1
|
Zhang RG, Liu XJ, Guo YL, Chen CL. SARS-CoV-2 spike protein receptor binding domain promotes IL-6 and IL-8 release via ATP/P2Y 2 and ERK1/2 signaling pathways in human bronchial epithelia. Mol Immunol 2024; 167:53-61. [PMID: 38359646 DOI: 10.1016/j.molimm.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 02/17/2024]
Abstract
The spike protein of SARS-CoV-2 as well as its receptor binding domain (RBD) has been demonstrated to be capable of activating the release of pro-inflammatory mediators in endothelial cells and immune cells such as monocytes. However, the effects of spike protein or its RBD on airway epithelial cells and mechanisms underlying these effects have not been adequately characterized. Here, we show that the RBD of spike protein alone can induce bronchial epithelial inflammation in a manner of ATP/P2Y2 dependence. Incubation of human bronchial epithelia with RBD induced IL-6 and IL-8 release, which could be inhibited by antibody. The incubation of RBD also up-regulated the expression of inflammatory indicators such as ho-1 and mkp-1. Furthermore, ATP secretion was observed after RBD treatment, P2Y2 receptor knock down by siRNA significantly suppressed the IL-6 and IL-8 release evoked by RBD. Additionally, S-RBD elevated the phosphorylation level of ERK1/2, and the effect that PD98059 can inhibit the pro-inflammatory cytokine release suggested the participation of ERK1/2. These novel findings provide new evidence of SARS-CoV-2 on airway inflammation and introduce purinergic signaling as promising treatment target.
Collapse
Affiliation(s)
- Rui-Gang Zhang
- Department of Physiology, Basic Medical School, Guangdong Medical University, Zhanjiang, China.
| | - Xing-Jian Liu
- Department of Physiology, Basic Medical School, Guangdong Medical University, Zhanjiang, China
| | - Yu-Ling Guo
- First Clinical School, Guangdong Medical University, Zhanjiang, China
| | - Chun-Ling Chen
- Department of Physiology, Basic Medical School, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
2
|
Goriounova AS, Gilmore RC, Wrennall JA, Tarran R. Super resolution microscopy analysis reveals increased Orai1 activity in asthma and cystic fibrosis lungs. J Cyst Fibros 2023; 22:161-171. [PMID: 35961837 PMCID: PMC9982747 DOI: 10.1016/j.jcf.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 11/28/2022]
Abstract
QUESTION In diseases such as asthma and cystic fibrosis (CF), the immune response is dysregulated and the lung is chronically inflamed. Orai1 activation is required for the initiation and persistence of inflammation. However, Orai1 expression in the lung is poorly understood. We therefore tested the hypothesis that Orai1 expression was upregulated in asthmatic and CF lungs. MATERIALS AND METHODS We used LungMAP to analyze single-cell RNAseq data of Orai1 and stromal interaction molecule 1 (STIM1) expression in normal human lungs. We then performed RNAscope analysis and immunostaining on lung sections from normal, asthma, and CF donors. We imaged sections by confocal and super resolution microscopy, and analyzed Orai1 and STIM1 expression in different pulmonary cell types. RESULTS Orai1 was broadly-expressed, but expression was greatest in immune cells. At mRNA and protein levels, there were no consistent trends in expression levels between the three phenotypes. Orai1 must interact with STIM1 in order to activate and conduct Ca2+. We therefore used STIM1/Orai1 co-localization as a marker of Orai1 activity. Using this approach, we found significantly increased co-localization between these proteins in epithelia, interstitial and luminal immune cells, but not alveoli, from asthma and CF lungs. Orai1 also aggregates as part of its activation process. Using super resolution microscopy, we also found significantly increased Orai1 aggregation in immune cells from asthmatic and CF lungs. CONCLUSION We found evidence that Orai1 was more active in asthma and CF than normal lungs. These data suggest that Orai1 is a relevant target for reducing pulmonary inflammation.
Collapse
Affiliation(s)
| | | | - Joe A Wrennall
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, NC, 27599, USA
| | - Robert Tarran
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, NC, 27599, USA.
| |
Collapse
|
3
|
Luettich K, Sharma M, Yepiskoposyan H, Breheny D, Lowe FJ. An Adverse Outcome Pathway for Decreased Lung Function Focusing on Mechanisms of Impaired Mucociliary Clearance Following Inhalation Exposure. FRONTIERS IN TOXICOLOGY 2022; 3:750254. [PMID: 35295103 PMCID: PMC8915806 DOI: 10.3389/ftox.2021.750254] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/11/2021] [Indexed: 01/23/2023] Open
Abstract
Adverse outcome pathways (AOPs) help to organize available mechanistic information related to an adverse outcome into key events (KEs) spanning all organizational levels of a biological system(s). AOPs, therefore, aid in the biological understanding of a particular pathogenesis and also help with linking exposures to eventual toxic effects. In the regulatory context, knowledge of disease mechanisms can help design testing strategies using in vitro methods that can measure or predict KEs relevant to the biological effect of interest. The AOP described here evaluates the major processes known to be involved in regulating efficient mucociliary clearance (MCC) following exposures causing oxidative stress. MCC is a key aspect of the innate immune defense against airborne pathogens and inhaled chemicals and is governed by the concerted action of its functional components, the cilia and airway surface liquid (ASL). The AOP network described here consists of sequences of KEs that culminate in the modulation of ciliary beat frequency and ASL height as well as mucus viscosity and hence, impairment of MCC, which in turn leads to decreased lung function.
