1
|
Muniandi SK, Ariff FFM, Pisar MM, Harun ST, Abdullah MZ, Abdullah F, Hashim SNAM, Bahari SNS, Saffie N. Crop Improvement of Moringa oleifera L. through Genotype Screening for the Development of Clonal Propagation Techniques of High-Yielding Clones in Malaysia. BIOLOGY 2024; 13:785. [PMID: 39452094 PMCID: PMC11504311 DOI: 10.3390/biology13100785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024]
Abstract
Moringa oleifera L. is a valuable multipurpose tree species widely planted for centuries due to its high medicinal value and antifungal, antiviral, antidepressant, and anti-inflammatory properties in the food industry. However, its cultivation is hindered by production constraints such as the unavailability of planting material and the inadequate number of high-yielding clones. Thus, a study was initiated to select high-yielding clones in terms of growth and chemical content for the mass propagation of superior moringa trees. Screening on high-yielding clones with high astragalin content was conducted through the high-performance liquid chromatography (HPLC) analysis of moringa leaf extract. Selected genotypes were evaluated for their anti-inflammatory potential through in vitro bioactivity assays of leaf methanol extract. The effects of the rooting hormone, rooting substrates, and size of the cutting on the rooting response of branch cuttings of moringa were investigated. Results found that samples collected from different ecological zones of Peninsular Malaysia show significant variation in terms of astragalin content. The extracts were observed to show considerable variation in biological activity against the pro-inflammatory enzymes. The size of the cuttings had significant effects on the rooting of the cuttings as longer cuttings with bigger diameters rooted better than shorter cuttings with smaller diameters. Several genotypes of M. oleifera with superior phenotypic characteristics and bioactive compounds have been identified. Factors affecting the rooting efficiency and optimal conditions of rooting are suggested, which provides valuable information for the propagation of the superior planting material of moringa. This effort will ensure the sustainable production and supply of good quality raw materials for the production of quality end-products for the food and pharmaceutical industry.
Collapse
Affiliation(s)
- Sures Kumar Muniandi
- Forestry Biotechnology Division, Forest Research Institute Malaysia, Kepong 52109, Selangor, Malaysia; (F.F.M.A.); (S.T.H.); (M.Z.A.); (S.N.S.B.); (N.S.)
| | - Farah Fazwa Md Ariff
- Forestry Biotechnology Division, Forest Research Institute Malaysia, Kepong 52109, Selangor, Malaysia; (F.F.M.A.); (S.T.H.); (M.Z.A.); (S.N.S.B.); (N.S.)
| | - Mazura Md Pisar
- Natural Product Division, Forest Research Institute Malaysia, Kepong 52109, Selangor, Malaysia; (M.M.P.); (F.A.); (S.N.A.M.H.)
| | - Samsuri Toh Harun
- Forestry Biotechnology Division, Forest Research Institute Malaysia, Kepong 52109, Selangor, Malaysia; (F.F.M.A.); (S.T.H.); (M.Z.A.); (S.N.S.B.); (N.S.)
| | - Mohd Zaki Abdullah
- Forestry Biotechnology Division, Forest Research Institute Malaysia, Kepong 52109, Selangor, Malaysia; (F.F.M.A.); (S.T.H.); (M.Z.A.); (S.N.S.B.); (N.S.)
| | - Fauziah Abdullah
- Natural Product Division, Forest Research Institute Malaysia, Kepong 52109, Selangor, Malaysia; (M.M.P.); (F.A.); (S.N.A.M.H.)
| | - Siti Nur Aisyah Mohd Hashim
- Natural Product Division, Forest Research Institute Malaysia, Kepong 52109, Selangor, Malaysia; (M.M.P.); (F.A.); (S.N.A.M.H.)
| | - Syafiqah Nabilah Samsul Bahari
- Forestry Biotechnology Division, Forest Research Institute Malaysia, Kepong 52109, Selangor, Malaysia; (F.F.M.A.); (S.T.H.); (M.Z.A.); (S.N.S.B.); (N.S.)
