1
|
Nakonieczna A, Topolska-Woś A, Łobocka M. New bacteriophage-derived lysins, LysJ and LysF, with the potential to control Bacillus anthracis. Appl Microbiol Biotechnol 2024; 108:76. [PMID: 38194144 PMCID: PMC10776502 DOI: 10.1007/s00253-023-12839-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 11/13/2023] [Accepted: 11/21/2023] [Indexed: 01/10/2024]
Abstract
Bacillus anthracis is an etiological agent of anthrax, a severe zoonotic disease that can be transmitted to people and cause high mortalities. Bacteriophages and their lytic enzymes, endolysins, have potential therapeutic value in treating infections caused by this bacterium as alternatives or complements to antibiotic therapy. They can also be used to identify and detect B. anthracis. Endolysins of two B. anthracis Wbetavirus phages, J5a and F16Ba which were described by us recently, differ significantly from the best-known B. anthracis phage endolysin PlyG from Wbetavirus genus bacteriophage Gamma and a few other Wbetavirus genus phages. They are larger than PlyG (351 vs. 233 amino acid residues), contain a signal peptide at their N-termini, and, by prediction, have a different fold of cell binding domain suggesting different structural basis of cell epitope recognition. We purified in a soluble form the modified versions of these endolysins, designated by us LysJ and LysF, respectively, and depleted of signal peptides. Both modified endolysins could lyse the B. anthracis cell wall in zymogram assays. Their activity against the living cells of B. anthracis and other species of Bacillus genus was tested by spotting on the layers of bacteria in soft agar and by assessing the reduction of optical density of bacterial suspensions. Both methods proved the effectiveness of LysJ and LysF in killing the anthrax bacilli, although the results obtained by each method differed. Additionally, the lytic efficiency of both proteins was different, which apparently correlates with differences in their amino acid sequence. KEY POINTS: • LysJ and LysF are B. anthracis-targeting lysins differing from lysins studied so far • LysJ and LysF could be overproduced in E. coli in soluble and active forms • LysJ and LysF are active in killing cells of B. anthracis virulent strains.
Collapse
Affiliation(s)
- Aleksandra Nakonieczna
- Military Institute of Hygiene and Epidemiology, Biological Threats Identification and Countermeasure Center, 24-100, Puławy, Poland.
| | | | - Małgorzata Łobocka
- Institute of Biochemistry and Biophysics of the Polish Academy of Sciences, 02-106, Warsaw, Poland
| |
Collapse
|
2
|
Mursalin MH, Coburn PS, Miller FC, Livingston ET, Astley R, Callegan MC. Innate Immune Interference Attenuates Inflammation In Bacillus Endophthalmitis. Invest Ophthalmol Vis Sci 2020; 61:17. [PMID: 33180117 PMCID: PMC7671874 DOI: 10.1167/iovs.61.13.17] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/20/2020] [Indexed: 02/07/2023] Open
Abstract
Purpose To explore the consequences of innate interference on intraocular inflammatory responses during Bacillus endophthalmitis. Methods Bacillus endophthalmitis was induced in mice. Innate immune pathway activation was interfered by injecting S layer protein-deficient (∆slpA) B. thuringiensis or by treating wild-type (WT)-infected mice with a TLR2/4 inhibitor (WT+OxPAPC). At 10 hours postinfection, eyes were harvested and RNA was purified. A NanoString murine inflammation panel was used to compare gene expression in WT-infected, WT+OxPAPC, ∆slpA-infected, and uninfected eyes. Results In WT-infected eyes, 56% of genes were significantly upregulated compared to uninfected controls. Compared to WT-infected eyes, the expression of 27% and 50% of genes were significantly reduced in WT+OxPAPC and ∆slpA-infected eyes, respectively. Expression of 61 genes that were upregulated in WT-infected eyes was decreased in WT+OxPAPC and ∆slpA-infected eyes. Innate interference resulted in blunted expression of complement factors (C3, Cfb, and C6) and several innate pathway genes (TLRs 2, 4, 6, and 8, MyD88, Nod2, Nlrp3, NF-κB, STAT3, RelA, RelB, and Ptgs2). Innate interference also reduced the expression of several inflammatory cytokines (CSF2, CSF3, IL-6, IL-1β, IL-1α, TNFα, IL-23α, TGFβ1, and IL-12β) and chemokines (CCL2, CCL3, and CXCLs 1, 2, 3, 5, 9, and 10). All of the aforementioned genes were significantly upregulated in WT-infected eyes. Conclusions These results suggest that interfering with innate activation significantly reduced the intraocular inflammatory response in Bacillus endophthalmitis. This positive clinical outcome could be a strategy for anti-inflammatory therapy of an infection typically refractory to corticosteroid treatment.
Collapse
Affiliation(s)
- Md Huzzatul Mursalin
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
- Department of Ophthalmology, Dean McGee Eye Institute, Oklahoma City, Oklahoma, United States
| | - Phillip S. Coburn
- Department of Ophthalmology, Dean McGee Eye Institute, Oklahoma City, Oklahoma, United States
- Dean McGee Eye Institute, Oklahoma City, Oklahoma, United States
| | - Frederick C. Miller
- Department of Cell Biology and Department of Family and Preventive Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Erin T. Livingston
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Roger Astley
- Department of Ophthalmology, Dean McGee Eye Institute, Oklahoma City, Oklahoma, United States
- Dean McGee Eye Institute, Oklahoma City, Oklahoma, United States
| | - Michelle C. Callegan
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
- Department of Ophthalmology, Dean McGee Eye Institute, Oklahoma City, Oklahoma, United States
- Dean McGee Eye Institute, Oklahoma City, Oklahoma, United States
| |
Collapse
|
3
|
Mursalin MH, Livingston ET, Callegan MC. The cereus matter of Bacillus endophthalmitis. Exp Eye Res 2020; 193:107959. [PMID: 32032628 PMCID: PMC7113113 DOI: 10.1016/j.exer.2020.107959] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/06/2020] [Accepted: 02/03/2020] [Indexed: 02/06/2023]
Abstract
Bacillus cereus (B. cereus) endophthalmitis is a devastating intraocular infection primarily associated with post-traumatic injuries. The majority of these infections result in substantial vision loss, if not loss of the eye itself, within 12-48 h. Multifactorial mechanisms that lead to the innate intraocular inflammatory response during this disease include the combination of robust bacterial replication, migration of the organism throughout the eye, and toxin production by the organism. Therefore, the window of therapeutic intervention in B. cereus endophthalmitis is quite narrow compared to that of other pathogens which cause this disease. Understanding the interaction of bacterial and host factors is critical in understanding the disease and formulating more rational therapeutics for salvaging vision. In this review, we will discuss clinical and research findings related to B. cereus endophthalmitis in terms of the organism's virulence and inflammogenic potential, and strategies for improving of current therapeutic regimens for this blinding disease.
