanpur 208024, Uttar Pradesh, India
| | - Celia Vargas-De-La-Cruz
- Department of Pharmacology, Faculty of Pharmacy and Biochemistry, Bromatology and Toxicology, Universidad Nacional Mayor de San Marcos, Lima 150001, Peru
- E-Health Research Center, Universidad de Ciencias y Humanidades, Lima 15001, Peru
| | - Md. Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Tapan Behl
- School of Health Science and Technology, University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand, India
| | - Simona Gabriela Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
- Doctoral School of Biomedical Sciences, University of Oradea, 410028 Oradea, Romania
| |
Collapse
|
21
|
Shen X, Shang L, Han J, Zhang Y, Niu W, Liu H, Shi H. Immune-related gene signature associates with immune landscape and predicts prognosis accurately in patients with skin cutaneous melanoma. Front Genet 2023; 13:1095867. [PMID: 36685954 PMCID: PMC9845246 DOI: 10.3389/fgene.2022.1095867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/02/2022] [Indexed: 01/06/2023] Open
Abstract
Skin cutaneous melanoma (SKCM) is the skin cancer that causes the highest number of deaths worldwide. There is growing evidence that the tumour immune microenvironment is associated with cancer prognosis, however, there is little research on the role of immune status in melanoma prognosis. In this study, data on patients with Skin cutaneous melanoma were downloaded from the GEO, TCGA, and GTEx databases. Genes associated with the immune pathway were screened from published papers and lncRNAs associated with them were identified. We performed immune microenvironment and functional enrichment analyses. The analysis was followed by applying univariate/multivariate Cox regression algorithms to finally identify three lncRNAs associated with the immune pathway for the construction of prognostic prediction models (CXCL10, RXRG, and SCG2). This stepwise downscaling method, which finally screens out prognostic factors and key genes and then uses them to build a risk model, has excellent predictive power. According to analyses of the model's reliability, it was able to differentiate the prognostic value and continued existence of Skin cutaneous melanoma patient populations more effectively. This study is an analysis of the immune pathway that leads lncRNAs in Skin cutaneous melanoma in an effort to open up new treatment avenues for Skin cutaneous melanoma.
Collapse
|
22
|
Martinez-Ruiz M, Vazquez K, Losoya L, Gonzalez S, Robledo-Padilla F, Aquines O, Iqbal HM, Parra-Saldivar R. Microalgae growth rate multivariable mathematical model for biomass production. Heliyon 2022; 9:e12540. [PMID: 36691555 PMCID: PMC9860277 DOI: 10.1016/j.heliyon.2022.e12540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/18/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Background The use of microalgae has been emerging as a potential technology to reduce greenhouse gases and bioremediate polluted water and produce high-value products as pigments, phytohormones, biofuels, and bioactive compounds. The improvement in biomass production is a priority to make the technology implementation profitable in every application mentioned before. Methods The present study was conducted to explore the use of microalgae from genus Chlorella and Tetradesmus for the generation of substances of interest with UV absorption capacity. A mathematical model was developed for both microalgae to characterize the production of microalgae biomass considering the effects of light intensity, temperature, and nutrient consumption. The model was programmed in MATLAB software, where the three parameters were incorporated into a single specific growth rate equation. Results It was found that the optimal environmental conditions for each genus (Chlorella T=36°C, and I<787 μmol/m2s; Tetradesmus T=23°C and I<150 μmol/m2s), as well as the optimal specific growth rate depending on the personalized values of the three parameters. Conclussion This work could be used in the production of microalgae biomass for the design and development of topical applications to replace commercial options based on compounds that compromise health and have a harmful impact on the environment.
Collapse
Affiliation(s)
- Manuel Martinez-Ruiz
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
| | - Karina Vazquez
- Department of Biomedical Engineering, Universidad de Monterrey, Av. Morones Prieto 4500, San Pedro Garza García 66238, N.L., Mexico
| | - Liliana Losoya
- Department of Biomedical Engineering, Universidad de Monterrey, Av. Morones Prieto 4500, San Pedro Garza García 66238, N.L., Mexico
| | - Susana Gonzalez
- Department of Biomedical Engineering, Universidad de Monterrey, Av. Morones Prieto 4500, San Pedro Garza García 66238, N.L., Mexico
| | - Felipe Robledo-Padilla
- Department of Physics and Mathematics, Universidad de Monterrey, Av. Morones Prieto 4500, San Pedro Garza García 66238, N.L., Mexico
| | - Osvaldo Aquines
- Department of Physics and Mathematics, Universidad de Monterrey, Av. Morones Prieto 4500, San Pedro Garza García 66238, N.L., Mexico,Corresponding authors.
| | - Hafiz M.N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
| | - Roberto Parra-Saldivar
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico,Corresponding authors.
| |
Collapse
|
23
|
Thet Z, Lam AKY, Ng SK, Aung SY, Han T, Ranganathan D, Newsham S, Borg J, Pepito C, Khoo TK. An integrated skin cancer education program in renal transplant recipients and patients with glomerular disease. BMC Nephrol 2022; 23:361. [DOI: 10.1186/s12882-022-02997-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022] Open
Abstract
AbstractSun-protective strategies focusing on skin cancer awareness are needed in immunosuppressed patients at risk of skin cancers. The study aims to determine the effect of an integrated skin cancer education program on skin cancer awareness and sun-protective behaviours in renal transplant recipients (RTRs) and patients with glomerular disease (GD) treated with long-term immunosuppressants. A pilot prospective cohort study in Central Queensland, Australia was undertaken among adult RTRs and patients with GD, who completed survey questionaries on skin cancer and sun-health knowledge (SCSK), sun-protection practices and skin examination pre- and post-education. Fifty patients (25 RTRs, 25 patients with GD) participated in the study. All of them completed questionnaires at pre-, 3-month post-education and 92%(n = 46) at 6-month post-education. There was a significant increase in SCSK scores from baseline at 3-months (p < 0.001) and 6-months post-intervention (p < 0.01). Improved knowledge was retained for 6 months after education. There were changes in 2 of 8 photoprotective behaviours at 6 months. Interventional education enhanced regular self-skin examination rate (p < 0.001) as well as the frequency of full skin checks by general practitioners (GPs) (p < 0.001). Overall, RTRs had better compliance with sun-protective methods and higher skin examination rates by themselves and/ or GPs before and after the intervention of education compared to patients with GD. To conclude, an integrated skin cancer education program improved knowledge of skin cancer and skin health as well as the frequency of self-skin examination and formal skin assessments. However, improvement in patient compliance did not extend to other sun-protective practices.
Collapse
|
24
|
Pediatric Cutaneous Oncology. Dermatol Clin 2022; 41:175-185. [DOI: 10.1016/j.det.2022.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
25
|
Park GS, Park B, Lee MY. Berberine Induces Autophagic Cell Death by Inactivating the Akt/mTOR Signaling Pathway. PLANTA MEDICA 2022; 88:1116-1122. [PMID: 35853472 DOI: 10.1055/a-1752-0311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The incidence of skin cancer has been increasing over the past decades, and melanoma is considered highly malignant because of its high rate of metastasis. Plant-derived berberine, an isoquinoline quaternary alkaloid, has been reported to possess multiple pharmacological effects against various types of cancer cells. Therefore, we treated melanoma B16F10 cells with berberine to induce cell death and understand the cell death mechanisms. The berberine-treated cells showed decreased cell viability, according to berberine concentration. However, western blot analysis of apoptosis-related marker proteins showed that the expression of Bcl-2, an apoptosis inhibitory protein, and the Bcl-2/Bax ratio were increased. Therefore, by adding 3-methyladenine to the berberine-treated cells, we investigated whether the reduced cell viability was due to autophagic cell death. The results showed that 3-methyladenine restored the cell viability decreased by berberine, suggesting autophagy. To clarify autophagic cell death, we performed transmission electron microscopy analysis, which revealed the presence of autophagosomes and autolysosomes in the cells after treatment with berberine. Next, by analyzing the expression of autophagy-related proteins, we found an increase in the levels of light chain 3A-II and Atg12-Atg5 complex in the berberine-treated cells. We then assessed the involvement of the Akt/mTOR signaling pathway and found that berberine inhibited the expression of phosphorylated Akt and mTOR. Our data demonstrated that berberine induces autophagic cell death by inactivating the Akt/mTOR signaling pathway in melanoma cells and that berberine can be used as a possible target for the development of anti-melanoma drugs.
