1
|
Dace HJW, Reus R, Ricco CR, Hall R, Farrant JM, Hilhorst HWM. A horizontal view of primary metabolomes in vegetative desiccation tolerance. PHYSIOLOGIA PLANTARUM 2023; 175:e14109. [PMID: 38148236 DOI: 10.1111/ppl.14109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 12/28/2023]
Abstract
Vegetative desiccation tolerance (VDT), the ability of such tissues to survive the near complete loss of cellular water, is a rare but polyphyletic phenotype. It is a complex multifactorial trait, typified by universal (core) factors but with many and varied adaptations due to plant architecture, biochemistry and biotic/abiotic dynamics of particular ecological niches. The ability to enter into a quiescent biophysically stable state is what ultimately determines desiccation tolerance. Thus, understanding the metabolomic complement of plants with VDT gives insight into the nature of survival as well as evolutionary aspects of VDT. In this study, we measured the soluble carbohydrate profiles and the polar, TMS-derivatisable metabolomes of 7 phylogenetically diverse species with VDT, in contrast with two desiccation sensitive (DS) species, under conditions of full hydration, severe water deficit stress, and desiccation. Our study confirmed the existence of core mechanisms of VDT systems associated with either constitutively abundant trehalose or the accumulation of raffinose family oligosaccharides and sucrose, with threshold ratios conditioned by other features of the metabolome. DS systems did not meet these ratios. Considerable chemical variations among VDT species suggest that co-occurring but distinct stresses (e.g., photooxidative stress) are dealt with using different chemical regimes. Furthermore, differences in the timing of metabolic shifts suggest there is not a single "desiccation programme" but that subprocesses are coordinated differently at different drying phases. There are likely to be constraints on the composition of a viable dry state and how different adaptive strategies interact with the biophysical constraints of VDT.
Collapse
Affiliation(s)
- Halford J W Dace
- Laboratory of Plant Physiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Robbin Reus
- Laboratory of Plant Physiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Celeste Righi Ricco
- Laboratory of Plant Physiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Robert Hall
- Laboratory of Plant Physiology, Wageningen University and Research, Wageningen, The Netherlands
- Business Unit Bioscience, Wageningen University & Research, Wageningen, The Netherlands
| | - Jill M Farrant
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Henk W M Hilhorst
- Laboratory of Plant Physiology, Wageningen University and Research, Wageningen, The Netherlands
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
2
|
VanBuren R, Wai CM, Giarola V, Župunski M, Pardo J, Kalinowski M, Grossmann G, Bartels D. Core cellular and tissue-specific mechanisms enable desiccation tolerance in Craterostigma. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:231-245. [PMID: 36843450 DOI: 10.1111/tpj.16165] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 01/12/2023] [Accepted: 02/17/2023] [Indexed: 05/10/2023]
Abstract
Resurrection plants can survive prolonged life without water (anhydrobiosis) in regions with seasonal drying. This desiccation tolerance requires the coordination of numerous cellular processes across space and time, and individual plant tissues face unique constraints related to their function. Here, we analyzed the complex, octoploid genome of the model resurrection plant Craterostigma (C. plantagineum), and surveyed spatial and temporal expression dynamics to identify genetic elements underlying desiccation tolerance. Homeologous genes within the Craterostigma genome have divergent expression profiles, suggesting the subgenomes contribute differently to desiccation tolerance traits. The Craterostigma genome contains almost 200 tandemly duplicated early light-induced proteins, a hallmark trait of desiccation tolerance, with massive upregulation under water deficit. We identified a core network of desiccation-responsive genes across all tissues, but observed almost entirely unique expression dynamics in each tissue during recovery. Roots and leaves have differential responses related to light and photoprotection, autophagy and nutrient transport, reflecting their divergent functions. Our findings highlight a universal set of likely ancestral desiccation tolerance mechanisms to protect cellular macromolecules under anhydrobiosis, with secondary adaptations related to tissue function.
Collapse
Affiliation(s)
- Robert VanBuren
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824, USA
| | - Ching Man Wai
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824, USA
| | | | - Milan Župunski
- Institute of Cell and Interaction Biology, CEPLAS, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Jeremy Pardo
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Michael Kalinowski
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
| | - Guido Grossmann
- Institute of Cell and Interaction Biology, CEPLAS, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Dorothea Bartels
- IMBIO, University of Bonn, Kirschallee 1, D-53115, Bonn, Germany
| |
Collapse
|
3
|
Villalobos-López MA, Arroyo-Becerra A, Quintero-Jiménez A, Iturriaga G. Biotechnological Advances to Improve Abiotic Stress Tolerance in Crops. Int J Mol Sci 2022; 23:12053. [PMID: 36233352 PMCID: PMC9570234 DOI: 10.3390/ijms231912053] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/02/2022] [Accepted: 10/06/2022] [Indexed: 11/16/2022] Open
Abstract
The major challenges that agriculture is facing in the twenty-first century are increasing droughts, water scarcity, flooding, poorer soils, and extreme temperatures due to climate change. However, most crops are not tolerant to extreme climatic environments. The aim in the near future, in a world with hunger and an increasing population, is to breed and/or engineer crops to tolerate abiotic stress with a higher yield. Some crop varieties display a certain degree of tolerance, which has been exploited by plant breeders to develop varieties that thrive under stress conditions. Moreover, a long list of genes involved in abiotic stress tolerance have been identified and characterized by molecular techniques and overexpressed individually in plant transformation experiments. Nevertheless, stress tolerance phenotypes are polygenetic traits, which current genomic tools are dissecting to exploit their use by accelerating genetic introgression using molecular markers or site-directed mutagenesis such as CRISPR-Cas9. In this review, we describe plant mechanisms to sense and tolerate adverse climate conditions and examine and discuss classic and new molecular tools to select and improve abiotic stress tolerance in major crops.