Collapse
Affiliation(s)
- Md Huzzatul Mursalin
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Erin T Livingston
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Michelle C Callegan
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Ophthalmology, Dean McGee Eye Institute, Oklahoma City, OK, USA; Oklahoma Center for Neuroscience, Oklahoma City, OK, USA; Dean A. McGee Eye Institute, Oklahoma City, OK, USA.
| |
Collapse
|
4
|
Mursalin MH, Coburn PS, Livingston E, Miller FC, Astley R, Flores-Mireles AL, Callegan MC. Bacillus S-Layer-Mediated Innate Interactions During Endophthalmitis. Front Immunol 2020; 11:215. [PMID: 32117322 PMCID: PMC7028758 DOI: 10.3389/fimmu.2020.00215] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 01/27/2020] [Indexed: 12/14/2022] Open
Abstract
Bacillus endophthalmitis is a severe intraocular infection. Hallmarks of Bacillus endophthalmitis include robust inflammation and rapid loss of vision. We reported that the absence of Bacillus surface layer protein (SLP) significantly blunted endophthalmitis severity. Here, we further investigated SLP in the context of Bacillus-retinal cell interactions and innate immune pathways to explore the mechanisms by which SLP contributes to intraocular inflammation. We compared phenotypes of Wild-type (WT) and SLP deficient (ΔslpA) Bacillus thuringiensis by analyzing bacterial adherence to and phagocytosis by human retinal Muller cells and phagocytosis by mouse neutrophils. Innate immune receptor activation by the Bacillus envelope and purified SLP was analyzed using TLR2/4 reporter cell lines. A synthetic TLR2/4 inhibitor was used as a control for this receptor activation. To induce endophthalmitis, mouse eyes were injected intravitreally with 100 CFU WT or ΔslpA B. thuringiensis. A group of WT infected mice was treated intravitreally with a TLR2/4 inhibitor at 4 h postinfection. At 10 h postinfection, infected eyes were analyzed for viable bacteria, inflammation, and retinal function. We observed that B. thuringiensis SLPs contributed to retinal Muller cell adherence, and protected this pathogen from Muller cell- and neutrophil-mediated phagocytosis. We found that B. thuringiensis envelope activated TLR2 and, surprisingly, TLR4, suggesting the presence of a surface-associated TLR4 agonist in Bacillus. Further investigation showed that purified SLP from B. thuringiensis activated TLR4, as well as TLR2 in vitro. Growth of WT B. thuringiensis was significantly higher and caused greater inflammation in untreated eyes than in eyes treated with the TLR2/4 inhibitor. Retinal function analysis also showed greater retention of A-wave and B-wave function in infected eyes treated with the TLR2/4 inhibitor. The TLR2/4 inhibitor was not antibacterial in vitro, and did not cause inflammation when injected into uninfected eyes. Taken together, these results suggest a potential role for Bacillus SLP in host-bacterial interactions, as well as in endophthalmitis pathogenesis via TLR2- and TLR4-mediated pathways.
Collapse
Affiliation(s)
- Md Huzzatul Mursalin
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Phillip S. Coburn
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Dean McGee Eye Institute, Oklahoma City, OK, United States
| | - Erin Livingston
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Frederick C. Miller
- Department of Cell Biology and Department of Family and Preventive Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Roger Astley
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Dean McGee Eye Institute, Oklahoma City, OK, United States
| | - Ana L. Flores-Mireles
- Department of Biological Sciences, University of Notre Dame, South Bend, IN, United States
| | - Michelle C. Callegan
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Dean McGee Eye Institute, Oklahoma City, OK, United States
| |
Collapse
|
5
|
Mursalin MH, Coburn PS, Livingston E, Miller FC, Astley R, Fouet A, Callegan MC. S-layer Impacts the Virulence of Bacillus in Endophthalmitis. Invest Ophthalmol Vis Sci 2019; 60:3727-3739. [PMID: 31479113 PMCID: PMC6719748 DOI: 10.1167/iovs.19-27453] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 07/19/2019] [Indexed: 02/07/2023] Open
Abstract
Purpose Bacillus causes a sight-threating infection of the posterior segment of the eye. The robust intraocular inflammatory response in this disease is likely activated via host innate receptor interactions with components of the Bacillus cell envelope. S-layer proteins (SLPs) of some Gram-positive pathogens contribute to the pathogenesis of certain infections. The potential contributions of SLPs in eye infection pathogenesis have not been considered. Here, we explored the role of a Bacillus SLP (SlpA) in endophthalmitis pathogenesis. Methods The phenotypes and infectivity of wild-type (WT) and S-layer deficient (ΔslpA) Bacillus thuringiensis were compared. Experimental endophthalmitis was induced in C57BL/6J mice by intravitreally injecting 100-CFU WT or ΔslpA B. thuringiensis. Infected eyes were analyzed by bacterial counts, retinal function analysis, histology, and inflammatory cell influx. SLP-induced inflammation was also analyzed in vitro. Muller cells (MIO-M1) were treated with purified SLP. Nuclear factor-κB (NF-κB) DNA binding was measured by ELISA and expression of proinflammatory mediators from Muller cells was measured by RT-qPCR. Results Tested phenotypes of WT and ΔslpA B. thuringiensis were similar, with the exception of absence of the S-layer in the ΔslpA mutant. Intraocular growth of WT and ΔslpA B. thuringiensis was also similar. However, eyes infected with the ΔslpA mutant had significantly reduced inflammatory cell influx, less inflammatory damage to the eyes, and significant retention of retinal function compared with WT-infected eyes. SLP was also a potent stimulator of the NF-κB pathway and induced the expression of proinflammatory mediators (IL6, TNFα, CCL2, and CXCL-1) in human retinal Muller cells. Conclusions Taken together, our results suggest that SlpA contributes to the pathogenesis of Bacillus endophthalmitis, potentially by triggering innate inflammatory pathways in the retina.