Collapse
Affiliation(s)
- Karsta Luettich
- Philip Morris International R&D, Philip Morris Products S.A., Neuchatel, Switzerland
| | - Monita Sharma
- PETA Science Consortium International e.V., Stuttgart, Germany
| | - Hasmik Yepiskoposyan
- Philip Morris International R&D, Philip Morris Products S.A., Neuchatel, Switzerland
| | - Damien Breheny
- British American Tobacco (Investments) Ltd., Group Research and Development, Southampton, United Kingdom
| | - Frazer J Lowe
- Broughton Nicotine Services, Earby, Lancashire, United Kingdom
| |
Collapse
|
4
|
Abdel Hameid R, Cormet-Boyaka E, Kuebler WM, Uddin M, Berdiev BK. SARS-CoV-2 may hijack GPCR signaling pathways to dysregulate lung ion and fluid transport. Am J Physiol Lung Cell Mol Physiol 2021; 320:L430-L435. [PMID: 33434105 PMCID: PMC7938641 DOI: 10.1152/ajplung.00499.2020] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The tropism of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a virus responsible for the ongoing coronavirus disease 2019 (COVID-19) pandemic, toward the host cells is determined, at least in part, by the expression and distribution of its cell surface receptor, angiotensin-converting enzyme 2 (ACE2). The virus further exploits the host cellular machinery to gain access into the cells; its spike protein is cleaved by a host cell surface transmembrane serine protease 2 (TMPRSS2) shortly after binding ACE2, followed by its proteolytic activation at a furin cleavage site. The virus primarily targets the epithelium of the respiratory tract, which is covered by a tightly regulated airway surface liquid (ASL) layer that serves as a primary defense mechanism against respiratory pathogens. The volume and viscosity of this fluid layer is regulated and maintained by a coordinated function of different transport pathways in the respiratory epithelium. We argue that SARS-CoV-2 may potentially alter evolutionary conserved second-messenger signaling cascades via activation of G protein-coupled receptors (GPCRs) or by directly modulating G protein signaling. Such signaling may in turn adversely modulate transepithelial transport processes, especially those involving cystic fibrosis transmembrane conductance regulator (CFTR) and epithelial Na+ channel (ENaC), thereby shifting the delicate balance between anion secretion and sodium absorption, which controls homeostasis of this fluid layer. As a result, activation of the secretory pathways including CFTR-mediated Cl− transport may overwhelm the absorptive pathways, such as ENaC-dependent Na+ uptake, and initiate a pathophysiological cascade leading to lung edema, one of the most serious and potentially deadly clinical manifestations of COVID-19.
Collapse
Affiliation(s)
- Reem Abdel Hameid
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | | | - Wolfgang M Kuebler
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Mohammed Uddin
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates.,The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Bakhrom K Berdiev
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| |
Collapse
|
5
|
Tan JJ, Boudreault F, Adam D, Brochiero E, Grygorczyk R. Type 2 secretory cells are primary source of ATP release in mechanically stretched lung alveolar cells. Am J Physiol Lung Cell Mol Physiol 2019; 318:L49-L58. [PMID: 31596106 DOI: 10.1152/ajplung.00321.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Extracellular ATP and its metabolites are potent paracrine modulators of lung alveolar cell function, including surfactant secretion and fluid transport, but the sources and mechanism of intra-alveolar ATP release remain unclear. To determine the contribution of gas-exchanging alveolar type 1 (AT1) and surfactant-secreting type 2 (AT2) cells to stretch-induced ATP release, we used quantitative real-time luminescence ATP imaging and rat primary alveolar cells cultured on silicon substrate for 2-7 days. When cultured on solid support, primary AT2 cells progressively transdifferentiated into AT1-like cells with ~20% of cells showing AT1 phenotype by day 2-3 (AT2:AT1 ≈ 4:1), while on day 7, the AT2:AT1 cell ratio was reversed with up to 80% of the cells displaying characteristics of AT1 cells. Stretch (1 s, 5-35%) induced ATP release from AT2/AT1 cell cultures, and it was highest on days 2 and 3 but declined in older cultures. ATP release tightly correlated with the number of remaining AT2 cells in culture, consistent with ~10-fold lower ATP release by AT1 than AT2 cells. ATP release was unaffected by inhibitors of putative ATP channels carbenoxolone and probenecid but was significantly diminished in cells loaded with calcium chelator BAPTA. These pharmacological modulators had similar effects on stretch-induced intracellular Ca2+ responses measured by Fura2 fluorescence. The study revealed that AT2 cells are the primary source of stretch-induced ATP release in heterocellular AT2/AT1 cell cultures, suggesting similar contribution in intact alveoli. Our results support a role for calcium-regulated mechanism but not ATP-conducting channels in ATP release by alveolar epithelial cells.
