1
|
Ma K, Sun L, Jia C, Kui H, Xie J, Zang S, Huang S, Que J, Liu C, Huang J. Potential mechanisms underlying podophyllotoxin-induced cardiotoxicity in male rats: toxicological evidence chain (TEC) concept. Front Pharmacol 2024; 15:1378758. [PMID: 39386032 PMCID: PMC11463157 DOI: 10.3389/fphar.2024.1378758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/31/2024] [Indexed: 10/12/2024] Open
Abstract
Introduction Podophyllotoxin (PPT) is a high-content and high-activity compound extracted from the traditional Chinese medicinal plant Dysosma versipellis (DV) which exhibits various biological activities. However, its severe toxicity limits its use. In clinical settings, patients with DV poisoning often experience adverse reactions when taking large doses in a short period. The heart is an important toxic target organ, so it is necessary to conduct 24-h acute cardiac toxicity studies on PPT to understand its underlying toxicity mechanism. Methods Based on the concept of the toxicological evidence chain (TEC), we utilized targeted metabolomic and transcriptomic analyses to reveal the mechanism of the acute cardiotoxicity of PPT. The manifestation of toxicity in Sprague-Dawley rats, including changes in weight and behavior, served as Injury Phenotype Evidence (IPE). To determine Adverse Outcomes Evidence (AOE), the hearts of the rats were evaluated through histopathological examination and by measuring myocardial enzyme and cardiac injury markers levels. Additionally, transcriptome analysis, metabolome analysis, myocardial enzymes, and cardiac injury markers were integrated to obtain Toxic Event Evidence (TEE) using correlation analysis. Results The experiment showed significant epistaxis, hypokinesia, and hunched posture in PPT group rats within 24 h after exposure to 120 mg/kg PPT. It is found that PPT induced cardiac injury in rats within 24 h, as evidenced by increased serum myocardial enzyme levels, elevated concentrations of cardiac injury biomarkers, and altered cardiac cell morphology, all indicating some degree of cardiac toxicity. Transcriptome analysis revealed that primary altered metabolic pathway was arachidonic acid metabolism after PPT exposure. Cyp2e1, Aldob were positively correlated with differential metabolites, while DHA showed positive correlation with differential genes Fmo2 and Timd2, as well as with heart injury markers BNP and Mb. Conclusion This study comprehensively evaluated cardiac toxicity of PPT and initially revealed the mechanism of PPT-induced acute cardiotoxicity, which involved oxidative stress, apoptosis, inflammatory response, and energy metabolism disorder.
Collapse
Affiliation(s)
- Kaiyue Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Lu Sun
- College of Chinese Materia Medica and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Chunxue Jia
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Hongqian Kui
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jiaqi Xie
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Shidan Zang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Shixin Huang
- Luoyang Key Laboratory of Clinical Multiomics and Translational Medicine, Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Jinfeng Que
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Chuanxin Liu
- Eye Hospital China Academy of Chinese Medical Sciences, Beijing, China
| | - Jianmei Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
2
|
Marcinek K, Luzak B, Rozalski M. The Effects of Caffeine on Blood Platelets and the Cardiovascular System through Adenosine Receptors. Int J Mol Sci 2024; 25:8905. [PMID: 39201591 PMCID: PMC11354695 DOI: 10.3390/ijms25168905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
Caffeine is the most popular and widely consumed behaviourally active substance in the world. This review describes the influence of caffeine on the cardiovascular system, with a special focus on blood platelets. For many years, caffeine was thought to have a negative effect on the cardiovascular system mainly due to increasing blood pressure. However, more recent data suggest that habitual caffeine consumption may reduce the risk of cardiovascular disease and hypertension. This could be a significant finding as cardiovascular disease is the leading cause of death worldwide. Caffeine is known to inhibit A1 adenosine receptors, through which it is believed to modulate inter alia coronary blood flow, total peripheral resistance, diuresis, and heart rate. It has been shown that coffee possesses antiplatelet activity, but depending on the dose and the term of its use, caffeine may stimulate or inhibit platelet reactivity. Also, chronic exposure to caffeine may sensitize or upregulate the adenosine receptors in platelets causing increased cAMP accumulation and anti-aggregatory effects and decrease calcium levels elicited by AR agonists. The search for new, selective, and safe AR agonists is one of the new strategies for improving antiplatelet therapy involving targeting multiple pathways of platelet activation. Therefore, this review examines the AR-dependent impact of caffeine on blood platelets in the presence of adenosine receptor agonists.
Collapse
Affiliation(s)
| | | | - Marcin Rozalski
- Department of Haemostasis and Haemostatic Disorders, Chair of Biomedical Sciences, Faculty of Health Sciences, Medical University of Lodz, Mazowiecka 6/8, 92-235 Lodz, Poland; (K.M.); (B.L.)
| |
Collapse
|
3
|
Nakhle A, Kunkel KJ, Aqtash O, Zakhour S, Brice L, Arnautovic J, Desai P, Kaushik M, Ferdinand K, Alaswad K, Basir MB. Safety and efficacy of aminophylline in the prevention of bradyarrhythmia during coronary atherectomy. AMERICAN HEART JOURNAL PLUS : CARDIOLOGY RESEARCH AND PRACTICE 2024; 44:100419. [PMID: 39131730 PMCID: PMC11315211 DOI: 10.1016/j.ahjo.2024.100419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/05/2024] [Accepted: 06/24/2024] [Indexed: 08/13/2024]
Abstract
Coronary calcified lesions are commonly encountered and coronary atherectomy is commonly used for lesion modification during percutaneous coronary interventions (PCI). The release of adenosine during atherectomy can result in bradyarrhythmias and aminophylline is commonly used to prevent this reaction. We identified 138 patients to evaluate the safety and efficacy of intravenous (IV) aminophylline administration prior to coronary atherectomy. A total of 159 calcified lesions were treated, and the atherectomy device was orbital atherectomy, rotational atherectomy, and both in 52 %, 42 %, and 6 %; respectively. After administration of aminophylline, 4.3 % of patients required intraprocedural insertion of a transvenous pacer (TVP), and 18.1 % of patients required administration of IV atropine. Technical success was achieved in 98.6 % of patients, and no adverse reactions to aminophylline were reported. All patients survived to discharge. In conclusion, aminophylline administration prior to coronary atherectomy was safe and effective. No adverse effects of aminophylline were seen, and the rate of bailout TVP placement was low.
Collapse
Affiliation(s)
- Asaad Nakhle
- Section of Cardiovascular Disease, Tulane University School of Medicine, New Orleans, LA, United States of America
| | - Katherine J. Kunkel
- Division of Cardiology, Piedmont Heart Institute, Atlanta, GA, United States of America
| | - Obadah Aqtash
- Baylor Scott & White Health, Plano, TX, United States of America
| | - Samer Zakhour
- Section of Cardiovascular Disease, Tulane University School of Medicine, New Orleans, LA, United States of America
| | - Lizbeth Brice
- Division of Cardiology, Mercy Hospital, Joplin, MO, United States of America
| | - Jelena Arnautovic
- Division of Cardiology, Henry Ford Macomb Hospital, Clinton Township, MI, United States of America
| | - Parth Desai
- Henry Ford Hospital, Detroit, MI, United States of America
| | - Milan Kaushik
- Henry Ford Hospital, Detroit, MI, United States of America
| | - Keith Ferdinand
- Section of Cardiovascular Disease, Tulane University School of Medicine, New Orleans, LA, United States of America
| | - Khaldoon Alaswad
- Division of Cardiology, Henry Ford Hospital, Detroit, MI, United States of America
| | - Mir Babar Basir
- Division of Cardiology, Henry Ford Hospital, Detroit, MI, United States of America
| |
Collapse
|
4
|
Kuczeriszka M, Dobrowolski L. Sex Dependence in Control of Renal Haemodynamics and Excretion in Streptozotocin Diabetic Rats-Role of Adenosine System and Nitric Oxide. Int J Mol Sci 2024; 25:7699. [PMID: 39062939 PMCID: PMC11276843 DOI: 10.3390/ijms25147699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Recently, we compared an interplay of the adenosine system and nitric oxide (NO) in the regulation of renal function between male normoglycaemic (NG) and streptozotocin-induced diabetic rats (DM). Considering the between-sex functional differences, e.g., in the NO status, we present similar studies performed in female rats. We examined if the theophylline effects (non-selective adenosine antagonist) in NG and DM females with or without active NO synthases differed from the earlier findings. In anaesthetised female Sprague Dawley rats, both NG and DM, untreated or after NO synthesis blockade with L-NAME, theophylline effects, on blood pressure, renal hemodynamics and excretion, and renal tissue NO were investigated. Renal artery blood flow (Transonic probe), cortical, outer-, and inner-medullary flows (laser-Doppler technique), and renal tissue NO signal (selective electrode) were measured. In contrast to males, in female NG and DM rats, theophylline induced renal vasodilation. In NO-deficient females, theophylline induced comparable renal vasodilatation, confirming the vasoconstrictor influence of the renal adenosine. In NG and DM females with intact NO synthesis, adenosine inhibition diminished kidney tissue NO, contrasting with an increase reported in males. Lowered baseline renal excretion in DM females suggested stimulation of renal tubular reabsorption due to the prevalence of antinatriuretic over natriuretic tubular action of adenosine receptors. An opposite inter-receptor balance pattern emerged previously from male studies. The study exposed between-sex functional differences in the interrelation of adenosine and NO in rats with normoglycaemia and streptozotocin diabetes. The findings also suggest that in diabetes mellitus, the abundance of individual receptor types can distinctly differ between females and males.
Collapse
Affiliation(s)
| | - Leszek Dobrowolski
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, A. Pawinskiego 5, 02-106 Warsaw, Poland;
| |
Collapse
|
5
|
Keen R, Hardy D, Jose B, Erturk HN. Effects of caffeine on temporal perception in Rattus norvegicus. PLoS One 2024; 19:e0304608. [PMID: 38820365 PMCID: PMC11142558 DOI: 10.1371/journal.pone.0304608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 05/14/2024] [Indexed: 06/02/2024] Open
Abstract
We report two studies that tested the effects of caffeine, the world's most widely used psychoactive drug, on temporal perception. We trained Wistar rats using the Bisection Procedure (Experiment 1) or the Stubbs' Procedure (Experiment 2) to discriminate between short and long light stimuli. Once training finished, we administered caffeine orally (0, 9.6, and 96.0 mg/kg for Experiment 1 and 0, 9.6, 19.2, and 38.4 mg/kg for Experiment 2) 15 minutes prior to testing. Relative to the control condition, the 9.6 mg/kg condition (Experiments 1 and 2) and the 19.2 mg/kg condition (Experiment 2) resulted in an increase in proportion of choosing the long response. Meanwhile, overall accuracy was not affected by any condition in both experiments. Taken together, these results are consistent with the notion that caffeine, at some doses, speeds up temporal perception. However, it is not clear why the effect disappears at higher doses.
Collapse
Affiliation(s)
- Richard Keen
- Department of Psychology, Converse University, Spartanburg, South Carolina, United States of America
| | - Dalene Hardy
- Department of Psychology, Converse University, Spartanburg, South Carolina, United States of America
- Department of Biology, Chemistry, and Physics, Converse University, Spartanburg, South Carolina, United States of America
| | - Belda Jose
- Department of Psychology, Converse University, Spartanburg, South Carolina, United States of America
- Department of Biology, Chemistry, and Physics, Converse University, Spartanburg, South Carolina, United States of America
| | - H. Neval Erturk
- Department of Biology, Chemistry, and Physics, Converse University, Spartanburg, South Carolina, United States of America
| |
Collapse
|
6
|
Marchi E, Muraca I, Berteotti M, Gori AM, Valenti R, Marcucci R. Adenosine in Interventional Cardiology: Physiopathologic and Pharmacologic Effects in Coronary Artery Disease. Int J Mol Sci 2024; 25:5852. [PMID: 38892037 PMCID: PMC11172110 DOI: 10.3390/ijms25115852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
This review article focuses on the role of adenosine in coronary artery disease (CAD) diagnosis and treatment. Adenosine, an endogenous purine nucleoside, plays crucial roles in cardiovascular physiology and pathology. Its release and effects, mediated by specific receptors, influence vasomotor function, blood pressure regulation, heart rate, and platelet activity. Adenosine therapeutic effects include treatment of the no-reflow phenomenon and paroxysmal supraventricular tachycardia. The production of adenosine involves complex cellular pathways, with extracellular and intracellular synthesis mechanisms. Adenosine's rapid metabolism underscores its short half-life and physiological turnover. Furthermore, adenosine's involvement in side effects of antiplatelet therapy, particularly ticagrelor and cangrelor, highlights its clinical significance. Moreover, adenosine serves as a valuable tool in CAD diagnosis, aiding stress testing modalities and guiding intracoronary physiological assessments. Its use in assessing epicardial stenosis and microvascular dysfunction is pivotal for treatment decisions. Overall, understanding adenosine's mechanisms and clinical implications is essential for optimizing CAD management strategies, encompassing both therapeutic interventions and diagnostic approaches.
Collapse
Affiliation(s)
- Enrico Marchi
- Department of Experimental and Clinical Medicine, School of Human Health Sciences, Careggi University Hospital, University of Florence, 50134 Florence, Italy
| | - Iacopo Muraca
- Division of Interventional Cardiology, Cardiothoracovascular Department, Careggi University Hospital, 50134 Florence, Italy
| | - Martina Berteotti
- Atherothrombotic Center, Department of Experimental and Clinical Medicine, University of Florence, AOU Careggi, 50134 Florence, Italy (R.M.)
| | - Anna Maria Gori
- Atherothrombotic Center, Department of Experimental and Clinical Medicine, University of Florence, AOU Careggi, 50134 Florence, Italy (R.M.)
| | - Renato Valenti
- Division of Interventional Cardiology, Cardiothoracovascular Department, Careggi University Hospital, 50134 Florence, Italy
| | - Rossella Marcucci
- Atherothrombotic Center, Department of Experimental and Clinical Medicine, University of Florence, AOU Careggi, 50134 Florence, Italy (R.M.)
| |
Collapse
|
7
|
Wei P, Wang X, Fu Q, Cao B. Progress in the clinical effects and adverse reactions of ticagrelor. Thromb J 2024; 22:8. [PMID: 38200557 PMCID: PMC10782624 DOI: 10.1186/s12959-023-00559-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 11/02/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Ticagrelor is a novel receptor antagonist that selectively binds to the P2Y12 receptor, thereby inhibiting adenosine diphosphate (ADP)-mediated platelet aggregation. Compared to clopidogrel, ticagrelor has the advantages of a fast onset, potent effects, and a reversible platelet inhibition function, which make this drug clinically suitable for treating acute coronary syndrome (ACS), especially acute ST-segment elevation myocardial infarction (STEMI). OBJECTIVE This review was performed to determine the basic characteristics, clinical effects, and adverse reactions of ticagrelor. METHODS Relevant trials and reports were obtained from the MEDLINE, Embase, and Cochrane Library databases. RESULTS Ticagrelor is rapidly absorbed by the body after oral administration, exhibits inherent activity without requiring metabolic activation, and binds reversibly to the P2Y12 receptor. Ticagrelor has been recommended in ACS treatment guidelines worldwide due to its advantageous pharmacological properties and significant clinical benefits. Ticagrelor inhibits platelet aggregation, inhibits inflammatory response, enhances adenosine function, and has cardioprotective effects. However, ticagrelor also causes adverse reactions such as bleeding tendency, dyspnea, ventricular pause, gout, kidney damage, and thrombotic thrombocytopenic purpura in clinical treatment. Therefore, it is necessary to pay attention to risk assessments when using ticagrelor. CONCLUSION Ticagrelor is a promising drug for the effective treatment of ACS. When using ticagrelor, individualized treatment should be provided based on the specific conditions of the patients to avoid serious adverse events.