| | - Norhayati Saffie
- Forestry Biotechnology Division, Forest Research Institute Malaysia, Kepong 52109, Selangor, Malaysia; (F.F.M.A.); (S.T.H.); (M.Z.A.); (S.N.S.B.); (N.S.)
| |
Collapse
|
2
|
Wei P, Lv Y, Guang Q, Han J, Wang Y, Wang X, Song L. ChIFNα regulates adventitious root development in Lotus japonicus via an auxin-mediated pathway. PLANT SIGNALING & BEHAVIOR 2023; 18:2218670. [PMID: 37288791 PMCID: PMC10251782 DOI: 10.1080/15592324.2023.2218670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/11/2023] [Indexed: 06/09/2023]
Abstract
Adventitious roots (ARs), developing from non-root tissue, play an important role in some plants. Here, the molecular mechanism of AR differentiation in Lotus japonicus L. (L. japonicus) with the transformed chicken interferon alpha gene (ChIFNα) encoding cytokine was studied. ChIFNα transgenic plants (TP) were identified by GUS staining, PCR, RT-PCR, and ELISA. Up to 0.175 μg/kg rChIFNα was detected in TP2 lines. Expressing rChIFNα promotes AR development by producing longer roots than controls. We found that the effect was enhanced with the auxin precursor IBA treatment in TP. IAA contents, POD, and PPO activities associated with auxin regulation were higher than wild type (WT) in TP and exogenous ChIFNα treatment plants. Transcriptome analysis revealed 48 auxin-related differentially expressed genes (DEGs) (FDR < 0.05), which expression levels were verified by RT-qPCR analysis. GO enrichment analysis of DEGs also highlighted the auxin pathway. Further analysis found that ChIFNα significantly enhanced auxin synthesis and signaling mainly with up-regulated genes of ALDH, and GH3. Our study reveals that ChIFNα can promote plant AR development by mediating auxin regulation. The findings help explore the role of ChIFNα cytokines and expand animal gene sources for the molecular breeding of growth regulation of forage plants.
Collapse
Affiliation(s)
- Piao Wei
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, Guizhou Province, China
| | - Yun Lv
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, Guizhou Province, China
| | - Qiao Guang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, Guizhou Province, China
| | - Jie Han
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, Guizhou Province, China
| | - Yifan Wang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, Guizhou Province, China
| | - Xuewen Wang
- Department of Genetics, University of Georgia, Athens, GA, USA
| | - Li Song
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, Guizhou Province, China
| |
Collapse
|
3
|
Capelli M, Lauri PÉ, Léchaudel M, Normand F. Hormones and carbohydrates are both involved in the negative effects of reproduction on vegetative bud outgrowth in the mango tree: consequences for irregular bearing. TREE PHYSIOLOGY 2021; 41:2293-2307. [PMID: 34089058 DOI: 10.1093/treephys/tpab079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 05/31/2021] [Indexed: 06/12/2023]
Abstract
The negative effects of fruit production during one cycle on reproduction during the following cycle are generally explained by two complementary processes: hormone synthesis and carbohydrate mobilization. Our study focused on mango (Mangifera indica L.) for which it has been shown that reproduction decreases and delays vegetative bud outgrowth. This, in turn, affects flowering and fruiting in the following cycle. Vegetative growth therefore plays a pivotal role in irregular fruit production patterns across consecutive years. Our aim was to decipher the respective roles of hormones and carbohydrates on the negative effects of reproduction on vegetative growth. We analyzed the changes in various hormone (auxin, cytokinin, abscisic acid) and carbohydrate (glucose, sucrose, starch) concentrations in terminal axes with vegetative and reproductive fates of two mango cultivars, Cogshall and José, characterized by different bearing patterns, across consecutive phenological periods during a growing cycle. Auxin concentrations were high in inflorescences, fruit peduncles and axes bearing inflorescences or fruit, suggesting auxin-induced inhibition of vegetative bud outgrowth in the flowering and fruiting axes. Moreover, growing fruits, which are strong sink organs, depleted carbohydrates from non-fruiting axes. During vegetative growth, this starch depletion probably contributed to decreasing the probability of and to delaying vegetative bud outgrowth of reproductive axes for Cogshall, and of reproductive and nonreproductive axes for José. Starch dynamics in quiescent and flowering growth units during early fruit growth and their starch concentrations at fruit maturity differed between the two cultivars, presumably in relation to the observed contrasted crop loads and/or to differences in photosynthetic capacity or carbohydrate allocation. These differences between the two cultivars in terms of starch concentration in terminal axes during vegetative growth could partly explain their different bearing patterns.