Collapse
Affiliation(s)
- Md Huzzatul Mursalin
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Phillip S. Coburn
- Department of Ophthalmology, Dean McGee Eye Institute, Oklahoma City, Oklahoma, United States
- Dean McGee Eye Institute, Oklahoma City, Oklahoma, United States
| | - Erin Livingston
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Frederick C. Miller
- Department of Cell Biology and Department of Family and Preventive Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Roger Astley
- Department of Ophthalmology, Dean McGee Eye Institute, Oklahoma City, Oklahoma, United States
- Dean McGee Eye Institute, Oklahoma City, Oklahoma, United States
| | - Agnès Fouet
- Institut Cochin INSERM U1016, Paris, France
- CNRS 8104, Paris, France
- University Paris Descartes, Paris, France
| | - Michelle C. Callegan
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
- Department of Ophthalmology, Dean McGee Eye Institute, Oklahoma City, Oklahoma, United States
- Dean McGee Eye Institute, Oklahoma City, Oklahoma, United States
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| |
Collapse
|
6
|
Andreou A, Giastas P, Christoforides E, Eliopoulos EE. Structural and Evolutionary Insights within the Polysaccharide Deacetylase Gene Family of Bacillus anthracis and Bacillus cereus. Genes (Basel) 2018; 9:E386. [PMID: 30065210 PMCID: PMC6115787 DOI: 10.3390/genes9080386] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/24/2018] [Accepted: 07/25/2018] [Indexed: 02/06/2023] Open
Abstract
Functional and folding constraints impose interdependence between interacting sites along the protein chain that are envisaged through protein sequence evolution. Studying the influence of structure in phylogenetic models requires detailed and reliable structural models. Polysaccharide deacetylases (PDAs), members of the carbohydrate esterase family 4, perform mainly metal-dependent deacetylation of O- or N-acetylated polysaccharides such as peptidoglycan, chitin and acetylxylan through a conserved catalytic core termed the NodB homology domain. Genomes of Bacillus anthracis and its relative Bacillus cereus contain multiple genes of putative or known PDAs. A comparison of the functional domains of the recently determined PDAs from B. anthracis and B. cereus and multiple amino acid and nucleotide sequence alignments and phylogenetic analysis performed on these closely related species showed that there were distinct differences in binding site formation, despite the high conservation on the protein sequence, the folding level and the active site assembly. This may indicate that, subject to biochemical verification, the binding site-forming sequence fragments are under functionally driven evolutionary pressure to accommodate and recognize distinct polysaccharide residues according to cell location, use, or environment. Finally, we discuss the suggestion of the paralogous nature of at least two genes of B. anthracis, ba0330 and ba0331, via specific differences in gene sequence, protein structure, selection pressure and available localization patterns. This study may contribute to understanding the mechanisms under which sequences evolve in their structures and how evolutionary processes enable structural variations.
Collapse
Affiliation(s)
- Athena Andreou
- Department of Biotechnology, Laboratory of Genetics, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece.
| | - Petros Giastas
- Department of Neurobiology, Hellenic Pasteur Institute, Vasilissis Sofias 127, 11521 Athens, Greece.
| | - Elias Christoforides
- Department of Biotechnology, Laboratory of Genetics, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece.
| | - Elias E Eliopoulos
- Department of Biotechnology, Laboratory of Genetics, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece.
| |
Collapse
|
7
|
Moraïs S, Cockburn DW, Ben-David Y, Koropatkin NM, Martens EC, Duncan SH, Flint HJ, Mizrahi I, Bayer EA. Lysozyme activity of theRuminococcus champanellensiscellulosome. Environ Microbiol 2016; 18:5112-5122. [DOI: 10.1111/1462-2920.13501] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 08/16/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Sarah Moraïs
- Biomolecular Sciences Department; The Weizmann Institute of Science; Rehovot Israel
| | - Darrell W. Cockburn
- Department of Microbiology and Immunology; University of Michigan Medical School; Ann Arbor MI 48109 USA
| | - Yonit Ben-David
- Biomolecular Sciences Department; The Weizmann Institute of Science; Rehovot Israel
| | - Nicole M. Koropatkin
- Department of Microbiology and Immunology; University of Michigan Medical School; Ann Arbor MI 48109 USA
| | - Eric C. Martens
- Department of Microbiology and Immunology; University of Michigan Medical School; Ann Arbor MI 48109 USA
| | - Sylvia H. Duncan
- Microbiology Group, Rowett Institute of Nutrition and Health, University of Aberdeen; Aberdeen UK
| | - Harry J. Flint
- Microbiology Group, Rowett Institute of Nutrition and Health, University of Aberdeen; Aberdeen UK
| | - Itzhak Mizrahi
- The Department of Life Sciences & the National Institute for Biotechnology in the Negev; Ben-Gurion University of the Negev; Beer-Sheva 84105 Israel
| | - Edward A. Bayer
- Biomolecular Sciences Department; The Weizmann Institute of Science; Rehovot Israel
| |
Collapse
|
8
|
Candela T, Balomenou S, Aucher W, Bouriotis V, Simore JP, Fouet A, Boneca IG. N-acetylglucosamine deacetylases modulate the anchoring of the gamma-glutamyl capsule to the cell wall of Bacillus anthracis. Microb Drug Resist 2014; 20:222-30. [PMID: 24833281 DOI: 10.1089/mdr.2014.0063] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Bacillus anthracis has a complex cell wall structure composed of a peptidoglycan (PG) layer to which major structures are anchored such as a neutral polysaccharide, an S-layer, and a poly-γ-D-glutamate (PDGA) capsule. Many of these structures have central roles in the biology of B. anthracis, particularly, in virulence. However, little attention has been devoted to structurally study the PG and how it is modified in the presence of these secondary cell wall components. We present here the fine structure of the PG of the encapsulated RPG1 strain harboring both pXO1 and pXO2 virulence plasmids. We show that B. anthracis has a high degree of cross-linking and its GlcNAc residues are highly modified by N-deacetylation. The PG composition is not dependent on the presence of either LPXTG proteins or the capsule. Using NMR analysis of the PG-PDGA complex, we provide evidence for the anchoring of the PDGA to the glucosamine residues. We show that anchoring of the PDGA capsule is impaired in two PG N-deacetylase mutants, Ba1961 and Ba3679. Thus, these multiple N-deactylase activities would constitute excellent drug targets in B. anthracis by simultaneously affecting its resistance to lysozyme and to phagocytosis impairing B. anthracis survival in the host.