Collapse
Affiliation(s)
- Peng Wei
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Xiaoqing Wang
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Qiang Fu
- Department of Cardiology, Xuzhou Central Hospital, Xuzhou, 221009, Jiangsu, China.
| | - Bangming Cao
- Department of Gerontology, The Affiliated Hospital of Youjiang Medical University for Nationalities, No. 18# Zhongshan 2 Road, Baise, 533000, Guangxi Zhuang Autonomous Region, China.
| |
Collapse
|
8
|
Mahanta D, Budhia AK, Barik RC, Das D, Acharya D. Unveiling a Rare Side Effect: A Report of a Unique Case of Second-Degree Type 2 Sinoatrial Node Exit Block Induced by Adenosine Infusion. Cureus 2024; 16:e53310. [PMID: 38435879 PMCID: PMC10906749 DOI: 10.7759/cureus.53310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2024] [Indexed: 03/05/2024] Open
Abstract
Adenosine is a widely used pharmacologic agent in the field of cardiology, predominantly for the termination of supraventricular tachycardias and diagnostic purposes. Most of the side effects are short-lasting due to its very short half-life. Fatal complications of adenosine are rare but can include ventricular fibrillation, ventricular tachycardia, and asystole. Proper medical supervision and monitoring are crucial to minimize risks. We report a unique case of a second-degree type 2 sinoatrial node exit block following intravenous adenosine administration in a 25-year-old male presenting with palpitations.
Collapse
Affiliation(s)
- Dibyasundar Mahanta
- Cardiology, Institute of Medical Sciences (IMS) SUM Medical College and Hospital, Bhubaneswar, IND
| | - Anup K Budhia
- Internal Medicine, Hi-Tech Medical College and Hospital, Bhubaneswar, IND
| | - Rama Chandra Barik
- Cardiology, All India Institute of Medical Sciences, Bhubaneswar, Bhubaneswar, IND
| | - Debasish Das
- Cardiology, All India Institute of Medical Sciences, Bhubaneswar, Bhubaneswar, IND
| | - Debasis Acharya
- Cardiology, Hi-Tech Medical College and Hospital, Bhubaneswar, IND
| |
Collapse
|
9
|
Vartiainen N, Hartikainen JEK, Laitinen TM, Kuikka PI, Mussalo H, Laitinen TP. Association between peripheral endothelial function and myocardial perfusion in patients with coronary artery disease. EUROPEAN HEART JOURNAL. IMAGING METHODS AND PRACTICE 2024; 2:qyae010. [PMID: 39045203 PMCID: PMC11195757 DOI: 10.1093/ehjimp/qyae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/09/2024] [Indexed: 07/25/2024]
Abstract
Aims Endothelial dysfunction is a systemic disorder and risk factor for atherosclerosis. Our aim was to assess whether there is a relation between peripheral endothelial function and myocardial perfusion in patients with coronary artery disease (CAD). Methods and results We prospectively studied 54 patients, who had a positive result for obstructive CAD in coronary CT angiography. Myocardial perfusion (15O)H2O positron emission tomography was imaged at rest and during adenosine-induced maximal vasodilation. Peripheral endothelial function was assessed by measuring flow-mediated dilation (FMD) with ultrasound from the left brachial artery. There was a statistically significant correlation between FMD and global hyperaemic myocardial blood flow (MBF; r = 0.308, P = 0.023). The correlation remained statistically significant when controlling for gender, height, and diastolic blood pressure at rest (r = 0.367, P = 0.008). Receiver operating character analysis, however, yielded an area under curve of only 0.559 (P = 0.492) when FMD was used to predict reduced MBF (below 2.3 mL/g/min). Patients with significantly decreased MBF (n = 14) underwent invasive coronary angiography. FMD showed an inverse correlation with the severity of the most significant stenosis (r = -0.687, P = 0.007). Conclusion Peripheral endothelial function is related with hyperaemic MBF and with the severity of CAD in invasive coronary angiography. Due to insufficient sensitivity and specificity in the identification of reduced MBF, FMD is not suitable for clinical practice at the individual level. However, it works at the population level as a research tool when assessing endothelial dysfunction in patients with CAD.
Collapse
Affiliation(s)
- Niklas Vartiainen
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Puijonlaaksontie 2, 70210 Kuopio, Finland
| | | | - Tiina M Laitinen
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Puijonlaaksontie 2, 70210 Kuopio, Finland
| | - Paavo-Ilari Kuikka
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Puijonlaaksontie 2, 70210 Kuopio, Finland
| | - Hanna Mussalo
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Puijonlaaksontie 2, 70210 Kuopio, Finland
| | - Tomi P Laitinen
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Puijonlaaksontie 2, 70210 Kuopio, Finland
- Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
10
|
Song X, Kirtipal N, Lee S, Malý P, Bharadwaj S. Current therapeutic targets and multifaceted physiological impacts of caffeine. Phytother Res 2023; 37:5558-5598. [PMID: 37679309 DOI: 10.1002/ptr.8000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/04/2023] [Accepted: 08/17/2023] [Indexed: 09/09/2023]
Abstract
Caffeine, which shares consubstantial structural similarity with purine adenosine, has been demonstrated as a nonselective adenosine receptor antagonist for eliciting most of the biological functions at physiologically relevant dosages. Accumulating evidence supports caffeine's beneficial effects against different disorders, such as total cardiovascular diseases and type 2 diabetes. Conversely, paradoxical effects are also linked to caffeine ingestion in humans including hypertension-hypotension and tachycardia-bradycardia. These observations suggest the association of caffeine action with its ingested concentration and/or concurrent interaction with preferential molecular targets to direct explicit events in the human body. Thus, a coherent analysis of the functional targets of caffeine, relevant to normal physiology, and disease pathophysiology, is required to understand the pharmacology of caffeine. This review provides a broad overview of the experimentally validated targets of caffeine, particularly those of therapeutic interest, and the impacts of caffeine on organ-specific physiology and pathophysiology. Overall, the available empirical and epidemiological evidence supports the dose-dependent functional activities of caffeine and advocates for further studies to get insights into the caffeine-induced changes under specific conditions, such as asthma, DNA repair, and cancer, in view of its therapeutic applications.
Collapse
Affiliation(s)
- Xinjie Song
- Zhejiang Provincial Key Lab for Chemical and Biological Processing Technology of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Nikhil Kirtipal
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Sunjae Lee
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Petr Malý
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences v.v.i, BIOCEV Research Center, Vestec, Czech Republic
| | - Shiv Bharadwaj
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences v.v.i, BIOCEV Research Center, Vestec, Czech Republic
| |
Collapse
|
11
|
Takahashi T, Gupta A, Samuels BA, Wei J. Invasive Coronary Assessment in Myocardial Ischemia with No Obstructive Coronary Arteries. Curr Atheroscler Rep 2023; 25:729-740. [PMID: 37682498 PMCID: PMC10564835 DOI: 10.1007/s11883-023-01144-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2023] [Indexed: 09/09/2023]
Abstract
PURPOSE OF REVIEW The purpose of this review is threefold: (i) to give an overview of well-established invasive methods for assessing patients with ischemia with no obstructive coronary arteries (INOCA) in the cardiac catheterization laboratory; (ii) to describe the prognostic and treatment implications based on these findings, and (iii) to discuss current knowledge gaps and future perspectives. RECENT FINDINGS Recent studies have demonstrated that invasive coronary function testing not only allows for risk stratification of patients with INOCA but also guides medical therapy with improvement in symptoms and quality of life. Based on these findings, invasive coronary function assessment is now a class 2a recommendation in the 2021 ACC/AHA chest pain guideline to improve the diagnosis of coronary microvascular dysfunction and to enhance risk stratification. Invasive functional testing for patients with INOCA is well established and easily performed in the catheterization laboratory. Comprehensive invasive assessment is a key to differentiating INOCA endotypes and optimizing both medical therapy and preventive strategies including lifestyle modification.
Collapse
Affiliation(s)
| | - Aakriti Gupta
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Bruce A Samuels
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Janet Wei
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Barbra Streisand Women's Heart Center, Smidt Heart Institute, Cedars-Sinai Medical Center, 127 S San Vicente Blvd A3212, Los Angeles, CA, 90048, USA.
| |
Collapse
|
12
|
Kutryb-Zając B, Kawecka A, Nasadiuk K, Braczko A, Stawarska K, Caiazzo E, Koszałka P, Cicala C. Drugs targeting adenosine signaling pathways: A current view. Biomed Pharmacother 2023; 165:115184. [PMID: 37506580 DOI: 10.1016/j.biopha.2023.115184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/06/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Adenosine is an endogenous nucleoside that regulates many physiological and pathological processes. It is derived from either the intracellular or extracellular dephosphorylation of adenosine triphosphate and interacts with cell-surface G-protein-coupled receptors. Adenosine plays a substantial role in protecting against cell damage in areas of increased tissue metabolism and preventing organ dysfunction in pathological states. Targeting adenosine metabolism and receptor signaling may be an effective therapeutic approach for human diseases, including cardiovascular and central nervous system disorders, rheumatoid arthritis, asthma, renal diseases, and cancer. Several lines of evidence have shown that many drugs exert their beneficial effects by modulating adenosine signaling pathways but this knowledge urgently needs to be summarized, and most importantly, actualized. The present review collects pharmaceuticals and pharmacological or diagnostic tools that target adenosine signaling in their primary or secondary mode of action. We overviewed FDA-approved drugs as well as those currently being studied in clinical trials. Among them are already used in clinic A2A adenosine receptor modulators like istradefylline or regadenoson, but also plenty of anti-platelet, anti-inflammatory, or immunosuppressive, and anti-cancer drugs. On the other hand, we investigated dozens of specific adenosine pathway regulators that are tested in clinical trials to treat human infectious and noninfectious diseases. In conclusion, targeting purinergic signaling represents a great therapeutic challenge. The actual knowledge of the involvement of adenosinergic signaling as part of the mechanism of action of old drugs has open a path not only for drug-repurposing but also for new therapeutic strategies.
Collapse
Affiliation(s)
- Barbara Kutryb-Zając
- Department of Biochemistry, Medical University of Gdańsk, 80-211 Gdańsk, Poland.
| | - Ada Kawecka
- Department of Biochemistry, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | - Khrystyna Nasadiuk
- Department of Biochemistry, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | - Alicja Braczko
- Department of Biochemistry, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | - Klaudia Stawarska
- Department of Biochemistry, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | - Elisabetta Caiazzo
- Department of Pharmacy, School of Medicine, University of Naple Federico II, 80131 Naples, Italy
| | - Patrycja Koszałka
- Laboratory of Cell Biology and Immunology, Institute of Medical Biotechnology and Experimental Oncology, Intercollegiate Faculty of Biotechnology University of Gdańsk and Medical University of Gdańsk, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | - Carla Cicala
- Department of Pharmacy, School of Medicine, University of Naple Federico II, 80131 Naples, Italy
| |
Collapse
|
13
|
Saad JM, Ahmed AI, Han Y, El Nihum LI, Alahdab F, Nabi F, Al-Mallah MH. Splenic switch-off in regadenoson 82Rb-PET myocardial perfusion imaging: assessment of clinical utility. J Nucl Cardiol 2023; 30:1484-1496. [PMID: 36607537 DOI: 10.1007/s12350-022-03158-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/05/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND Splenic switch-off (SSO) is a phenomenon describing a decrease in splenic radiotracer uptake after vasodilatory stress. We aimed to assess the diagnostic utility of regadenoson-induced SSO. METHODS We included consecutive patients who had clinically indicated Regadenoson Rb-82 PET-MPI for suspected CAD. This derivation cohort (no perfusion defects and myocardial flow reserves (MFR) ≥ 2) was used to calculate the splenic response ratio (SRR). The validation cohort was defined as patients who underwent both PET-MPI studies and invasive coronary angiography (ICA). RESULTS The derivation cohort (n = 100, 57.4 ± 11.6 years, 77% female) showed a decrease in splenic uptake from rest to stress (79.9 ± 16.8 kBq⋅mL vs 69.1 ± 16.2 kBq⋅mL, P < .001). From the validation cohort (n = 315, 66.3 ± 10.4 years, 67% male), 28% (via SRR = 0.88) and 15% (visually) were classified as splenic non-responders. MFR was lower in non-responders (SRR; 1.55 ± 0.65 vs 1.76 ± 0.78, P = .02 and visually; 1.18 ± 0.33 vs 1.79 ± 0.77, P < .001). Based on ICA, non-responders were more likely to note obstructive epicardial disease with normal PET scans especially in patients with MFR < 1.5 (SRR; 61% vs 34% P = .05 and visually; 68% vs 33%, P = .01). CONCLUSION Lack of splenic response based on visual or quantitative assessment of SSO may be used to identify an inadequate vasodilatory response.