Collapse
Affiliation(s)
- Gil-Sun Park
- Department of Medical Biotechnology, Soonchunhyang University, Asan, Chungnam, Republic of Korea
| | - Bokyung Park
- Department of Medical Biotechnology, Soonchunhyang University, Asan, Chungnam, Republic of Korea
| | - Mi-Young Lee
- Department of Medical Biotechnology, Soonchunhyang University, Asan, Chungnam, Republic of Korea
- Department of Medical Science, College of Medical Science, Soonchunhyang University, Asan, Chungnam, Republic of Korea
| |
Collapse
|
26
|
Ye L, Wang L, Peng K, Fang O, Tian Z, Li C, Fu X, Chen Q, Chen J, Luan J, Zhang Z, Zhang Q. Distinct non-clock-like signatures of the basal cell carcinomas from three sisters with a lethal Gorlin-Goltz syndrome. BMC Med Genomics 2022; 15:172. [PMID: 35932013 PMCID: PMC9354412 DOI: 10.1186/s12920-022-01324-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Background Gorlin-Goltz syndrome (GS) is an inherited disease characterized by predisposition to basal cell carcinomas (BCCs) and various developmental defects, whose numerous disease-causing PTCH1 mutations have been identified in the hedgehog (Hh) signaling pathway. Methods In this study, whole exome sequencing was used to screen for both somatic and germline deleterious mutations in three sisters with a lethal GS. The mutations we found were confirmed by subcloning and Sanger sequencing of the genomic DNA. RNA-seq was performed to profile gene expression in paired BCCs samples and the expression levels for selected genes were validated by quantitative PCR. Results The clinical and histopathologic features were analyzed for the proband in the three-generation GS family. We identified the insertion mutation PTCH1 c.1341dupA (p. L448Tfs*49), which segregated with BCC phenotype and contributed to the death of two in four patients from a Chinese family with GS. Compared with adjacent non-cancerous tissues (ANCT), four second-hit mutations were found in four of the six pairs of BCC from three patients. Of note, somatic genomic alterations in all six BCC samples were mainly clustered into non-clock-like Signature 7 (ultraviolet mutagenesis) and 11 (related to certain alkylating agents). Both RNA-seq and quantitative RT-PCR confirmed that the mRNA levels of PTCH1 and its effector GLI1 were markedly upregulated in six pairs of BCC samples versus ANCT. Conclusions The distinct non-clock-like signatures of BCCs indicated that GS was not a life-threatening illness. The main reasons for untimely death of GS patients were PTCH1 mutation, exposure to intense ultraviolet radiationand the poor economic conditions. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01324-7.
Collapse
Affiliation(s)
- Lihua Ye
- Department of Dermatology, Haikou People's Hospital, Xiangya Medical College, Central South University, Hainan, China
| | - Li Wang
- Department of Dermatology, Haikou People's Hospital, Xiangya Medical College, Central South University, Hainan, China
| | - Kexin Peng
- Department of Dermatology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ou Fang
- Genesky Biotechnologies Inc, Shanghai, China
| | - Zhen Tian
- Department of Dermatology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Caihua Li
- Genesky Biotechnologies Inc, Shanghai, China
| | - Xiaopeng Fu
- Department of Dermatology, Haikou People's Hospital, Xiangya Medical College, Central South University, Hainan, China
| | - Qingdong Chen
- Department of Dermatology, Dongfang People's Hospital, Hainan, China
| | - Jia Chen
- Department of Dermatopathology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jing Luan
- Department of Dermatology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhenghua Zhang
- Department of Dermatology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Qiaoan Zhang
- Department of Dermatology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
27
|
Ke J, Wang J, Wu X, Yan Y. Salidroside Ameliorates Ultraviolet-Induced Keratinocyte Injury by Inducing SIRT1-Dependent Autophagy. Clin Cosmet Investig Dermatol 2022; 15:1499-1508. [PMID: 35941856 PMCID: PMC9356605 DOI: 10.2147/ccid.s367233] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/12/2022] [Indexed: 12/12/2022]
Abstract
Introduction Methods Results Discussion
Collapse
Affiliation(s)
- Jin Ke
- Department of Dermatology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, People’s Republic of China
| | - Jie Wang
- Department of Dermatology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, People’s Republic of China
| | - Xing Wu
- Department of Dermatology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, People’s Republic of China
| | - Yuehua Yan
- Department of Dermatology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, People’s Republic of China
- Correspondence: Yuehua Yan, Department of Dermatology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, No. 2800 Gongwei Road, Pudong New District, Shanghai, 201399, People’s Republic of China, Tel +86-18918181952, Email
| |
Collapse
|
28
|
Souto EB, da Ana R, Vieira V, Fangueiro JF, Dias-Ferreira J, Cano A, Zielińska A, Silva AM, Staszewski R, Karczewski J. Non-melanoma skin cancers: physio-pathology and role of lipid delivery systems in new chemotherapeutic treatments. Neoplasia 2022; 30:100810. [PMID: 35649306 PMCID: PMC9160356 DOI: 10.1016/j.neo.2022.100810] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/16/2022] [Indexed: 12/19/2022]
Abstract
Non-melanoma carcinoma has high incidence rates and has two most common subtypes: basal cell carcinoma and squamous cell carcinoma. This type of carcinoma is usually not fatal; however, it can destroy sensory organs such as the nose, ears, and lips. The treatment of these injuries using non-invasive methods is thus strongly recommended. Some treatments for non-melanoma carcinoma are already well defined, such as surgery, cryosurgery, curettage and electrode section, and radiotherapy; however, these conventional treatments cause inflammation and scarring. In the non-surgical treatment of non-melanoma carcinoma, the topical administration of chemotherapeutic drugs contributes for an effective treatment with reduced side effects. However, the penetration of anticancer drugs in the deeper layers of the skin is required. Lipid delivery systems (liposomes, solid lipid nanoparticles, nanostructured lipid carriers) have been developed to overcome epidermal barrier of the skin and to allow the drugs to reach tumor cells. These lipid nanoparticles contribute to control the release profile of the loaded chemotherapeutic drugs, maintaining their stability and increasing death of tumor cells. In this review, the characteristics of non-melanoma carcinoma will be discussed, describing the main existing treatments, together with the contribution of lipid delivery systems as an innovative approach to increase the effectiveness of topical therapies for non-melanoma carcinomas.
Collapse
Affiliation(s)
- Eliana B Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; REQUIMTE/UCIBIO, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Raquel da Ana
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Vânia Vieira
- Faculty of Health Sciences, University Fernando Pessoa, Rua Carlos da Maia, 296, 4200-150, Porto, Porto, Portugal
| | - Joana F Fangueiro
- Faculty of Health Sciences, University Fernando Pessoa, Rua Carlos da Maia, 296, 4200-150, Porto, Porto, Portugal
| | - João Dias-Ferreira
- Faculdade de Medicina, Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Amanda Cano
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08007 Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), 08007 Barcelona, Spain
| | - Aleksandra Zielińska
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland
| | - Amélia M Silva
- Department of Biology and Environment, University of Trás-os-Montes e Alto Douro, UTAD, Quinta de Prados, P-5001-801 Vila Real, Portugal; Centre for Research and Technology of Agro-Environmental and Biological Sciences, CITAB, UTAD, Quinta de Prados, P-5001-801 Vila Real, Portugal
| | - Rafał Staszewski
- Department of Hypertension Angiology and Internal Medicine, Poznan University of Medical Sciences, 61-701 Poznań, Poland
| | - Jacek Karczewski
- Department of Environmental Medicine, Poznan University of Medical Sciences, 61-701 Poznań, Poland; Department of Gastroenterology, Dietetics and Internal Diseases, H. Swiecicki University Hospital, Poznan University of Medical Sciences, 60-355 Poznan, Poland.