Collapse
Affiliation(s)
- Ju Jing Tan
- Centre de recherche du Centre hospitalier de l'Université de Montréal, Montreal, Quebec, Canada.,Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Francis Boudreault
- Centre de recherche du Centre hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Damien Adam
- Centre de recherche du Centre hospitalier de l'Université de Montréal, Montreal, Quebec, Canada.,Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Emmanuelle Brochiero
- Centre de recherche du Centre hospitalier de l'Université de Montréal, Montreal, Quebec, Canada.,Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Ryszard Grygorczyk
- Centre de recherche du Centre hospitalier de l'Université de Montréal, Montreal, Quebec, Canada.,Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
6
|
Marklew AJ, Patel W, Moore PJ, Tan CD, Smith AJ, Sassano MF, Gray MA, Tarran R. Cigarette Smoke Exposure Induces Retrograde Trafficking of CFTR to the Endoplasmic Reticulum. Sci Rep 2019; 9:13655. [PMID: 31541117 PMCID: PMC6754399 DOI: 10.1038/s41598-019-49544-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 08/12/2019] [Indexed: 12/16/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD), which is most commonly caused by cigarette smoke (CS) exposure, is the third leading cause of death worldwide. The cystic fibrosis transmembrane conductance regulator (CFTR) is an apical membrane anion channel that is widely expressed in epithelia throughout the body. In the airways, CFTR plays an important role in fluid homeostasis and helps flush mucus and inhaled pathogens/toxicants out of the lung. Inhibition of CFTR leads to mucus stasis and severe airway disease. CS exposure also inhibits CFTR, leading to the decreased anion secretion/hydration seen in COPD patients. However, the underlying mechanism is poorly understood. Here, we report that CS causes CFTR to be internalized in a clathrin/dynamin-dependent fashion. This internalization is followed by retrograde trafficking of CFTR to the endoplasmic reticulum. Although this internalization pathway has been described for bacterial toxins and cargo machinery, it has never been reported for mammalian ion channels. Furthermore, the rapid internalization of CFTR is dependent on CFTR dephosphorylation by calcineurin, a protein phosphatase that is upregulated by CS. These results provide new insights into the mechanism of CFTR internalization, and may help in the development of new therapies for CFTR correction and lung rehydration in patients with debilitating airway diseases such as COPD.
Collapse
Affiliation(s)
- Abigail J Marklew
- Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, USA
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle-upon-Tyne, UK
| | - Waseema Patel
- Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, USA
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle-upon-Tyne, UK
| | - Patrick J Moore
- Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Chong D Tan
- Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Amanda J Smith
- Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, USA
- Department of Cell Biology & Physiology, University of North Carolina, Chapel Hill, NC, USA
| | - M Flori Sassano
- Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Michael A Gray
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle-upon-Tyne, UK
| | - Robert Tarran
- Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, USA.
- Department of Cell Biology & Physiology, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
7
|
Potential contribution of alveolar epithelial type I cells to pulmonary fibrosis. Biosci Rep 2017; 37:BSR20171301. [PMID: 29026006 PMCID: PMC5696455 DOI: 10.1042/bsr20171301] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 09/28/2017] [Accepted: 09/29/2017] [Indexed: 12/13/2022] Open
Abstract
Pulmonary fibrosis (PF) is characterized by inflammation and fibrosis of the interstitium and destruction of alveolar histoarchitecture ultimately leading to a fatal impairment of lung function. Different concepts describe either a dominant role of inflammatory pathways or a disturbed remodeling of resident cells of the lung parenchyma during fibrogenesis. Further, a combination of both the mechanisms has been postulated. The present review emphasizes the particular involvement of alveolar epithelial type I cells in all these processes, their contribution to innate immune/inflammatory functions and maintenance of proper alveolar barrier functions. Amongst the different inflammatory and repair events the purinergic receptor P2X7, an ATP-gated cationic channel that regulates not only apoptosis, necrosis, autophagy, and NLPR3 inflammosome activation, but also the turnover of diverse tight junction (TJ) and water channel proteins, seems to be essential for the stability of alveolar barrier integrity and for the interaction with protective factors during lung injury.
Collapse
|
8
|
Sassano MF, Ghosh A, Tarran R. Tobacco Smoke Constituents Trigger Cytoplasmic Calcium Release. ACTA ACUST UNITED AC 2017; 3:193-198. [PMID: 28620626 DOI: 10.1089/aivt.2016.0039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cytosolic Ca2+ is a universal second messenger that is involved in many processes throughout the body, including the regulation of cell growth/cell division, apoptosis, and the secretion of both ions, and macromolecules. Tobacco smoke exerts multiple effects on airway epithelia and we have previously shown that Kentucky reference cigarette smoke exposure elevated the second messenger Ca2+, leading to dysfunctional ion secretion. In this study, we tested whether little cigar and commercial cigarette smoke exposure exerts similar effects on intracellular Ca2+ levels. Indeed, Swisher Sweets, Captain Black, and Cheyenne little cigars, as well as Camel, Marlboro, and Newport cigarettes, triggered a comparable increase in intracellular Ca2+ as seen with Kentucky reference cigarettes in human bronchial epithelia. We also found that Kentucky reference cigarette smoke exposure caused increases in Ca2+ in HEK293T cells and that similar increases in Ca2+ were seen with the tobacco smoke metabolites 1-NH2-naphthalene, formaldehyde, nicotine, and nicotine-derived nitrosamine ketone. Given the large number of physiological processes governed by changes in cytosolic Ca2+, our data suggest that Ca2+ signaling is a useful and reproducible assay that can be used to probe the propensity of tobacco products and their constituents to cause toxicity.