Collapse
Affiliation(s)
- Jean Michel Saad
- Houston Methodist DeBakey Heart & Vascular Center, Houston, TX, USA
| | | | - Yushui Han
- Houston Methodist DeBakey Heart & Vascular Center, Houston, TX, USA
| | | | - Fares Alahdab
- Houston Methodist DeBakey Heart & Vascular Center, Houston, TX, USA
| | - Faisal Nabi
- Houston Methodist DeBakey Heart & Vascular Center, Houston, TX, USA
| | - Mouaz H Al-Mallah
- Houston Methodist DeBakey Heart & Vascular Center, Houston, TX, USA.
| |
Collapse
|
14
|
Antonioli L, Fornai M, Pellegrini C, Pacher P, Haskó G. Adenosine signaling as target in cardiovascular pharmacology. Curr Opin Pharmacol 2023; 71:102393. [PMID: 37450948 PMCID: PMC10527223 DOI: 10.1016/j.coph.2023.102393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 06/14/2023] [Indexed: 07/18/2023]
Abstract
Increasing evidence demonstrated the relevance of adenosine system in the onset and development of cardiovascular diseases, such as hypertension, myocardial infarct, ischemia, hypertension, heart failure, and atherosclerosis. In this regard, intense research efforts are being focused on the characterization of the pathophysiological significance of adenosine, acting at its membrane receptors named A1, A2A, A2B, and A3 receptors, in cardiovascular diseases. The present review article provides an integrated and comprehensive overview about current clinical and pre-clinical evidence about the role of adenosine in the pathophysiology of cardiovascular diseases. Particular attention has been focused on current scientific evidence about the pharmacological ligands acting on adenosine pathway as useful tools to manage cardiovascular diseases.
Collapse
Affiliation(s)
- Luca Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa, 56126, Pisa, Italy
| | - Matteo Fornai
- The Institution is Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Carolina Pellegrini
- The Institution is Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Pál Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health/NIAAA, Bethesda, MD, 20892, USA
| | - György Haskó
- Department of Anesthesiology, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
15
|
Nguyen ATN, Tran QL, Baltos JA, McNeill SM, Nguyen DTN, May LT. Small molecule allosteric modulation of the adenosine A 1 receptor. Front Endocrinol (Lausanne) 2023; 14:1184360. [PMID: 37435481 PMCID: PMC10331460 DOI: 10.3389/fendo.2023.1184360] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 05/23/2023] [Indexed: 07/13/2023] Open
Abstract
G protein-coupled receptors (GPCRs) represent the target for approximately a third of FDA-approved small molecule drugs. The adenosine A1 receptor (A1R), one of four adenosine GPCR subtypes, has important (patho)physiological roles in humans. A1R has well-established roles in the regulation of the cardiovascular and nervous systems, where it has been identified as a potential therapeutic target for a number of conditions, including cardiac ischemia-reperfusion injury, cognition, epilepsy, and neuropathic pain. A1R small molecule drugs, typically orthosteric ligands, have undergone clinical trials. To date, none have progressed into the clinic, predominantly due to dose-limiting unwanted effects. The development of A1R allosteric modulators that target a topographically distinct binding site represent a promising approach to overcome current limitations. Pharmacological parameters of allosteric ligands, including affinity, efficacy and cooperativity, can be optimized to regulate A1R activity with high subtype, spatial and temporal selectivity. This review aims to offer insights into the A1R as a potential therapeutic target and highlight recent advances in the structural understanding of A1R allosteric modulation.
Collapse
Affiliation(s)
- Anh T. N. Nguyen
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Quan L. Tran
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Jo-Anne Baltos
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Samantha M. McNeill
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Diep T. N. Nguyen
- Department of Information Technology, Faculty of Engineering and Technology, Vietnam National University, Hanoi, Vietnam
| | - Lauren T. May
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| |
Collapse
|
16
|
Kroll RG, Powell C, Chen J, Snider NT, St. Hilaire C, Reddy A, Kim J, Pinsky DJ, Murthy VL, Sutton NR. Circulating Ectonucleotidases Signal Impaired Myocardial Perfusion at Rest and Stress. J Am Heart Assoc 2023; 12:e027920. [PMID: 37119076 PMCID: PMC10227209 DOI: 10.1161/jaha.122.027920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/20/2023] [Indexed: 04/30/2023]
Abstract
Background Ectonucleotidases maintain vascular homeostasis by metabolizing extracellular nucleotides, modulating inflammation and thrombosis, and potentially, myocardial flow through adenosine generation. Evidence implicates dysfunction or deficiency of ectonucleotidases CD39 or CD73 in human disease; the utility of measuring levels of circulating ectonucleotidases as plasma biomarkers of coronary artery dysfunction or disease has not been previously reported. Methods and Results A total of 529 individuals undergoing clinically indicated positron emission tomography stress testing between 2015 and 2019 were enrolled in this single-center retrospective analysis. Baseline demographics, clinical data, nuclear stress test, and coronary artery calcium score variables were collected, as well as a blood sample. CD39 and CD73 levels were assessed as binary (detectable, undetectable) or continuous variables using ELISAs. Plasma CD39 was detectable in 24% of White and 8% of Black study participants (P=0.02). Of the clinical history variables examined, ectonucleotidase levels were most strongly associated with underlying liver disease and not other traditional coronary artery disease risk factors. Intriguingly, detection of circulating ectonucleotidase was inversely associated with stress myocardial blood flow (2.3±0.8 mL/min per g versus 2.7 mL/min per g±1.1 for detectable versus undetectable CD39 levels, P<0.001) and global myocardial flow reserve (Pearson correlation between myocardial flow reserve and log(CD73) -0.19, P<0.001). A subanalysis showed these differences held true independent of liver disease. Conclusions Vasodilatory adenosine is the expected product of local ectonucleotidase activity, yet these data support an inverse relationship between plasma ectonucleotidases, stress myocardial blood flow (CD39), and myocardial flow reserve (CD73). These findings support the conclusion that plasma levels of ectonucleotidases, which may be shed from the endothelial surface, contribute to reduced stress myocardial blood flow and myocardial flow reserve.
Collapse
Affiliation(s)
- Rachel G. Kroll
- Division of Cardiovascular Medicine, Department of MedicineMichigan MedicineAnn ArborMI
| | - Corey Powell
- Consulting for Statistics, Computing, and Analytics ResearchUniversity of MichiganAnn ArborMI
| | - Jun Chen
- Division of Cardiovascular Medicine, Department of MedicineMichigan MedicineAnn ArborMI
| | - Natasha T. Snider
- Department of Cell Biology and PhysiologyUniversity of North Carolina at Chapel HillChapel HillNC
| | - Cynthia St. Hilaire
- Division of Cardiology, Departments of Medicine and BioengineeringVascular Medicine Institute, University of PittsburghPittsburghPAUSA
| | - Akshay Reddy
- Division of Cardiovascular Medicine, Department of MedicineMichigan MedicineAnn ArborMI
| | - Judy Kim
- Division of Cardiovascular Medicine, Department of MedicineMichigan MedicineAnn ArborMI
| | - David J. Pinsky
- Division of Cardiovascular Medicine, Department of MedicineMichigan MedicineAnn ArborMI
- Department of Molecular & Integrative PhysiologyUniversity of MichiganAnn ArborMI
| | - Venkatesh L. Murthy
- Division of Cardiovascular Medicine, Department of MedicineMichigan MedicineAnn ArborMI
| | - Nadia R. Sutton
- Division of Cardiovascular Medicine, Department of MedicineMichigan MedicineAnn ArborMI
- Division of Cardiovascular Medicine, Department of MedicineVanderbilt University Medical CenterNashvilleTN
- Department of Biomedical EngineeringVanderbilt UniversityNashvilleTN
| |
Collapse
|
17
|
Knott JD, Sabbah MS, Lewis BR, Hassan A, Gladden JD, Bell MR, Holmes DR, Brinkman N, Konz B, Singh M, Rihal CS, Barsness GW, Prasad A, Sandhu GS, Gulati R, Sandoval Y. Prophylactic Intravenous Aminophylline for Preventing Bradyarrhythmias During Coronary Atherectomy: A 10-Year Single-Center Experience. JOURNAL OF THE SOCIETY FOR CARDIOVASCULAR ANGIOGRAPHY & INTERVENTIONS 2023; 2:100590. [PMID: 39130697 PMCID: PMC11308821 DOI: 10.1016/j.jscai.2023.100590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/03/2023] [Accepted: 01/10/2023] [Indexed: 08/13/2024]
Abstract
Background Aminophylline, an adenosine antagonist, can be used to prevent adenosine-mediated bradyarrhythmias. Methods Retrospective, observational, descriptive analysis of patients undergoing rotational atherectomy with intravenous (IV) aminophylline pretreatment during a 10-year period (2010-2020). The primary composite outcome was the occurrence of a documented bradyarrhythmia requiring pharmacologic intervention and/or temporary pacemaker (TPM) implantation. Results A total of 296 patients received IV aminophylline pretreatment. The primary composite outcome occurred in 1.7% (n = 5) of patients. None of the patients required rescue TPM. Bradyarrhythmias were documented in 2.4% (n = 7) of patients. Pharmacologic interventions, typically with IV atropine, were used in 15% (n = 43) of patients. Per-vessel analyses demonstrated that patients undergoing atherectomy to the circumflex and right coronary arteries were more likely than those undergoing atherectomy to other vessels to have bradyarrhythmias requiring pharmacologic intervention (3.4% vs 0%, P = .01). Conclusions In this 10-year single-center experience using IV aminophylline pretreatment to prevent major bradyarrhythmias in patients undergoing coronary atherectomy, none of the patients required rescue TPM implantation. These data demonstrate that coronary atherectomy can be performed safely without prophylactic TPM, with aminophylline pretreatment and selective use of atropine representing an effective noninvasive approach.
Collapse
Affiliation(s)
| | - Michael S. Sabbah
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota
| | - Bradley R. Lewis
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota
| | - Abdalla Hassan
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota
| | - James D. Gladden
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota
| | - Malcolm R. Bell
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota
| | - David R. Holmes
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota
| | | | - Brent Konz
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota
| | - Mandeep Singh
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota
| | - Charanjit S. Rihal
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota
| | | | - Abhiram Prasad
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota
| | - Gurpreet S. Sandhu
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota
| | - Rajiv Gulati
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota
| | - Yader Sandoval
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
18
|
Kanagala SG, Dholiya H, Jhajj P, Patel MA, Gupta V, Gupta S, Wu SI, Jain R. Remdesivir-Induced Bradycardia. South Med J 2023; 116:317-320. [PMID: 36863055 PMCID: PMC9973350 DOI: 10.14423/smj.0000000000001519] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Remdesivir, a viral RNA-dependent RNA polymerase inhibitor, found extensive use in coronavirus disease 2019-infected patients because it curbs the viral load expansion. Among patients hospitalized as a result of lower respiratory tract infection, remdesivir proved to improve recovery time; however, remdesivir also can induce significant cytotoxic effects on cardiac myocytes. In this narrative review, we discuss the pathophysiological mechanism of remdesivir-induced bradycardia and diagnostic and management strategies for these patients. We conclude that further research is necessary to understand better the mechanism of bradycardia in coronavirus disease 2019 patients with or without cardiovascular disorder treated with remdesivir.
Collapse
Affiliation(s)
| | | | - Poonam Jhajj
- Avalon University School of Medicine, Willemstad, Curacao
| | | | - Vasu Gupta
- Dayanand Medical College and Hospital, Ludhiana, India
| | - Sachin Gupta
- Department of Internal Medicine, Penn State University Milton S. Hershey Medical Center, Hershey, Pennsylvania
| | - Shiau-ing Wu
- Department of Internal Medicine, Penn State University Milton S. Hershey Medical Center, Hershey, Pennsylvania
| | - Rohit Jain
- Avalon University School of Medicine, Willemstad, Curacao,Associate Professor, Avalon University School of Medicine, Willemstad, Curacao
| |
Collapse
|
19
|
Li M, Liu B, Li R, Yang P, Leng P, Huang Y. Exploration of the link between gut microbiota and purinergic signalling. Purinergic Signal 2023; 19:315-327. [PMID: 36121551 PMCID: PMC9984663 DOI: 10.1007/s11302-022-09891-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 07/25/2022] [Indexed: 11/30/2022] Open
Abstract
Growing evidence reveals that microorganisms in the gut are linked to metabolic health and disease risk in human beings to a considerable extent. The focus of research at this stage must tend to focus on cause-and-effect studies. In addition to being a component of DNA and RNA, purine metabolites can be involved in purine signalling in the body as chemical messengers. Abnormalities in purinergic signalling may lead to neuropathy, rheumatic immune diseases, inflammation, tumors, and a wide range of other diseases. It has proved that gut microbes are involved in purinergic signalling. The relationship between these gut-derived purinergic signalling molecules and host metabolism may be one of the important clues to our understanding of the mechanisms by which the microbiota affects host metabolism.
Collapse
Affiliation(s)
- MingJian Li
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - BoWen Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Rong Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ping Yang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ping Leng
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Yong Huang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
20
|
Bhogal S, Waksman R, Hashim H. Going under the bridge: unmasking ischaemia and endothelial dysfunction of myocardial bridging: a case report. Eur Heart J Case Rep 2023; 7:ytad047. [PMID: 36793933 PMCID: PMC9924498 DOI: 10.1093/ehjcr/ytad047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/13/2022] [Accepted: 01/25/2023] [Indexed: 02/01/2023]
Abstract
Background Physiological assessment of myocardial bridging prevents unnecessary interventions. Non-invasive workup or visual coronary artery compression may underestimate the underlying ischaemia associated with myocardial bridging in symptomatic patients. Case summary A 74-year-old male presented to the outpatient clinic with chest pain and shortness of breath on exertion. He underwent coronary artery calcium scan showing an elevated calcium score of 404. On follow-up, he endorsed progressive worsening of symptoms with chest pain and decreased exercise tolerance. He was then referred for coronary angiography that revealed mid-left anterior descending myocardial bridging with initial normal resting full-cycle ratio of 0.92. Further workup after ruling out coronary microvascular disease demonstrated abnormal hyperaemic full-cycle ratio of 0.80 with a diffuse rise across the myocardial bridging segment on pullback. Our patient also had increased spastic response to hyperaemia on angiography, supporting the presence of underlying endothelial dysfunction and ischaemia, likely contributing to his exertional symptomology. The patient was started on beta-blocker therapy with improvement in symptoms and resolution of chest pain on follow-up. Conclusion Our case highlights the importance of thorough workup of myocardial bridging in symptomatic patients to better understand the underlying physiology and endothelial function after ruling out microvascular disease and consideration of hyperaemic testing if symptoms are suggestive of ischaemia.