| |
Collapse
|
29
|
Hu W, Fang L, Ni R, Zhang H, Pan G. Changing trends in the disease burden of non-melanoma skin cancer globally from 1990 to 2019 and its predicted level in 25 years. BMC Cancer 2022; 22:836. [PMID: 35907848 PMCID: PMC9339183 DOI: 10.1186/s12885-022-09940-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/25/2022] [Indexed: 11/29/2022] Open
Abstract
Background The disease burden of non-melanoma skin cancer (NMSC) has become a significant public health threat. We aimed to conduct a comprehensive analysis to mitigate the health hazards of NMSC. Methods This study had three objectives. First, we reported the NMSC-related disease burden globally and for different subgroups (sex, socio-demographic index (SDI), etiology, and countries) in 2019. Second, we examined the temporal trend of the disease burden from 1990 to 2019. Finally, we used the Bayesian age-period-cohort (BAPC) model integrated nested Laplacian approximation to predict the disease burden in the coming 25 years. The Norpred age-period-cohort (APC) model and the Autoregressive Integrated Moving Average (ARIMA) model were used for sensitivity analysis. Results The disease burden was significantly higher in males than in females in 2019. The results showed significant differences in disease burden in different SDI regions. The better the socio-economic development, the heavier the disease burden of NMSC. The number of new cases and the ASIR of basal cell carcinoma (BCC) were higher than that of squamous cell carcinoma (SCC) in 2019 globally. However, the number of DALYs and the age-standardized DALYs rate were the opposite. There were statistically significant differences among different countries. The age-standardized incidence rate (ASIR) of NMSC increased from 54.08/100,000 (95% uncertainty interval (UI): 46.97, 62.08) in 1990 to 79.10/100,000 (95% UI: 72.29, 86.63) in 2019, with an estimated annual percentage change (EAPC) of 1.78. Other indicators (the number of new cases, the number of deaths, the number of disability-adjusted life years (DALYs), the age-standardized mortality rate (ASMR), and the age-standardized DALYs rate) showed the same trend. Our predictions suggested that the number of new cases, deaths, and DALYs attributable to NMSC would increase by at least 1.5 times from 2020 to 2044. Conclusions The disease burden attributable to NMSC will continue to increase or remain stable at high levels. Therefore, relevant policies should be developed to manage NMSC, and measures should be taken to target risk factors and high-risk groups. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09940-3.
Collapse
Affiliation(s)
- Wan Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Lanlan Fang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Ruyu Ni
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Hengchuan Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Guixia Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
30
|
Bernerd F, Passeron T, Castiel I, Marionnet C. The Damaging Effects of Long UVA (UVA1) Rays: A Major Challenge to Preserve Skin Health and Integrity. Int J Mol Sci 2022; 23:ijms23158243. [PMID: 35897826 PMCID: PMC9368482 DOI: 10.3390/ijms23158243] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 02/04/2023] Open
Abstract
Within solar ultraviolet (UV) light, the longest UVA1 wavelengths, with significant and relatively constant levels all year round and large penetration properties, produce effects in all cutaneous layers. Their effects, mediated by numerous endogenous chromophores, primarily involve the generation of reactive oxygen species (ROS). The resulting oxidative stress is the major mode of action of UVA1, responsible for lipid peroxidation, protein carbonylation, DNA lesions and subsequent intracellular signaling cascades. These molecular changes lead to mutations, apoptosis, dermis remodeling, inflammatory reactions and abnormal immune responses. The altered biological functions contribute to clinical consequences such as hyperpigmentation, inflammation, photoimmunosuppression, sun allergies, photoaging and photocancers. Such harmful impacts have also been reported after the use of UVA1 phototherapy or tanning beds. Furthermore, other external aggressors, such as pollutants and visible light (Vis), were shown to induce independent, cumulative and synergistic effects with UVA1 rays. In this review, we synthetize the biological and clinical effects of UVA1 and the complementary effects of UVA1 with pollutants or Vis. The identified deleterious biological impact of UVA1 contributing to clinical consequences, combined with the predominance of UVA1 rays in solar UV radiation, constitute a solid rational for the need for a broad photoprotection, including UVA1 up to 400 nm.
Collapse
Affiliation(s)
- Françoise Bernerd
- L’Oréal Research and Innovation, 1 Avenue Eugène Schueller, 93600 Aulnay sous Bois, France;
- Correspondence: ; Tel.: +33-(0)1-48-68-95-95
| | - Thierry Passeron
- Department of Dermatology, CHU Nice, University Côte d’Azur, 151, Route de Ginestière, 06200 Nice, France;
- Research Center C3M, INSERM Unit 1065, University Côte d’Azur, 06200 Nice, France
| | - Isabelle Castiel
- L’Oréal Research and Innovation, 3 Rue Dora Maar, 93400 Saint-Ouen, France;
| | - Claire Marionnet
- L’Oréal Research and Innovation, 1 Avenue Eugène Schueller, 93600 Aulnay sous Bois, France;
| |
Collapse
|
31
|
Balinth S, Fisher ML, Hwangbo Y, Wu C, Ballon C, Sun X, Mills AA. EZH2 regulates a SETDB1/ΔNp63α axis via RUNX3 to drive a cancer stem cell phenotype in squamous cell carcinoma. Oncogene 2022; 41:4130-4144. [PMID: 35864175 PMCID: PMC10132824 DOI: 10.1038/s41388-022-02417-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 01/01/2023]
Abstract
Enhancer of zeste homolog 2 (EZH2) and SET domain bifurcated 1 (SETDB1, also known as ESET) are oncogenic methyltransferases implicated in a number of human cancers. These enzymes typically function as epigenetic repressors of target genes by methylating histone H3 K27 and H3-K9 residues, respectively. Here, we show that EZH2 and SETDB1 are essential to proliferation in 3 SCC cell lines, HSC-5, FaDu, and Cal33. Additionally, we find both of these proteins highly expressed in an aggressive stem-like SCC sub-population. Depletion of either EZH2 or SETDB1 disrupts these stem-like cells and their associated phenotypes of spheroid formation, invasion, and tumor growth. We show that SETDB1 regulates this SCC stem cell phenotype through cooperation with ΔNp63α, an oncogenic isoform of the p53-related transcription factor p63. Furthermore, EZH2 is upstream of both SETDB1 and ΔNp63α, activating these targets via repression of the tumor suppressor RUNX3. We show that targeting this pathway with inhibitors of EZH2 results in activation of RUNX3 and repression of both SETDB1 and ΔNp63α, antagonizing the SCC cancer stem cell phenotype. This work highlights a novel pathway that drives an aggressive cancer stem cell phenotype and demonstrates a means of pharmacological intervention.
Collapse
Affiliation(s)
- Seamus Balinth
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.,Molecular and Cellular Biology Program, Stony Brook University, Stony Brook, NY, USA
| | | | - Yon Hwangbo
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Caizhi Wu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Carlos Ballon
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Xueqin Sun
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Alea A Mills
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
| |
Collapse
|
32
|
Zhong QY, Luo QH, Lin B, Lin BQ, Su ZR, Zhan JYX. Protective effects of andrographolide sodium bisulfate on UV-induced skin carcinogenesis in mice model. Eur J Pharm Sci 2022; 176:106232. [PMID: 35710077 DOI: 10.1016/j.ejps.2022.106232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/26/2022] [Accepted: 06/04/2022] [Indexed: 11/30/2022]
Abstract
Although the mortality of skin cancer patients is relatively low, there are still a large number of patients died of these tumors at high incidence rate. Chronic exposure to solar UV irradiation is the most common cause of nonmelanoma skin tumors. Our research aimed to explore the effects of andrographolide sodium bisulfate (ASB) on UV-induced skin cancer and to reveal the underlying molecular mechanism. In the present study, histopathology changes, immunohistochemical analysis, ELISA analysis and western blot analysis were mainly used in vivo. The results indicated that ASB significantly inhibited increase of skin epidermal thickness, inflammatory cells infiltration and fibers damage in dermis, oxidative stress injury and skin carcinogenesis. Moreover, the western blot analysis showed that protein expressions of NF-κB, Nrf2, p62, LC3 II/I and p-p62 (Ser 349) in mouse skin induced by UV were dramatically suppressed in the ASB-pretreated groups. Overall, these results suggested that ASB exerted a strong preventive effect and potential therapeutic value against UV-induced skin carcinogenesis in mice through inhibiting NF-κB and Nrf2 signaling pathways and restoring autophagy.