Collapse
Affiliation(s)
- Thomas Candela
- 1 Institut Pasteur , Unité Toxines et Pathogénie Bactérienne, Paris, France
| | | | | | | | | | | | | |
Collapse
|
9
|
Genetic evidence for the involvement of the S-layer protein gene sap and the sporulation genes spo0A, spo0B, and spo0F in Phage AP50c infection of Bacillus anthracis. J Bacteriol 2013; 196:1143-54. [PMID: 24363347 DOI: 10.1128/jb.00739-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
In order to better characterize the Bacillus anthracis typing phage AP50c, we designed a genetic screen to identify its bacterial receptor. Insertions of the transposon mariner or targeted deletions of the structural gene for the S-layer protein Sap and the sporulation genes spo0A, spo0B, and spo0F in B. anthracis Sterne resulted in phage resistance with concomitant defects in phage adsorption and infectivity. Electron microscopy of bacteria incubated with AP50c revealed phage particles associated with the surface of bacilli of the Sterne strain but not with the surfaces of Δsap, Δspo0A, Δspo0B, or Δspo0F mutants. The amount of Sap in the S layer of each of the spo0 mutant strains was substantially reduced compared to that of the parent strain, and incubation of AP50c with purified recombinant Sap led to a substantial reduction in phage activity. Phylogenetic analysis based on whole-genome sequences of B. cereus sensu lato strains revealed several closely related B. cereus and B. thuringiensis strains that carry sap genes with very high similarities to the sap gene of B. anthracis. Complementation of the Δsap mutant in trans with the wild-type B. anthracis sap or the sap gene from either of two different B. cereus strains that are sensitive to AP50c infection restored phage sensitivity, and electron microscopy confirmed attachment of phage particles to the surface of each of the complemented strains. Based on these data, we postulate that Sap is involved in AP50c infectivity, most likely acting as the phage receptor, and that the spo0 genes may regulate synthesis of Sap and/or formation of the S layer.
Collapse
|
10
|
Liu X, Wang D, Ren J, Tong C, Feng E, Wang X, Zhu L, Wang H. Identification of the immunogenic spore and vegetative proteins of Bacillus anthracis vaccine strain A16R. PLoS One 2013; 8:e57959. [PMID: 23516421 PMCID: PMC3596338 DOI: 10.1371/journal.pone.0057959] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 01/29/2013] [Indexed: 01/03/2023] Open
Abstract
Immunoproteomics was used to screen the immunogenic spore and vegetative proteins of Bacillus anthracis vaccine strain A16R. The spore and vegetative proteins were separated by 2D gel electrophoresis and transferred to polyvinylidene difluoride membranes, and then western blotting was performed with rabbit immune serum against B.anthracis live spores. Immunogenic spots were cut and digested by trypsin. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry was performed to identify the proteins. As a result, 11 and 45 immunogenic proteins were identified in the spores and vegetative cells, respectively; 26 of which have not been reported previously. To verify their immunogenicity, 12 of the identified proteins were selected to be expressed, and the immune sera from the mice vaccinated by the 12 expressed proteins, except BA0887, had a specific western blot band with the A16R whole cellular lytic proteins. Some of these immunogenic proteins might be used as novel vaccine candidates themselves or for enhancing the protective efficacy of a protective-antigen-based vaccine.
Collapse
Affiliation(s)
- Xiankai Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, People's Republic of China
| | - Dongshu Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, People's Republic of China
| | - Jingxiao Ren
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, People's Republic of China
| | - Chao Tong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, People's Republic of China
| | - Erling Feng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, People's Republic of China
| | - Xuefang Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, People's Republic of China
| | - Li Zhu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, People's Republic of China
- * E-mail: (LZ); (HW)
| | - Hengliang Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, People's Republic of China
- * E-mail: (LZ); (HW)
| |
Collapse
|
11
|
Abstract
Bacillus anthracis grows in chains of rod-shaped cells, a trait that contributes to its escape from phagocytic clearance in host tissues. Using a genetic approach to search for determinants of B. anthracis chain length, we identified mutants with insertional lesions in secA2. All isolated secA2 mutants exhibited an exaggerated chain length, whereas the dimensions of individual cells were not changed. Complementation studies revealed that slaP (S-layer assembly protein), a gene immediately downstream of secA2 on the B. anthracis chromosome, is also a determinant of chain length. Both secA2 and slaP are required for the efficient secretion of Sap and EA1 (Eag), the two S-layer proteins of B. anthracis, but not for the secretion of S-layer-associated proteins or of other secreted products. S-layer assembly via secA2 and slaP contributes to the proper positioning of BslO, the S-layer-associated protein, and murein hydrolase, which cleaves septal peptidoglycan to separate chains of bacilli. SlaP was found to be both soluble in the bacterial cytoplasm and associated with the membrane. The purification of soluble SlaP from B. anthracis-cleared lysates did not reveal a specific ligand, and the membrane association of SlaP was not dependent on SecA2, Sap, or EA1. We propose that SecA2 and SlaP promote the efficient secretion of S-layer proteins by modifying the general secretory pathway of B. anthracis to transport large amounts of Sap and EA1.
Collapse
|
12
|
Schofield DA, Sharp NJ, Westwater C. Phage-based platforms for the clinical detection of human bacterial pathogens. BACTERIOPHAGE 2012; 2:105-283. [PMID: 23050221 PMCID: PMC3442824 DOI: 10.4161/bact.19274] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Bacteriophages (phages) have been utilized for decades as a means for uniquely identifying their target bacteria. Due to their inherent natural specificity, ease of use, and straightforward production, phage possess a number of desirable attributes which makes them particularly suited as bacterial detectors. As a result, extensive research has been conducted into the development of phage, or phage-derived products to expedite the detection of human pathogens. However, very few phage-based diagnostics have transitioned from the research lab into a clinical diagnostic tool. Herein we review the phage-based platforms that are currently used for the detection of Mycobacterium tuberculosis, Yersinia pestis, Bacillus anthracis and Staphylococcus aureus in the clinical field. We briefly describe the disease, the current diagnostic options, and the role phage diagnostics play in identifying the cause of infection, and determining antibiotic susceptibility.