Collapse
Affiliation(s)
- Miguel Angel Villalobos-López
- Laboratorio de Genómica Funcional y Biotecnología de Plantas, Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, Ex-Hacienda San Juan Molino Carretera Estatal Km 1.5, Santa Inés-Tecuexcomac-Tepetitla 90700, Tlaxcala, Mexico
| | - Analilia Arroyo-Becerra
- Laboratorio de Genómica Funcional y Biotecnología de Plantas, Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, Ex-Hacienda San Juan Molino Carretera Estatal Km 1.5, Santa Inés-Tecuexcomac-Tepetitla 90700, Tlaxcala, Mexico
| | - Anareli Quintero-Jiménez
- División de Estudios de Posgrado e Investigación, Tecnológico Nacional de México/I.T. Roque, Km. 8 Carretera Celaya-Juventino Rosas, Roque, Celaya 38110, Guanajato, Mexico
| | - Gabriel Iturriaga
- División de Estudios de Posgrado e Investigación, Tecnológico Nacional de México/I.T. Roque, Km. 8 Carretera Celaya-Juventino Rosas, Roque, Celaya 38110, Guanajato, Mexico
| |
Collapse
|
4
|
Oung HMO, Mukhopadhyay R, Svoboda V, Charuvi D, Reich Z, Kirchhoff H. Differential response of the photosynthetic machinery to dehydration in older and younger resurrection plants. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1566-1580. [PMID: 34747457 DOI: 10.1093/jxb/erab485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/03/2021] [Indexed: 06/13/2023]
Abstract
A group of vascular plants called homoiochlorophyllous resurrection plants evolved unique capabilities to protect their photosynthetic machinery against desiccation-induced damage. This study examined whether the ontogenetic status of the resurrection plant Craterostigma pumilum has an impact on how the plant responds to dehydration at the thylakoid membrane level to prepare cells for the desiccated state. Thus, younger plants (<4 months) were compared with their older (>6 months) counterparts. Ultrastructural analysis provided evidence that younger plants suppressed senescence-like programs that are realized in older plants. During dehydration, older plants degrade specific subunits of the photosynthetic apparatus such as the D1 subunit of PSII and subunits of the cytochrome b6f complex. The latter leads to a controlled down-regulation of linear electron transport. In contrast, younger plants increased photoprotective high-energy quenching mechanisms and maintained a high capability to replace damaged D1 subunits. It follows that depending on the ontogenetic state, either more degradation-based or more photoprotective mechanisms are employed during dehydration of Craterostigma pumilum.
Collapse
Affiliation(s)
- Hui Min Olivia Oung
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA
| | - Roma Mukhopadhyay
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA
| | - Vaclav Svoboda
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA
| | - Dana Charuvi
- Institute of Plant Sciences, Agricultural Research Organization - Volcani Institute, Rishon LeZion 7505101, Israel
| | - Ziv Reich
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Helmut Kirchhoff
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
5
|
Kwon E, Basnet P, Roy NS, Kim JH, Heo K, Park KC, Um T, Kim NS, Choi IY. Identification of resurrection genes from the transcriptome of dehydrated and rehydrated Selaginella tamariscina. PLANT SIGNALING & BEHAVIOR 2021; 16:1973703. [PMID: 34839799 PMCID: PMC9208788 DOI: 10.1080/15592324.2021.1973703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Selaginella tamariscina is a lycophyta species that survives under extremely dry conditions via the mechanism of resurrection. This phenomenon involves the regulation of numerous genes that play vital roles in desiccation tolerance and subsequent rehydration. To identify resurrection-related genes, we analyzed the transcriptome between dehydration conditions and rehydration conditions of S. tamariscina. The de novo assembly generated 124,417 transcripts with an average size of 1,000 bp and 87,754 unigenes. Among these genes, 1,267 genes and 634 genes were up and down regulated by rehydration compared to dehydration. To understand gene function, we annotated Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). The unigenes encoding early light-inducible protein (ELIP) were down-regulated, whereas pentatricopeptide repeat-containing protein (PPR), late embryogenesis abundant proteins (LEA), sucrose nonfermenting protein (SNF), trehalose phosphate phosphatase (TPP), trehalose phosphate synthase (TPS), and ABC transporter G family (ABCG) were significantly up-regulated in response to rehydration conditions by differentially expressed genes (DEGs) analysis. Several studies provide evidence that these genes play a role in stress environment. The ELIP and PPR genes are involved in chloroplast protection during dehydration and rehydration. LEA, SNF, and trehalose genes are known to be oxidant scavengers that protect the cell structure from the deleterious effect of drought. TPP and TPS genes were found in the starch and sucrose metabolism pathways, which are essential sugar-signaling metabolites regulating plant metabolism and other biological processes. ABC-G gene interacts with abscisic acid (ABA) phytohormone in the stomata opening during stress conditions. Our findings provide valuable information and candidate resurrection genes for future functional analysis aimed at improving the drought tolerance of crop plants.
Collapse
Affiliation(s)
- Eunchae Kwon
- Department of Molecular Bioscience, Kangwon National University, Chuncheon, Korea
| | - Prakash Basnet
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon, Korea
| | - Neha Samir Roy
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon, Korea
- Agriculture and Life Science Research Institute, Kangwon National University, Chuncheon, Korea
| | - Jong-Hwa Kim
- Department of Horticulture, Kangwon National University, Chuncheon, Korea
| | - Kweon Heo
- Department of Applied Plant Science, Kangwon National University, Chuncheon, Korea
| | - Kyong-Cheul Park
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon, Korea
| | - Taeyoung Um
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon, Korea
| | - Nam-Soo Kim
- Department of Molecular Bioscience, Kangwon National University, Chuncheon, Korea
- Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Korea
- CONTACT Nam-Soo Kim Department of Molecular Bioscience, Kangwon National University, Chuncheon, Korea
| | - Ik-Young Choi
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon, Korea
- Ik-Young Choi Department of Agriculture and Life Industry, Kangwon National University, Chuncheon, Korea
| |
Collapse
|
6
|
Neeragunda Shivaraj Y, Plancot B, Ramdani Y, Gügi B, Kambalagere Y, Jogaiah S, Driouich A, Ramasandra Govind S. Physiological and biochemical responses involved in vegetative desiccation tolerance of resurrection plant Selaginella brachystachya. 3 Biotech 2021; 11:135. [PMID: 33680700 PMCID: PMC7897589 DOI: 10.1007/s13205-021-02667-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 01/27/2021] [Indexed: 12/30/2022] Open
Abstract
The vegetative desiccation tolerance of Selaginella brachystachya has been evaluated for its ability to revive from a desiccation (air dry) state and start normal functioning when rehydrated. In this study, S. brachystachya was identified by DNA barcoding. Experiments were conducted using the detached hydrated, desiccated and rehydrated fronds under laboratory conditions to understand the mechanism of revival upon the water availability. Scanning Electron Microscope images during desiccation showed closed stomata and inside curled leaves. Chlorophyll concentration decreased by 1.1 fold in desiccated state and recovered completely upon rehydration. However, the total carotenoid content decreased 4.5 fold while the anthocyanin concentration increased 5.98 fold and the CO2 exchange rate became negative during desiccation. Lipid peroxidation and superoxide radical production were enhanced during desiccation by 68.32 and 73.4%, respectively. Relative electrolyte leakage was found to be minimal during desiccation. Activities of antioxidant enzymes, namely peroxidase (158.33%), glutathione reductase (107.70%), catalase (92.95%) and superoxide dismutase (184.70%) were found to be higher in the desiccated state. The proline concentration increased by 1.4 fold, starch concentration decreased 3.9 fold and sucrose content increased 2.8 fold during desiccation. Upon rehydration, S. brachystachya recovered its original morphology, physiological and biochemical functions. Our results demonstrate that S. brachystachya minimizes desiccation stress through a range of morphological, physiological and biochemical mechanisms. These results provide useful insights into desiccation tolerance mechanisms for potential utilization in enhancing stress tolerance in crop plants. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02667-1.