Collapse
Affiliation(s)
- Mathilde Capelli
- CIRAD, UPR HortSys, Station de Bassin Plat, PO Box 180, F-97455 Saint-Pierre, Réunion, France
- Université de Montpellier, 163 rue Auguste Broussonnet, F-34090 Montpellier, France
| | - Pierre-Éric Lauri
- Université de Montpellier, 163 rue Auguste Broussonnet, F-34090 Montpellier, France
- INRAE, UMR ABSys, 2 place Viala, F-34060 Montpellier, France
| | - Mathieu Léchaudel
- Université de Montpellier, 163 rue Auguste Broussonnet, F-34090 Montpellier, France
- CIRAD, UMR Qualisud, Station de Neufchâteau-Sainte-Marie, F-97130 Capesterre-Belle-Eau, Guadeloupe, France
| | - Frédéric Normand
- CIRAD, UPR HortSys, Station de Bassin Plat, PO Box 180, F-97455 Saint-Pierre, Réunion, France
- Université de Montpellier, 163 rue Auguste Broussonnet, F-34090 Montpellier, France
| |
Collapse
|
4
|
Geisler MM. A Retro-Perspective on Auxin Transport. FRONTIERS IN PLANT SCIENCE 2021; 12:756968. [PMID: 34675956 PMCID: PMC8524130 DOI: 10.3389/fpls.2021.756968] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/08/2021] [Indexed: 05/13/2023]
|
5
|
Pan L, Chen J, Ren S, Shen H, Rong B, Liu W, Yang Z. Complete genome sequence of Mycobacterium Mya-zh01, an endophytic bacterium, promotes plant growth and seed germination isolated from flower stalk of Doritaenopsis. Arch Microbiol 2020; 202:1965-1976. [DOI: 10.1007/s00203-020-01924-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 05/16/2020] [Accepted: 05/26/2020] [Indexed: 11/27/2022]
|
6
|
Zhang S, Peng F, Xiao Y, Wang W, Wu X. Peach PpSnRK1 Participates in Sucrose-Mediated Root Growth Through Auxin Signaling. FRONTIERS IN PLANT SCIENCE 2020; 11:409. [PMID: 32391030 PMCID: PMC7193671 DOI: 10.3389/fpls.2020.00409] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 03/20/2020] [Indexed: 05/23/2023]
Abstract
Sugar signals play a key role in root growth and development. SnRK1, as one of the energy centers, can respond to energy changes in plants and affect the growth and development of plants. However, studies on sugar signals and SnRK1 regulating root growth in fruit trees have not been reported. In this study, we found that 5% exogenous sucrose could increase the total volume and total surface area of the peach root system, enhance the number and growth of lateral roots, and promote the activity of SnRK1. When exogenous trehalose was applied, the growth of roots was poor. Sucrose treatment reversed the inhibitory effects of trehalose on SnRK1 enzyme activity and root growth. We also found that the lateral root number of PpSnRK1a-overexpressing plants (4-1, 4-2, and 4-3) increased significantly. Therefore, we believe that peach SnRK1 is involved in sucrose-mediated root growth and development. To further clarify this mechanism, we used qRT-PCR analysis to show that exogenous sucrose could promote the expression of auxin-related genes in roots, thereby leading to the accumulation of auxin in the root system. In addition, the genes related to auxin synthesis and auxin transport in the root systems of PpSnRK1a-overexpressing lines were also significantly up-regulated. Using peach PpSnRK1a as the bait, we obtained two positive clones, PpIAA12 and PpPIN-LIKES6, which play key roles in auxin signaling. The interactions between peach PpSnRK1a and PpIAA12/PpPIN-LIKES6 were verified by yeast two-hybrid assays and bimolecular fluorescence complementation experiments, and the complexes were localized in the nucleus. After exogenous trehalose treatment, the expression of these two genes in peach root system was inhibited, whereas sucrose had a significant stimulatory effect and could alleviate the inhibition of these two genes by trehalose, which was consistent with the trend of sucrose's regulation of SnRK1 activity. In conclusion, peach SnRK1 can respond to sucrose and regulate root growth through the auxin signal pathway. This experiment increases our understanding of the function of fruit tree SnRK1 and provides a new insight to further study sugar hormone crosstalk in the future.