Collapse
Affiliation(s)
- Sukhdeep Bhogal
- Section of Interventional Cardiology, MedStar Washington Hospital Center, 110 Irving St. NW, Suite 4B1, Washington, DC 20010, USA
| | - Ron Waksman
- Corresponding author. Tel: +1 202 877 2812, Fax: +1 202 877 2715,
| | - Hayder Hashim
- Section of Interventional Cardiology, MedStar Washington Hospital Center, 110 Irving St. NW, Suite 4B1, Washington, DC 20010, USA
| |
Collapse
|
21
|
Kaur G, Verma SK, Singh D, Singh NK. Role of G-Proteins and GPCRs in Cardiovascular Pathologies. Bioengineering (Basel) 2023; 10:bioengineering10010076. [PMID: 36671648 PMCID: PMC9854459 DOI: 10.3390/bioengineering10010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/19/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
Cell signaling is a fundamental process that enables cells to survive under various ecological and environmental contexts and imparts tolerance towards stressful conditions. The basic machinery for cell signaling includes a receptor molecule that senses and receives the signal. The primary form of the signal might be a hormone, light, an antigen, an odorant, a neurotransmitter, etc. Similarly, heterotrimeric G-proteins principally provide communication from the plasma membrane G-protein-coupled receptors (GPCRs) to the inner compartments of the cells to control various biochemical activities. G-protein-coupled signaling regulates different physiological functions in the targeted cell types. This review article discusses G-proteins' signaling and regulation functions and their physiological relevance. In addition, we also elaborate on the role of G-proteins in several cardiovascular diseases, such as myocardial ischemia, hypertension, atherosclerosis, restenosis, stroke, and peripheral artery disease.
Collapse
Affiliation(s)
- Geetika Kaur
- Integrative Biosciences Center, Wayne State University, Detroit, MI 48202, USA
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI 48202, USA
| | - Shailendra Kumar Verma
- Integrative Biosciences Center, Wayne State University, Detroit, MI 48202, USA
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI 48202, USA
| | - Deepak Singh
- Lloyd Institute of Engineering and Technology, Greater Noida 201306, India
| | - Nikhlesh K. Singh
- Integrative Biosciences Center, Wayne State University, Detroit, MI 48202, USA
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI 48202, USA
- Correspondence:
| |
Collapse
|
22
|
Nayeem MA, Hanif A, Geldenhuys WJ, Agba S. Crosstalk between adenosine receptors and CYP450-derived oxylipins in the modulation of cardiovascular, including coronary reactive hyperemic response. Pharmacol Ther 2022; 240:108213. [PMID: 35597366 DOI: 10.1016/j.pharmthera.2022.108213] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 12/14/2022]
Abstract
Adenosine is a ubiquitous endogenous nucleoside or autacoid that affects the cardiovascular system through the activation of four G-protein coupled receptors: adenosine A1 receptor (A1AR), adenosine A2A receptor (A2AAR), adenosine A2B receptor (A2BAR), and adenosine A3 receptor (A3AR). With the rapid generation of this nucleoside from cellular metabolism and the widespread distribution of its four G-protein coupled receptors in almost all organs and tissues of the body, this autacoid induces multiple physiological as well as pathological effects, not only regulating the cardiovascular system but also the central nervous system, peripheral vascular system, and immune system. Mounting evidence shows the role of CYP450-enzymes in cardiovascular physiology and pathology, and the genetic polymorphisms in CYP450s can increase susceptibility to cardiovascular diseases (CVDs). One of the most important physiological roles of CYP450-epoxygenases (CYP450-2C & CYP2J2) is the metabolism of arachidonic acid (AA) and linoleic acid (LA) into epoxyeicosatrienoic acids (EETs) and epoxyoctadecaenoic acid (EpOMEs) which generally involve in vasodilation. Like an increase in coronary reactive hyperemia (CRH), an increase in anti-inflammation, and cardioprotective effects. Moreover, the genetic polymorphisms in CYP450-epoxygenases will change the beneficial cardiovascular effects of metabolites or oxylipins into detrimental effects. The soluble epoxide hydrolase (sEH) is another crucial enzyme ubiquitously expressed in all living organisms and almost all organs and tissues. However, in contrast to CYP450-epoxygenases, sEH converts EETs into dihydroxyeicosatrienoic acid (DHETs), EpOMEs into dihydroxyoctadecaenoic acid (DiHOMEs), and others and reverses the beneficial effects of epoxy-fatty acids leading to vasoconstriction, reducing CRH, increase in pro-inflammation, increase in pro-thrombotic and become less cardioprotective. Therefore, polymorphisms in the sEH gene (Ephx2) cause the enzyme to become overactive, making it more vulnerable to CVDs, including hypertension. Besides the sEH, ω-hydroxylases (CYP450-4A11 & CYP450-4F2) derived metabolites from AA, ω terminal-hydroxyeicosatetraenoic acids (19-, 20-HETE), lipoxygenase-derived mid-chain hydroxyeicosatetraenoic acids (5-, 11-, 12-, 15-HETEs), and the cyclooxygenase-derived prostanoids (prostaglandins: PGD2, PGF2α; thromboxane: Txs, oxylipins) are involved in vasoconstriction, hypertension, reduction in CRH, pro-inflammation and cardiac toxicity. Interestingly, the interactions of adenosine receptors (A2AAR, A1AR) with CYP450-epoxygenases, ω-hydroxylases, sEH, and their derived metabolites or oxygenated polyunsaturated fatty acids (PUFAs or oxylipins) is shown in the regulation of the cardiovascular functions. In addition, much evidence demonstrates polymorphisms in CYP450-epoxygenases, ω-hydroxylases, and sEH genes (Ephx2) and adenosine receptor genes (ADORA1 & ADORA2) in the human population with the susceptibility to CVDs, including hypertension. CVDs are the number one cause of death globally, coronary artery disease (CAD) was the leading cause of death in the US in 2019, and hypertension is one of the most potent causes of CVDs. This review summarizes the articles related to the crosstalk between adenosine receptors and CYP450-derived oxylipins in vascular, including the CRH response in regular salt-diet fed and high salt-diet fed mice with the correlation of heart perfusate/plasma oxylipins. By using A2AAR-/-, A1AR-/-, eNOS-/-, sEH-/- or Ephx2-/-, vascular sEH-overexpressed (Tie2-sEH Tr), vascular CYP2J2-overexpressed (Tie2-CYP2J2 Tr), and wild-type (WT) mice. This review article also summarizes the role of pro-and anti-inflammatory oxylipins in cardiovascular function/dysfunction in mice and humans. Therefore, more studies are needed better to understand the crosstalk between the adenosine receptors and eicosanoids to develop diagnostic and therapeutic tools by using plasma oxylipins profiles in CVDs, including hypertensive cases in the future.
Collapse
Affiliation(s)
- Mohammed A Nayeem
- Faculties of the Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA.
| | - Ahmad Hanif
- Faculties of the Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA
| | - Werner J Geldenhuys
- Faculties of the Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA
| | - Stephanie Agba
- Graduate student, Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
23
|
Adenosine and Adenosine Receptors: Advances in Atrial Fibrillation. Biomedicines 2022; 10:biomedicines10112963. [PMID: 36428533 PMCID: PMC9687155 DOI: 10.3390/biomedicines10112963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/07/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Atrial fibrillation (AF) is the most common arrhythmia in the world. Because the key to developing innovative therapies that limit the onset and the progression of AF is to fully understand the underlying molecular mechanisms of AF, the aim of the present narrative review is to report the most recent advances in the potential role of the adenosinergic system in the pathophysiology of AF. After a comprehensive approach describing adenosinergic system signaling and the mechanisms of the initiation and maintenance of AF, we address the interactions of the adenosinergic system's signaling with AF. Indeed, adenosine release can activate four G-coupled membrane receptors, named A1, A2A, A2B and A3. Activation of the A2A receptors can promote the occurrence of delayed depolarization, while activation of the A1 receptors can shorten the action potential's duration and induce the resting membrane's potential hyperpolarization, which promote pulmonary vein firing, stabilize the AF rotors and allow for functional reentry. Moreover, the A2B receptors have been associated with atrial fibrosis homeostasis. Finally, the adenosinergic system can modulate the autonomous nervous system and is associated with AF risk factors. A question remains regarding adenosine release and the adenosine receptors' activation and whether this would be a cause or consequence of AF.
Collapse
|
24
|
Belardin LB, Brochu K, Légaré C, Battistone MA, Breton S. Purinergic signaling in the male reproductive tract. Front Endocrinol (Lausanne) 2022; 13:1049511. [PMID: 36419764 PMCID: PMC9676935 DOI: 10.3389/fendo.2022.1049511] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/21/2022] [Indexed: 11/09/2022] Open
Abstract
Purinergic receptors are ubiquitously expressed throughout the body and they participate in the autocrine and paracrine regulation of cell function during normal physiological and pathophysiological conditions. Extracellular nucleotides activate several types of plasma membrane purinergic receptors that form three distinct families: P1 receptors are activated by adenosine, P2X receptors are activated by ATP, and P2Y receptors are activated by nucleotides including ATP, ADP, UTP, UDP, and UDP-glucose. These specific pharmacological fingerprints and the distinct intracellular signaling pathways they trigger govern a large variety of cellular responses in an organ-specific manner. As such, purinergic signaling regulates several physiological cell functions, including cell proliferation, differentiation and death, smooth muscle contraction, vasodilatation, and transepithelial transport of water, solute, and protons, as well as pathological pathways such as inflammation. While purinergic signaling was first discovered more than 90 years ago, we are just starting to understand how deleterious signals mediated through purinergic receptors may be involved in male infertility. A large fraction of male infertility remains unexplained illustrating our poor understanding of male reproductive health. Purinergic signaling plays a variety of physiological and pathophysiological roles in the male reproductive system, but our knowledge in this context remains limited. This review focuses on the distribution of purinergic receptors in the testis, epididymis, and vas deferens, and their role in the establishment and maintenance of male fertility.
Collapse
Affiliation(s)
- Larissa Berloffa Belardin
- Centre Hospitalier Universitaire de Québec - Research Centre and Department of Obstetrics, Gynecology and Reproduction, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Kéliane Brochu
- Centre Hospitalier Universitaire de Québec - Research Centre and Department of Obstetrics, Gynecology and Reproduction, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Christine Légaré
- Centre Hospitalier Universitaire de Québec - Research Centre and Department of Obstetrics, Gynecology and Reproduction, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Maria Agustina Battistone
- Nephrology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Sylvie Breton
- Centre Hospitalier Universitaire de Québec - Research Centre and Department of Obstetrics, Gynecology and Reproduction, Faculty of Medicine, Université Laval, Québec, QC, Canada
| |
Collapse
|
25
|
Ősz BE, Jîtcă G, Ștefănescu RE, Pușcaș A, Tero-Vescan A, Vari CE. Caffeine and Its Antioxidant Properties-It Is All about Dose and Source. Int J Mol Sci 2022; 23:13074. [PMID: 36361861 PMCID: PMC9654796 DOI: 10.3390/ijms232113074] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/23/2022] [Accepted: 10/24/2022] [Indexed: 08/16/2023] Open
Abstract
Caffeine is the most frequently used substance with a central nervous system stimulant effect, but its consumption is most often due to the intake of foods and drinks that contain it (coffee, tea, chocolate, food supplements with plant extracts of Guarana, Mate herba, Cola nuts). Due to its innocuity, caffeine is a safe xanthine alkaloid for human consumption in a wide range of doses, being used for its central nervous stimulating effect, lipolytic and diuresis-enhancing properties, but also as a permitted ergogenic compound in athletes. In addition to the mechanisms that explain the effects of caffeine on the targeted organ, there are many proposed mechanisms by which this substance would have antioxidant effects. As such, its consumption prevents the occurrence/progression of certain neurodegenerative diseases as well as other medical conditions associated with increased levels of reactive oxygen or nitrogen species. However, most studies that have assessed the beneficial effects of caffeine have used pure caffeine. The question, therefore, arises whether the daily intake of caffeine from food or drink has similar benefits, considering that in foods or drinks with a high caffeine content, there are other substances that could interfere with this action, either by potentiating or decreasing its antioxidant capacity. Natural sources of caffeine often combine plant polyphenols (phenol-carboxylic acids, catechins) with known antioxidant effects; however, stimulant drinks and dietary supplements often contain sugars or artificial sweeteners that can significantly reduce the effects of caffeine on oxidative stress. The objective of this review is to clarify the effects of caffeine in modulating oxidative stress and assess these benefits, considering the source and the dose administered.
Collapse
Affiliation(s)
- Bianca-Eugenia Ősz
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
| | - George Jîtcă
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
| | - Ruxandra-Emilia Ștefănescu
- Department of Pharmacognosy and Phytotherapy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
| | - Amalia Pușcaș
- Department of Biochemistry and Chemistry of Environmental Factors, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
| | - Amelia Tero-Vescan
- Department of Biochemistry, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
| | - Camil-Eugen Vari
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
| |
Collapse
|
26
|
Plasma A 2AR Measurement Can Help Physicians Identify Patients Suspected of Coronary Chronic Syndrome: A Pilot Study. Biomedicines 2022; 10:biomedicines10081849. [PMID: 36009396 PMCID: PMC9405059 DOI: 10.3390/biomedicines10081849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 11/17/2022] Open
Abstract
The evaluation of suspected coronary artery disease (CAD) in the medical community is challenging. Patients with suspected coronary chronic syndrome (CCS) are referred by the medical community to be assessed by specialists for the performance of noninvasive tests that have high rates of false positives and false negatives. While troponins are the gold standard for evaluate myocardial injuries, there is no biomarker to assess myocardial ischemia in patient populations with negative electrocardiography or without an increase in troponin level. A2A adenosine receptors control the coronary blood flow through its vasodilating properties. It has been shown that patients with CAD have a lower A2AR expression on peripheral blood mononuclear cells, suggesting a link between A2AR production and the severity of CAD. Herein, we present a new and innovative method of inhibition ELISA for A2AR in the plasma of patients who permit the evaluation of the amount of soluble A2AR. For this analysis, the total study sample was 54, including 31 patients with CAD with stenosis > 50% and a significant fractional flow reserve (FFR < 0.8) (Group 1) and 23 patients with normal or non-obstructive coronary arteries (stenosis < 50% and nonsignificant FFR > 0.8) (Group 2). The % inhibition (which is linked to the presence of soluble receptors) with the plasma of patients with FFR < 0.8 was significantly lower than that of patients with FFR > 0.8 (median [range]: 68% [20.7−86.9] vs. 83% [67−88.4]; p < 0.001). The ROC curve indicated a good sensitivity/specificity ratio with a cut off of 72.5% and an area under the curve of 0.87. In conclusion, a rapid ELISA to assess soluble A2AR in the plasma shows promise to screen patients suspected of having CAD.