Collapse
Affiliation(s)
- Qing-Yuan Zhong
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 223 Waihuan Road, Guangzhou 510006, PR China
| | - Qi-Hong Luo
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 223 Waihuan Road, Guangzhou 510006, PR China
| | - Bing Lin
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 223 Waihuan Road, Guangzhou 510006, PR China
| | - Bao-Qin Lin
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 223 Waihuan Road, Guangzhou 510006, PR China
| | - Zi-Ren Su
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 223 Waihuan Road, Guangzhou 510006, PR China
| | - Janis Ya-Xian Zhan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 223 Waihuan Road, Guangzhou 510006, PR China.
| |
Collapse
|
33
|
Liang J, Liu L, Tang H, Ma Q, Sang Y, Kang X. UVB-induced SFRP1 methylation potentiates skin damage by promoting cell apoptosis and DNA damage. Exp Dermatol 2022; 31:1443-1453. [PMID: 35657114 DOI: 10.1111/exd.14621] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 05/19/2022] [Accepted: 05/31/2022] [Indexed: 11/27/2022]
Abstract
In response to the accumulation of genetic mutations and cellular changes, ultraviolet radiation B (UVB) skin lesions undergo dysplasia and transform into a cutaneous squamous cell carcinoma (CSCC). Consistent with our previous findings that secreted frizzled-related protein 1 (SFRP1), a member of the SFRP gene family, was downregulated in human CSCC tissue samples, we found a significant downregulation of SFRP1 in HaCaT, A431, and SCL-1 cells after UVB irradiation. DNA methyltransferase 1 (DNMT1) was significantly increased in CSCC tissues as well as UVB-exposed A431 and SCL-1 cells. Bisulfite genomic sequencing analysis showed that the downregulation of SFRP1 was mainly due to methylation of the SFRP1 promoter, as indicated by increased methylation rate of SFRP1 after UVB irradiation in HaCaT cells. Moreover, demethylation treatment with 5-aza'-deoxycytidine (5-AzaC) increased SFRP1 expression and reduced the methylation rate of SFRP1 in HaCaT cells. Flow cytometry analyses demonstrated that 5-AzaC treatment or overexpression of SFRP1 ameliorated UVB-induced apoptosis, while knockdown of SFRP1 promoted UVB-induced apoptosis in HaCaT cells. In addition, a comet assay confirmed that 5-AzaC treatment reduced DNA damage following UVB irradiation, while knockdown of SFRP1 enhanced DNA damage following UVB irradiation. In conclusion, our study identified DNA methylation of SFRP1 as a key mediator in the UVB-induced apoptosis of keratinocytes. These findings indicate that reinforcing SFRP1 defenses by 5-AzaC may help prevent UVB-induced skin damage.
Collapse
Affiliation(s)
- Junqin Liang
- Department of Dermatology, People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Key Laboratory of Dermatology Research (XJYS1707), Urumqi, China
| | - Lina Liu
- Departmental of medical research, Naval Medical Center of PLA, Shanghai, China
| | - Hongbo Tang
- Department of Dermatology, People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Key Laboratory of Dermatology Research (XJYS1707), Urumqi, China
| | - Qingyu Ma
- Department of Dermatology, People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Key Laboratory of Dermatology Research (XJYS1707), Urumqi, China
| | - Yingbing Sang
- Department of Dermatology, People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Key Laboratory of Dermatology Research (XJYS1707), Urumqi, China
| | - Xiaojing Kang
- Department of Dermatology, People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Key Laboratory of Dermatology Research (XJYS1707), Urumqi, China
| |
Collapse
|
34
|
Pellacani G, Argenziano G. New insights from non-invasive imaging: from prospection of skin photodamages to training with mobile application. J Eur Acad Dermatol Venereol 2022; 36 Suppl 6:38-50. [PMID: 35738810 PMCID: PMC9328152 DOI: 10.1111/jdv.18197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/15/2022] [Indexed: 11/28/2022]
Abstract
The incidence of non‐melanoma skin cancer is on the rise and melanoma is among the most common cancers in the United States. Establishing an early diagnosis is essential for improving the prognosis of patients with skin cancer. High‐resolution non‐invasive imaging techniques may represent key tools for helping to identify and monitor early signs of skin cancer in seemingly healthy skin. Cumulative lifetime sun exposure leads to photoaging and photocarcinogenenis and the reaction of the skin to this solar‐induced damage is balanced between the DNA repair and photoprotection defence mechanisms of melanocytes and keratinocytes. In the first part of this article we provide an overview of these defence mechanisms and of the photoaging process, and discuss how non‐invasive imaging can be used to evaluate these changes. We then propose a model in which skin aging manifestations can be classified according to subject‐specific sun‐damage reaction profiles observed by reflectance confocal microscopy (RCM) and optical coherence tomography (OCT). These photoaging profiles include an atrophic phenotype characterized by actinic keratosis, and a hypertrophic phenotype characterized by hyperplastic pigmented skin. According to our model, these phenotypes may be predictive of predispositions to different types of skin cancer: squamous cell carcinoma for the atrophic phenotype and lentigo maligna and freckles for the hypertrophic phenotype. In addition to RCM and OCT, dermoscopy is another non‐invasive technique that has improved the diagnosis of skin cancer. In the second part of this article, we describe how the YouDermoscopy™ application can improve skills and thus enhance the dermoscopic recognition of sun‐induced skin tumours, and then show how this training tool enables its users to collaborate with dermatologists worldwide to obtain second opinions for the diagnosis of ambiguous lesions. Altogether, RCM, OCT and dermoscopy are valuable tools that can contribute significantly to improving the early diagnosis of precancerous and cancerous lesions.
Collapse
Affiliation(s)
- G Pellacani
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, La Sapienza University of Rome, Rome, Italy
| | - G Argenziano
- Dermatology Unit, University of Campania, Naples, Italy
| |
Collapse
|
35
|
Kavasi RM, Neagu M, Constantin C, Munteanu A, Surcel M, Tsatsakis A, Tzanakakis GN, Nikitovic D. Matrix Effectors in the Pathogenesis of Keratinocyte-Derived Carcinomas. Front Med (Lausanne) 2022; 9:879500. [PMID: 35572966 PMCID: PMC9100789 DOI: 10.3389/fmed.2022.879500] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/11/2022] [Indexed: 12/16/2022] Open
Abstract
Basal cell carcinoma (BCC) and cutaneous squamous cell carcinoma (cSCC), referred to as keratinocyte carcinomas, are skin cancer with the highest incidence. BCCs, rarely metastasize; whereas, though generally not characterized by high lethality, approximately 2–4% of primary cSCCs metastasize with patients exhibiting poor prognosis. The extracellular matrix (ECM) serves as a scaffold that provides structural and biological support to cells in all human tissues. The main components of the ECM, including fibrillar proteins, proteoglycans (PGs), glycosaminoglycans (GAGs), and adhesion proteins such as fibronectin, are secreted by the cells in a tissue-specific manner, critical for the proper function of each organ. The skin compartmentalization to the epidermis and dermis compartments is based on a basement membrane (BM), a highly specialized network of ECM proteins that separate and unify the two compartments. The stiffness and assembly of BM and tensile forces affect tumor progenitors' invasion at the stratified epithelium's stromal border. Likewise, the mechanical properties of the stroma, e.g., stiffness, are directly correlated to the pathogenesis of the keratinocyte carcinomas. Since the ECM is a pool for various growth factors, cytokines, and chemokines, its' intense remodeling in the aberrant cancer tissue milieu affects biological functions, such as angiogenesis, adhesion, proliferation, or cell motility by regulating specific signaling pathways. This review discusses the structural and functional modulations of the keratinocyte carcinoma microenvironment. Furthermore, we debate how ECM remodeling affects the pathogenesis of these skin cancers.