Collapse
|
7
|
Liu J, Sherif SM. Hormonal Orchestration of Bud Dormancy Cycle in Deciduous Woody Perennials. FRONTIERS IN PLANT SCIENCE 2019; 10:1136. [PMID: 31620159 PMCID: PMC6759871 DOI: 10.3389/fpls.2019.01136] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 08/19/2019] [Indexed: 05/03/2023]
Abstract
Woody perennials enter seasonal dormancy to avoid unfavorable environmental conditions. Plant hormones are the critical mediators regulating this complex process, which is subject to the influence of many internal and external factors. Over the last two decades, our knowledge of hormone-mediated dormancy has increased considerably, primarily due to advancements in molecular biology, omics, and bioinformatics. These advancements have enabled the elucidation of several aspects of hormonal regulation associated with bud dormancy in various deciduous tree species. Plant hormones interact with each other extensively in a context-dependent manner. The dormancy-associated MADS (DAM) transcription factors appear to enable hormones and other internal signals associated with the transition between different phases of bud dormancy. These proteins likely hold a great potential in deciphering the underlying mechanisms of dormancy initiation, maintenance, and release. In this review, a recent understanding of the roles of plant hormones, their cross talks, and their potential interactions with DAM proteins during dormancy is discussed.
Collapse
|
8
|
Becker MG, Chan A, Mao X, Girard IJ, Lee S, Elhiti M, Stasolla C, Belmonte MF. Vitamin C deficiency improves somatic embryo development through distinct gene regulatory networks in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:5903-18. [PMID: 25151615 PMCID: PMC4203126 DOI: 10.1093/jxb/eru330] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Changes in the endogenous ascorbate redox status through genetic manipulation of cellular ascorbate levels were shown to accelerate cell proliferation during the induction phase and improve maturation of somatic embryos in Arabidopsis. Mutants defective in ascorbate biosynthesis such as vtc2-5 contained ~70 % less cellular ascorbate compared with their wild-type (WT; Columbia-0) counterparts. Depletion of cellular ascorbate accelerated cell division processes and cellular reorganization and improved the number and quality of mature somatic embryos grown in culture by 6-fold compared with WT tissues. To gain insight into the molecular mechanisms underlying somatic embryogenesis (SE), we profiled dynamic changes in the transcriptome and analysed dominant patterns of gene activity in the WT and vtc2-5 lines across the somatic embryo culturing process. Our results provide insight into the gene regulatory networks controlling SE in Arabidopsis based on the association of transcription factors with DNA sequence motifs enriched in biological processes of large co-expressed gene sets. These data provide the first detailed account of temporal changes in the somatic embryo transcriptome starting with the zygotic embryo, through tissue dedifferentiation, and ending with the mature somatic embryo, and impart insight into possible mechanisms for the improved culture of somatic embryos in the vtc2-5 mutant line.