Collapse
Affiliation(s)
- M Flori Sassano
- Marsico Lung Institute, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Arunava Ghosh
- Marsico Lung Institute, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Robert Tarran
- Marsico Lung Institute, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
9
|
Lee HJ, Lee CJ. Effects of Homogentisic Acid and Natural Products Derived from Pinellia ternata on Secretion, Production and Gene Expression of MUC5AC Mucin from Cultured Airway Epithelial Cells. ACTA ACUST UNITED AC 2017. [DOI: 10.20307/nps.2017.23.1.29] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hyun Jae Lee
- Department of Health Management and Smith Liberal Arts College, Sahmyook University, Seoul, Korea
| | - Choong Jae Lee
- Department of Pharmacology, School of Medicine, Chungnam National University, Daejeon, Korea
| |
Collapse
|
10
|
Vasquez PA, Jin Y, Palmer E, Hill D, Forest MG. Modeling and Simulation of Mucus Flow in Human Bronchial Epithelial Cell Cultures - Part I: Idealized Axisymmetric Swirling Flow. PLoS Comput Biol 2016; 12:e1004872. [PMID: 27494700 PMCID: PMC4975472 DOI: 10.1371/journal.pcbi.1004872] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 03/15/2016] [Indexed: 01/26/2023] Open
Abstract
A multi-mode nonlinear constitutive model for mucus is constructed directly from micro- and macro-rheology experimental data on cell culture mucus, and a numerical algorithm is developed for the culture geometry and idealized cilia driving conditions. This study investigates the roles that mucus rheology, wall effects, and HBE culture geometry play in the development of flow profiles and the shape of the air-mucus interface. Simulations show that viscoelasticity captures normal stress generation in shear leading to a peak in the air-mucus interface at the middle of the culture and a depression at the walls. Linear and nonlinear viscoelastic regimes can be observed in cultures by varying the hurricane radius and mean rotational velocity. The advection-diffusion of a drug concentration dropped at the surface of the mucus flow is simulated as a function of Peclet number. In the lungs, the airway surface liquid protects the airway epithelium from inhaled pathogens and particulates. It is well known that failure to properly clear mucus from the airways leads to chronic, even fatal, lung infections. To date, there is no validated constitutive model capable of recapitulating mucus rheology under diverse, physiological stress and deformation conditions. This gap has hindered studies into the causal relationship between mucus rheology and mucociliary clearance. Our modeling-experimental approach fulfills several purposes: to implement linear and nonlinear constitutive modeling of mucus from micro- and macro-rheology, to test constitutive modeling in an independent experimental system, to build a coarse-grained model of the PCL-mucus boundary condition, to measure and understand modifications in mucociliary transport during and after deposition of a controlled drug concentration, to measure and simulate both the flow and stress fields throughout the mucus layer, and to measure and simulate how the advection profiles in the culture couple with diffusion of particulates landing on the air-mucus interface. These results lay the groundwork for extension of the code to three dimensions and more realistic metachronal wave boundary conditions, both in cell cultures and in airways.
Collapse
Affiliation(s)
- Paula A. Vasquez
- Department of Mathematics, University of South Carolina, Columbia, South Carolina, United States of America
| | - Yuan Jin
- Department of Mathematics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Erik Palmer
- Department of Mathematics, University of South Carolina, Columbia, South Carolina, United States of America
| | - David Hill
- Marsico Lung Institute & Cystic Fibrosis Pulmonary Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - M. Gregory Forest
- Department of Mathematics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
11
|
Flores-Delgado G, Lytle C, Quinton PM. Site of Fluid Secretion in Small Airways. Am J Respir Cell Mol Biol 2016; 54:312-8. [PMID: 26562629 DOI: 10.1165/rcmb.2015-0238rc] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The secretion and management of readily transportable airway surface liquid (ASL) along the respiratory tract is crucial for the clearance of debris and pathogens from the lungs. In proximal large airways, submucosal glands (SMGs) can produce ASL. However, in distal small airways, SMGs are absent, although the lumens of these airways are, uniquely, highly plicated. Little is known about the production and maintenance of ASL in small airways, but using electrophysiology, we recently found that native porcine small airways simultaneously secrete and absorb. How these airways can concurrently transport ASL in opposite directions is puzzling. Using high expression of the Na-K-2Cl cotransport (NKCC) 1 protein (SLC12a2) as a phenotypic marker for fluid secretory cells, immunofluorescence microscopy of porcine small airways revealed two morphologically separated sets of luminal epithelial cells. NKCC1 was abundantly expressed by most cells in the contraluminal regions of the pleats but highly expressed very infrequently by cells in the luminal folds of the epithelial plications. In larger proximal airways, the acini of SMGs expressed NKCC1 prominently, but cells expressing NKCC1 in the surface epithelium were sparse. Our findings indicate that, in the small airway, cells in the pleats of the epithelium secrete ASL, whereas, in the larger proximal airways, SMGs mainly secrete ASL. We propose a mechanism in which the locations of secretory cells in the base of pleats and of absorptive cells in luminal folds physically help maintain a constant volume of ASL in small airways.