Collapse
Affiliation(s)
- Yathisha Neeragunda Shivaraj
- Department of Studies and Research in Environmental Science, Kuvempu University, Shankaraghatta, Shimoga 577451 India
- Department of Studies and Research in Biotechnology and Microbiology, Tumkur University, Tumakuru, 57210 India
| | - Barbara Plancot
- Laboratoire de Glycobiologie Et Matrice Extracellulaire Végétale, Université de Rouen, 76000 Rouen, Normandie France
- Fédération de Recherche “Normandie-Végétal”-FED 4277, 76000 Rouen, France
| | - Yasmina Ramdani
- Laboratoire de Glycobiologie Et Matrice Extracellulaire Végétale, Université de Rouen, 76000 Rouen, Normandie France
- Fédération de Recherche “Normandie-Végétal”-FED 4277, 76000 Rouen, France
| | - Bruno Gügi
- Laboratoire de Glycobiologie Et Matrice Extracellulaire Végétale, Université de Rouen, 76000 Rouen, Normandie France
- Fédération de Recherche “Normandie-Végétal”-FED 4277, 76000 Rouen, France
| | - Yogendra Kambalagere
- Department of Studies and Research in Environmental Science, Kuvempu University, Shankaraghatta, Shimoga 577451 India
| | - Sudisha Jogaiah
- Department of Studies and Research in Biotechnology and Microbiology, Karnataka University, Dharwad, India
| | - Azeddine Driouich
- Laboratoire de Glycobiologie Et Matrice Extracellulaire Végétale, Université de Rouen, 76000 Rouen, Normandie France
- Fédération de Recherche “Normandie-Végétal”-FED 4277, 76000 Rouen, France
| | | |
Collapse
|
7
|
Alejo-Jacuinde G, González-Morales SI, Oropeza-Aburto A, Simpson J, Herrera-Estrella L. Comparative transcriptome analysis suggests convergent evolution of desiccation tolerance in Selaginella species. BMC PLANT BIOLOGY 2020; 20:468. [PMID: 33046015 PMCID: PMC7549206 DOI: 10.1186/s12870-020-02638-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 09/04/2020] [Indexed: 05/04/2023]
Abstract
BACKGROUND Desiccation tolerant Selaginella species evolved to survive extreme environmental conditions. Studies to determine the mechanisms involved in the acquisition of desiccation tolerance (DT) have focused on only a few Selaginella species. Due to the large diversity in morphology and the wide range of responses to desiccation within the genus, the understanding of the molecular basis of DT in Selaginella species is still limited. RESULTS Here we present a reference transcriptome for the desiccation tolerant species S. sellowii and the desiccation sensitive species S. denticulata. The analysis also included transcriptome data for the well-studied S. lepidophylla (desiccation tolerant), in order to identify DT mechanisms that are independent of morphological adaptations. We used a comparative approach to discriminate between DT responses and the common water loss response in Selaginella species. Predicted proteomes show strong homology, but most of the desiccation responsive genes differ between species. Despite such differences, functional analysis revealed that tolerant species with different morphologies employ similar mechanisms to survive desiccation. Significant functions involved in DT and shared by both tolerant species included induction of antioxidant systems, amino acid and secondary metabolism, whereas species-specific responses included cell wall modification and carbohydrate metabolism. CONCLUSIONS Reference transcriptomes generated in this work represent a valuable resource to study Selaginella biology and plant evolution in relation to DT. Our results provide evidence of convergent evolution of S. sellowii and S. lepidophylla due to the different gene sets that underwent selection to acquire DT.
Collapse
Affiliation(s)
- Gerardo Alejo-Jacuinde
- National Laboratory of Genomics for Biodiversity (Langebio), Unit of Advanced Genomics, CINVESTAV, 36824 Irapuato, Guanajuato Mexico
- Department of Genetic Engineering, CINVESTAV, 36824 Irapuato, Guanajuato Mexico
| | | | - Araceli Oropeza-Aburto
- National Laboratory of Genomics for Biodiversity (Langebio), Unit of Advanced Genomics, CINVESTAV, 36824 Irapuato, Guanajuato Mexico
| | - June Simpson
- Department of Genetic Engineering, CINVESTAV, 36824 Irapuato, Guanajuato Mexico
| | - Luis Herrera-Estrella
- National Laboratory of Genomics for Biodiversity (Langebio), Unit of Advanced Genomics, CINVESTAV, 36824 Irapuato, Guanajuato Mexico
- Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX 79409 USA
| |
Collapse
|
8
|
Jung NU, Giarola V, Chen P, Knox JP, Bartels D. Craterostigma plantagineum cell wall composition is remodelled during desiccation and the glycine-rich protein CpGRP1 interacts with pectins through clustered arginines. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:661-676. [PMID: 31350933 DOI: 10.1111/tpj.14479] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/27/2019] [Accepted: 07/23/2019] [Indexed: 05/24/2023]
Abstract
Craterostigma plantagineum belongs to the desiccation-tolerant angiosperm plants. Upon dehydration, leaves fold and the cells shrink which is reversed during rehydration. To understand this process changes in cell wall pectin composition, and the role of the apoplastic glycine-rich protein 1 (CpGRP1) were analysed. Cellular microstructural changes in hydrated, desiccated and rehydrated leaf sections were analysed using scanning electron microscopy. Pectin composition in different cell wall fractions was analysed with monoclonal antibodies against homogalacturonan, rhamnogalacturonan I, rhamnogalacturonan II and hemicellulose epitopes. Our data demonstrate changes in pectin composition during dehydration/rehydration which is suggested to affect cell wall properties. Homogalacturonan was less methylesterified upon desiccation and changes were also demonstrated in the detection of rhamnogalacturonan I, rhamnogalacturonan II and hemicelluloses. CpGRP1 seems to have a central role in cell adaptations to water deficit, as it interacts with pectin through a cluster of arginine residues and de-methylesterified pectin presents more binding sites for the protein-pectin interaction than to pectin from hydrated leaves. CpGRP1 can also bind phosphatidic acid (PA) and cardiolipin. The binding of CpGRP1 to pectin appears to be dependent on the pectin methylesterification status and it has a higher affinity to pectin than its binding partner CpWAK1. It is hypothesised that changes in pectin composition are sensed by the CpGRP1-CpWAK1 complex therefore leading to the activation of dehydration-related responses and leaf folding. PA might participate in the modulation of CpGRP1 activity.