Collapse
Affiliation(s)
- Michael G Becker
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T2N2, Canada
| | - Ainsley Chan
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T2N2, Canada
| | - Xingyu Mao
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T2N2, Canada
| | - Ian J Girard
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T2N2, Canada
| | - Samantha Lee
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T2N2, Canada
| | - Mohamed Elhiti
- Department of Botany, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Claudio Stasolla
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T2N2, Canada
| | - Mark F Belmonte
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T2N2, Canada
| |
Collapse
|
9
|
Aloni R, Aloni E, Langhans M, Ullrich CI. Role of cytokinin and auxin in shaping root architecture: regulating vascular differentiation, lateral root initiation, root apical dominance and root gravitropism. ANNALS OF BOTANY 2006; 97:883-93. [PMID: 16473866 PMCID: PMC2803412 DOI: 10.1093/aob/mcl027] [Citation(s) in RCA: 294] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2005] [Revised: 09/12/2005] [Accepted: 11/30/2005] [Indexed: 05/06/2023]
Abstract
BACKGROUND AND AIMS Development and architecture of plant roots are regulated by phytohormones. Cytokinin (CK), synthesized in the root cap, promotes cytokinesis, vascular cambium sensitivity, vascular differentiation and root apical dominance. Auxin (indole-3-acetic acid, IAA), produced in young shoot organs, promotes root development and induces vascular differentiation. Both IAA and CK regulate root gravitropism. The aims of this study were to analyse the hormonal mechanisms that induce the root's primary vascular system, explain how differentiating-protoxylem vessels promote lateral root initiation, propose the concept of CK-dependent root apical dominance, and visualize the CK and IAA regulation of root gravitropiosm. KEY ISSUES The hormonal analysis and proposed mechanisms yield new insights and extend previous concepts: how the radial pattern of the root protoxylem vs. protophloem strands is induced by alternating polar streams of high IAA vs. low IAA concentrations, respectively; how differentiating-protoxylem vessel elements stimulate lateral root initiation by auxin-ethylene-auxin signalling; and how root apical dominance is regulated by the root-cap-synthesized CK, which gives priority to the primary root in competition with its own lateral roots. CONCLUSIONS CK and IAA are key hormones that regulate root development, its vascular differentiation and root gravitropism; these two hormones, together with ethylene, regulate lateral root initiation.
Collapse
Affiliation(s)
- R Aloni
- Department of Plant Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| | | | | | | |
Collapse
|
10
|
Morris SE, Cox MCH, Ross JJ, Krisantini S, Beveridge CA. Auxin dynamics after decapitation are not correlated with the initial growth of axillary buds. PLANT PHYSIOLOGY 2005; 138:1665-72. [PMID: 15965021 PMCID: PMC1176436 DOI: 10.1104/pp.104.058743] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2004] [Revised: 03/16/2005] [Accepted: 03/19/2005] [Indexed: 05/03/2023]
Abstract
One of the first and most enduring roles identified for the plant hormone auxin is the mediation of apical dominance. Many reports have claimed that reduced stem indole-3-acetic acid (IAA) levels and/or reduced basipetal IAA transport directly or indirectly initiate bud growth in decapitated plants. We have tested whether auxin inhibits the initial stage of bud release, or subsequent stages, in garden pea (Pisum sativum) by providing a rigorous examination of the dynamics of auxin level, auxin transport, and axillary bud growth. We demonstrate that after decapitation, initial bud growth occurs prior to changes in IAA level or transport in surrounding stem tissue and is not prevented by an acropetal supply of exogenous auxin. We also show that auxin transport inhibitors cause a similar auxin depletion as decapitation, but do not stimulate bud growth within our experimental time-frame. These results indicate that decapitation may trigger initial bud growth via an auxin-independent mechanism. We propose that auxin operates after this initial stage, mediating apical dominance via autoregulation of buds that are already in transition toward sustained growth.