Collapse
Affiliation(s)
- Guillermo Flores-Delgado
- 1 Department of Pediatrics, School of Medicine, University of California-San Diego, La Jolla, California; and
| | - Christian Lytle
- 2 Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California
| | - Paul M Quinton
- 1 Department of Pediatrics, School of Medicine, University of California-San Diego, La Jolla, California; and.,2 Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California
| |
Collapse
|
12
|
Krick S, Wang J, St-Pierre M, Gonzalez C, Dahl G, Salathe M. Dual Oxidase 2 (Duox2) Regulates Pannexin 1-mediated ATP Release in Primary Human Airway Epithelial Cells via Changes in Intracellular pH and Not H2O2 Production. J Biol Chem 2016; 291:6423-32. [PMID: 26823467 DOI: 10.1074/jbc.m115.664854] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Indexed: 11/06/2022] Open
Abstract
Human airway epithelial cells express pannexin 1 (Panx1) channels to release ATP, which regulates mucociliary clearance. Airway inflammation causes mucociliary dysfunction. Exposure of primary human airway epithelial cell cultures to IFN-γ for 48 h did not alter Panx1 protein expression but significantly decreased ATP release in response to hypotonic stress. The IFN-γ-induced functional down-regulation of Panx1 was due to the up-regulation of dual oxidase 2 (Duox2). Duox2 suppression by siRNA led to an increase in ATP release in control cells and restoration of ATP release in cells treated with IFN-γ. Both effects were reduced by the pannexin inhibitor probenecid. Duox2 up-regulation stoichiometrically increases H2O2 and proton production. H2O2 inhibited Panx1 function temporarily by formation of disulfide bonds at the thiol group of its terminal cysteine. Long-term exposure to H2O2, however, had no inhibitory effect. To assess the role of cellular acidification upon IFN-γ treatment, fully differentiated airway epithelial cells were exposed to ammonium chloride to alkalinize the cytosol. This led to a 2-fold increase in ATP release in cells treated with IFN-γ that was also inhibited by probenecid. Duox2 knockdown also partially corrected IFN-γ-mediated acidification. The direct correlation between intracellular pH and Panx1 open probability was shown in oocytes. Therefore, airway epithelial cells release less ATP in response to hypotonic stress in an inflammatory environment (IFN-γ exposure). Decreased Panx1 function is a response to cell acidification mediated by IFN-γ-induced up-regulation of Duox2, representing a novel mechanism for mucociliary dysfunction in inflammatory airway diseases.
Collapse
Affiliation(s)
- Stefanie Krick
- From the Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine and
| | - Junjie Wang
- Department of Physiology and Biophysics, University of Miami, Miami, Florida 33136 and
| | - Melissa St-Pierre
- From the Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine and
| | - Carlos Gonzalez
- the Interdisciplinary Center for Neuroscience of Valparaíso, Universidad de Valparaíso, Valparaíso, 2362735, Chile
| | - Gerhard Dahl
- Department of Physiology and Biophysics, University of Miami, Miami, Florida 33136 and
| | - Matthias Salathe
- From the Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine and
| |
Collapse
|
13
|
Ghosh A, Boucher RC, Tarran R. Airway hydration and COPD. Cell Mol Life Sci 2015; 72:3637-52. [PMID: 26068443 PMCID: PMC4567929 DOI: 10.1007/s00018-015-1946-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 05/26/2015] [Accepted: 06/01/2015] [Indexed: 02/07/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is one of the prevalent causes of worldwide mortality and encompasses two major clinical phenotypes, i.e., chronic bronchitis (CB) and emphysema. The most common cause of COPD is chronic tobacco inhalation. Research focused on the chronic bronchitic phenotype of COPD has identified several pathological processes that drive disease initiation and progression. For example, the lung's mucociliary clearance (MCC) system performs the critical task of clearing inhaled pathogens and toxic materials from the lung. MCC efficiency is dependent on: (1) the ability of apical plasma membrane ion channels such as the cystic fibrosis transmembrane conductance regulator (CFTR) and the epithelial Na(+) channel (ENaC) to maintain airway hydration; (2) ciliary beating; and (3) appropriate rates of mucin secretion. Each of these components is impaired in CB and likely contributes to the mucus stasis/accumulation seen in CB patients. This review highlights the cellular components responsible for maintaining MCC and how this process is disrupted following tobacco exposure and with CB. We shall also discuss existing therapeutic strategies for the treatment of chronic bronchitis and how components of the MCC can be used as biomarkers for the evaluation of tobacco or tobacco-like-product exposure.