Collapse
Affiliation(s)
- Niklas U Jung
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), Faculty of Natural Sciences, University of Bonn, Kirschallee 1, Bonn, D-53115, Germany
| | - Valentino Giarola
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), Faculty of Natural Sciences, University of Bonn, Kirschallee 1, Bonn, D-53115, Germany
| | - Peilei Chen
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), Faculty of Natural Sciences, University of Bonn, Kirschallee 1, Bonn, D-53115, Germany
| | - John Paul Knox
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Dorothea Bartels
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), Faculty of Natural Sciences, University of Bonn, Kirschallee 1, Bonn, D-53115, Germany
| |
Collapse
|
9
|
Lehmann LS, Kampowski T, Caliaro M, Speck T, Speck O. Drooping of Gerbera flower heads: mechanical and structural studies of a well-known phenomenon. Biol Lett 2019; 15:20190254. [PMID: 31551064 DOI: 10.1098/rsbl.2019.0254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Gerbera, one of the most loved cut flowers, is (in)famous for the drooping of its flower heads under dehydration. This effect has been quantified by analysing both fully turgescent and wilting peduncles of Gerbera jamesonii 'Nuance'. Wilting peduncles display pronounced bending in the region directly below the inflorescence after 24 h of dehydration, while the rest of the peduncle remains upright. Using anatomical measurements and three-point bending tests, we have analysed whether this phenomenon is caused by mechanical and/or geometrical alterations. We have found that both the flexural rigidity and the axial second moment of area are significantly decreased in the apical part of wilting peduncles, whereas the bending elastic modulus shows no significant change. Moreover, cross-sections of wilting peduncles ovalize significantly more than those of turgescent peduncles and exhibit considerable shrinkage of the parenchyma, taking up the majority of the cross-sectional area. Generally, the drooping of wilting Gerbera flowers can be regarded as a temporary instability of a rod-shaped cellular solid caused by anatomical differences (tissue arrangement, existence or the absence of a pith cavity) and geometrical changes (the decrease of axial second moment of area, cross-sectional ovalization, shrinkage of tissues) between the apical and basal regions of their peduncles.
Collapse
Affiliation(s)
- Laura-Sofie Lehmann
- Plant Biomechanics Group, Botanic Garden, Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
| | - Tim Kampowski
- Plant Biomechanics Group, Botanic Garden, Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany.,Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Straße 21, 79104 Freiburg, Germany
| | - Marco Caliaro
- Plant Biomechanics Group, Botanic Garden, Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany.,Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Thomas Speck
- Plant Biomechanics Group, Botanic Garden, Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany.,Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Straße 21, 79104 Freiburg, Germany.,Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany.,Cluster of Excellence livMatS @ FIT, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany.,Competence Network Biomimetics, Baden-Württemberg, Schänzlestraße 1, 79104 Freiburg, Germany
| | - Olga Speck
- Plant Biomechanics Group, Botanic Garden, Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany.,Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany.,Cluster of Excellence livMatS @ FIT, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany.,Competence Network Biomimetics, Baden-Württemberg, Schänzlestraße 1, 79104 Freiburg, Germany
| |
Collapse
|
10
|
Benton MJ. Hyperthermal-driven mass extinctions: killing models during the Permian-Triassic mass extinction. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2018; 376:20170076. [PMID: 30177561 PMCID: PMC6127390 DOI: 10.1098/rsta.2017.0076] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/23/2018] [Indexed: 05/06/2023]
Abstract
Many mass extinctions of life in the sea and on land have been attributed to geologically rapid heating, and in the case of the Permian-Triassic and others, driven by large igneous province volcanism. The Siberian Traps eruptions raised ambient temperatures to 35-40°C. A key question is how massive eruptions during these events, and others, could have killed life in the sea and on land; proposed killers are reviewed here. In the oceans, benthos and plankton were killed by anoxia-euxinia and lethal heating, respectively, and the habitable depth zone was massively reduced. On land, the combination of extreme heating and drought reduced the habitable land area, and acid rain stripped forests and soils. Physiological experiments show that some animals can adapt to temperature rises of a few degrees, and that some can survive short episodes of increases of 10°C. However, most plants and animals suffer major physiological damage at temperatures of 35-40°C. Studies of the effects of extreme physical conditions on modern organisms, as well as assumptions about rates of environmental change, give direct evidence of likely killing effects deriving from hyperthermals of the past.This article is part of a discussion meeting issue 'Hyperthermals: rapid and extreme global warming in our geological past'.