Collapse
Affiliation(s)
- Rafaela-Maria Kavasi
- Laboratory of Histology-Embryology, Medical School, University of Crete, Heraklion, Greece
| | - Monica Neagu
- Immunology Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania
- Colentina Hospital, Bucharest, Romania
- Doctoral School, University of Bucharest, Bucharest, Romania
| | - Carolina Constantin
- Immunology Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania
- Colentina Hospital, Bucharest, Romania
- Doctoral School, University of Bucharest, Bucharest, Romania
| | - Adriana Munteanu
- Immunology Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania
- Doctoral School, University of Bucharest, Bucharest, Romania
| | - Mihaela Surcel
- Immunology Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania
| | - Aristidis Tsatsakis
- Forensic Science Department, Medical School, University of Crete, Heraklion, Greece
| | - George N. Tzanakakis
- Laboratory of Histology-Embryology, Medical School, University of Crete, Heraklion, Greece
| | - Dragana Nikitovic
- Laboratory of Histology-Embryology, Medical School, University of Crete, Heraklion, Greece
- *Correspondence: Dragana Nikitovic
| |
Collapse
|
36
|
Superpixel-Oriented Label Distribution Learning for Skin Lesion Segmentation. Diagnostics (Basel) 2022; 12:diagnostics12040938. [PMID: 35453986 PMCID: PMC9026477 DOI: 10.3390/diagnostics12040938] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 03/31/2022] [Accepted: 04/06/2022] [Indexed: 02/04/2023] Open
Abstract
Lesion segmentation is a critical task in skin cancer analysis and detection. When developing deep learning-based segmentation methods, we need a large number of human-annotated labels to serve as ground truth for model-supervised learning. Due to the complexity of dermatological images and the subjective differences of different dermatologists in decision-making, the labels in the segmentation target boundary region are prone to produce uncertain labels or error labels. These labels may lead to unsatisfactory performance of dermoscopy segmentation. In addition, the model trained by the errored one-hot label may be overconfident, which can lead to arbitrary prediction and model overfitting. In this paper, a superpixel-oriented label distribution learning method is proposed. The superpixels formed by the simple linear iterative cluster (SLIC) algorithm combine one-hot labels constraint and define a distance function to convert it into a soft probability distribution. Referring to the model structure of knowledge distillation, after Superpixel-oriented label distribution learning, we get soft labels with structural prior information. Then the soft labels are transferred as new knowledge to the lesion segmentation network for training. Ours method on ISIC 2018 datasets achieves an Dice coefficient reaching 84%, sensitivity 79.6%, precision 80.4%, improved by 19.3%, 8.6% and 2.5% respectively in comparison with the results of U-Net. We also evaluate our method on the tasks of skin lesion segmentation via several general neural network architectures. The experiments show that ours method improves the performance of network image segmentation and can be easily integrated into most existing deep learning architectures.
Collapse
|
37
|
Blue light induces skin apoptosis and degeneration through activation of the endoplasmic reticulum stress-autophagy apoptosis axis: Protective role of hydrogen sulfide. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 229:112426. [PMID: 35292420 DOI: 10.1016/j.jphotobiol.2022.112426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/25/2022] [Accepted: 03/06/2022] [Indexed: 11/20/2022]
Abstract
Research on the phototoxicity of blue light (BL) to the skin is increasing. Although blue light can induce oxidative stress, inflammation, and inhibition of proliferation in skin cells, the mechanism by which blue light damages the skin is not yet clear. Endoplasmic reticulum (ER) stress and autophagy are two mechanisms by which cells resist external interference factors and maintain cell homeostasis and normal function, and both can affect cell apoptosis. Interestingly, we have found that blue light (435 nm ~ 445 nm, 8000 lx, 6-24 h)-induced oxidative stress triggers the ER stress-CHOP (C/EBP homologous protein) signal and affects the protein levels of B-cell lymphoma-2 (Bcl-2) and Bcl2-associated X (Bax), thereby promoting apoptosis. In addition, blue light activates autophagy in skin cells, which intensifies cell death. When ER stress is inhibited, autophagy is subsequently inhibited, suggesting that blue light-induced autophagy is influenced by ER stress. These evidences suggest that blue light induces activation of reactive oxygen species (ROS)-ER stress-autophagy-apoptosis axis signaling, which further induces skin injury and apoptosis. This is the first report on the relationships among oxidative stress, ER stress, autophagy, and apoptosis in blue light-induced skin injury. Furthermore, we have studied the effect of hydrogen sulfide (H2S) on blue light-induced skin damage, and found that exogenous H2S can protect skin from blue light-induced damage by regulating the ROS-ER stress-autophagy-apoptosis axis. Our data shows that when we are exposed to blue light, such as sunbathing and jaundice treatment, H2S may be developed as a protective agent.
Collapse
|
38
|
Hydrochlorothiazide use is associated with the risk of cutaneous and lip squamous cell carcinoma: A systematic review and meta-analysis. Eur J Clin Pharmacol 2022; 78:919-930. [PMID: 35258665 DOI: 10.1007/s00228-022-03299-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 02/16/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE The aim of this study is to investigate the association between hydrochlorothiazide (HCTZ) use and the risk of cutaneous and lip squamous cell carcinoma development. METHODOLOGY We performed a systematic review and meta-analysis of case-control studies. We searched the Cochrane Library, PubMed, Scopus, Web of Science and LILACS. This study was registered in PROSPERO under protocol CRD42019129710. The meta-analysis was performed using the software Stata (version 12.0). RESULTS A total of 2181 published studies referring to the theme were identified, from which six were included in this systematic review. Men were more frequently affected by cutaneous and lip squamous cell carcinoma than women, with a 1.42:1 ratio. The mean age for cutaneous and lip squamous cell carcinoma development was 73.7 years. This meta-analysis demonstrated a chance of developing cutaneous and lip squamous cell carcinoma in any region of the body in hydrochlorothiazide users of 1.76-fold higher than in non-users. In addition, a risk factor of 1.80 higher (CI 95% = 1.71-1.89) of cutaneous squamous cell carcinoma in the head and neck region was observed in HCTZ users. Moreover, in the analysis of the dose used, the chance of developing squamous cell carcinoma was 3.37-fold lower when the concentration of HCTZ used was less than 50,000 mg. CONCLUSIONS Our results confirm the association between the use of hydrochlorothiazide and the cutaneous and lip squamous cell carcinoma development.