Collapse
Affiliation(s)
- Arunava Ghosh
- Cystic Fibrosis Center/Marsico Lung Institute and the Department of Cell Biology and Physiology, The University of North Carolina, 7102 Marsico Hall, Chapel Hill, NC, 27599-7248, USA
| | - R C Boucher
- Cystic Fibrosis Center/Marsico Lung Institute and the Department of Cell Biology and Physiology, The University of North Carolina, 7102 Marsico Hall, Chapel Hill, NC, 27599-7248, USA
| | - Robert Tarran
- Cystic Fibrosis Center/Marsico Lung Institute and the Department of Cell Biology and Physiology, The University of North Carolina, 7102 Marsico Hall, Chapel Hill, NC, 27599-7248, USA.
| |
Collapse
|
14
|
Choi HC, Kim CSK, Tarran R. Automated acquisition and analysis of airway surface liquid height by confocal microscopy. Am J Physiol Lung Cell Mol Physiol 2015; 309:L109-18. [PMID: 26001773 DOI: 10.1152/ajplung.00027.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 05/14/2015] [Indexed: 11/22/2022] Open
Abstract
The airway surface liquid (ASL) is a thin-liquid layer that lines the luminal side of airway epithelia. ASL contains many molecules that are involved in primary innate defense in the lung. Measurement of ASL height on primary airway cultures by confocal microscopy is a powerful tool that has enabled researchers to study ASL physiology and pharmacology. Previously, ASL image acquisition and analysis were performed manually. However, this process is time and labor intensive. To increase the throughput, we have developed an automatic ASL measurement technique that combines a fully automated confocal microscope with novel automatic image analysis software that was written with image processing techniques derived from the computer science field. We were able to acquire XZ ASL images at the rate of ∼ 1 image/s in a reproducible fashion. Our automatic analysis software was able to analyze images at the rate of ∼ 32 ms/image. As proofs of concept, we generated a time course for ASL absorption and a dose response in the presence of SPLUNC1, a known epithelial sodium channel inhibitor, on human bronchial epithelial cultures. Using this approach, we determined the IC50 for SPLUNC1 to be 6.53 μM. Furthermore, our technique successfully detected a difference in ASL height between normal and cystic fibrosis (CF) human bronchial epithelial cultures and detected changes in ATP-stimulated Cl(-)/ASL secretion. We conclude that our automatic ASL measurement technique can be applied for repeated ASL height measurements with high accuracy and consistency and increased throughput.
Collapse
Affiliation(s)
- Hyun-Chul Choi
- Department of Electronic Engineering, Yeungnam University, Kyungsan, Kyungbuk, South Korea; and
| | - Christine Seul Ki Kim
- Cystic Fibrosis Center/Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina
| | - Robert Tarran
- Cystic Fibrosis Center/Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
15
|
Effects of airway surface liquid height on the kinetics of extracellular nucleotides in airway epithelia. J Theor Biol 2014; 363:427-35. [PMID: 25159000 DOI: 10.1016/j.jtbi.2014.08.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 07/07/2014] [Accepted: 08/18/2014] [Indexed: 12/17/2022]
Abstract
Experimental techniques aimed at measuring the concentration of signaling molecules in the airway surface liquid (ASL) often require an unrealistically large ASL volume to facilitate sampling. This experimental limitation, prompted by the difficulty of pipetting liquid from a very shallow layer (~15 μm), leads to dilution and the under-prediction of physiologic concentrations of signaling molecules that are vital to the regulation of mucociliary clearance. Here, we use a computational model to describe the effect of liquid height on the kinetics of extracellular nucleotides in the airway surface liquid coating respiratory epithelia. The model consists of a reaction-diffusion equation with boundary conditions that represent the enzymatic reactions occurring on the epithelial surface. The simulations reproduce successfully the kinetics of extracellular ATP following hypotonic challenge for ASL volumes ranging from 25 μl to 500 μl in a 12-mm diameter cell culture. The model reveals that [ATP] and [ADO] reach 1200 nM and 2200 nM at the epithelial surface, respectively, while their volumetric averages remain less than 200 nM at all times in experiments with a large ASL volume (500 μl). These findings imply that activation of P2Y2 and A2B receptors is robust after hypotonic challenge, in contrast to what could be concluded based on experimental measurements of volumetric concentrations in large ASL volumes. Finally, given the central role that ATP and ADO play in regulating mucociliary clearance, we investigated which enzymes, when inhibited, provide the greatest increase in ATP and ADO concentrations. Our findings suggest that inhibition of NTPDase1/highTNAP would cause the greatest increase in [ATP] after hypotonic challenge, while inhibition of the transporter CNT3 would provide the greatest increase in [ADO].
Collapse
|
16
|
Weiterer S, Schulte D, Müller S, Kohlen T, Uhle F, Weigand MA, Henrich M. Tumor necrosis factor alpha induces a serotonin dependent early increase in ciliary beat frequency and epithelial transport velocity in murine tracheae. PLoS One 2014; 9:e91705. [PMID: 24626175 PMCID: PMC3953516 DOI: 10.1371/journal.pone.0091705] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 02/14/2014] [Indexed: 12/21/2022] Open
Abstract
The tracheal epithelium prevents via its highly effective clearance mechanism the contamination of the lower airways by pathogens. This mechanism is driven by ciliary bearing cells which are not only in contact with the gas phase; in addition they are also influenced by inflammatory mediators. These mediators can alter the protective function of the epithelium. Since the pro-inflammatoric cytokine tumor necrosis factor-α (TNF-α) plays a pivotal role within the inflammatory cascade, we investigated its effect onto the tracheal epithelium measured by its ciliary beat frequency and the particle transport velocity. In organ explant experiments the ciliary beat frequency and the particle transport velocity were measured under the application of TNF-α using tracheae from male C57BL6J mice. We observed a dose dependent TNF-α induced increase of both particle transport velocity and ciliary beat frequency. Knock out mice experiments made evident that the increase was depended on the expression of tumor necrosis factor receptor 1 (TNF-R1). The increases in ciliary beat frequency as well as the accelerated particle transport velocity were either inhibited by the unspecific serotonin antagonist methysergide or by cyproheptadine a specific 5-HT2 receptor antagonist. Thus, acetylcholine antagonists or nitric oxide synthase (NOS) inhibitors failed to inhibit the TNF-α induced activation. In conclusion, TNF-α may play a pivotal role in the protection of lower airways by inducing ciliary activity and increase in particle transport velocity via TNF-R1 and 5-HT2 receptor.