Collapse
Affiliation(s)
- Suzanne E Morris
- Australian Research Council Centre of Excellence for Integrative Legume Research, and School of Integrative Biology, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | | | | | | | | |
Collapse
|
11
|
Alexander DL, Mellor EA, Langdale JA. CORKSCREW1 defines a novel mechanism of domain specification in the maize shoot. PLANT PHYSIOLOGY 2005; 138:1396-408. [PMID: 15980185 PMCID: PMC1176412 DOI: 10.1104/pp.105.063909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In higher plants, determinate leaf primordia arise in regular patterns on the flanks of the indeterminate shoot apical meristem (SAM). The acquisition of leaf form is then a gradual process, involving the specification and growth of distinct domains within the three leaf axes. The recessive corkscrew1 (cks1) mutation of maize (Zea mays) disrupts both leaf initiation patterns in the SAM and domain specification within the mediolateral and proximodistal leaf axes. Specifically, cks1 mutant leaves exhibit multiple midribs and leaf sheath tissue differentiates in the blade domain. Such perturbations are a common feature of maize mutants that ectopically accumulate KNOTTED1-like homeobox (KNOX) proteins in leaf tissue. Consistent with this observation, at least two knox genes are ectopically expressed in cks1 mutant leaves. However, ectopic KNOX proteins cannot be detected. We therefore propose that CKS1 primarily functions within the SAM to establish boundaries between meristematic and leaf zones. Loss of gene function disrupts boundary formation, impacts phyllotactic patterns, and leads to aspects of indeterminate growth within leaf primordia. Because these perturbations arise independently of ectopic KNOX activity, the cks1 mutation defines a novel component of the developmental machinery that facilitates leaf-versus-shoot development in maize.
Collapse
Affiliation(s)
- Debbie L Alexander
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom
| | | | | |
Collapse
|
12
|
Lin R, Wang H. Two homologous ATP-binding cassette transporter proteins, AtMDR1 and AtPGP1, regulate Arabidopsis photomorphogenesis and root development by mediating polar auxin transport. PLANT PHYSIOLOGY 2005; 138:949-64. [PMID: 15908594 PMCID: PMC1150410 DOI: 10.1104/pp.105.061572] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2005] [Revised: 03/17/2005] [Accepted: 03/19/2005] [Indexed: 05/02/2023]
Abstract
Light and auxin control many aspects of plant growth and development in an overlapping manner. We report here functional characterization of two closely related ABC (ATP-binding cassette) transporter genes, AtMDR1 and AtPGP1, in light and auxin responses. We showed that loss-of-function atmdr1 and atpgp1 mutants display hypersensitivity to far-red, red, and blue-light inhibition of hypocotyl elongation, reduced chlorophyll and anthocyanin accumulation, and abnormal expression of several light-responsive genes, including CAB3, RBCS, CHS, and PORA, under both darkness and far-red light conditions. In addition, we showed that the atmdr1-100 and atmdr1-100/atpgp1-100 mutants are defective in multiple aspects of root development, including increased root-growth sensitivity to 1-naphthalene acetic acid (1-NAA), and decreased sensitivity to naphthylphthalamic acid (NPA)-mediated inhibition of root elongation. Consistent with the proposed role of AtMDR1 in basipetal auxin transport, we found that expression of the auxin responsive DR5::GUS reporter gene in the central elongation zone is significantly reduced in the atmdr1-100 mutant roots treated with 1-NAA at the root tips, compared to similarly treated wild-type plants. Moreover, atmdr1-100, atpgp1-100, and their double mutants produced fewer lateral roots, in the presence or absence of 1-NAA or NPA. The atmdr1-100 and atmdr1-100/atpgp1-100 mutants also displayed enhanced root gravitropism. Genetic-epistasis analysis revealed that mutations in phyA largely suppress the randomized-hypocotyl growth and the short-hypocotyl phenotype of the atmdr1-100 mutants under far-red light, suggesting that phyA acts downstream of AtMDR1. Together, our results suggest that AtMDR1 and AtPGP1 regulate Arabidopsis (Arabidopsis thaliana) photomorphogenesis and multiple aspects of root development by mediating polar auxin transport.