Collapse
|
39
|
Zhu S, Sun C, Zhang L, Du X, Tan X, Peng S. Incidence Trends and Survival Prediction of Malignant Skin Cancer: A SEER-Based Study. Int J Gen Med 2022; 15:2945-2956. [PMID: 35313550 PMCID: PMC8934145 DOI: 10.2147/ijgm.s340620] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/24/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Methods Results Conclusion
Collapse
Affiliation(s)
- Sirong Zhu
- School of Public Health, Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Chao Sun
- School of Public Health, Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Longjiang Zhang
- School of Public Health, Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Xiaoan Du
- School of Public Health, Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Xiaodong Tan
- School of Public Health, Wuhan University, Wuhan, Hubei, People’s Republic of China
- School of Nursing, Wuchang University of Technology, Wuhan, Hubei, People’s Republic of China
- Correspondence: Xiaodong Tan; Shuzhen Peng, Email ;
| | - Shuzhen Peng
- The People’s Hospital of Huangpi, Wuhan, Hubei, People’s Republic of China
| |
Collapse
|
40
|
Darbeheshti F. The Immunogenetics of Melanoma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1367:383-396. [DOI: 10.1007/978-3-030-92616-8_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
41
|
In Vitro Evaluation of the Photoreactivity and Phototoxicity of Natural Polyphenol Antioxidants. MOLECULES (BASEL, SWITZERLAND) 2021; 27:molecules27010189. [PMID: 35011420 PMCID: PMC8746784 DOI: 10.3390/molecules27010189] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 02/07/2023]
Abstract
Polyphenols are a large family of natural compounds widely used in cosmetic products due to their antioxidant and anti-inflammatory beneficial properties and their ability to prevent UV radiation-induced oxidative stress. Since these compounds present chromophores and are applied directly to the skin, they can react with sunlight and exert phototoxic effects. The available scientific information on the phototoxic potential of these natural compounds is scarce, and thus the aim of this study was to evaluate the photoreactivity and phototoxicity of five phenolic antioxidants with documented use in cosmetic products. A standard ROS assay was validated and applied to screen the photoreactivity of the natural phenolic antioxidants caffeic acid, ferulic acid, p-coumaric acid, 3,4-dihydroxyphenylacetic acid (DOPAC), and rutin. The phototoxicity potential was determined by using a human keratinocyte cell line (HaCaT), based on the 3T3 Neutral Red Uptake phototoxicity test. Although all studied phenolic antioxidants absorbed UV/Vis radiation in the range of 290 to 700 nm, only DOPAC was able to generate singlet oxygen. The generation of reactive oxygen species is an early-stage chemical reaction as part of the phototoxicity mechanism. Yet, none of the studied compounds decreased the viability of keratinocytes after irradiation, leading to the conclusion that they do not have phototoxic potential. The data obtained with this work suggests that these compounds are safe when incorporated in cosmetic products.
Collapse
|
42
|
Nascimento MID, Moraes JRFCD, Silva ERC, Mota MGGD, Guimarães RM. Tendências na Mortalidade por Câncer de Pele não Melanoma no Brasil e suas Macrorregiões. REVISTA BRASILEIRA DE CANCEROLOGIA 2021. [DOI: 10.32635/2176-9745.rbc.2022v68n1.2083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Introdução: O câncer de pele não melanoma (CPNM) e o mais comum entre todas as malignidades. Objetivo: Descrever as tendências da mortalidade por CPNM no Brasil e nas suas Macrorregiões, de 2001 a 2018. Método: As taxas de mortalidade ajustadas por idade e estratificadas por sexo foram apresentadas por 100 mil pessoas-ano. Uma análise autorregressiva foi implementada para avaliar tendências, Mudança Percentual Anual (MPA) e intervalos de confiança de 95% (IC 95%). Resultados: Houve 27.550 óbitos por CPNM no Brasil com maior frequência em homens (58,1%) e entre pessoas de 70 anos e mais (64,3%). As taxas globais foram de 2,25 (homens) e 1,22 (mulheres) por 100 mil pessoas-ano. As tendências seguiram em elevação no Brasil, em homens (MPA: 2,91%; IC95%: 1,96%; 3,86%) e em mulheres (MPA: 3,51%; IC95%: 2,68%; 4,34%). O mesmo ocorreu na Região Norte, em homens (MPA: 9,75%; IC95%: 7,68%; 11,86%) e em mulheres (MPA: 10,38%; IC95%: 5,77%; 15,21%), bem como na Região Nordeste, em homens (MPA: 9,98%; IC95%: 5,59%; 14,57%) e em mulheres (MPA: 8,34%; IC95%: 3,29%; 13,64%). Conclusão: Os óbitos por CPNM não são raridade no Brasil. O país e as Regiões Norte e Nordeste experimentaram taxas com tendência em elevação. Norte e Nordeste são as Regiões mais próximas da Linha do Equador e as menos desenvolvidas socioeconomicamente. Nessas Macrorregiões, um sinergismo entre diferentes tipos de desigualdades e exposições ambientais pode estar promovendo um aumento dos óbitos por esse tipo de câncer considerado totalmente evitável.
Collapse
|
43
|
Nkune NW, Abrahamse H. Nanoparticle-Based Drug Delivery Systems for Photodynamic Therapy of Metastatic Melanoma: A Review. Int J Mol Sci 2021; 22:12549. [PMID: 34830431 PMCID: PMC8620728 DOI: 10.3390/ijms222212549] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/11/2021] [Accepted: 10/26/2021] [Indexed: 12/12/2022] Open
Abstract
Metastatic melanoma (MM) is a skin malignancy arising from melanocytes, the incidence of which has been rising in recent years. It poses therapeutic challenges due to its resistance to chemotherapeutic drugs and radiation therapy. Photodynamic therapy (PDT) is an alternative non-invasive modality that requires a photosensitizer (PS), specific wavelength of light, and molecular oxygen. Several studies using conventional PSs have highlighted the need for improved PSs for PDT applications to achieve desired therapeutic outcomes. The incorporation of nanoparticles (NPs) and targeting moieties in PDT have appeared as a promising strategy to circumvent various drawbacks associated with non-specific toxicity, poor water solubility, and low bioavailability of the PSs at targeted tissues. Currently, most studies investigating new developments rely on two-dimensional (2-D) monocultures, which fail to accurately mimic tissue complexity. Therefore, three-dimensional (3-D) cell cultures are ideal models to resemble tumor tissue in terms of architectural and functional properties. This review examines various PS drugs, as well as passive and active targeted PS nanoparticle-mediated platforms for PDT treatment of MM on 2-D and 3-D models. The overall findings of this review concluded that very few PDT studies have been conducted within 3-D models using active PS nanoparticle-mediated platforms, and so require further investigation.
Collapse
Affiliation(s)
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa;
| |
Collapse
|
44
|
Bigagli E, Cinci L, D'Ambrosio M, Nardini P, Portelli F, Colucci R, Lodovici M, Mugelli A, Luceri C. Hydrochlorothiazide Use and Risk of Nonmelanoma Skin Cancers: A Biological Plausibility Study. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6655542. [PMID: 34434485 PMCID: PMC8382532 DOI: 10.1155/2021/6655542] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 07/09/2021] [Accepted: 07/23/2021] [Indexed: 11/17/2022]
Abstract
Recent studies reported the association between increased risk of nonmelanoma skin cancers (NMSCs) and the use of hydrochlorothiazide (HCTZ), one of the most commonly prescribed diuretic, antihypertensive drug, over the world. Although HCTZ is known to be photosensitizing, the mechanisms involved in its potential prophotocarcinogenic effects remain unclear. Under acute exposure, therapeutically relevant concentrations of HCTZ (70, 140, and 370 ng/mL) amplified UVA-induced double-strand breaks, oxidative DNA, and protein damage in HaCaT human keratinocytes, and this effect was associated to a defective activity of the DNA repair enzyme, OGG1. Oxidative damage to DNA, but not that to proteins, was reversible within few hours. After chronic, combined exposure to HCTZ (70 ng/mL) and UVA (10 J/cm2), for 9 weeks, keratinocytes acquired a dysplastic-like phenotype characterized by a multilayered morphology and alterations in cell size, shape, and contacts. At the ultrastructural level, several atypical and enlarged nuclei and evident nucleoli were also observed. These transformed keratinocytes were apoptosis resistant, exhibited enhanced clonogenicity capacity, increased DNA damage and inflammation, defective DNA repair ability, and increased expression of the oncogene ΔNp63α and intranuclear β-catenin accumulation (a hallmark of Wnt pathway activation), compared to those treated with UVA alone. None of these molecular, morphological, or functional effects were observed in cells treated with HCTZ alone. All these features resemble in part those of preneoplastic lesions and NMSCs and provide evidence of a biological plausibility for the association among exposure to UVA, use of HCTZ, and increased risk of NMSCs. These results are of translational relevance since we used environmentally relevant UVA doses and tested HCTZ at concentrations that reflect the plasma levels of doses used in clinical practice. This study also highlights that drug safety data should be followed by experimental evaluations to clarify the mechanistic aspects of adverse events.