Collapse
Affiliation(s)
| | | | - Caroline Westwater
- Department of Craniofacial Biology; Medical University of South Carolina; Charleston, SC USA
| |
Collapse
|
13
|
Chitlaru T, Altboum Z, Reuveny S, Shafferman A. Progress and novel strategies in vaccine development and treatment of anthrax. Immunol Rev 2011; 239:221-36. [PMID: 21198675 DOI: 10.1111/j.1600-065x.2010.00969.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The lethal anthrax disease is caused by spores of the gram-positive Bacillus anthracis, a member of the cereus group of bacilli. Although the disease is very rare in the Western world, development of anthrax countermeasures gains increasing attention due to the potential use of B. anthracis spores as a bio-terror weapon. Protective antigen (PA), the non-toxic subunit of the bacterial secreted exotoxin, fulfills the role of recognizing a specific receptor and mediating the entry of the toxin into the host target cells. PA elicits a protective immune response and represents the basis for all current anthrax vaccines. Anti-PA neutralizing antibodies are useful correlates for protection and for vaccine efficacy evaluation. Post exposure anti-toxemic and anti-bacteremic prophylactic treatment of anthrax requires prolonged antibiotic administration. Shorter efficient postexposure treatments may require active or passive immunization, in addition to antibiotics. Although anthrax is acknowledged as a toxinogenic disease, additional factors, other than the bacterial toxin, may be involved in the virulence of B. anthracis and may be needed for the long-lasting protection conferred by PA immunization. The search for such novel factors is the focus of several high throughput genomic and proteomic studies that are already leading to identification of novel targets for therapeutics, for vaccine candidates, as well as biomarkers for detection and diagnosis.
Collapse
Affiliation(s)
- Theodor Chitlaru
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | | | | | | |
Collapse
|
14
|
Sleytr UB, Schuster B, Egelseer EM, Pum D, Horejs CM, Tscheliessnig R, Ilk N. Nanobiotechnology with S-layer proteins as building blocks. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 103:277-352. [PMID: 21999999 DOI: 10.1016/b978-0-12-415906-8.00003-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
One of the key challenges in nanobiotechnology is the utilization of self- assembly systems, wherein molecules spontaneously associate into reproducible aggregates and supramolecular structures. In this contribution, we describe the basic principles of crystalline bacterial surface layers (S-layers) and their use as patterning elements. The broad application potential of S-layers in nanobiotechnology is based on the specific intrinsic features of the monomolecular arrays composed of identical protein or glycoprotein subunits. Most important, physicochemical properties and functional groups on the protein lattice are arranged in well-defined positions and orientations. Many applications of S-layers depend on the capability of isolated subunits to recrystallize into monomolecular arrays in suspension or on suitable surfaces (e.g., polymers, metals, silicon wafers) or interfaces (e.g., lipid films, liposomes, emulsomes). S-layers also represent a unique structural basis and patterning element for generating more complex supramolecular structures involving all major classes of biological molecules (e.g., proteins, lipids, glycans, nucleic acids, or combinations of these). Thus, S-layers fulfill key requirements as building blocks for the production of new supramolecular materials and nanoscale devices as required in molecular nanotechnology, nanobiotechnology, biomimetics, and synthetic biology.
Collapse
Affiliation(s)
- Uwe B Sleytr
- Department of NanoBiotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
15
|
Klee SR, Brzuszkiewicz EB, Nattermann H, Brüggemann H, Dupke S, Wollherr A, Franz T, Pauli G, Appel B, Liebl W, Couacy-Hymann E, Boesch C, Meyer FD, Leendertz FH, Ellerbrok H, Gottschalk G, Grunow R, Liesegang H. The genome of a Bacillus isolate causing anthrax in chimpanzees combines chromosomal properties of B. cereus with B. anthracis virulence plasmids. PLoS One 2010; 5:e10986. [PMID: 20634886 PMCID: PMC2901330 DOI: 10.1371/journal.pone.0010986] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Accepted: 05/05/2010] [Indexed: 11/18/2022] Open
Abstract
Anthrax is a fatal disease caused by strains of Bacillus anthracis. Members of this monophyletic species are non motile and are all characterized by the presence of four prophages and a nonsense mutation in the plcR regulator gene. Here we report the complete genome sequence of a Bacillus strain isolated from a chimpanzee that had died with clinical symptoms of anthrax. Unlike classic B. anthracis, this strain was motile and lacked the four prohages and the nonsense mutation. Four replicons were identified, a chromosome and three plasmids. Comparative genome analysis revealed that the chromosome resembles those of non-B. anthracis members of the Bacillus cereus group, whereas two plasmids were identical to the anthrax virulence plasmids pXO1 and pXO2. The function of the newly discovered third plasmid with a length of 14 kbp is unknown. A detailed comparison of genomic loci encoding key features confirmed a higher similarity to B. thuringiensis serovar konkukian strain 97-27 and B. cereus E33L than to B. anthracis strains. For the first time we describe the sequence of an anthrax causing bacterium possessing both anthrax plasmids that apparently does not belong to the monophyletic group of all so far known B. anthracis strains and that differs in important diagnostic features. The data suggest that this bacterium has evolved from a B. cereus strain independently from the classic B. anthracis strains and established a B. anthracis lifestyle. Therefore we suggest to designate this isolate as "B. cereus variety (var.) anthracis".
Collapse
Affiliation(s)
- Silke R Klee
- Centre for Biological Security (ZBS), Robert Koch-Institut, Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Inflammatory cytokine response to Bacillus anthracis peptidoglycan requires phagocytosis and lysosomal trafficking. Infect Immun 2010; 78:2418-28. [PMID: 20308305 DOI: 10.1128/iai.00170-10] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
During advanced stages of inhalation anthrax, Bacillus anthracis accumulates at high levels in the bloodstream of the infected host. This bacteremia leads to sepsis during late-stage anthrax; however, the mechanisms through which B. anthracis-derived factors contribute to the pathology of infected hosts are poorly defined. Peptidoglycan, a major component of the cell wall of Gram-positive bacteria, can provoke symptoms of sepsis in animal models. We have previously shown that peptidoglycan of B. anthracis can induce the production of proinflammatory cytokines by cells in human blood. Here, we show that biologically active peptidoglycan is shed from an active culture of encapsulated B. anthracis strain Ames in blood. Peptidoglycan is able to bind to surfaces of responding cells, and internalization of peptidoglycan is required for the production of inflammatory cytokines. We also show that the peptidoglycan traffics to lysosomes, and lysosomal function is required for cytokine production. We conclude that peptidoglycan of B. anthracis is initially bound by an unknown extracellular receptor, is phagocytosed, and traffics to lysosomes, where it is degraded to a product recognized by an intracellular receptor. Binding of the peptidoglycan product to the intracellular receptor causes a proinflammatory response. These findings provide new insight into the mechanism by which B. anthracis triggers sepsis during a critical stage of anthrax disease.