Collapse
Affiliation(s)
- Sebastian Weiterer
- Department of Anaesthesiology, Intensive Care Medicine, Pain Therapy, Justus-Liebig-University Giessen, Giessen, Germany
| | - Dagmar Schulte
- Department of Anaesthesiology, Intensive Care Medicine, Pain Therapy, Justus-Liebig-University Giessen, Giessen, Germany
| | - Sabrina Müller
- Department of Anaesthesiology, Intensive Care Medicine, Pain Therapy, Justus-Liebig-University Giessen, Giessen, Germany
| | - Thomas Kohlen
- Department of Anaesthesiology, Intensive Care Medicine, Pain Therapy, Justus-Liebig-University Giessen, Giessen, Germany
| | - Florian Uhle
- Department of Anaesthesiology, Intensive Care Medicine, Pain Therapy, Justus-Liebig-University Giessen, Giessen, Germany
| | - Markus A. Weigand
- Department of Anaesthesiology, Intensive Care Medicine, Pain Therapy, Justus-Liebig-University Giessen, Giessen, Germany
| | - Michael Henrich
- Department of Anaesthesiology, Intensive Care Medicine, Pain Therapy, Justus-Liebig-University Giessen, Giessen, Germany
- * E-mail:
| |
Collapse
|
17
|
Rasmussen JE, Sheridan JT, Polk W, Davies CM, Tarran R. Cigarette smoke-induced Ca2+ release leads to cystic fibrosis transmembrane conductance regulator (CFTR) dysfunction. J Biol Chem 2014; 289:7671-81. [PMID: 24448802 DOI: 10.1074/jbc.m113.545137] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chronic obstructive pulmonary disease affects 64 million people and is currently the fourth leading cause of death worldwide. Chronic obstructive pulmonary disease includes both emphysema and chronic bronchitis, and in the case of chronic bronchitis represents an inflammatory response of the airways that is associated with mucus hypersecretion and obstruction of small airways. Recently, it has emerged that exposure to cigarette smoke (CS) leads to an inhibition of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel, causing airway surface liquid dehydration, which may play a role in the development of chronic bronchitis. CS rapidly clears CFTR from the plasma membrane and causes it to be deposited into aggresome-like compartments. However, little is known about the mechanism(s) responsible for the internalization of CFTR following CS exposure. Our studies revealed that CS triggered a rise in cytoplasmic Ca(2+) that may have emanated from lysosomes. Furthermore, chelation of cytoplasmic Ca(2+), but not inhibition of protein kinases/phosphatases, prevented CS-induced CFTR internalization. The macrolide antibiotic bafilomycin A1 inhibited CS-induced Ca(2+) release and prevented CFTR clearance from the plasma membrane, further linking cytoplasmic Ca(2+) and CFTR internalization. We hypothesize that CS-induced Ca(2+) release prevents normal sorting/degradation of CFTR and causes internalized CFTR to reroute to aggresomes. Our data provide mechanistic insight into the potentially deleterious effects of CS on airway epithelia and outline a hitherto unrecognized signaling event triggered by CS that may affect the long term transition of the lung into a hyper-inflammatory/dehydrated environment.
Collapse
|
18
|
Button BM, Button B. Structure and function of the mucus clearance system of the lung. Cold Spring Harb Perspect Med 2013; 3:a009720. [PMID: 23751214 PMCID: PMC3721269 DOI: 10.1101/cshperspect.a009720] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In cystic fibrosis (CF), a defect in ion transport results in thick and dehydrated airway mucus, which is difficult to clear, making such patients prone to chronic inflammation and bacterial infections. Physiotherapy using a variety of airway clearance techniques (ACTs) represents a key treatment regime by helping clear the airways of thickened, adhered, mucus and, thus, reducing the impact of lung infections and improving lung function. This article aims to bridge the gap between our understanding of the physiological effects of mechanical stresses elicited by ACTs on airway epithelia and the reported effectiveness of ACTs in CF patients. In the first part of this review, the effects of mechanical stress on airway epithelia are discussed in relation to changes in ion transport and stimulation in airway surface layer hydration. The second half is devoted to detailing the most commonly used ACTs to stimulate the removal of mucus from the airways of patients with CF.