Collapse
Affiliation(s)
- Rongcheng Lin
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|
13
|
Cox MCH, Benschop JJ, Vreeburg RAM, Wagemaker CAM, Moritz T, Peeters AJM, Voesenek LACJ. The roles of ethylene, auxin, abscisic acid, and gibberellin in the hyponastic growth of submerged Rumex palustris petioles. PLANT PHYSIOLOGY 2004; 136:2948-60; discussion 3001. [PMID: 15466223 PMCID: PMC523357 DOI: 10.1104/pp.104.049197] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2004] [Revised: 08/10/2004] [Accepted: 08/22/2004] [Indexed: 05/18/2023]
Abstract
Rumex palustris responds to complete submergence with upward movement of the younger petioles. This so-called hyponastic response, in combination with stimulated petiole elongation, brings the leaf blade above the water surface and restores contact with the atmosphere. We made a detailed study of this differential growth process, encompassing the complete range of the known signal transduction pathway: from the cellular localization of differential growth, to the hormonal regulation, and the possible involvement of a cell wall loosening protein (expansin) as a downstream target. We show that hyponastic growth is caused by differential cell elongation across the petiole base, with cells on the abaxial (lower) surface elongating faster than cells on the adaxial (upper) surface. Pharmacological studies and endogenous hormone measurements revealed that ethylene, auxin, abscisic acid (ABA), and gibberellin regulate different and sometimes overlapping stages of hyponastic growth. Initiation of hyponastic growth and (maintenance of) the maximum petiole angle are regulated by ethylene, ABA, and auxin, whereas the speed of the response is influenced by ethylene, ABA, and gibberellin. We found that a submergence-induced differential redistribution of endogenous indole-3-acetic acid in the petiole base could play a role in maintenance of the response, but not in the onset of hyponastic growth. Since submergence does not induce a differential expression of expansins across the petiole base, it is unlikely that this cell wall loosening protein is the downstream target for the hormones that regulate the differential cell elongation leading to submergence-induced hyponastic growth in R. palustris.
Collapse
Affiliation(s)
- Marjolein C H Cox
- Plant Ecophysiology, Utrecht University, 3584 CA Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
14
|
Symons GM, Reid JB. Brassinosteroids do not undergo long-distance transport in pea. Implications for the regulation of endogenous brassinosteroid levels. PLANT PHYSIOLOGY 2004; 135:2196-206. [PMID: 15299131 PMCID: PMC520790 DOI: 10.1104/pp.104.043034] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2004] [Revised: 05/16/2004] [Accepted: 05/17/2004] [Indexed: 05/18/2023]
Abstract
It is widely accepted that brassinosteroids (BRs) are important regulators of plant growth and development. However, in comparison to the other classical plant hormones, such as auxin, relatively little is known about BR transport and its potential role in the regulation of endogenous BR levels in plants. Here, we show that end-pathway BRs in pea (Pisum sativum) occur in a wide range of plant tissues, with the greatest accumulation of these substances generally occurring in the young, actively growing tissues, such as the apical bud and young internodes. However, despite the widespread distribution of BRs throughout the plant, we found no evidence of long-distance transport of these substances between different plant tissues. For instance, we show that the maintenance of steady-state BR levels in the stem does not depend on their transport from the apical bud or mature leaves. Similarly, reciprocal grafting between the wild type and the BR-deficient lkb mutants demonstrates that the maintenance of steady-state BR levels in whole shoots and roots does not depend on either basipetal or acropetal transport of BRs between these tissues. Together, with results from (3)H-BR feeding studies, these results demonstrate that BRs do not undergo long-distance transport in pea. The widespread distribution of end-pathway BRs and the absence of long-distance BR transport between different plant tissues provide significant insight into the mechanisms that regulate BR homeostasis in plants.