Collapse
Affiliation(s)
- Michael J Benton
- School of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK
| |
Collapse
|
11
|
Kampowski T, Mylo MD, Poppinga S, Speck T. How water availability influences morphological and biomechanical properties in the one-leaf plant Monophyllaea horsfieldii. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171076. [PMID: 29410820 PMCID: PMC5792897 DOI: 10.1098/rsos.171076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/24/2017] [Indexed: 06/08/2023]
Abstract
In its natural habitat, the one-leaf plant Monophyllaea horsfieldii (Gesneriaceae) shows striking postural changes and dramatic loss of stability in response to intermittently occurring droughts. As the morphological, anatomical and biomechanical bases of these alterations are as yet unclear, we examined the influence of varying water contents on M. horsfieldii by conducting dehydration-rehydration experiments together with various imaging techniques as well as quantitative bending and turgor pressure measurements. As long as only moderate water stress was applied, gradual reductions in hypocotyl diameters and structural bending moduli during dehydration were almost always rapidly recovered in acropetal direction upon rehydration. On an anatomical scale, M. horsfieldii hypocotyls revealed substantial water stress-induced alterations in parenchymatous tissues, whereas the cell form and structure of epidermal and vascular tissues hardly changed. In summary, the functional morphology and biomechanics of M. horsfieldii hypocotyls directly correlated with water status alterations and associated physiological parameters (i.e. turgor pressure). Moreover, M. horsfieldii showed only little passive structural-functional adaptations to dehydration in comparison with poikilohydrous Ramonda myconi.
Collapse
Affiliation(s)
- Tim Kampowski
- Plant Biomechanics Group Freiburg, Botanic Garden, University of Freiburg, Freiburg im Breisgau, Germany
- Freiburg Materials Research Center, University of Freiburg, Freiburg im Breisgau, Germany
| | - Max David Mylo
- Plant Biomechanics Group Freiburg, Botanic Garden, University of Freiburg, Freiburg im Breisgau, Germany
| | - Simon Poppinga
- Plant Biomechanics Group Freiburg, Botanic Garden, University of Freiburg, Freiburg im Breisgau, Germany
- Freiburg Materials Research Center, University of Freiburg, Freiburg im Breisgau, Germany
| | - Thomas Speck
- Plant Biomechanics Group Freiburg, Botanic Garden, University of Freiburg, Freiburg im Breisgau, Germany
- Freiburg Materials Research Center, University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
12
|
Wang B, Du H, Zhang Z, Xu W, Deng X. BhbZIP60 from Resurrection Plant Boea hygrometrica Is an mRNA Splicing-Activated Endoplasmic Reticulum Stress Regulator Involved in Drought Tolerance. FRONTIERS IN PLANT SCIENCE 2017; 8:245. [PMID: 28286511 PMCID: PMC5323427 DOI: 10.3389/fpls.2017.00245] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 02/09/2017] [Indexed: 05/18/2023]
Abstract
Adverse environmental conditions cause endoplasmic reticulum (ER) stress in plants. To mitigate ER stress damage, ER associated transcription factors and inositol-requiring enzyme-1 (IRE1)-mediated bZIP60 mRNA splicing are activated in plants. A drought-induced gene, encoding the ortholog of AtbZIP60, was identified in the resurrection plant Boea hygrometrica, termed BhbZIP60. In response to ER stress and dehydration, BhbZIP60 mRNA can be spliced to create a frame shift in the C terminus by the excision of 23b segment in a manner of its ortholog in other plants, thus translocating to the nucleus instead of the cytoplasm. The splicing-activated BhbZIP60 (BhbZIP60S) could function in the same way as its Arabidopsis ortholog by restoring the molecular phenotype of the mutant atbzip60. When overexpressed in Arabidopsis, BhbZIP60S provided transgenic plants with enhanced tolerance to drought, tunicamycin and mannitol stresses with upregulation of the expressions of ER quality control (QC) genes (BiP2, BiP3, CNX1, and sPDI) and abscisic acid (ABA) responsive genes (RD29A, RAB18, and RD17). Furthermore, in the yeast one-hybrid system, BhbZIP60S was capable of interacting with ER stress responsive elements (ERSE and ERSE-II) that exist in the promoters of known ER-QC genes, but not binding to ABA responsive cis-elements (ABREs). Our results demonstrated that drought-induced BhbZIP60 may have a function in drought tolerance via the splicing-activated BhbZIP60S to mediate ER-QC by direct binding to the promoters of ER-QC genes. This study evidently demonstrates the involvement of ER-QC in the drought tolerance of Arabidopsis and the desiccation tolerance of the resurrection plant B. hygrometrica.
Collapse
Affiliation(s)
- Bo Wang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of SciencesBeijing, China
- College of Agriculture, Xinjiang Agricultural UniversityUrumqi, China
| | - Hong Du
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of SciencesBeijing, China
- College of Life Sciences, University of Chinese Academy of SciencesBeijing, China
| | - Zhennan Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Wenzhong Xu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of SciencesBeijing, China
- *Correspondence: Xin Deng, Wenzhong Xu,
| | - Xin Deng
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of SciencesBeijing, China
- *Correspondence: Xin Deng, Wenzhong Xu,
| |
Collapse
|
13
|
Farrant JM, Cooper K, Hilgart A, Abdalla KO, Bentley J, Thomson JA, Dace HJW, Peton N, Mundree SG, Rafudeen MS. A molecular physiological review of vegetative desiccation tolerance in the resurrection plant Xerophyta viscosa (Baker). PLANTA 2015; 242:407-26. [PMID: 25998524 PMCID: PMC4498234 DOI: 10.1007/s00425-015-2320-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Accepted: 05/05/2015] [Indexed: 05/18/2023]
Abstract
MAIN CONCLUSION Provides a first comprehensive review of integrated physiological and molecular aspects of desiccation tolerance Xerophyta viscosa. A synopsis of biotechnological studies being undertaken to improve drought tolerance in maize is given. Xerophyta viscosa (Baker) is a monocotyledonous resurrection plant from the family Vellociacea that occurs in summer-rainfall areas of South Africa, Lesotho and Swaziland. It inhabits rocky terrain in exposed grasslands and frequently experiences periods of water deficit. Being a resurrection plant it tolerates the loss of 95% of total cellular water, regaining full metabolic competency within 3 days of rehydration. In this paper, we review some of the molecular and physiological adaptations that occur during various stages of dehydration of X. viscosa, these being functionally grouped into early and late responses, which might be relevant to the attainment of desiccation tolerance. During early drying (to 55% RWC) photosynthesis is shut down, there is increased presence and activity of housekeeping antioxidants and a redirection of metabolism to the increased formation of sucrose and raffinose family oligosaccharides. Other metabolic shifts suggest water replacement in vacuoles proposed to facilitate mechanical stabilization. Some regulatory processes observed include increased presence of a linker histone H1 variant, a Type 2C protein phosphatase, a calmodulin- and an ERD15-like protein. During the late stages of drying (to 10% RWC) there was increased expression of several proteins involved in signal transduction, and retroelements speculated to be instrumental in gene silencing. There was induction of antioxidants not typically found in desiccation-sensitive systems, classical stress-associated proteins (HSP and LEAs), proteins involved in structural stabilization and those associated with changes in various metabolite pools during drying. Metabolites accumulated in this stage are proposed, inter alia, to facilitate subcellular stabilization by vitrification process which can include glass- and ionic liquid formation.