Collapse
|
17
|
Daou N, Buisson C, Gohar M, Vidic J, Bierne H, Kallassy M, Lereclus D, Nielsen-LeRoux C. IlsA, a unique surface protein of Bacillus cereus required for iron acquisition from heme, hemoglobin and ferritin. PLoS Pathog 2009; 5:e1000675. [PMID: 19956654 PMCID: PMC2777315 DOI: 10.1371/journal.ppat.1000675] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Accepted: 10/30/2009] [Indexed: 12/05/2022] Open
Abstract
The human opportunistic pathogen Bacillus cereus belongs to the B. cereus group that includes bacteria with a broad host spectrum. The ability of these bacteria to colonize diverse hosts is reliant on the presence of adaptation factors. Previously, an IVET strategy led to the identification of a novel B. cereus protein (IlsA, Iron-regulated leucine rich surface protein), which is specifically expressed in the insect host or under iron restrictive conditions in vitro. Here, we show that IlsA is localized on the surface of B. cereus and hence has the potential to interact with host proteins. We report that B. cereus uses hemoglobin, heme and ferritin, but not transferrin and lactoferrin. In addition, affinity tests revealed that IlsA interacts with both hemoglobin and ferritin. Furthermore, IlsA directly binds heme probably through the NEAT domain. Inactivation of ilsA drastically decreases the ability of B. cereus to grow in the presence of hemoglobin, heme and ferritin, indicating that IlsA is essential for iron acquisition from these iron sources. In addition, the ilsA mutant displays a reduction in growth and virulence in an insect model. Hence, our results indicate that IlsA is a key factor within a new iron acquisition system, playing an important role in the general virulence strategy adapted by B. cereus to colonize susceptible hosts. Iron is an essential compound for almost all living organisms, taking part in basic cellular homeostasis. Preventing access to iron sources for invading pathogens is one of the defense systems used by hosts to avoid pathogen colonization. To counteract this, pathogens have developed mechanisms to acquire nutrient iron during infection. Bacillus cereus is an opportunistic bacterium able to infect both insects and mammals; thus, it should have systems enabling iron uptake from these hosts. Here we describe, for the first time, a unique surface protein, called IlsA, which is essential for iron uptake from two very different iron binding molecules: ferritin and hemoglobin. IlsA is only produced in iron limited environments. We show that during insect infection, its expression is specific to insect hemocoel (blood), where ferritin is the major iron-binding molecule. Interestingly, the IlsA mutant has reduced survival in in vivo infection and in vitro when heme, hemoglobin and ferritin are the sole iron sources available. Thus, as IlsA is important for iron uptake from the major iron rich molecules in insects and mammals, we suggest that this new iron acquisition system may be a key factor that is evolutionary adapted to infection of such diverse hosts.
Collapse
Affiliation(s)
- Nadine Daou
- INRA-UR1249 Génétique Microbienne et Environnement, La Minière, Guyancourt, France
- Laboratoire de Biotechnologie, Université Saint-Joseph, Beyrouth, Lebanon
| | - Christophe Buisson
- INRA-UR1249 Génétique Microbienne et Environnement, La Minière, Guyancourt, France
| | - Michel Gohar
- INRA-UR1249 Génétique Microbienne et Environnement, La Minière, Guyancourt, France
| | - Jasmina Vidic
- INRA-UR892 Unité de Biologie Physico-Chimique des Prions, Virologie et Immunologie Moléculaires, Jouy en Josas, France
| | - Hélène Bierne
- Unité Interaction Bactéries Cellules, Institut Pasteur, INSERM U604 – INRA USC2020, Paris, France
| | - Mireille Kallassy
- Laboratoire de Biotechnologie, Université Saint-Joseph, Beyrouth, Lebanon
| | - Didier Lereclus
- INRA-UR1249 Génétique Microbienne et Environnement, La Minière, Guyancourt, France
| | | |
Collapse
|
18
|
Mukhopadhyay S, Akmal A, Stewart AC, Hsia RC, Read TD. Identification of Bacillus anthracis spore component antigens conserved across diverse Bacillus cereus sensu lato strains. Mol Cell Proteomics 2009; 8:1174-91. [PMID: 19208616 DOI: 10.1074/mcp.m800403-mcp200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
We sought to identify proteins in the Bacillus anthracis spore, conserved in other strains of the closely related Bacillus cereus group, that elicit an immune response in mammals. Two high throughput approaches were used. First, an in silico screening identified 200 conserved putative B. anthracis spore components. A total of 192 of those candidate genes were expressed and purified in vitro, 75 of which reacted with the rabbit immune sera generated against B. anthracis spores. The second approach was to screen for cross-reacting antigens in the spore proteome of 10 diverse B. cereus group strains. Two-dimensional electrophoresis resolved more than 200 protein spots in each spore preparation. About 72% of the protein spots were found in all the strains. 18 of these conserved proteins reacted against anti-B. anthracis spore rabbit immune sera, two of which (alanine racemase, Dal-1 and the methionine transporter, MetN) overlapped the set of proteins identified using the in silico screen. A conserved repeat domain protein (Crd) was the most immunoreactive protein found broadly across B. cereus sensu lato strains. We have established an approach for finding conserved targets across a species using population genomics and proteomics. The results of these screens suggest the possibility of a multiepitope antigen for broad host range diagnostics or therapeutics against Bacillus spore infection.