Collapse
|
27
|
Yegutkin GG, Boison D. ATP and Adenosine Metabolism in Cancer: Exploitation for Therapeutic Gain. Pharmacol Rev 2022; 74:797-822. [PMID: 35738682 DOI: 10.1124/pharmrev.121.000528] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Adenosine is an evolutionary ancient metabolic regulator linking energy state to physiologic processes, including immunomodulation and cell proliferation. Tumors create an adenosine-rich immunosuppressive microenvironment through the increased release of ATP from dying and stressed cells and its ectoenzymatic conversion into adenosine. Therefore, the adenosine pathway becomes an important therapeutic target to improve the effectiveness of immune therapies. Prior research has focused largely on the two major ectonucleotidases, ectonucleoside triphosphate diphosphohydrolase 1/cluster of differentiation (CD)39 and ecto-5'-nucleotidase/CD73, which catalyze the breakdown of extracellular ATP into adenosine, and on the subsequent activation of different subtypes of adenosine receptors with mixed findings of antitumor and protumor effects. New findings, needed for more effective therapeutic approaches, require consideration of redundant pathways controlling intratumoral adenosine levels, including the alternative NAD-inactivating pathway through the CD38-ectonucleotide pyrophosphatase phosphodiesterase (ENPP)1-CD73 axis, the counteracting ATP-regenerating ectoenzymatic pathway, and cellular adenosine uptake and its phosphorylation by adenosine kinase. This review provides a holistic view of extracellular and intracellular adenosine metabolism as an integrated complex network and summarizes recent data on the underlying mechanisms through which adenosine and its precursors ATP and ADP control cancer immunosurveillance, tumor angiogenesis, lymphangiogenesis, cancer-associated thrombosis, blood flow, and tumor perfusion. Special attention is given to differences and commonalities in the purinome of different cancers, heterogeneity of the tumor microenvironment, subcellular compartmentalization of the adenosine system, and novel roles of purine-converting enzymes as targets for cancer therapy. SIGNIFICANCE STATEMENT: The discovery of the role of adenosine as immune checkpoint regulator in cancer has led to the development of novel therapeutic strategies targeting extracellular adenosine metabolism and signaling in multiple clinical trials and preclinical models. Here we identify major gaps in knowledge that need to be filled to improve the therapeutic gain from agents targeting key components of the adenosine metabolic network and, on this basis, provide a holistic view of the cancer purinome as a complex and integrated network.
Collapse
Affiliation(s)
- Gennady G Yegutkin
- MediCity Research Laboratory and InFLAMES Flagship, University of Turku, Turku, Finland (G.G.Y.); Department of Neurosurgery, Robert Wood Johnson and New Jersey Medical Schools, Rutgers University, Piscataway, New Jersey (D.B.); and Rutgers Brain Health Institute, Piscataway, New Jersey (D.B.)
| | - Detlev Boison
- MediCity Research Laboratory and InFLAMES Flagship, University of Turku, Turku, Finland (G.G.Y.); Department of Neurosurgery, Robert Wood Johnson and New Jersey Medical Schools, Rutgers University, Piscataway, New Jersey (D.B.); and Rutgers Brain Health Institute, Piscataway, New Jersey (D.B.)
| |
Collapse
|
28
|
Weyers JJ, Ramanan V, Javed A, Barry J, Larsen M, Nayak K, Wright GA, Ghugre NR. Myocardial blood flow is the dominant factor influencing cardiac magnetic resonance adenosine stress T2. NMR IN BIOMEDICINE 2022; 35:e4643. [PMID: 34791720 PMCID: PMC8828684 DOI: 10.1002/nbm.4643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/24/2021] [Accepted: 10/10/2021] [Indexed: 06/02/2023]
Abstract
Stress imaging identifies ischemic myocardium by comparing hemodynamics during rest and hyperemic stress. Hyperemia affects multiple hemodynamic parameters in myocardium, including myocardial blood flow (MBF), myocardial blood volume (MBV), and venous blood oxygen levels (PvO2 ). Cardiac T2 is sensitive to these changes and therefore is a promising non-contrast option for stress imaging; however, the impact of individual hemodynamic factors on T2 is poorly understood, making the connection from altered T2 to changes within the tissue difficult. To better understand this interplay, we performed T2 mapping and measured various hemodynamic factors independently in healthy pigs at multiple levels of hyperemic stress, induced by different doses of adenosine (0.14-0.56 mg/kg/min). T1 mapping quantified changes in MBV. MBF was assessed with microspheres, and oxygen consumption was determined by the rate pressure product (RPP). Simulations were also run to better characterize individual contributions to T2. Myocardial T2, MBF, oxygen consumption, and MBV all changed to varying extents between each level of adenosine stress (T2 = 37.6-41.8 ms; MBF = 0.48-1.32 mL/min/g; RPP = 6507-4001 bmp*mmHg; maximum percent change in MBV = 1.31%). Multivariable analyses revealed MBF as the dominant influence on T2 during hyperemia (significant β-values >7). Myocardial oxygen consumption had almost no effect on T2 (β-values <0.002); since PvO2 is influenced by both oxygen consumption and MBF, PvO2 changes detected by T2 during adenosine stress can be attributed to MBF. Simulations varying PvO2 and MBV confirmed that PvO2 had the strongest influence on T2, but MBV became important at high PvO2 . Together, these data suggest a model where, during adenosine stress, myocardial T2 responds predominantly to changes in MBF, but at high hyperemia MBV is also influential. Thus, changes in adenosine stress T2 can now be interpreted in terms of the physiological changes that led to it, enabling T2 mapping to become a viable non-contrast option to detect ischemic myocardial tissue.
Collapse
Affiliation(s)
- Jill J Weyers
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Venkat Ramanan
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Ahsan Javed
- Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, California
| | - Jennifer Barry
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Melissa Larsen
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Krishna Nayak
- Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, California
| | - Graham A Wright
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Schulich Heart Research Program, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Nilesh R Ghugre
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Schulich Heart Research Program, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
29
|
Adenosine Receptor Signaling in Diseases with Focus on Cancer. JORJANI BIOMEDICINE JOURNAL 2022. [DOI: 10.52547/jorjanibiomedj.10.1.41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
30
|
Biological computation: hearts and flytraps. J Biol Phys 2022; 48:55-78. [PMID: 35089468 PMCID: PMC8866585 DOI: 10.1007/s10867-021-09590-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/03/2021] [Indexed: 11/10/2022] Open
Abstract
The original computers were people using algorithms to get mathematical results such as rocket trajectories. After the invention of the digital computer, brains have been widely understood through analogies with computers and now artificial neural networks, which have strengths and drawbacks. We define and examine a new kind of computation better adapted to biological systems, called biological computation, a natural adaptation of mechanistic physical computation. Nervous systems are of course biological computers, and we focus on some edge cases of biological computing, hearts and flytraps. The heart has about the computing power of a slug, and much of its computing happens outside of its forty thousand neurons. The flytrap has about the computing power of a lobster ganglion. This account advances fundamental debates in neuroscience by illustrating ways that classical computability theory can miss complexities of biology. By this reframing of computation, we make way for resolving the disconnect between human and machine learning.
Collapse
|
31
|
López-Serrano AL, Zamora-Cárdenas R, Aréchiga-Figueroa IA, Salazar-Fajardo PD, Ferrer T, Alamilla J, Sánchez-Chapula JA, Navarro-Polanco RA, Moreno-Galindo EG. Differential voltage-dependent modulation of the ACh-gated K+ current by adenosine and acetylcholine. PLoS One 2022; 17:e0261960. [PMID: 35030226 PMCID: PMC8759768 DOI: 10.1371/journal.pone.0261960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 12/14/2021] [Indexed: 11/18/2022] Open
Abstract
Inhibitory regulation of the heart is determined by both cholinergic M2 receptors (M2R) and adenosine A1 receptors (A1R) that activate the same signaling pathway, the ACh-gated inward rectifier K+ (KACh) channels via Gi/o proteins. Previously, we have shown that the agonist-specific voltage sensitivity of M2R underlies several voltage-dependent features of IKACh, including the ‘relaxation’ property, which is characterized by a gradual increase or decrease of the current when cardiomyocytes are stepped to hyperpolarized or depolarized voltages, respectively. However, it is unknown whether membrane potential also affects A1R and how this could impact IKACh. Upon recording whole-cell currents of guinea-pig cardiomyocytes, we found that stimulation of the A1R-Gi/o-IKACh pathway with adenosine only caused a very slight voltage dependence in concentration-response relationships (~1.2-fold EC50 increase with depolarization) that was not manifested in the relative affinity, as estimated by the current deactivation kinetics (τ = 4074 ± 214 ms at -100 mV and τ = 4331 ± 341 ms at +30 mV; P = 0.31). Moreover, IKACh did not exhibit relaxation. Contrarily, activation of the M2R-Gi/o-IKACh pathway with acetylcholine induced the typical relaxation of the current, which correlated with the clear voltage-dependent effect observed in the concentration-response curves (~2.8-fold EC50 increase with depolarization) and in the IKACh deactivation kinetics (τ = 1762 ± 119 ms at -100 mV and τ = 1503 ± 160 ms at +30 mV; P = 0.01). Our findings further substantiate the hypothesis of the agonist-specific voltage dependence of GPCRs and that the IKACh relaxation is consequence of this property.
Collapse
Affiliation(s)
- Ana Laura López-Serrano
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, Col., Mexico
| | - Rodrigo Zamora-Cárdenas
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, Col., Mexico
| | - Iván A. Aréchiga-Figueroa
- CONACYT, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, S.L.P., Mexico
| | | | - Tania Ferrer
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, Col., Mexico
| | - Javier Alamilla
- CONACYT, Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, Col., Mexico
| | - José A. Sánchez-Chapula
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, Col., Mexico
| | | | - Eloy G. Moreno-Galindo
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, Col., Mexico
- * E-mail:
| |
Collapse
|
32
|
Wei W, Fang X, Shehata M, Wang X, Zhan X, Deng H, Liao H, Liao Z, Liu Y, Xue Y, Wu S. Administration of Adenosine Triphosphate Provides Additional Value Over Programmed Electrophysiologic Study in Confirmation of Successful Ablation of Atrioventricular Accessory Pathways. Front Cardiovasc Med 2021; 8:716400. [PMID: 34869625 PMCID: PMC8635057 DOI: 10.3389/fcvm.2021.716400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/30/2021] [Indexed: 12/02/2022] Open
Abstract
Objectives: To study the benefit of adenosine triphosphate (ATP) in evaluating ablation endpoints of accessory pathways (AP) and subsequent long-term prognosis. Methods: We reviewed consecutive patients with supraventricular tachycardias due to APs that underwent radiofrequency catheter ablation (RFCA) from January 2016 to September 2018 in our center. The patients were divided into two groups: the ATP group (who had passed both the ATP test and PES after ablation as the endpoint) and the non-ATP group (who had passed PES only after ablation as the endpoint). We reviewed the patients' intra-cardiac electrograms and analyzed their long-term outcomes. Results: In total, 1,343 patients underwent successful RFCA. There were 215 patients in the ATP group with one lost to follow-up. There were 1,128 patients in the non-ATP group with 39 lost to follow-up. Twenty-three patients in the ATP group demonstrated additional electrophysiological entities due to ATP administration, including reappearance of the ablated APs in 16 patients, discovery of PES-undetected APs in 5, induction of atrial fibrillation in 5, premature atrial contractions in 1, and premature ventricular contractions in another. During the 7 to 39 months (average 24.4 ± 9.5 months) follow-up, the recurrence rate was 8.41% (18/214) in the ATP group and 6.80% (74/1,084) in the non-ATP group. In subjects with recurrence, 14 patients (14/18 = 77.8%) in the ATP group and 50 patients (50/74 = 67.6%) in the non-ATP group accepted redo ablations. Among the ATP-group, all the 14 redo APs were the old ones as before. Among the non-ATP-group, redo ablations confirmed that 39 APs were the old ones, while 20 APs were newly detected ones which had been missed previously. The difference in recurrent AP locations confirmed by redo procedures between the two groups was significant (p = 0.008). In the non-ATP group, 20 (40%) of redo cases were proven to have multiple APs, while 33 (3.3%) cases who did not suffer from recurrence had multiple APs. Existences of multiple APs in recurred cases were significantly higher than that in non-recurred ones in the non-ATP group (p < 0.001), while there was no such difference in the ATP group (p = 0.114). Conclusions: The existence of multiple APs was more common in recurrent cases if ATP was not used for confirmation of ablation endpoints. ATP probably has additional value over PES alone by detecting weak AP conductions. ATP can evoke atrial and ventricular arrhythmias.
Collapse
Affiliation(s)
- Wei Wei
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xianhong Fang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Michael Shehata
- Cedars Sinai Medical Center, Heart Institute, Los Angeles, CA, United States
| | - Xunzhang Wang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Cedars Sinai Medical Center, Heart Institute, Los Angeles, CA, United States
| | - Xianzhang Zhan
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hai Deng
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hongtao Liao
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zili Liao
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yang Liu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yumei Xue
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Shulin Wu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
33
|
Maille B, Fromonot J, Guiol C, Marlinge M, Baptiste F, Lim S, Colombani C, Chaptal MC, Chefrour M, Gastaldi M, Franceschi F, Deharo JC, Gariboldi V, Ruf J, Mottola G, Guieu R. A 2 Adenosine Receptor Subtypes Overproduction in Atria of Perioperative Atrial Fibrillation Patients Undergoing Cardiac Surgery: A Pilot Study. Front Cardiovasc Med 2021; 8:761164. [PMID: 34805317 PMCID: PMC8595247 DOI: 10.3389/fcvm.2021.761164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/01/2021] [Indexed: 01/01/2023] Open
Abstract
Objective: Although atrial fibrillation is a common cardiac arrhythmia in humans, the mechanism that leads to the onset of this condition is poorly elucidated. Adenosine is suspected to be implicated in the trigger of atrial fibrillation (AF) through the activation of its membrane receptors, mainly adenosine receptor (AR) subtypes A1R and A2R. In this study, we compared blood adenosine concentration (BAC), and A1R, A2AR, and A2BR production in right (RA) and left atrium (LA), and on peripheral blood mononuclear cells (PBMCs) in patients with underlying structural heart disease undergoing cardiac surgery with or without peri-operative AF (PeOpAF). Methods: The study group consisted of 39 patients (30 men and 9 women, mean age, range 65 [40–82] years) undergoing cardiac surgery and 20 healthy patients (8 women and 12 men; mean age, range 60 [39–72] years) as controls were included. Among patients, 15 exhibited PeOpAF. Results: Blood adenosine concentration was higher in patients with PeOpAF than others. A2AR and A2BR production was higher in PBMCs of patients compared with controls and was higher in PeOpAF patients than other patients. In LA and RA, the production of A2AR and A2BR was higher in patients with PeOpAF than in other patients. Both A2AR and A2BR production were higher in LA vs. RA. A1R production was unchanged in all situations. Finally, we observed a correlation between A1R, A2AR, and A2BR production evaluated on PBMCs and those evaluated in LA and RA. Conclusions: Perioperative AF was associated with high BAC and high A2AR and A2BR expression, especially in the LA, after cardiac surgery in patients with underlying structural heart disease. Whether these increases the favor in triggering the AF in this patient population needs further investigation.