Collapse
Affiliation(s)
- Jill M Farrant
- Department of Molecular and Cell Biology, University of Cape Town, Private Bag X3, Rondebosch, 7701, South Africa,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Charuvi D, Nevo R, Shimoni E, Naveh L, Zia A, Adam Z, Farrant JM, Kirchhoff H, Reich Z. Photoprotection conferred by changes in photosynthetic protein levels and organization during dehydration of a homoiochlorophyllous resurrection plant. PLANT PHYSIOLOGY 2015; 167:1554-65. [PMID: 25713340 PMCID: PMC4378169 DOI: 10.1104/pp.114.255794] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 02/20/2015] [Indexed: 05/18/2023]
Abstract
During desiccation, homoiochlorophyllous resurrection plants retain most of their photosynthetic apparatus, allowing them to resume photosynthetic activity quickly upon water availability. These plants rely on various mechanisms to prevent the formation of reactive oxygen species and/or protect their tissues from the damage they inflict. In this work, we addressed the issue of how homoiochlorophyllous resurrection plants deal with the problem of excessive excitation/electron pressures during dehydration using Craterostigma pumilum as a model plant. To investigate the alterations in the supramolecular organization of photosynthetic protein complexes, we examined cryoimmobilized, freeze-fractured leaf tissues using (cryo)scanning electron microscopy. These examinations revealed rearrangements of photosystem II (PSII) complexes, including a lowered density during moderate dehydration, consistent with a lower level of PSII proteins, as shown by biochemical analyses. The latter also showed a considerable decrease in the level of cytochrome f early during dehydration, suggesting that initial regulation of the inhibition of electron transport is achieved via the cytochrome b6f complex. Upon further dehydration, PSII complexes are observed to arrange into rows and semicrystalline arrays, which correlates with the significant accumulation of sucrose and the appearance of inverted hexagonal lipid phases within the membranes. As opposed to PSII and cytochrome f, the light-harvesting antenna complexes of PSII remain stable throughout the course of dehydration. Altogether, these results, along with photosynthetic activity measurements, suggest that the protection of retained photosynthetic components is achieved, at least in part, via the structural rearrangements of PSII and (likely) light-harvesting antenna complexes into a photochemically quenched state.
Collapse
Affiliation(s)
- Dana Charuvi
- Department of Biological Chemistry (D.C., R.N., Z.R.) and Electron Microscopy Unit (E.S.), Weizmann Institute of Science, Rehovot 76100, Israel;Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University of Jerusalem, Rehovot 76100, Israel (L.N., Z.A.);Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340 (A.Z., H.K.); andDepartment of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa (J.M.F.)
| | - Reinat Nevo
- Department of Biological Chemistry (D.C., R.N., Z.R.) and Electron Microscopy Unit (E.S.), Weizmann Institute of Science, Rehovot 76100, Israel;Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University of Jerusalem, Rehovot 76100, Israel (L.N., Z.A.);Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340 (A.Z., H.K.); andDepartment of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa (J.M.F.)
| | - Eyal Shimoni
- Department of Biological Chemistry (D.C., R.N., Z.R.) and Electron Microscopy Unit (E.S.), Weizmann Institute of Science, Rehovot 76100, Israel;Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University of Jerusalem, Rehovot 76100, Israel (L.N., Z.A.);Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340 (A.Z., H.K.); andDepartment of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa (J.M.F.)
| | - Leah Naveh
- Department of Biological Chemistry (D.C., R.N., Z.R.) and Electron Microscopy Unit (E.S.), Weizmann Institute of Science, Rehovot 76100, Israel;Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University of Jerusalem, Rehovot 76100, Israel (L.N., Z.A.);Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340 (A.Z., H.K.); andDepartment of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa (J.M.F.)
| | - Ahmad Zia
- Department of Biological Chemistry (D.C., R.N., Z.R.) and Electron Microscopy Unit (E.S.), Weizmann Institute of Science, Rehovot 76100, Israel;Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University of Jerusalem, Rehovot 76100, Israel (L.N., Z.A.);Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340 (A.Z., H.K.); andDepartment of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa (J.M.F.)
| | - Zach Adam
- Department of Biological Chemistry (D.C., R.N., Z.R.) and Electron Microscopy Unit (E.S.), Weizmann Institute of Science, Rehovot 76100, Israel;Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University of Jerusalem, Rehovot 76100, Israel (L.N., Z.A.);Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340 (A.Z., H.K.); andDepartment of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa (J.M.F.)
| | - Jill M Farrant
- Department of Biological Chemistry (D.C., R.N., Z.R.) and Electron Microscopy Unit (E.S.), Weizmann Institute of Science, Rehovot 76100, Israel;Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University of Jerusalem, Rehovot 76100, Israel (L.N., Z.A.);Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340 (A.Z., H.K.); andDepartment of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa (J.M.F.)
| | - Helmut Kirchhoff
- Department of Biological Chemistry (D.C., R.N., Z.R.) and Electron Microscopy Unit (E.S.), Weizmann Institute of Science, Rehovot 76100, Israel;Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University of Jerusalem, Rehovot 76100, Israel (L.N., Z.A.);Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340 (A.Z., H.K.); andDepartment of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa (J.M.F.)
| | - Ziv Reich
- Department of Biological Chemistry (D.C., R.N., Z.R.) and Electron Microscopy Unit (E.S.), Weizmann Institute of Science, Rehovot 76100, Israel;Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University of Jerusalem, Rehovot 76100, Israel (L.N., Z.A.);Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340 (A.Z., H.K.); andDepartment of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa (J.M.F.)