Collapse
Affiliation(s)
- Elisabetta Bigagli
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Lorenzo Cinci
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Mario D'Ambrosio
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Patrizia Nardini
- Department of Clinical and Experimental Medicine, Section of Histology, University of Florence, Florence, Italy
| | - Francesca Portelli
- Department of Health Sciences, Section of Anatomical Pathology, Careggi University Hospital, Florence, Italy
| | - Roberta Colucci
- Department of Health Sciences, Section of Dermatology, University of Florence, Florence, Italy
| | - Maura Lodovici
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Alessandro Mugelli
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Cristina Luceri
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| |
Collapse
|
45
|
Li Y, Qi J, Yang J. RTP4 is a novel prognosis-related hub gene in cutaneous melanoma. Hereditas 2021; 158:22. [PMID: 34154655 PMCID: PMC8215788 DOI: 10.1186/s41065-021-00183-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 05/11/2021] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVE Melanoma accounts for 80% of skin cancer deaths. The pathogenesis of melanoma is regulated by gene networks. Thus, we aimed here to identify gene networks and hub genes associated with melanoma and to further identify their underlying mechanisms. METHODS GTEx (normal skin) and TCGA (melanoma tumor) RNA-seq datasets were employed for this purpose. We conducted weighted gene co-expression network analysis (WGCNA) to identify key modules and hub genes associated with melanoma. Log-rank analysis and multivariate Cox model analysis were performed to identify prognosis genes, which were validated using two independent melanoma datasets. We also evaluated the correlation between prognostic gene and immune cell infiltration. RESULTS The blue module was the most relevant for melanoma and was thus considered the key module. Intersecting genes were identified between this module and differentially expressed genes (DEGs). Finally, 72 genes were identified and verified as hub genes using the Oncomine database. Log-rank analysis and multivariate Cox model analysis identified 13 genes that were associated with the prognosis of the metastatic melanoma group, and RTP4 was validated as a prognostic gene using two independent melanoma datasets. RTP4 was not previously associated with melanoma. When we evaluated the correlation between prognostic gene and immune cell infiltration, we discovered that RTP4 was associated with immune cell infiltration. Further, RTP4 was significantly associated with genes encoding components of immune checkpoints (PDCD1, TIM-3, and LAG3). CONCLUSIONS RTP4 is a novel prognosis-related hub gene in cutaneous melanoma. The novel gene RTP4 identified here will facilitate the exploration of the molecular mechanism of the pathogenesis and progression of melanoma and the discovery of potential new target for drug therapy.
Collapse
Affiliation(s)
- Yiqi Li
- School of Basic Medical Sciences, Dali University, Dali, 671000, Yunnan, China
- Institute of Translational Medicine for Metabolic Diseases, Dali University, Dali, 671000, Yunnan, China
| | - Jue Qi
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, 650000, Yunnan, China
| | - Jiankang Yang
- School of Basic Medical Sciences, Dali University, Dali, 671000, Yunnan, China.
- Institute of Translational Medicine for Metabolic Diseases, Dali University, Dali, 671000, Yunnan, China.
| |
Collapse
|
46
|
Tampa M, Georgescu SR, Mitran MI, Mitran CI, Matei C, Caruntu A, Scheau C, Nicolae I, Matei A, Caruntu C, Constantin C, Neagu M. Current Perspectives on the Role of Matrix Metalloproteinases in the Pathogenesis of Basal Cell Carcinoma. Biomolecules 2021; 11:biom11060903. [PMID: 34204372 PMCID: PMC8235174 DOI: 10.3390/biom11060903] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/12/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022] Open
Abstract
Basal cell carcinoma (BCC) is the most common skin malignancy, which rarely metastasizes but has a great ability to infiltrate and invade the surrounding tissues. One of the molecular players involved in the metastatic process are matrix metalloproteinases (MMPs). MMPs are enzymes that can degrade various components of the extracellular matrix. In the skin, the expression of MMPs is increased in response to various stimuli, including ultraviolet (UV) radiation, one of the main factors involved in the development of BCC. By modulating various processes that are linked to tumor growth, such as invasion and angiogenesis, MMPs have been associated with UV-related carcinogenesis. The sources of MMPs are multiple, as they can be released by both neoplastic and tumor microenvironment cells. Inhibiting the action of MMPs could be a useful therapeutic option in BCC management. In this review that reunites the latest advances in this domain, we discuss the role of MMPs in the pathogenesis and evolution of BCC, as molecules involved in tumor aggressiveness and risk of recurrence, in order to offer a fresh and updated perspective on this field.
Collapse
Affiliation(s)
- Mircea Tampa
- Department of Dermatology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.T.); (C.M.)
- Department of Dermatology, Victor Babes Clinical Hospital for Infectious Diseases, 030303 Bucharest, Romania;
| | - Simona Roxana Georgescu
- Department of Dermatology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.T.); (C.M.)
- Department of Dermatology, Victor Babes Clinical Hospital for Infectious Diseases, 030303 Bucharest, Romania;
- Correspondence: (S.R.G.); (A.C.)
| | - Madalina Irina Mitran
- Department of Microbiology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.I.M.); (C.I.M.)
| | - Cristina Iulia Mitran
- Department of Microbiology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.I.M.); (C.I.M.)
| | - Clara Matei
- Department of Dermatology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.T.); (C.M.)
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, “Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania
- Faculty of Dental Medicine, Titu Maiorescu University, 031593 Bucharest, Romania
- Correspondence: (S.R.G.); (A.C.)
| | - Cristian Scheau
- Department of Physiology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.S.); (A.M.); (C.C.)
| | - Ilinca Nicolae
- Department of Dermatology, Victor Babes Clinical Hospital for Infectious Diseases, 030303 Bucharest, Romania;
| | - Andreea Matei
- Department of Physiology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.S.); (A.M.); (C.C.)
| | - Constantin Caruntu
- Department of Physiology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.S.); (A.M.); (C.C.)
- Department of Dermatology, Prof. N.C. Paulescu National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| | - Carolina Constantin
- Immunology Department, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (C.C.); (M.N.)
- Department of Pathology, Colentina University Hospital, Bucharest 020125, Romania
| | - Monica Neagu
- Immunology Department, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (C.C.); (M.N.)
- Department of Pathology, Colentina University Hospital, Bucharest 020125, Romania
- Faculty of Biology, University of Bucharest, Bucharest 76201, Romania
| |
Collapse
|
47
|
Collier V, Musicante M, Patel T, Liu-Smith F. Sex disparity in skin carcinogenesis and potential influence of sex hormones. SKIN HEALTH AND DISEASE 2021; 1:e27. [PMID: 35664979 PMCID: PMC9060035 DOI: 10.1002/ski2.27] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 02/05/2023]
Abstract
Background Sex or gender disparity in skin cancer has been documented for a long time at the population level. UV radiation (UVR) is a common environmental risk for all three major types of skin cancer: cutaneous melanoma (CM), basal cell carcinoma (BCC) and cutaneous squamous cell carcinoma (cSCC). The underlying mechanism for sex disparity has been largely attributed to sex‐differentiated behaviour patterns related to UVR. Non‐UVR factors such as intrinsic physiological differences have been suggested but remain understudied. Aims, Materials and Methods This review summarizes and compares the known sex differences in three skin cancer types with regard to body site distribution and age influence. Results We found a similar age‐dependent sex difference pattern in CM and BCC. Specifically, CM and BCC tend to show higher incidence in young women and old men, with a switching age around menopause. The switching age suggests involvement of sex hormones, which has shown controversial influence on skin cancers at epidemiological level. Literatures regarding sex hormone receptors for oestrogen, androgen and progesterone are summarized for potential explanations at molecular level. Discussion Overall, more and more evidence suggests non‐UVR factors such as sex hormones play critical roles in skin cancer (especially CM and BCC), yet solid population and molecular evidence are required. Incidences of skin cancer are increasing which suggests limited effect for the current UVR‐avoidance prevention methods. Conclusion Fully understanding the causes of sex disparities in incidence is necessary for developing a comprehensive prevention strategy.