Collapse
Affiliation(s)
- Baptiste Maille
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France.,Department of Cardiology, Timone University Hospital, Marseille, France
| | - Julien Fromonot
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France.,Laboratory of Biochemistry, Timone University Hospital, AP-HM, Marseille, France
| | - Claire Guiol
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France
| | - Marion Marlinge
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France.,Laboratory of Biochemistry, Timone University Hospital, AP-HM, Marseille, France
| | - Florian Baptiste
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France.,Department of Cardiology, Timone University Hospital, Marseille, France.,Laboratory of Biochemistry, Timone University Hospital, AP-HM, Marseille, France
| | - Suzy Lim
- Laboratory of Biochemistry, Timone University Hospital, AP-HM, Marseille, France
| | - Charlotte Colombani
- Laboratory of Biochemistry, Timone University Hospital, AP-HM, Marseille, France
| | | | - Mohamed Chefrour
- Laboratory of Biochemistry, Timone University Hospital, AP-HM, Marseille, France
| | | | - Frederic Franceschi
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France.,Department of Cardiology, Timone University Hospital, Marseille, France
| | - Jean-Claude Deharo
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France.,Department of Cardiology, Timone University Hospital, Marseille, France
| | - Vlad Gariboldi
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France.,Department of Cardiac Surgery, Timone University Hospital, Marseille, France
| | - Jean Ruf
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France
| | | | - Régis Guieu
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France.,Laboratory of Biochemistry, Timone University Hospital, AP-HM, Marseille, France
| |
Collapse
|
34
|
Franks R, Plein S, Chiribiri A. Clinical Application of Dynamic Contrast Enhanced Perfusion Imaging by Cardiovascular Magnetic Resonance. Front Cardiovasc Med 2021; 8:768563. [PMID: 34778420 PMCID: PMC8585782 DOI: 10.3389/fcvm.2021.768563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
Functionally significant coronary artery disease impairs myocardial blood flow and can be detected non-invasively by myocardial perfusion imaging. While multiple myocardial perfusion imaging modalities exist, the high spatial and temporal resolution of cardiovascular magnetic resonance (CMR), combined with its freedom from ionising radiation make it an attractive option. Dynamic contrast enhanced CMR perfusion imaging has become a well-validated non-invasive tool for the assessment and risk stratification of patients with coronary artery disease and is recommended by international guidelines. This article presents an overview of CMR perfusion imaging and its clinical application, with a focus on chronic coronary syndromes, highlighting its strengths and challenges, and discusses recent advances, including the emerging role of quantitative perfusion analysis.
Collapse
Affiliation(s)
- Russell Franks
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Sven Plein
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Amedeo Chiribiri
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| |
Collapse
|
35
|
Marlinge M, Chefrour M, Billaut F, Zavarro M, Rostain JC, Coulange M, Guieu R, Joulia F. Blood Adenosine Increase During Apnea in Spearfishermen Reinforces the Efficiency of the Cardiovascular Component of the Diving Reflex. Front Physiol 2021; 12:743154. [PMID: 34675819 PMCID: PMC8523798 DOI: 10.3389/fphys.2021.743154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 09/16/2021] [Indexed: 11/13/2022] Open
Abstract
The physiopathology consequences of hypoxia during breath-hold diving are a matter of debate. Adenosine (AD), an ATP derivative, is suspected to be implicated in the adaptive cardiovascular response to apnea, because of its vasodilating and bradycardic properties, two clinical manifestations observed during voluntary apnea. The aim of this study was to evaluate the adenosine response to apnea-induced hypoxia in trained spearfishermen (SFM) who are used to perform repetitive dives for 4-5 h. Twelve SFM (11 men and 1 woman, mean age 41 ± 3 years, apnea experience: 18 ± 9 years) and 10 control (CTL) subjects (age 44 ± 7 years) were enrolled in the study. Subjects were asked to main a dry static apnea and stopped it when they began the struggle phase (average duration: SFM 120 ± 78 s, CTL 78 ± 12 s). Capillary blood samples were collected at baseline and immediately after the apnea and analyzed for standard parameters and adenosine blood concentration ([AD]b). Heart rate (HR), systolic (SBP), and diastolic (DBP) blood pressures were also recorded continuously during the apnea. During the apnea, an increase in SBP and DBP and a decrease in HR were observed in both SFM and CTL. At baseline, [AD]b was higher in SFM compared with CTL (1.05 ± 0.2 vs. 0.73 ± 0.11 μM, p < 0.01). [AD]b increased significantly at the end of the apnea in both groups, but the increase was significantly greater in SFM than in controls (+90.4 vs. +12%, p < 0.01). Importantly, in SFM, we also observed significant correlations between [AD]b and HR (R = -0.8, p = 0.02), SpO2 (R = -0.69, p = 0.01), SBP (R = -0.89, p = 0.02), and DBP (R = -0.68, p = 0.03). Such associations were absent in CTL. The adenosine release during apnea was associated with blood O2 saturation and cardiovascular parameters in trained divers but not in controls. These data therefore suggest that adenosine may play a major role in the adaptive cardiovascular response to apnea and could reflect the level of training.
Collapse
Affiliation(s)
- Marion Marlinge
- C2VN, Center for Cardiovascular and Nutrition Research, INSERM 1263, INRAE 1260, Aix Marseille University, Marseille, France.,Laboratory of Biochemistry, Timone Hospital, Marseille, France
| | | | | | | | - Jean-Claude Rostain
- C2VN, Center for Cardiovascular and Nutrition Research, INSERM 1263, INRAE 1260, Aix Marseille University, Marseille, France
| | - Mathieu Coulange
- C2VN, Center for Cardiovascular and Nutrition Research, INSERM 1263, INRAE 1260, Aix Marseille University, Marseille, France.,Department of Hyperbaric Medicine, Hospital Sainte Marguerite, Marseille, France
| | - Régis Guieu
- C2VN, Center for Cardiovascular and Nutrition Research, INSERM 1263, INRAE 1260, Aix Marseille University, Marseille, France.,Laboratory of Biochemistry, Timone Hospital, Marseille, France
| | - Fabrice Joulia
- C2VN, Center for Cardiovascular and Nutrition Research, INSERM 1263, INRAE 1260, Aix Marseille University, Marseille, France.,UFR STAPS, Toulon University, La Garde, France
| |
Collapse
|
36
|
Comparison of Duplex and Quadruplex Folding Structure Adenosine Aptamers for Carbon Nanotube Field Effect Transistor Aptasensors. NANOMATERIALS 2021; 11:nano11092280. [PMID: 34578596 PMCID: PMC8468449 DOI: 10.3390/nano11092280] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/25/2021] [Accepted: 08/30/2021] [Indexed: 12/24/2022]
Abstract
Carbon nanotube field effect transistor (CNT FET) aptasensors have been investigated for the detection of adenosine using two different aptamer sequences, a 35-mer and a 27-mer. We found limits of detection for adenosine of 100 pM and 320 nM for the 35-mer and 27-mer aptamers, with dissociation constants of 1.2 nM and 160 nM, respectively. Upon analyte recognition the 35-mer adenosine aptamer adopts a compact G-quadruplex structure while the 27-mer adenosine aptamer changes to a folded duplex. Using the CNT FET aptasensor platform adenosine could be detected with high sensitivity over the range of 100 pM to 10 µM, highlighting the suitability of the CNT FET aptasensor platform for high performance adenosine detection. The aptamer restructuring format is critical for high sensitivity with the G-quadraplex aptasensor having a 130-fold smaller dissociation constant than the duplex forming aptasensor.
Collapse
|
37
|
Lucero García Rojas EY, Villanueva C, Bond RA. Hypoxia Inducible Factors as Central Players in the Pathogenesis and Pathophysiology of Cardiovascular Diseases. Front Cardiovasc Med 2021; 8:709509. [PMID: 34447792 PMCID: PMC8382733 DOI: 10.3389/fcvm.2021.709509] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/09/2021] [Indexed: 01/01/2023] Open
Abstract
Cardiovascular (CV) diseases are the major cause of death in industrialized countries. The main function of the CV system is to deliver nutrients and oxygen to all tissues. During most CV pathologies, oxygen and nutrient delivery is decreased or completely halted. Several mechanisms, including increased oxygen transport and delivery, as well as increased blood flow are triggered to compensate for the hypoxic state. If the compensatory mechanisms fail to sufficiently correct the hypoxia, irreversible damage can occur. Thus, hypoxia plays a central role in the pathogenesis and pathophysiology of CV diseases. Hypoxia inducible factors (HIFs) orchestrate the gene transcription for hundreds of proteins involved in erythropoiesis, glucose transport, angiogenesis, glycolytic metabolism, reactive oxygen species (ROS) handling, cell proliferation and survival, among others. The overall regulation of the expression of HIF-dependent genes depends on the severity, duration, and location of hypoxia. In the present review, common CV diseases were selected to illustrate that HIFs, and proteins derived directly or indirectly from their stabilization and activation, are related to the development and perpetuation of hypoxia in these pathologies. We further classify CV diseases into acute and chronic hypoxic states to better understand the temporal relevance of HIFs in the pathogenesis, disease progression and clinical outcomes of these diseases. We conclude that HIFs and their derived factors are fundamental in the genesis and progression of CV diseases. Understanding these mechanisms will lead to more effective treatment strategies leading to reduced morbidity and mortality.
Collapse
Affiliation(s)
| | - Cleva Villanueva
- Instituto Politecnico Nacional, Escuela Superior de Medicina, Mexico City, Mexico
| | - Richard A Bond
- Department of Pharmacology and Pharmaceutical Sciences, University of Houston, Houston, TX, United States
| |
Collapse
|
38
|
Valdés F, Arévalo B, Gutiérrez M, García-Castillo V, Salgado-García R, Pérez-Plasencia C, Valenzuela C, Cayo Á, Olate-Briones A, Brown N. Two New Adenosine Derivatives and their Antiproliferative Properties, an In Vitro Evaluation. Anticancer Agents Med Chem 2021; 22:1414-1425. [PMID: 34053425 DOI: 10.2174/1871520621666210528151818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 03/24/2021] [Accepted: 04/05/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Adenosine is a natural nucleoside present in various organs and tissues, where it acts as a modulator of diverse physiological and pathophysiological processes. These actions are mediated by at least four G protein-coupled receptors, which are widely and differentially expressed in tissues. Interestingly, high concentrations of adenosine have been reported in a variety of tumors. In this context, the final output of adenosine in tumorigenesis will likely depend on the constellation of adenosine receptors expressed by tumor and stromal cells. Notably, activation of the A3 receptor can reduce the proliferative capacity of various cancer cells. OBJECTIVE The objective of this study is to describe the anti-proliferative effects of two previously synthesized adenosine derivatives with A3 agonist action (compounds 2b and 2f) through in vitro assays. METHOD We used gastric and breast cancer cell lines expressing the A3 receptor as in vitro models and theoretical experiments such as molecular dynamics and determination of ADME properties. RESULTS The antiproliferative effects of adenosine derivatives (after determining IC50 values) were comparable or even higher than those described for IB-MECA, a commercially available A3 agonist. Among possible mechanisms involved, apoptosis was found to be induced in MCF-7 cells but not in AGS or MDA-MB-231 cells. Surprisingly, we were unable to observe cellular senescence induction upon treatment with compounds 2b and 2f in any of the cell lines studied, although we cannot rule out other forms of cell cycle exit at this point. CONCLUSION Both adenosine derivatives showed antiproliferative effects on gastric and breast cancer cell lines, and were able to induce apoptosis, at least in the MCF-7 cell line. Further studies will be necessary to unveil receptor specificity and mechanisms accounting for the antiproliferative properties of these novel semi-synthetic compounds.
Collapse
Affiliation(s)
- Francisco Valdés
- Organic Synthesis Laboratory and Biological Activity (LSO-Act-Bio), PhD Sciences Mention Investigation and Development of Bioactive Products, Institute of Chemistry of Natural Resources, University of Talca, Chile
| | - Bárbara Arévalo
- Centro de Estudios en Alimentos Procesados- CEAP, Conicyt, Programa Regional R19A10001, Gore Maule, Talca, Chile; 3Institute of Chemistry of Natural Resources, University of Talca, Chile
| | | | | | | | - Carlos Pérez-Plasencia
- FES-Iztacala, UBIMED, National Autonomous University of Mexico, UNAM, Tlalnepantla, Mexico
| | | | - Ángel Cayo
- Medical School, University of Talca, Chile
| | | | | |
Collapse
|
39
|
Hjortbak MV, Olesen KKW, Seefeldt JM, Lassen TR, Jensen RV, Perkins A, Dodd M, Clayton T, Yellon D, Hausenloy DJ, Bøtker HE. Translation of experimental cardioprotective capability of P2Y 12 inhibitors into clinical outcome in patients with ST-elevation myocardial infarction. Basic Res Cardiol 2021; 116:36. [PMID: 34037861 DOI: 10.1007/s00395-021-00870-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/13/2021] [Indexed: 11/25/2022]
Abstract
We studied the translational cardioprotective potential of P2Y12 inhibitors against acute myocardial ischemia/reperfusion injury (IRI) in an animal model of acute myocardial infarction and in patients with ST-elevation myocardial infarction (STEMI) undergoing primary percutaneous coronary intervention (PPCI). P2Y12 inhibitors may have pleiotropic effects to induce cardioprotection against acute myocardial IRI beyond their inhibitory effects on platelet aggregation. We compared the cardioprotective effects of clopidogrel, prasugrel, and ticagrelor on infarct size in an in vivo rat model of acute myocardial IRI, and investigated the effects of the P2Y12 inhibitors on enzymatic infarct size (48-h area-under-the-curve (AUC) troponin T release) and clinical outcomes in a retrospective study of STEMI patients from the CONDI-2/ERIC-PPCI trial using propensity score analyses. Loading with ticagrelor in rats reduced infarct size after acute myocardial IRI compared to controls (37 ± 11% vs 52 ± 8%, p < 0.01), whereas clopidogrel and prasugrel did not (50 ± 11%, p > 0.99 and 49 ± 9%, p > 0.99, respectively). Correspondingly, troponin release was reduced in STEMI patients treated with ticagrelor compared to clopidogrel (adjusted 48-h AUC ratio: 0.67, 95% CI 0.47-0.94). Compared to clopidogrel, the composite endpoint of cardiac death or hospitalization for heart failure within 12 months was reduced in STEMI patients loaded with ticagrelor (HR 0.63; 95% CI 0.42-0.94) but not prasugrel (HR 0.84, 95% CI 0.43-1.63), prior to PPCI. Major adverse cardiovascular events did not differ between clopidogrel, ticagrelor, or prasugrel. The cardioprotective effects of ticagrelor in reducing infarct size may contribute to the clinical benefit observed in STEMI patients undergoing PPCI.