| |
Collapse
|
15
|
Georgieva M, Moyankova D, Djilianov D, Uzunova K, Miloshev G. Methanol extracts from the resurrection plant Haberlea rhodopensis ameliorate cellular vitality in chronologically ageing Saccharomyces cerevisiae cells. Biogerontology 2015; 16:461-72. [PMID: 25758774 DOI: 10.1007/s10522-015-9566-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 03/04/2015] [Indexed: 01/06/2023]
Abstract
Bioactive substances that are found in many natural plant extracts are very important for the cosmetics, pharmaceutical industry and biotechnology. Especially interesting for these industries are the substances that possess cell revitalizing and anti-ageing properties. The endemic plant Haberlea rhodopensis is known for its ability to withstand drought and to revitalize when returned to optimal conditions after a long time in desiccation. It is a mere fact that this plant not only can completely resurrect from a dried state but is also able to bring back the natural biochemical compositions of its cells. As a result H. rhodopensis offers a wide field for investigation of the exact mechanisms of the revitalization process as well as broadens the search for unique bioactive chemical substances in its cells. Here, by using the yeast Saccharomyces cerevisiae as a model we have demonstrated that methanol extracts from the plant H. rhodopensis hold specific properties to revitalize and ameliorate cellular growth as well as to balance intracellular metabolic states. Our results add valuable knowledge on the effects of natural compounds on ageing and reinforce the idea of using yeast as a model organism in the development of rapid tests for studying the efficacy of different bioactive substances.
Collapse
Affiliation(s)
- Milena Georgieva
- Laboratory of Yeast Molecular Genetics, Institute of Molecular Biology "Roumen Tzanev", Bulgarian Academy of Sciences, 1113, Sofia, Bulgaria
| | | | | | | | | |
Collapse
|
16
|
Mladenov P, Finazzi G, Bligny R, Moyankova D, Zasheva D, Boisson AM, Brugière S, Krasteva V, Alipieva K, Simova S, Tchorbadjieva M, Goltsev V, Ferro M, Rolland N, Djilianov D. In vivo spectroscopy and NMR metabolite fingerprinting approaches to connect the dynamics of photosynthetic and metabolic phenotypes in resurrection plant Haberlea rhodopensis during desiccation and recovery. FRONTIERS IN PLANT SCIENCE 2015; 6:564. [PMID: 26257765 PMCID: PMC4508511 DOI: 10.3389/fpls.2015.00564] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 07/09/2015] [Indexed: 05/06/2023]
Abstract
The resurrection plant Haberlea rhodopensis was used to study dynamics of drought response of photosynthetic machinery parallel with changes in primary metabolism. A relation between leaf water content and photosynthetic performance was established, enabling us to perform a non-destructive evaluation of the plant water status during stress. Spectroscopic analysis of photosynthesis indicated that, at variance with linear electron flow (LEF) involving photosystem (PS) I and II, cyclic electron flow around PSI remains active till almost full dry state at the expense of the LEF, due to the changed protein organization of photosynthetic apparatus. We suggest that, this activity could have a photoprotective role and prevent a complete drop in adenosine triphosphate (ATP), in the absence of LEF, to fuel specific energy-dependent processes necessary for the survival of the plant, during the late states of desiccation. The NMR fingerprint shows the significant metabolic changes in several pathways. Due to the declining of LEF accompanied by biosynthetic reactions during desiccation, a reduction of the ATP pool during drought was observed, which was fully and quickly recovered after plants rehydration. We found a decline of valine accompanied by lipid degradation during stress, likely to provide alternative carbon sources for sucrose accumulation at late stages of desiccation. This accumulation, as well as the increased levels of glycerophosphodiesters during drought stress could provide osmoprotection to the cells.
Collapse
Affiliation(s)
- Petko Mladenov
- Abiotic Stress Group, Agrobioinstitute, Agricultural AcademySofia, Bulgaria
| | - Giovanni Finazzi
- Laboratoire de Physiologie Cellulaire et Végétale, Institut de Recherches en Technologies et Sciences pour le Vivant, CEA, CNRS, Université Grenoble AlpesINRA, Grenoble, France
| | - Richard Bligny
- Laboratoire de Physiologie Cellulaire et Végétale, Institut de Recherches en Technologies et Sciences pour le Vivant, CEA, CNRS, Université Grenoble AlpesINRA, Grenoble, France
| | - Daniela Moyankova
- Abiotic Stress Group, Agrobioinstitute, Agricultural AcademySofia, Bulgaria
| | - Diana Zasheva
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of SciencesSofia, Bulgaria
| | - Anne-Marie Boisson
- Laboratoire de Physiologie Cellulaire et Végétale, Institut de Recherches en Technologies et Sciences pour le Vivant, CEA, CNRS, Université Grenoble AlpesINRA, Grenoble, France
| | - Sabine Brugière
- Laboratoire de Biologie à Grande Echelle, Institut de Recherches en Technologies et Sciences pour le Vivant, CEA, Université Grenoble AlpesINSERM, Grenoble, France
| | - Vasilena Krasteva
- Department of Biophysics and Radiobiology, Faculty of Biology, Sofia UniversitySofia, Bulgaria
| | - Kalina Alipieva
- Laboratory “Nuclear Magnetic Resonance", Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of SciencesSofia, Bulgaria
| | - Svetlana Simova
- Laboratory “Nuclear Magnetic Resonance", Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of SciencesSofia, Bulgaria
| | | | - Vasiliy Goltsev
- Department of Biophysics and Radiobiology, Faculty of Biology, Sofia UniversitySofia, Bulgaria
| | - Myriam Ferro
- Laboratoire de Biologie à Grande Echelle, Institut de Recherches en Technologies et Sciences pour le Vivant, CEA, Université Grenoble AlpesINSERM, Grenoble, France
| | - Norbert Rolland
- Laboratoire de Physiologie Cellulaire et Végétale, Institut de Recherches en Technologies et Sciences pour le Vivant, CEA, CNRS, Université Grenoble AlpesINRA, Grenoble, France
- *Correspondence: Dimitar Djilianov, Abiotic Stress Group, Agrobioinstitute, Agricultural Academy, 8 Dragan Tsankov Boulevard, 1164 Sofia, Bulgaria, ; Norbert Rolland, Laboratoire de Physiologie Cellulaire et Végétale, Institut de Recherches en Technologies et Sciences pour le Vivant, CEA, CNRS, Université Grenoble Alpes, INRA, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France,
| | - Dimitar Djilianov
- Abiotic Stress Group, Agrobioinstitute, Agricultural AcademySofia, Bulgaria
- *Correspondence: Dimitar Djilianov, Abiotic Stress Group, Agrobioinstitute, Agricultural Academy, 8 Dragan Tsankov Boulevard, 1164 Sofia, Bulgaria, ; Norbert Rolland, Laboratoire de Physiologie Cellulaire et Végétale, Institut de Recherches en Technologies et Sciences pour le Vivant, CEA, CNRS, Université Grenoble Alpes, INRA, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France,