Collapse
Affiliation(s)
- Gregory M Symons
- School of Plant Science, University of Tasmania, Hobart, Tasmania 7001, Australia.
| | | |
Collapse
|
15
|
Blakeslee JJ, Bandyopadhyay A, Peer WA, Makam SN, Murphy AS. Relocalization of the PIN1 auxin efflux facilitator plays a role in phototropic responses. PLANT PHYSIOLOGY 2004; 134:28-31. [PMID: 14730061 PMCID: PMC1540349 DOI: 10.1104/pp.103.031690] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Affiliation(s)
- Joshua J Blakeslee
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907-1165, USA
| | | | | | | | | |
Collapse
|
16
|
Rashotte AM, Poupart J, Waddell CS, Muday GK. Transport of the two natural auxins, indole-3-butyric acid and indole-3-acetic acid, in Arabidopsis. PLANT PHYSIOLOGY 2003; 133:761-72. [PMID: 14526119 PMCID: PMC219050 DOI: 10.1104/pp.103.022582] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2003] [Revised: 03/20/2003] [Accepted: 05/29/2003] [Indexed: 05/18/2023]
Abstract
Polar transport of the natural auxin indole-3-acetic acid (IAA) is important in a number of plant developmental processes. However, few studies have investigated the polar transport of other endogenous auxins, such as indole-3-butyric acid (IBA), in Arabidopsis. This study details the similarities and differences between IBA and IAA transport in several tissues of Arabidopsis. In the inflorescence axis, no significant IBA movement was detected, whereas IAA is transported in a basipetal direction from the meristem tip. In young seedlings, both IBA and IAA were transported only in a basipetal direction in the hypocotyl. In roots, both auxins moved in two distinct polarities and in specific tissues. The kinetics of IBA and IAA transport appear similar, with transport rates of 8 to 10 mm per hour. In addition, IBA transport, like IAA transport, is saturable at high concentrations of auxin, suggesting that IBA transport is protein mediated. Interestingly, IAA efflux inhibitors and mutations in genes encoding putative IAA transport proteins reduce IAA transport but do not alter IBA movement, suggesting that different auxin transport protein complexes are likely to mediate IBA and IAA transport. Finally, the physiological effects of IBA and IAA on hypocotyl elongation under several light conditions were examined and analyzed in the context of the differences in IBA and IAA transport. Together, these results present a detailed picture of IBA transport and provide the basis for a better understanding of the transport of these two endogenous auxins.
Collapse
Affiliation(s)
- Aaron M Rashotte
- Department of Biology, Wake Forest University, Winston-Salem, NC 27109, USA
| | | | | | | |
Collapse
|
17
|
Al-Hammadi ASA, Sreelakshmi Y, Negi S, Siddiqi I, Sharma R. The polycotyledon mutant of tomato shows enhanced polar auxin transport. PLANT PHYSIOLOGY 2003; 133:113-25. [PMID: 12970479 PMCID: PMC196586 DOI: 10.1104/pp.103.025478] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2003] [Revised: 05/18/2003] [Accepted: 05/24/2003] [Indexed: 05/21/2023]
Abstract
The polycotyledon mutant of tomato (Lycopersicon esculentum L. cv Ailsa Craig) showed altered development during embryogenesis and during vegetative and reproductive phases. The phenotype was pleiotropic and included the formation of extra cotyledons, changes in leaf shape, increased number of flowers (indeterminacy) with abnormal floral organs, the formation of epiphyllous structures, and altered gravitropism. The earliest defects were observed at the transition from the globular to the heart stage of embryogenesis with the formation of multiple cotyledons. Epidermal cells in the mutant embryo were smaller and less expanded compared with wild type. Examination of polar auxin transport (PAT) showed a striking enhancement in the case of the mutant. Increase in PAT did not appear to be caused by a decrease in flavonoids because the mutant had normal flavonoid levels. Application of 2,3,5-triiodobenzoic acid, an inhibitor of polar transport of auxin, rescued postgermination phenotypes of young seedlings. Our analysis reveals a level of control that negatively regulates PAT in tomato and its contribution to plant development and organogenesis.
Collapse
|