Collapse
Affiliation(s)
- Sanghamitra Mukhopadhyay
- Biological Defense Research Directorate, Naval Medical Research Center, Rockville, Maryland 20852, USA
| | | | | | | | | |
Collapse
|
19
|
Langer M, Malykhin A, Maeda K, Chakrabarty K, Williamson KS, Feasley CL, West CM, Metcalf JP, Coggeshall KM. Bacillus anthracis peptidoglycan stimulates an inflammatory response in monocytes through the p38 mitogen-activated protein kinase pathway. PLoS One 2008; 3:e3706. [PMID: 19002259 PMCID: PMC2577892 DOI: 10.1371/journal.pone.0003706] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Accepted: 10/18/2008] [Indexed: 12/13/2022] Open
Abstract
We hypothesized that the peptidoglycan component of B. anthracis may play a critical role in morbidity and mortality associated with inhalation anthrax. To explore this issue, we purified the peptidoglycan component of the bacterial cell wall and studied the response of human peripheral blood cells. The purified B. anthracis peptidoglycan was free of non-covalently bound protein but contained a complex set of amino acids probably arising from the stem peptide. The peptidoglycan contained a polysaccharide that was removed by mild acid treatment, and the biological activity remained with the peptidoglycan and not the polysaccharide. The biological activity of the peptidoglycan was sensitive to lysozyme but not other hydrolytic enzymes, showing that the activity resides in the peptidoglycan component and not bacterial DNA, RNA or protein. B. anthracis peptidoglycan stimulated monocytes to produce primarily TNFα; neutrophils and lymphocytes did not respond. Peptidoglycan stimulated monocyte p38 mitogen-activated protein kinase and p38 activity was required for TNFα production by the cells. We conclude that peptidoglycan in B. anthracis is biologically active, that it stimulates a proinflammatory response in monocytes, and uses the p38 kinase signal transduction pathway to do so. Given the high bacterial burden in pulmonary anthrax, these findings suggest that the inflammatory events associated with peptidoglycan may play an important role in anthrax pathogenesis.
Collapse
Affiliation(s)
- Marybeth Langer
- Immunobiology and Cancer Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Alexander Malykhin
- Immunobiology and Cancer Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Kenichiro Maeda
- Immunobiology and Cancer Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Kaushik Chakrabarty
- Pulmonary and Critical Care Division, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Kelly S. Williamson
- Free Radical Biology & Aging Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Christa L. Feasley
- Oklahoma Center for Medical Glycobiology, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Christopher M. West
- Oklahoma Center for Medical Glycobiology, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Jordan P. Metcalf
- Pulmonary and Critical Care Division, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - K. Mark Coggeshall
- Immunobiology and Cancer Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
- * E-mail: .
| |
Collapse
|
20
|
Maresso AW, Garufi G, Schneewind O. Bacillus anthracis secretes proteins that mediate heme acquisition from hemoglobin. PLoS Pathog 2008; 4:e1000132. [PMID: 18725935 PMCID: PMC2515342 DOI: 10.1371/journal.ppat.1000132] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Accepted: 07/22/2008] [Indexed: 01/10/2023] Open
Abstract
Acquisition of iron is necessary for the replication of nearly all bacterial pathogens; however, iron of vertebrate hosts is mostly sequestered by heme and bound to hemoglobin within red blood cells. In Bacillus anthracis, the spore-forming agent of anthrax, the mechanisms of iron scavenging from hemoglobin are unknown. We report here that B. anthracis secretes IsdX1 and IsdX2, two NEAT domain proteins, to remove heme from hemoglobin, thereby retrieving iron for bacterial growth. Unlike other Gram-positive bacteria, which rely on cell wall anchored Isd proteins for heme scavenging, B. anthracis seems to have also evolved NEAT domain proteins in the extracellular milieu and in the bacterial envelope to provide for the passage of heme.
Collapse
Affiliation(s)
- Anthony W. Maresso
- Department of Microbiology, University of Chicago, Chicago, Illinois, United States of America
| | - Gabriella Garufi
- Department of Microbiology, University of Chicago, Chicago, Illinois, United States of America
| | - Olaf Schneewind
- Department of Microbiology, University of Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
21
|
Loving CL, Kennett M, Lee GM, Grippe VK, Merkel TJ. Murine aerosol challenge model of anthrax. Infect Immun 2007; 75:2689-98. [PMID: 17353290 PMCID: PMC1932896 DOI: 10.1128/iai.01875-06] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The availability of relevant and useful animal models is critical for progress in the development of effective vaccines and therapeutics. The infection of rabbits and non-human primates with fully virulent Bacillus anthracis spores provides two excellent models of anthrax disease. However, the high cost of procuring and housing these animals and the specialized facilities required to deliver fully virulent spores limit their practical use in early stages of product development. Conversely, the small size and low cost associated with using mice makes this animal model more practical for conducting experiments in which large numbers of animals are required. In addition, the availability of knockout strains and well-characterized immunological reagents makes it possible to perform studies in mice that cannot be performed easily in other species. Although we, along with others, have used the mouse aerosol challenge model to examine the outcome of B. anthracis infection, a detailed characterization of the disease is lacking. The current study utilizes a murine aerosol challenge model to investigate disease progression, innate cytokine responses, and histological changes during the course of anthrax after challenge with aerosolized spores. Our results show that anthrax disease progression in a complement-deficient mouse after challenge with aerosolized Sterne spores is similar to that described for other species, including rabbits and non-human primates, challenged with fully virulent B. anthracis. Thus, the murine aerosol challenge model is both useful and relevant and provides a means to further investigate the host response and mechanisms of B. anthracis pathogenesis.
Collapse
Affiliation(s)
- Crystal L Loving
- Laboratory of Respiratory and Special Pathogens, DBPAP/CBER/FDA, Building 29, Room 418, 29 Lincoln Drive, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
22
|
Ulett GC, Adderson EE. Regulation of Apoptosis by Gram-Positive Bacteria: Mechanistic Diversity and Consequences for Immunity. ACTA ACUST UNITED AC 2006; 2:119-141. [PMID: 19081777 DOI: 10.2174/157339506776843033] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Apoptosis, or programmed cell death (PCD), is an important physiological mechanism, through which the human immune system regulates homeostasis and responds to diverse forms of cellular damage. PCD may also be involved in immune counteraction to microbial infection. Over the past decade, the amount of research on bacteria-induced PCD has grown tremendously, and the implications of this mechanism on immunity are being elucidated. Some pathogenic bacteria actively trigger the suicide response in critical lineages of leukocytes that orchestrate both the innate and adaptive immune responses; other bacteria proactively prevent PCD to benefit their own survival and persistence. Currently, the microbial virulence factors, which represent the keys to unlocking the suicide response in host cells, are a primary focus of this field. In this review, we discuss these bacterial "apoptosis regulatory molecules" and the apoptotic events they either trigger or prevent, the host target cells of this regulatory activity, and the possible ramifications for immunity to infection. Gram-positive pathogens including Staphylococcus, Streptococcus, Bacillus, Listeria, and Clostridia species are discussed as important agents of human infection that modulate PCD pathways in eukaryotic cells.