Collapse
Affiliation(s)
- V Collier
- Kaplan-Amonette Department of Dermatology The University of Tennessee Health Science Center Memphis Tennessee USA
| | - M Musicante
- College of Medicine University of Tennessee Health Science Center Memphis Tennessee USA
| | - T Patel
- Kaplan-Amonette Department of Dermatology The University of Tennessee Health Science Center Memphis Tennessee USA
| | - F Liu-Smith
- Kaplan-Amonette Department of Dermatology The University of Tennessee Health Science Center Memphis Tennessee USA.,Department of Preventative Medicine University of Tennessee Health Science Center Memphis Tennessee USA
| |
Collapse
|
48
|
Management of Acute Radiodermatitis in Non-Melanoma Skin Cancer Patients Using Electrospun Nanofibrous Patches Loaded with Pinus halepensis Bark Extract. Cancers (Basel) 2021; 13:cancers13112596. [PMID: 34073193 PMCID: PMC8199239 DOI: 10.3390/cancers13112596] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/14/2021] [Accepted: 05/22/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary The most frequent adverse effect for patients receiving radiotherapy, an effective treatment for skin cancer when surgical removal of the tumor is impossible, is acute radiodermatitis, affecting patients’ physical function and often leading to therapy termination. Creams and other topical formulations used so far for the prevention of acute radiodermatitis are applied at regular intervals but do not ensure a constant and controlled transepidermal absorption. The aqueous extract of Aleppo pine bark, previously preclinically and clinically assessed in the form of gel, was herein loaded on micro/nanofibrous patches and clinically evaluated in comparison with a commercially used reference cream on non-melanoma skin carcinoma patients undergoing radiotherapy. The experimental patch significantly contributed to prophylaxis and successful management of acute radiodermatitis, safely restoring skin and its biophysical parameters to normal levels and reducing patients’ discomfort. Topical application of pine-loaded micro/nanofibrous patches holds great potential for the development of a new generation of anti-inflammatory skin care dressings against radiodermatitis. Abstract Acute radiodermatitis is the most common side effect in non-melanoma skin cancer patients undergoing radiotherapy. Nonetheless, despite the ongoing progress of clinical trials, no effective regimen has been found yet. In this study, a non-woven patch, comprised of electrospun polymeric micro/nanofibers loaded with an aqueous extract of Pinus halepensis bark (PHBE), was fabricated and clinically tested for its efficacy to prevent radiodermatitis. The bioactivity of the PHBE patch was evaluated in comparison with a medical cream indicated for acute radiodermatitis. Twelve volunteer patients were selected and randomly assigned to two groups, applying either the PHBE patch or the reference cream daily. Evaluation of radiation-induced skin reactions was performed during the radiotherapy period and 1 month afterwards according to the Radiation Therapy Oncology Group (RTOG) grading scale, photo-documentation, patient-reported outcomes (Visual Analog Scale, questionnaire), biophysical measurements (hydration, transepidermal water loss, erythema, melanin), and image analysis. In contrast with the reference product, the PHBE patch showed significant anti-inflammatory activity and restored most skin parameters to normal levels 1 month after completion of radiation therapy. No adverse event was reported, indicating that the application of the PHBE patch can be considered as a safe medical device for prophylactic radiodermatitis treatment.
Collapse
|
49
|
Al-Atif HM. A Cross-Sectional Survey of Knowledge of Skin Cancer in Saudi Arabia. Dermatol Pract Concept 2021; 11:e2021076. [PMID: 34123567 DOI: 10.5826/dpc.1103a76] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2020] [Indexed: 10/31/2022] Open
Abstract
Background Skin cancer has become one of the world's leading health problems, and incidence rates are on the rise. The leading causes of skin cancer are sun exposure, family history and sunburn, and the most agreed-upon preventative behaviors are sunscreen application and sun avoidance. Objectives This study assessed the knowledge of the causes of skin cancer and awareness of preventative measures in Saudi Arabia. Methods A cross-sectional study was conducted among 529 participants in a WhatsApp group over 3 months. Consenting participants completed a validated, 18-item questionnaire. Results Of 529 total participants, nearly 55% of participants reported an awareness of skin cancer, 35% understood its metastasis and 55.1% knew about its spread. However, 44% of participants were unaware of the different types of the disease. Social media was reported to be the most common source of information. The majority of participants were able to identify symptoms of skin cancer and had knowledge of risk factors. Most participants understood proper preventative measures, and reported that they use sunscreen regularly. Conclusions The general knowledge of skin cancer in Saudi Arabia is not high but is increasing. However, sun-protective behaviors are lacking, despite the population's knowledge of the benefits. Awareness campaigns and incentive programs may encourage better preventative behavior. Future studies should explore participants' awareness of more specific aspects of skin cancer using a more diverse and extensive population sample.
Collapse
Affiliation(s)
- Hend M Al-Atif
- Department of Internal Medicine, College of Medicine, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
50
|
Passeron T, Lim HW, Goh CL, Kang HY, Ly F, Morita A, Ocampo Candiani J, Puig S, Schalka S, Wei L, Dréno B, Krutmann J. Photoprotection according to skin phototype and dermatoses: practical recommendations from an expert panel. J Eur Acad Dermatol Venereol 2021; 35:1460-1469. [PMID: 33764577 PMCID: PMC8252523 DOI: 10.1111/jdv.17242] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/10/2021] [Indexed: 12/14/2022]
Abstract
Increasing evidence on the impact of the different wavelengths of sunlight on the skin demonstrates the need for tailored recommendations of sunscreen according to skin phototype and dermatoses, which is now possible due to advances in the filters and formulations of sunscreens. A selective literature search was performed by an international expert panel, focusing on the type of sunscreen to recommend for photoaging, skin cancers, photodermatoses, pigmentary disorders and skin inflammatory disorders. Protection against ultraviolet (UV)B is especially important for light skin as there is a high risk of sunburn, DNA damage and skin cancers. Darker skin may be naturally better protected against UVB but is more prone to hyperpigmentation induced by visible light (VL) and UVA. Protection against UVA, VL and infrared A can be helpful for all skin phototypes as they penetrate deeply and cause photoaging. Long‐wave UVA1 plays a critical role in pigmentation, photoaging, skin cancer, DNA damage and photodermatoses. Adapting the formulation and texture of the sunscreen to the type of skin and dermatoses is also essential. Practical recommendations on the type of sunscreen to prescribe are provided to support the clinician in daily practice.
Collapse
Affiliation(s)
- T Passeron
- Department of Dermatology, Côte d'Azur University, Nice University Hospital Center, Nice, France.,INSERM U1065, C3M, Côte d'Azur University, Nice, France
| | - H W Lim
- Department of Dermatology, Henry Ford Health System, Detroit, MI, USA
| | - C-L Goh
- National Skin Centre, Singapore, Singapore
| | - H Y Kang
- Department of Dermatology, Ajou University School of Medicine, Suwon, South Korea
| | - F Ly
- Department of Dermatology, Cheikh Anta Diop Dakar University, EPS Institute of Social Hygiene, Dakar, Senegal
| | - A Morita
- Department of Geriatric and Environmental Dermatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - J Ocampo Candiani
- Department of Dermatology, Medical Faculty University Hospital of Nuevo León, Monterrey, Mexico
| | - S Puig
- Melanoma Unit, Dermatology Department, Barcelona University Hospital Clinic, Barcelona, Spain
| | - S Schalka
- Medcin Skin Research Center and Biochemistry Department, Chemistry Institute of São Paulo University, São Paulo, Brazil
| | - L Wei
- Department of Dermatology, The General Hospital of Air Force PLA, Beijing, China
| | - B Dréno
- Department of Dermato-Oncology, CIC 1413, CRCINA, Nantes University Hospital Center, Nantes, France
| | - J Krutmann
- IUF Leibniz Research Institute for Environmental Medicine, Dusseldorf, Germany.,Medical Faculty, Heinrich-Heine-University, Dusseldorf, Germany
| |
Collapse
|