Collapse
Affiliation(s)
- Marie V Hjortbak
- Department of Clinical Medicine, Cardiology, Aarhus University, Palle Juul-Jensens Boulevard 82, 8200, Aarhus N, Denmark.
| | - Kevin K W Olesen
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | - Jacob M Seefeldt
- Department of Clinical Medicine, Cardiology, Aarhus University, Palle Juul-Jensens Boulevard 82, 8200, Aarhus N, Denmark
| | - Thomas R Lassen
- Department of Clinical Medicine, Cardiology, Aarhus University, Palle Juul-Jensens Boulevard 82, 8200, Aarhus N, Denmark
| | - Rebekka V Jensen
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | - Alexander Perkins
- London School of Hygiene and Tropical Medicine, Clinical Trials Unit, London, UK
| | - Matthew Dodd
- London School of Hygiene and Tropical Medicine, Clinical Trials Unit, London, UK
| | - Tim Clayton
- London School of Hygiene and Tropical Medicine, Clinical Trials Unit, London, UK
| | - Derek Yellon
- The Hatter Cardiovascular Institute, University College London, London, UK
| | - Derek J Hausenloy
- The Hatter Cardiovascular Institute, University College London, London, UK.,Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore.,National Heart Research Institute Singapore, National Hearts Centre, Singapore Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore.,Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore.,Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Singapore, Singapore
| | - Hans Erik Bøtker
- Department of Clinical Medicine, Cardiology, Aarhus University, Palle Juul-Jensens Boulevard 82, 8200, Aarhus N, Denmark.,Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | | |
Collapse
|
40
|
Huang Z, Xie N, Illes P, Di Virgilio F, Ulrich H, Semyanov A, Verkhratsky A, Sperlagh B, Yu SG, Huang C, Tang Y. From purines to purinergic signalling: molecular functions and human diseases. Signal Transduct Target Ther 2021; 6:162. [PMID: 33907179 PMCID: PMC8079716 DOI: 10.1038/s41392-021-00553-z] [Citation(s) in RCA: 206] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/24/2021] [Accepted: 02/24/2021] [Indexed: 02/06/2023] Open
Abstract
Purines and their derivatives, most notably adenosine and ATP, are the key molecules controlling intracellular energy homoeostasis and nucleotide synthesis. Besides, these purines support, as chemical messengers, purinergic transmission throughout tissues and species. Purines act as endogenous ligands that bind to and activate plasmalemmal purinoceptors, which mediate extracellular communication referred to as "purinergic signalling". Purinergic signalling is cross-linked with other transmitter networks to coordinate numerous aspects of cell behaviour such as proliferation, differentiation, migration, apoptosis and other physiological processes critical for the proper function of organisms. Pathological deregulation of purinergic signalling contributes to various diseases including neurodegeneration, rheumatic immune diseases, inflammation, and cancer. Particularly, gout is one of the most prevalent purine-related disease caused by purine metabolism disorder and consequent hyperuricemia. Compelling evidence indicates that purinoceptors are potential therapeutic targets, with specific purinergic agonists and antagonists demonstrating prominent therapeutic potential. Furthermore, dietary and herbal interventions help to restore and balance purine metabolism, thus addressing the importance of a healthy lifestyle in the prevention and relief of human disorders. Profound understanding of molecular mechanisms of purinergic signalling provides new and exciting insights into the treatment of human diseases.
Collapse
Grants
- National Key R&D Program of China (2019YFC1709101,2020YFA0509400, 2020YFC2002705), the National Natural Science Foundation of China (81821002, 81790251, 81373735, 81972665), Guangdong Basic and Applied Basic Research Foundation (2019B030302012), the Project First-Class Disciplines Development of Chengdu University of Traditional Chinese Medicine (CZYHW1901), São Paulo Research Foundation (FAPESP 2018/07366-4), Russian Science Foundation grant 20-14-00241, NSFC-BFBR;and Science and Technology Program of Sichuan Province, China (2019YFH0108)
- National Key R&D Program of China (2020YFA0509400, 2020YFC2002705), the National Natural Science Foundation of China (81821002, 81790251).
- National Key R&D Program of China (2020YFA0509400, 2020YFC2002705), the National Natural Science Foundation of China (81821002, 81790251), Guangdong Basic and Applied Basic Research Foundation (2019B030302012).
- the Project First-Class Disciplines Development of Chengdu University of Traditional Chinese Medicine (CZYHW1901) and Science and Technology Program of Sichuan Province, China (2019YFH0108).
- the Project First-Class Disciplines Development of Chengdu University of Traditional Chinese Medicine (CZYHW1901), and Science and Technology Program of Sichuan Province, China (2019YFH0108).
Collapse
Affiliation(s)
- Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Na Xie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Peter Illes
- International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universitaet Leipzig, Leipzig, Germany
| | | | - Henning Ulrich
- International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Alexey Semyanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Sechenov First Moscow State Medical University, Moscow, Russia
| | - Alexei Verkhratsky
- International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Sechenov First Moscow State Medical University, Moscow, Russia
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Beata Sperlagh
- Department of Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Shu-Guang Yu
- International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China.
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Yong Tang
- International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China.
| |
Collapse
|
41
|
Zhang Y, Wernly B, Cao X, Mustafa SJ, Tang Y, Zhou Z. Adenosine and adenosine receptor-mediated action in coronary microcirculation. Basic Res Cardiol 2021; 116:22. [PMID: 33755785 PMCID: PMC7987637 DOI: 10.1007/s00395-021-00859-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 03/08/2021] [Indexed: 12/20/2022]
Abstract
Adenosine is an ubiquitous extracellular signaling molecule and plays a fundamental role in the regulation of coronary microcirculation through activation of adenosine receptors (ARs). Adenosine is regulated by various enzymes and nucleoside transporters for its balance between intra- and extracellular compartments. Adenosine-mediated coronary microvascular tone and reactive hyperemia are through receptors mainly involving A2AR activation on both endothelial and smooth muscle cells, but also involving interaction among other ARs. Activation of ARs further stimulates downstream targets of H2O2, KATP, KV and KCa2+ channels leading to coronary vasodilation. An altered adenosine-ARs signaling in coronary microcirculation has been observed in several cardiovascular diseases including hypertension, diabetes, atherosclerosis and ischemic heart disease. Adenosine as a metabolite and its receptors have been studied for its both therapeutic and diagnostic abilities. The present review summarizes important aspects of adenosine metabolism and AR-mediated actions in the coronary microcirculation.
Collapse
Affiliation(s)
- Ying Zhang
- The International Collaborative Centre On Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bernhard Wernly
- Department of Anaesthesiology, Perioperative Medicine and Intensive Care Medicine, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - Xin Cao
- The International Collaborative Centre On Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - S Jamal Mustafa
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, USA
| | - Yong Tang
- The International Collaborative Centre On Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China
| | - Zhichao Zhou
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, 17176, Stockholm, Sweden.
| |
Collapse
|
42
|
Abstract
BACKGROUND Adenosine stress T1 mapping is an emerging magnetic resonance imaging method to investigate coronary vascular function and myocardial ischemia without application of a contrast agent. Using gene-modified mice and 2 vasodilators, we elucidated and compared the mechanisms of adenosine myocardial perfusion imaging and adenosine T1 mapping. METHODS Wild-type (WT), A2AAR-/- (adenosine A2A receptor knockout), A2BAR-/- (adenosine A2B receptor knockout), A3AR-/- (adenosine A3 receptor knockout), and eNOS-/- (endothelial nitric oxide synthase knockout) mice underwent rest and stress perfusion magnetic resonance imaging (n=8) and T1 mapping (n=10) using either adenosine, regadenoson (a selective A2AAR agonist), or saline. Myocardial blood flow and T1 were computed from perfusion imaging and T1 mapping, respectively, at rest and stress to assess myocardial perfusion reserve and T1 reactivity (ΔT1). Changes in heart rate for each stress agent were also calculated. Two-way ANOVA was used to detect differences in each parameter between the different groups of mice. RESULTS Myocardial perfusion reserve was significantly reduced only in A2AAR-/- compared to WT mice using adenosine (1.06±0.16 versus 2.03±0.52, P<0.05) and regadenoson (0.98±026 versus 2.13±0.75, P<0.05). In contrast, adenosine ΔT1 was reduced compared with WT mice (3.88±1.58) in both A2AAR-/- (1.63±1.32, P<0.05) and A2BAR-/- (1.55±1.35, P<0.05). Furthermore, adenosine ΔT1 was halved in eNOS-/- (1.76±1.46, P<0.05) versus WT mice. Regadenoson ΔT1 was approximately half of adenosine ΔT1 in WT mice (1.97±1.50, P<0.05), and additionally, it was significantly reduced in eNOS-/- mice (-0.22±1.46, P<0.05). Lastly, changes in heart rate was 2× greater using regadenoson versus adenosine in all groups except A2AAR-/-, where heart rate remained constant. CONCLUSIONS The major findings are that (1) although adenosine myocardial perfusion reserve is mediated through the A2A receptor, adenosine ΔT1 is mediated through the A2A and A2B receptors, (2) adenosine myocardial perfusion reserve is endothelial independent while adenosine ΔT1 is partially endothelial dependent, and (3) ΔT1 mediated through the A2A receptor is endothelial dependent while ΔT1 mediated through the A2B receptor is endothelial independent.
Collapse
Affiliation(s)
- Soham A Shah
- Department of Biomedical Engineering (S.A.S., C.E.R., B.A.F., F.H.E.), University of Virginia, Charlottesville, VA
| | - Claire E Reagan
- Department of Radiology (B.A.F., F.H.E.), University of Virginia, Charlottesville, VA
| | - Brent A French
- Department of Biomedical Engineering (S.A.S., C.E.R., B.A.F., F.H.E.), University of Virginia, Charlottesville, VA.,Department of Radiology (B.A.F., F.H.E.), University of Virginia, Charlottesville, VA.,The Robert M. Berne Cardiovascular Research Center (B.A.F., F.H.E.), University of Virginia, Charlottesville, VA
| | - Frederick H Epstein
- Department of Biomedical Engineering (S.A.S., C.E.R., B.A.F., F.H.E.), University of Virginia, Charlottesville, VA.,Department of Radiology (B.A.F., F.H.E.), University of Virginia, Charlottesville, VA.,The Robert M. Berne Cardiovascular Research Center (B.A.F., F.H.E.), University of Virginia, Charlottesville, VA
| |
Collapse
|
43
|
Adenosine Deaminase Deficient SCID with Myocardial Hypertrophy. J Clin Immunol 2021; 41:1128-1130. [PMID: 33709203 DOI: 10.1007/s10875-021-01018-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/03/2021] [Indexed: 10/21/2022]
|
44
|
Procopio MC, Lauro R, Nasso C, Carerj S, Squadrito F, Bitto A, Di Bella G, Micari A, Irrera N, Costa F. Role of Adenosine and Purinergic Receptors in Myocardial Infarction: Focus on Different Signal Transduction Pathways. Biomedicines 2021; 9:biomedicines9020204. [PMID: 33670488 PMCID: PMC7922652 DOI: 10.3390/biomedicines9020204] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 02/15/2021] [Indexed: 12/24/2022] Open
Abstract
Myocardial infarction (MI) is a dramatic event often caused by atherosclerotic plaque erosion or rupture and subsequent thrombotic occlusion of a coronary vessel. The low supply of oxygen and nutrients in the infarcted area may result in cardiomyocytes necrosis, replacement of intact myocardium with non-contractile fibrous tissue and left ventricular (LV) function impairment if blood flow is not quickly restored. In this review, we summarized the possible correlation between adenosine system, purinergic system and Wnt/β-catenin pathway and their role in the pathogenesis of cardiac damage following MI. In this context, several pathways are involved and, in particular, the adenosine receptors system shows different interactions between its members and purinergic receptors: their modulation might be effective not only for a normal functional recovery but also for the treatment of heart diseases, thus avoiding fibrosis, reducing infarcted area and limiting scaring. Similarly, it has been shown that Wnt/β catenin pathway is activated following myocardial injury and its unbalanced activation might promote cardiac fibrosis and, consequently, LV systolic function impairment. In this regard, the therapeutic benefits of Wnt inhibitors use were highlighted, thus demonstrating that Wnt/β-catenin pathway might be considered as a therapeutic target to prevent adverse LV remodeling and heart failure following MI.
Collapse
Affiliation(s)
- Maria Cristina Procopio
- Department of Clinical and Experimental Medicine, University of Messina, 98165 Messina, Italy; (M.C.P.); (R.L.); (C.N.); (S.C.); (F.S.); (A.B.); (G.D.B.); (F.C.)
| | - Rita Lauro
- Department of Clinical and Experimental Medicine, University of Messina, 98165 Messina, Italy; (M.C.P.); (R.L.); (C.N.); (S.C.); (F.S.); (A.B.); (G.D.B.); (F.C.)
| | - Chiara Nasso
- Department of Clinical and Experimental Medicine, University of Messina, 98165 Messina, Italy; (M.C.P.); (R.L.); (C.N.); (S.C.); (F.S.); (A.B.); (G.D.B.); (F.C.)
| | - Scipione Carerj
- Department of Clinical and Experimental Medicine, University of Messina, 98165 Messina, Italy; (M.C.P.); (R.L.); (C.N.); (S.C.); (F.S.); (A.B.); (G.D.B.); (F.C.)
| | - Francesco Squadrito
- Department of Clinical and Experimental Medicine, University of Messina, 98165 Messina, Italy; (M.C.P.); (R.L.); (C.N.); (S.C.); (F.S.); (A.B.); (G.D.B.); (F.C.)
| | - Alessandra Bitto
- Department of Clinical and Experimental Medicine, University of Messina, 98165 Messina, Italy; (M.C.P.); (R.L.); (C.N.); (S.C.); (F.S.); (A.B.); (G.D.B.); (F.C.)
| | - Gianluca Di Bella
- Department of Clinical and Experimental Medicine, University of Messina, 98165 Messina, Italy; (M.C.P.); (R.L.); (C.N.); (S.C.); (F.S.); (A.B.); (G.D.B.); (F.C.)
| | - Antonio Micari
- Department of Biomedical and Dental Sciences and Morphological and Functional Imaging, University of Messina, A.O.U. Policlinic “G. Martino”, 98165 Messina, Italy;
| | - Natasha Irrera
- Department of Clinical and Experimental Medicine, University of Messina, 98165 Messina, Italy; (M.C.P.); (R.L.); (C.N.); (S.C.); (F.S.); (A.B.); (G.D.B.); (F.C.)