Collapse
Affiliation(s)
- Glen C Ulett
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105-2794, USA
| | | |
Collapse
|
23
|
Gohar M, Gilois N, Graveline R, Garreau C, Sanchis V, Lereclus D. A comparative study ofBacillus cereus,Bacillus thuringiensis andBacillus anthracis extracellular proteomes. Proteomics 2005; 5:3696-711. [PMID: 16167365 DOI: 10.1002/pmic.200401225] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bacillus cereus, Bacillus thuringiensis and Bacillus anthracis are closely related species that share a similar genetic background but occupy different ecological niches. Virulence plasmids bearing genes coding for toxins, may explain, at least partly, this specialization. We have compared by 2-DE in the early stationary phase of growth the extracellular proteomes of three strains of these species that have lost their virulence plasmids. Proteins expected to be secreted or to belong to the cell wall or to the cytosol were found in the three proteomes. For the cell wall and cytosolic proteins located in the extracellular space, the three proteomes were similar. Cytosolic proteins included enolase, GroEL, PdhB, PdhD, SodA and others. Cell surface proteins were mainly autolysins, proteases, nucleotidases and OppAs. In contrast, the secreted proteins profiles of B. cereus and B. thuringiensis were quite different from that of B. anthracis. B. cereus and B. thuringiensis extracellular proteomes both contained large amounts of secreted degradative enzymes and toxins, including nine proteases, three phospholipases, two haemolysins and several enterotoxins. Most of the genes encoding these enzymes and toxins are controlled by the transcriptional activator PlcR. The extracellular proteome of the pXO1-, pXO2- B. anthracis 9131 strain contained only one secreted protein: the metalloprotease InhA1, also found in the proteomes of the two other strains and possibly involved in antibacterial peptide degradation.
Collapse
Affiliation(s)
- Michel Gohar
- INRA, Génétique microbienne et Environnement, La Minière, Guyancourt, France.
| | | | | | | | | | | |
Collapse
|
24
|
|
25
|
Pickering AK, Osorio M, Lee GM, Grippe VK, Bray M, Merkel TJ. Cytokine response to infection with Bacillus anthracis spores. Infect Immun 2004; 72:6382-9. [PMID: 15501768 PMCID: PMC523056 DOI: 10.1128/iai.72.11.6382-6389.2004] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus anthracis, the etiological agent of anthrax, is a gram-positive, spore-forming bacterium. The inhalational form of anthrax is the most severe and is associated with rapid progression of the disease and the outcome is frequently fatal. Transfer from the respiratory epithelium to regional lymph nodes appears to be an essential early step in the establishment of infection. This transfer is believed to occur by means of carriage within alveolar macrophages following phagocytosis. Therefore, the ability of B. anthracis to transit through the host macrophage or dendritic cell appears to be an early and critical step in B. anthracis pathogenesis. In this work, we examined the cytokine responses to spore infection in mouse primary peritoneal macrophages, in primary human dendritic cells, and during a spore aerosol infection model utilizing the susceptible A/J mouse strain. We demonstrated that both mouse peritoneal macrophages and human dendritic cells exhibited significant intracellular bactericidal activity during the first hours following uptake, providing the necessary time to mount a cytokine response prior to cell lysis. Strong tumor necrosis factor (TNF-alpha) and interleukin-6 (IL-6) responses were seen in mouse peritoneal macrophages. In addition to TNF-alpha and IL-6, human dendritic cells produced the cytokines IL-1beta, IL-8, and IL-12. A mixture of Th1 and Th2 cytokines were detected in sera obtained from infected animals. In this study, we provide further evidence of an acute cytokine response when cells in culture and mice are infected with B. anthracis spores.
Collapse
Affiliation(s)
- Alison K Pickering
- Laboratory of Respiratory and Special Pathogens, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
26
|
Pickering AK, Merkel TJ. Macrophages release tumor necrosis factor alpha and interleukin-12 in response to intracellular Bacillus anthracis spores. Infect Immun 2004; 72:3069-72. [PMID: 15102824 PMCID: PMC387889 DOI: 10.1128/iai.72.5.3069-3072.2004] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herein we report that infection of a murine macrophage cell line with Bacillus anthracis results in the production of tumor necrosis factor alpha and interleukin-12 (IL-12). When infected with B. anthracis spores in combination with lipopolysaccharide, macrophages release increased amounts of IL-12. We found no evidence of inhibition of cytokine responses in macrophages infected with B. anthracis spores.
Collapse
Affiliation(s)
- Alison K Pickering
- Laboratory of Respiratory and Special Pathogens, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
27
|
Ariel N, Zvi A, Makarova KS, Chitlaru T, Elhanany E, Velan B, Cohen S, Friedlander AM, Shafferman A. Genome-based bioinformatic selection of chromosomal Bacillus anthracis putative vaccine candidates coupled with proteomic identification of surface-associated antigens. Infect Immun 2003; 71:4563-79. [PMID: 12874336 PMCID: PMC165985 DOI: 10.1128/iai.71.8.4563-4579.2003] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus anthracis (Ames strain) chromosome-derived open reading frames (ORFs), predicted to code for surface exposed or virulence related proteins, were selected as B. anthracis-specific vaccine candidates by a multistep computational screen of the entire draft chromosome sequence (February 2001 version, 460 contigs, The Institute for Genomic Research, Rockville, Md.). The selection procedure combined preliminary annotation (sequence similarity searches and domain assignments), prediction of cellular localization, taxonomical and functional screen and additional filtering criteria (size, number of paralogs). The reductive strategy, combined with manual curation, resulted in selection of 240 candidate ORFs encoding proteins with putative known function, as well as 280 proteins of unknown function. Proteomic analysis of two-dimensional gels of a B. anthracis membrane fraction, verified the expression of some gene products. Matrix-assisted laser desorption ionization-time-of-flight mass spectrometry analyses allowed identification of 38 spots cross-reacting with sera from B. anthracis immunized animals. These spots were found to represent eight in vivo immunogens, comprising of EA1, Sap, and 6 proteins whose expression and immunogenicity was not reported before. Five of these 8 immunogens were preselected by the bioinformatic analysis (EA1, Sap, 2 novel SLH proteins and peroxiredoxin/AhpC), as vaccine candidates. This study demonstrates that a combination of the bioinformatic and proteomic strategies may be useful in promoting the development of next generation anthrax vaccine.
Collapse
Affiliation(s)
- N Ariel
- Israel Institute for Biological Research, Ness Ziona 74100, Israel.
| | | | | | | | | | | | | | | | | |
Collapse
|