Collapse
Affiliation(s)
- Brenda M Button
- Department of AIRmed, The Alfred Hospital, Monash University, Melbourne, Australia.
| | | |
Collapse
|
19
|
Tarran R, Sabater JR, Clarke TC, Tan CD, Davies CM, Liu J, Yeung A, Garland AL, Stutts MJ, Abraham WM, Phillips G, Baker WR, Wright CD, Wilbert S. Nonantibiotic macrolides prevent human neutrophil elastase-induced mucus stasis and airway surface liquid volume depletion. Am J Physiol Lung Cell Mol Physiol 2013; 304:L746-56. [PMID: 23542952 DOI: 10.1152/ajplung.00292.2012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mucus clearance is an important component of the lung's innate defense system. A failure of this system brought on by mucus dehydration is common to both cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD). Mucus clearance rates are regulated by the volume of airway surface liquid (ASL) and by ciliary beat frequency (CBF). Chronic treatment with macrolide antibiotics is known to be beneficial to both CF and COPD patients. However, chronic macrolide usage may induce bacterial resistance. We have developed a novel macrolide, 2'-desoxy-9-(S)-erythromycylamine (GS-459755), that has significantly diminished antibiotic activity against Staphylococcus aureus, Streptococcus pneumonia, Moraxella catarrhalis, and Haemophilus influenzae. Since neutrophilia frequently occurs in chronic lung disease and human neutrophil elastase (HNE) induces mucus stasis by activating the epithelial sodium channel (ENaC), we tested the ability of GS-459755 to protect against HNE-induced mucus stasis. GS-459755 had no effect on HNE activity. However, GS-459755 pretreatment protected against HNE-induced ASL volume depletion in human bronchial epithelial cells (HBECs). The effect of GS-459755 on ASL volume was dose dependent (IC₅₀ ~3.9 μM) and comparable to the antibacterial macrolide azithromycin (IC₅₀ ~2.4 μM). Macrolides had no significant effect on CBF or on transepithelial water permeability. However, the amiloride-sensitive transepithelial voltage, a marker of ENaC activity, was diminished by macrolide pretreatment. We conclude that GS-459755 may limit HNE-induced activation of ENaC and may be useful for the treatment of mucus dehydration in CF and COPD without inducing bacterial resistance.
Collapse
Affiliation(s)
- Robert Tarran
- Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina, Chapel Hill, NC 27516, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
A mechanochemical model for auto-regulation of lung airway surface layer volume. J Theor Biol 2013; 325:42-51. [PMID: 23415939 DOI: 10.1016/j.jtbi.2013.01.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 01/26/2013] [Accepted: 01/29/2013] [Indexed: 01/23/2023]
Abstract
We develop a proof-of-principle model for auto-regulation of water volume in the lung airway surface layer (ASL) by coupling biochemical kinetics, transient ASL volume, and homeostatic mechanical stresses. The model is based on the hypothesis that ASL volume is sensed through soluble mediators and phasic stresses generated by beating cilia and air drag forces. Model parameters are fit based on the available data on human bronchial epithelial cell cultures. Simulations then demonstrate that homeostatic volume regulation is a natural consequence of the processes described. The model maintains ASL volume within a physiological range that modulates with phasic stress frequency and amplitude. Next, we show that the model successfully reproduces the responses of cell cultures to significant isotonic and hypotonic challenges, and to hypertonic saline, an effective therapy for mucus hydration in cystic fibrosis patients. These results compel an advanced airway hydration model with therapeutic value that will necessitate detailed kinetics of multiple molecular pathways, feedback to ASL viscoelasticity properties, and stress signaling from the ASL to the cilia and epithelial cells.
Collapse
|
21
|
Clunes LA, Davies CM, Coakley RD, Aleksandrov AA, Henderson AG, Zeman KL, Worthington EN, Gentzsch M, Kreda SM, Cholon D, Bennett WD, Riordan JR, Boucher RC, Tarran R. Cigarette smoke exposure induces CFTR internalization and insolubility, leading to airway surface liquid dehydration. FASEB J 2011; 26:533-45. [PMID: 21990373 DOI: 10.1096/fj.11-192377] [Citation(s) in RCA: 197] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cigarette smoke (CS) exposure induces mucus obstruction and the development of chronic bronchitis (CB). While many of these responses are determined genetically, little is known about the effects CS can exert on pulmonary epithelia at the protein level. We, therefore, tested the hypothesis that CS exerts direct effects on the CFTR protein, which could impair airway hydration, leading to the mucus stasis characteristic of both cystic fibrosis and CB. In vivo and in vitro studies demonstrated that CS rapidly decreased CFTR activity, leading to airway surface liquid (ASL) volume depletion (i.e., dehydration). Further studies revealed that CS induced internalization of CFTR. Surprisingly, CS-internalized CFTR did not colocalize with lysosomal proteins. Instead, the bulk of CFTR shifted to a detergent-resistant fraction within the cell and colocalized with the intermediate filament vimentin, suggesting that CS induced CFTR movement into an aggresome-like, perinuclear compartment. To test whether airway dehydration could be reversed, we used hypertonic saline (HS) as an osmolyte to rehydrate ASL. HS restored ASL height in CS-exposed, dehydrated airway cultures. Similarly, inhaled HS restored mucus transport and increased clearance in patients with CB. Thus, we propose that CS exposure rapidly impairs CFTR function by internalizing CFTR, leading to ASL dehydration, which promotes mucus stasis and a failure of mucus clearance, leaving smokers at risk for developing CB. Furthermore, our data suggest that strategies to rehydrate airway surfaces may provide a novel form of therapy for patients with CB.
Collapse
Affiliation(s)
- Lucy A Clunes
- Cystic Fibrosis/Pulmonary Research and Treatment Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|