- Correspondence: ; Tel.: +39-090-221-3093; Fax: +39-090-221-23-81
| | - Francesco Costa
- Department of Clinical and Experimental Medicine, University of Messina, 98165 Messina, Italy; (M.C.P.); (R.L.); (C.N.); (S.C.); (F.S.); (A.B.); (G.D.B.); (F.C.)
| |
Collapse
|
45
|
Beamer E, Lacey A, Alves M, Conte G, Tian F, de Diego-Garcia L, Khalil M, Rosenow F, Delanty N, Dale N, El-Naggar H, Henshall DC, Engel T. Elevated blood purine levels as a biomarker of seizures and epilepsy. Epilepsia 2021; 62:817-828. [PMID: 33599287 DOI: 10.1111/epi.16839] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 01/21/2021] [Accepted: 01/21/2021] [Indexed: 12/30/2022]
Abstract
OBJECTIVE There is a major unmet need for a molecular biomarker of seizures or epilepsy that lends itself to fast, affordable detection in an easy-to-use point-of-care device. Purines such as adenosine triphosphate and adenosine are potent neuromodulators released during excessive neuronal activity that are also present in biofluids. Their biomarker potential for seizures and epilepsy in peripheral blood has, however, not yet been investigated. The aim of the present study was to determine whether blood purine nucleoside measurements can serve as a biomarker for the recent occurrence of seizures and to support the diagnosis of epilepsy. METHODS Blood purine concentrations were measured via a point-of-care diagnostic technology based on the summated electrochemical detection of adenosine and adenosine breakdown products (inosine, hypoxanthine, and xanthine; SMARTChip). Measurements of blood purine concentrations were carried out using samples from mice subjected to intra-amygdala kainic acid-induced status epilepticus and in video-electroencephalogram (EEG)-monitored adult patients with epilepsy. RESULTS In mice, blood purine concentrations were rapidly increased approximately two- to threefold after status epilepticus (2.32 ± .40 µmol·L-1 [control] vs. 8.93 ± 1.03 µmol·L-1 [after status epilepticus]), and levels correlated with seizure burden and postseizure neurodegeneration in the hippocampus. Blood purine concentrations were also elevated in patients with video-EEG-diagnosed epilepsy (2.39 ± .34 µmol·L-1 [control, n = 13] vs. 4.35 ± .38 µmol·L-1 [epilepsy, n = 26]). SIGNIFICANCE Our data provide proof of concept that the measurement of blood purine concentrations may offer a rapid, low-volume bedside test to support the diagnosis of seizures and epilepsy.
Collapse
Affiliation(s)
- Edward Beamer
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - Austin Lacey
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland.,FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - Mariana Alves
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - Giorgia Conte
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - Faming Tian
- Sarissa Biomedical, Coventry, UK.,School of Life Sciences, University of Warwick, Coventry, UK
| | - Laura de Diego-Garcia
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - Mohamed Khalil
- Neurological Services, Beaumont Hospital, Dublin, Ireland
| | - Felix Rosenow
- Department of Neurology, Epilepsy Center Hessen, Marburg, Germany.,Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, University Hospital Frankfurt, LOEWE Center for Personalized Translational Epilepsy Research, Goethe University Frankfurt, Frankfurt on the Main, Germany
| | - Norman Delanty
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland.,FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland.,Neurological Services, Beaumont Hospital, Dublin, Ireland
| | - Nicholas Dale
- Sarissa Biomedical, Coventry, UK.,School of Life Sciences, University of Warwick, Coventry, UK
| | - Hany El-Naggar
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland.,Neurological Services, Beaumont Hospital, Dublin, Ireland
| | - David C Henshall
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland.,FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - Tobias Engel
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland.,FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| |
Collapse
|
46
|
RNAseq shows an all-pervasive day-night rhythm in the transcriptome of the pacemaker of the heart. Sci Rep 2021; 11:3565. [PMID: 33574422 PMCID: PMC7878777 DOI: 10.1038/s41598-021-82202-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 01/01/2021] [Indexed: 12/12/2022] Open
Abstract
Physiological systems vary in a day-night manner anticipating increased demand at a particular time. Heart is no exception. Cardiac output is primarily determined by heart rate and unsurprisingly this varies in a day-night manner and is higher during the day in the human (anticipating increased day-time demand). Although this is attributed to a day-night rhythm in post-translational ion channel regulation in the heart's pacemaker, the sinus node, by the autonomic nervous system, we investigated whether there is a day-night rhythm in transcription. RNAseq revealed that ~ 44% of the sinus node transcriptome (7134 of 16,387 transcripts) has a significant day-night rhythm. The data revealed the oscillating components of an intrinsic circadian clock. Presumably this clock (or perhaps the master circadian clock in the suprachiasmatic nucleus) is responsible for the rhythm observed in the transcriptional machinery, which in turn is responsible for the rhythm observed in the transcriptome. For example, there is a rhythm in transcripts responsible for the two principal pacemaker mechanisms (membrane and Ca2+ clocks), transcripts responsible for receptors and signalling pathways known to control pacemaking, transcripts from genes identified by GWAS as determinants of resting heart rate, and transcripts from genes responsible for familial and acquired sick sinus syndrome.
Collapse
|
47
|
Bai J, Zhu Y, Lo A, Gao M, Lu Y, Zhao J, Zhang H. In Silico Assessment of Class I Antiarrhythmic Drug Effects on Pitx2-Induced Atrial Fibrillation: Insights from Populations of Electrophysiological Models of Human Atrial Cells and Tissues. Int J Mol Sci 2021; 22:1265. [PMID: 33514068 PMCID: PMC7866025 DOI: 10.3390/ijms22031265] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/17/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023] Open
Abstract
Electrical remodelling as a result of homeodomain transcription factor 2 (Pitx2)-dependent gene regulation was linked to atrial fibrillation (AF) and AF patients with single nucleotide polymorphisms at chromosome 4q25 responded favorably to class I antiarrhythmic drugs (AADs). The possible reasons behind this remain elusive. The purpose of this study was to assess the efficacy of the AADs disopyramide, quinidine, and propafenone on human atrial arrhythmias mediated by Pitx2-induced remodelling, from a single cell to the tissue level, using drug binding models with multi-channel pharmacology. Experimentally calibrated populations of human atrial action po-tential (AP) models in both sinus rhythm (SR) and Pitx2-induced AF conditions were constructed by using two distinct models to represent morphological subtypes of AP. Multi-channel pharmaco-logical effects of disopyramide, quinidine, and propafenone on ionic currents were considered. Simulated results showed that Pitx2-induced remodelling increased maximum upstroke velocity (dVdtmax), and decreased AP duration (APD), conduction velocity (CV), and wavelength (WL). At the concentrations tested in this study, these AADs decreased dVdtmax and CV and prolonged APD in the setting of Pitx2-induced AF. Our findings of alterations in WL indicated that disopyramide may be more effective against Pitx2-induced AF than propafenone and quinidine by prolonging WL.
Collapse
Affiliation(s)
- Jieyun Bai
- Department of Electronic Engineering, College of Information Science and Technology, Jinan University, Guangzhou 510632, China;
| | - Yijie Zhu
- Department of Electronic Engineering, College of Information Science and Technology, Jinan University, Guangzhou 510632, China;
| | - Andy Lo
- Auckland Bioengineering Institute, University of Auckland, Auckland 1010, New Zealand; (A.L.); (J.Z.)
| | - Meng Gao
- Department of Computer Science and Technology, College of Electrical Engineering and Information, Northeast Agricultural University, Harbin 150030, China
| | - Yaosheng Lu
- Department of Electronic Engineering, College of Information Science and Technology, Jinan University, Guangzhou 510632, China;
| | - Jichao Zhao
- Auckland Bioengineering Institute, University of Auckland, Auckland 1010, New Zealand; (A.L.); (J.Z.)
| | - Henggui Zhang
- Biological Physics Group, School of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, UK;
| |
Collapse
|
48
|
Yegutkin GG. Adenosine metabolism in the vascular system. Biochem Pharmacol 2020; 187:114373. [PMID: 33340515 DOI: 10.1016/j.bcp.2020.114373] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 12/20/2022]
Abstract
The concept of extracellular purinergic signaling was first proposed by Geoffrey Burnstock in the early 1970s. Since then, extracellular ATP and its metabolites ADP and adenosine have attracted an enormous amount of attention in terms of their involvement in a wide range of immunomodulatory, thromboregulatory, angiogenic, vasoactive and other pathophysiological activities in different organs and tissues, including the vascular system. In addition to significant progress in understanding the properties of nucleotide- and adenosine-selective receptors, recent studies have begun to uncover the complexity of regulatory mechanisms governing the duration and magnitude of the purinergic signaling cascade. This knowledge has led to the development of new paradigms in understanding the entire purinome by taking into account the multitude of signaling and metabolic pathways involved in biological effects of ATP and adenosine and compartmentalization of the adenosine system. Along with the "canonical route" of ATP breakdown to adenosine via sequential ecto-nucleoside triphosphate diphosphohydrolase-1 (NTPDase1/CD39) and ecto-5'-nucleotidase/CD73 activities, it has now become clear that purine metabolism is the result of concerted effort between ATP release, its metabolism through redundant nucleotide-inactivating and counteracting ATP-regenerating ectoenzymatic pathways, as well as cellular nucleoside uptake and phosphorylation of adenosine to ATP through complex phosphotransfer reactions. In this review I provide an overview of key enzymes involved in adenosine metabolic network, with special emphasis on the emerging roles of purine-converting ectoenzymes as novel targets for cancer and vascular therapies.
Collapse
|
49
|
Yagcioglu P, Ari S, Ari H, Melek M. Comparison of the effects of ticagrelor and clopidogrel on heart rate variability and heart rate turbulence in patients with percutaneous coronary interventions. J Saudi Heart Assoc 2020; 32:166-173. [PMID: 33154911 PMCID: PMC7640560 DOI: 10.37616/2212-5043.1048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 11/22/2022] Open
Abstract
Introduction Clopidogrel and ticagrelor are commonly used, antiplatelet agents. Ticagrelor has an effect of enhancing the plasma level of adenosine that may alter the autonomic function. The aim of this study is to compare the effects of ticagrelor and clopidogrel on heart rate variability (HRV) and heart rate turbulence (HRT). Methods Thirty subjects who performed percutaneous coronary intervention (PCI) were included in the randomized, crossover study. These patients were divided into two groups. Clopidogrel or ticagrelor was administered in two different testing sessions (1-month treatment for each session). In group 1, clopidogrel and ticagrelor treatment were used while in group 2, ticagrelor and clopidogrel treatment were used respectively. Three times rhythm Holter recording (baseline, 1st and 2nd month) was performed. The HRV (time domain and frequency domain) and HRT (turbulence onset (TO) and turbulence slope (TS)) parameters were analyzed from the Holter recordings. Results According to baseline Holter recording, pNN50 (5.82 ± 5.83 vs 10.56 ± 8.28; p = 0.03) and HF(nu) (6.85 ± 9.33 vs 9.53 ± 7.41; p = 0.04) parameters were higher in group 2 than in group 1, while TO(0.004 ± 0.02 vs −0.01 ± 0.02; p = 0.01) parameter was positive and higher in group 1 than in group 2. In the second month, the LF/HF ratio (4.47 ± 2.43 vs 3.18 ± 2.45; p = 0.04) was higher in group 1 than in group 2. However, when the evaluation was done within the groups themselves, there were no statistically significant differences in HRV and HRT parameters obtained before and after clopidogrel and ticagrelor administration in group 1 and group 2. Conclusion Ticagrelor and clopidogrel treatments did not have a significant effect on HRV and HRT parameters.
Collapse
Affiliation(s)
- Pinar Yagcioglu
- Bursa Postgraduate Hospital, Departments of Cardiology, Bursa, Turkey
| | - Selma Ari
- Bursa Postgraduate Hospital, Departments of Cardiology, Bursa, Turkey
| | - Hasan Ari
- Bursa Postgraduate Hospital, Departments of Cardiology, Bursa, Turkey
| | - Mehmet Melek
- Bursa Postgraduate Hospital, Departments of Cardiology, Bursa, Turkey
| |
Collapse
|
50
|
Kuczeriszka M, Sitek JD, Walkowska A, Sadowski J, Dobrowolski L. Interplay of the adenosine system and NO in control of renal haemodynamics and excretion: Comparison of normoglycaemic and streptozotocin diabetic rats. Nitric Oxide 2020; 104-105:20-28. [PMID: 32828841 DOI: 10.1016/j.niox.2020.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/08/2020] [Accepted: 08/11/2020] [Indexed: 11/17/2022]
Abstract
The adenosine (Ado) system may participate in regulation of kidney function in diabetes mellitus (DM), therefore we explored its role and interrelation with NO in the control of renal circulation and excretion in normoglycemic (NG) and streptozotocin-diabetic (DM) rats. Effects of theophylline (Theo), a non-selective Ado receptor antagonist, were examined in anaesthetized NG or in streptozotocin induced diabetic (DM) rats, untreated or after blockade of NO synthesis with l-NAME. We measured arterial blood pressure (MABP), whole kidney blood flow and renal regional flows: cortical and outer- and inner-medullary (IMBF), determined as laser-Doppler fluxes. Renal excretion of water, total solutes and sodium and in situ renal tissue NO signal (selective electrodes) were also determined. Theo experiments disclosed minor baseline vasoconstrictor and vasodilator tone in the kidney of NG and DM rats, respectively. NO blockade increased baseline MABP and decreased renal haemodynamics, similarly in NG and DM rats, indicating comparable vasodilator influence of NO in the two groups. Unexpectedly, in all rats with intact NO synthesis, Ado receptor blockade increased kidney tissue NO. In NO-deficient NG and DM rats, Ado receptor blockade induced comparable renal vasodilatation, suggesting similar vasoconstrictor influence of the Ado system. However, DM rats showed an unexplained association of decreased MABP and IMBF and increased NO signal. Higher baseline renal excretion in DM rats indicated inhibition of renal tubular reabsorption due to the prevalence of natriuretic A2 over antinatriuretic A1 receptors. In conclusion, the experiments provided new insights in functional interrelation of adenosine and NO in normoglycaemia and streptozotocin-diabetes.
Collapse
Affiliation(s)
- Marta Kuczeriszka
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Centre, Polish Academy of Sciences, A. Pawińskiego 5, 02-106, Warsaw, Poland.
| | - Joanna Dorota Sitek
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Centre, Polish Academy of Sciences, A. Pawińskiego 5, 02-106, Warsaw, Poland.
| | - Agnieszka Walkowska
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Centre, Polish Academy of Sciences, A. Pawińskiego 5, 02-106, Warsaw, Poland.
| | - Janusz Sadowski
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Centre, Polish Academy of Sciences, A. Pawińskiego 5, 02-106, Warsaw, Poland.
| | - Leszek Dobrowolski
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Centre, Polish Academy of Sciences, A. Pawińskiego 5, 02-106, Warsaw, Poland.
| |
Collapse
|