| |
Collapse
|
17
|
Moore JP, Nguema-Ona EE, Vicré-Gibouin M, Sørensen I, Willats WGT, Driouich A, Farrant JM. Arabinose-rich polymers as an evolutionary strategy to plasticize resurrection plant cell walls against desiccation. PLANTA 2013; 237:739-54. [PMID: 23117392 DOI: 10.1007/s00425-012-1785-9] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 10/11/2012] [Indexed: 05/20/2023]
Abstract
A variety of Southern African resurrection plants were surveyed using high-throughput cell wall profiling tools. Species evaluated were the dicotyledons, Myrothamnus flabellifolia and Craterostigma plantagineum; the monocotyledons, Xerophyta viscosa, Xerophyta schlecterii, Xerophyta humilis and the resurrection grass Eragrostis nindensis, as well as a pteridophyte, the resurrection fern, Mohria caffrorum. Comparisons were made between hydrated and desiccated leaf and frond material, with respect to cell wall composition and polymer abundance, using monosaccharide composition analysis, FT-IR spectroscopy and comprehensive microarray polymer profiling in combination with multivariate data analysis. The data obtained suggest that three main functional strategies appear to have evolved to prepare plant cell walls for desiccation. Arabinan-rich pectin and arabinogalactan proteins are found in the resurrection fern M. caffrorum and the basal angiosperm M. flabellifolia where they appear to act as 'pectic plasticizers'. Dicotyledons with pectin-rich walls, such as C. plantagineum, seem to use inducible mechanisms which consist of up-regulating wall proteins and osmoprotectants. The hemicellulose-rich walls of the grass-like Xerophyta spp. and the resurrection grass E. nindensis were found to contain highly arabinosylated xylans and arabinogalactan proteins. These data support a general mechanism of 'plasticising' the cell walls of resurrection plants to desiccation and implicate arabinose-rich polymers (pectin-arabinans, arabinogalactan proteins and arabinoxylans) as the major contributors in ensuring flexibility is maintained and rehydration is facilitated in these plants.
Collapse
Affiliation(s)
- John P Moore
- Institute for Wine Biotechnology, Department of Viticulture and Oenology, Faculty of AgriSciences, Stellenbosch University, Matieland, 7602, South Africa.
| | | | | | | | | | | | | |
Collapse
|
18
|
Gechev TS, Dinakar C, Benina M, Toneva V, Bartels D. Molecular mechanisms of desiccation tolerance in resurrection plants. Cell Mol Life Sci 2012; 69:3175-86. [PMID: 22833170 PMCID: PMC11114980 DOI: 10.1007/s00018-012-1088-0] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 07/09/2012] [Accepted: 07/09/2012] [Indexed: 10/28/2022]
Abstract
Resurrection plants are a small but diverse group of land plants characterized by their tolerance to extreme drought or desiccation. They have the unique ability to survive months to years without water, lose most of the free water in their vegetative tissues, fall into anabiosis, and, upon rewatering, quickly regain normal activity. Thus, they are fundamentally different from other drought-surviving plants such as succulents or ephemerals, which cope with drought by maintaining higher steady state water potential or via a short life cycle, respectively. This review describes the unique physiological and molecular adaptations of resurrection plants enabling them to withstand long periods of desiccation. The recent transcriptome analysis of Craterostigma plantagineum and Haberlea rhodopensis under drought, desiccation, and subsequent rehydration revealed common genetic pathways with other desiccation-tolerant species as well as unique genes that might contribute to the outstanding desiccation tolerance of the two resurrection species. While some of the molecular responses appear to be common for both drought stress and desiccation, resurrection plants also possess genes that are highly induced or repressed during desiccation with no apparent sequence homologies to genes of other species. Thus, resurrection plants are potential sources for gene discovery. Further proteome and metabolome analyses of the resurrection plants contributed to a better understanding of molecular mechanisms that are involved in surviving severe water loss. Understanding the cellular mechanisms of desiccation tolerance in this unique group of plants may enable future molecular improvement of drought tolerance in crop plants.
Collapse
Affiliation(s)
- Tsanko S Gechev
- Department of Plant Physiology and Plant Molecular Biology, University of Plovdiv, Bulgaria.
| | | | | | | | | |
Collapse
|
19
|
Dinakar C, Bartels D. Light response, oxidative stress management and nucleic acid stability in closely related Linderniaceae species differing in desiccation tolerance. PLANTA 2012; 236:541-55. [PMID: 22437647 DOI: 10.1007/s00425-012-1628-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 03/08/2012] [Indexed: 05/21/2023]
Abstract
In the present study, three closely related Linderniaceae species which differ in their sensitivity to desiccation are compared in response to light and oxidative stress defence. Lindernia brevidens, a desiccation-tolerant plant, displayed intense purple pigmentation in leaves under long-day conditions in contrast to Craterostigma plantagineum (desiccation tolerant) and Lindernia subracemosa (desiccation sensitive). The intense pigmentation in leaves does not affect the desiccation tolerance behaviour but seems to be related to oxidative stress protection. Green leaves of short-day and purple leaves of long-day plants provided suitable material for comparing basic photosynthetic parameters. An increase in non-photochemical quenching in purple leaves appears to prevent photoinhibition. Treatment with methyl viologen decreased the photochemical activities in both long-day and short-day plants but long-day plants which accumulate anthocyanins maintained a higher non-photochemical quenching than short-day plants. No differences were seen in the expression of desiccation-induced proteins and proteins involved in carbohydrate metabolism in short-day and long-day grown plants, whereas differences were observed in the expression of transcripts encoding chloroplast-localised stress proteins and transcripts encoding antioxidant enzymes. While the expression of genes encoding antioxidant enzymes were either constitutive or up-regulated during desiccation in C. plantagineum, the expression was down-regulated in L. subracemosa. RNA expression analysis indicated degradation of mRNA during desiccation in L. subracemosa but not in desiccation tolerant species. These results indicate that a better oxidative stress management and mRNA stability are correlated with desiccation tolerance.
Collapse
Affiliation(s)
- Challabathula Dinakar
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | | |
Collapse
|