1
|
Mouchtaris Michailidis T, De Saeger S, Khoueiry R, Odongo GA, Bader Y, Dhaenens M, Herceg Z, De Boevre M. The interplay of dietary mycotoxins and oncogenic viruses toward human carcinogenesis: a scoping review. Crit Rev Food Sci Nutr 2024:1-19. [PMID: 39422902 DOI: 10.1080/10408398.2024.2414828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
BACKGROUND Mycotoxins, fungal metabolites prevalent in many foods, are recognized for their role in carcinogenesis, especially when interacting with oncogenic viruses. OBJECTIVES This scoping review synthesizes current evidence on the human cancer risk associated with mycotoxin exposure and oncogenic virus infections. METHODS Searches were conducted on PubMed, Embase, and Web of Science. Studies were selected based on the PECOS framework. Data extraction involved narrative and qualitative presentation of findings, with meta-analysis where feasible. Risk of bias and outcome quality were assessed using the OHAT tool and GRADE approach. RESULTS From 25 included studies, 18 focused on aflatoxins and hepatitis viruses in hepatocellular carcinoma (HCC). Four studies examined aflatoxin B1 (AFB1) and human papilloma virus (HPV) in cervical cancer, while three investigated AFB1 with Epstein-Barr virus (EBV) in lymphomagenesis. The review highlights a significant synergistic effect between AFB1 and hepatitis B and C viruses in HCC development. Significant interactions between AFB1 and HPV, as well as AFB1 and EBV, were observed, but further research is needed. CONCLUSIONS The synergistic impact of mycotoxins and oncogenic viruses is a critical public health concern. Future research, especially prospective cohort studies and investigations into molecular mechanisms, is essential to address this complex issue.
Collapse
Affiliation(s)
- Thanos Mouchtaris Michailidis
- Faculty of Pharmaceutical Sciences, Centre of Excellence in Mycotoxicology and Public Health, Ghent University, Ghent, Belgium
- CRIG, Cancer Research Institute Ghent, Ghent, Belgium
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer/World Health Organization, Lyon, France
| | - Sarah De Saeger
- Faculty of Pharmaceutical Sciences, Centre of Excellence in Mycotoxicology and Public Health, Ghent University, Ghent, Belgium
- CRIG, Cancer Research Institute Ghent, Ghent, Belgium
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Johannesburg, South Africa
| | - Rita Khoueiry
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer/World Health Organization, Lyon, France
| | - Grace A Odongo
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer/World Health Organization, Lyon, France
- Institute of Cancer Research and Genomics Sciences, University of Birmingham, Birmingham, UK
| | - Yasmine Bader
- Faculty of Pharmaceutical Sciences, Centre of Excellence in Mycotoxicology and Public Health, Ghent University, Ghent, Belgium
- CRIG, Cancer Research Institute Ghent, Ghent, Belgium
| | - Maarten Dhaenens
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Zdenko Herceg
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer/World Health Organization, Lyon, France
| | - Marthe De Boevre
- Faculty of Pharmaceutical Sciences, Centre of Excellence in Mycotoxicology and Public Health, Ghent University, Ghent, Belgium
- CRIG, Cancer Research Institute Ghent, Ghent, Belgium
| |
Collapse
|
2
|
Yang Z, Liu S, Hu L, Chen J, Wang J, Pan Y, Xu L, Liu M, Chen M, Xi M, Zhang Y. Stereotactic body radiotherapy is an alternative to radiofrequency ablation for single HCC ≤5.0 cm. JHEP Rep 2024; 6:101151. [PMID: 39308987 PMCID: PMC11416668 DOI: 10.1016/j.jhepr.2024.101151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/28/2024] [Accepted: 06/19/2024] [Indexed: 09/25/2024] Open
Abstract
Background & Aims Radiation therapy has been refined with increasing evidence of the benefits of stereotactic body radiation therapy (SBRT) in treating hepatocellular carcinoma (HCC). In this study, we aimed to evaluate whether SBRT could serve as an alternative to radiofrequency ablation (RFA) for small HCC with a single lesion ≤5.0 cm. Methods Patients with a single HCC lesion ≤5.0 cm who received RFA or SBRT were included. Cumulative local/distant recurrence rate, progression-free survival, overall survival, adverse events and subsequent treatments after recurrence were analyzed. Results A total of 288 patients receiving RFA (n = 166) or SBRT (n = 122) were enrolled. The baseline characteristics between the two groups were comparable. The cumulative local recurrence rate in the SBRT group was significantly lower than that in the RFA group (hazard ratio [HR] 0.30, 95% CI 0.16-0.57, p <0.001), especially for patients with tumours >2.0 cm (HR 0.20, 95% CI 0.08-0.50, p <0.001) or adjacent to major vessels (HR 0.29, 95% CI 0.13-0.66, p <0.001). Cumulative distant recurrence rate, progression-free survival and overall survival were not significantly different between the two groups (all p >0.050). Adverse events were mild and easily reversible. However, more patients in the SBRT group suffered from Child-Pugh score and total bilirubin increases. More treatment options after recurrence or progression might be available for patients in the RFA group compared to those in the SBRT group (p <0.001). Conclusions Both RFA and SBRT were effective and safe for HCC with a single lesion ≤5.0 cm. SBRT could be an alternative treatment to RFA, especially for tumours >2.0 cm or adjacent to major vessels. Impact and implications Stereotactic body radiation therapy (SBRT) may be used as an alternative treatment to thermal ablation for patients with BCLC stage A hepatocellular carcinoma (HCC) who are not candidates for surgical resection, including those with tumours >3 cm and those with 1 to 3 tumours. This study focused on HCC patients with a specific tumour burden, namely a single lesion ≤5.0 cm, demonstrating that SBRT could be an effective and safe alternative to radiofrequency ablation (RFA), especially for those with tumours >2.0 cm or adjacent to major vessels. The findings of this study provided robust empirical evidence supporting the utilization of SBRT in treating small HCC, while also establishing a solid foundation for future prospective clinical investigations.
Collapse
Affiliation(s)
- Zhoutian Yang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P. R. China
| | - Shiliang Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P. R. China
| | - Li Hu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P. R. China
| | - Jinbin Chen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P. R. China
| | - Juncheng Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P. R. China
| | - Yangxun Pan
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P. R. China
| | - Li Xu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P. R. China
| | - Mengzhong Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P. R. China
| | - Minshan Chen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P. R. China
| | - Mian Xi
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P. R. China
| | - Yaojun Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P. R. China
| |
Collapse
|
3
|
Huang Y, He W, Zhang Y, Zou Z, Han L, Luo J, Wang Y, Tang X, Li Y, Bao Y, Huang Y, Long XD, Fu Y, He M. Targeting SIRT2 in Aging-Associated Fibrosis Pathophysiology. Aging Dis 2024:AD.202.0513. [PMID: 39226168 DOI: 10.14336/ad.202.0513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/05/2024] [Indexed: 09/05/2024] Open
Abstract
Aging is a complex biological process that involves multi-level structural and physiological changes. Aging is a major risk factor for many chronic diseases. The accumulation of senescent cells changes the tissue microenvironment and is closely associated with the occurrence and development of tissue and organ fibrosis. Fibrosis is the result of dysregulated tissue repair response in the development of chronic inflammatory diseases. Recent studies have clearly indicated that SIRT2 is involved in regulating the progression of fibrosis, making it a potential target for anti-fibrotic drugs. SIRT2 is a NAD+ dependent histone deacetylase, shuttling between nucleus and cytoplasm, and is highly expressed in liver, kidney and heart, playing an important role in the occurrence and development of aging and fibrosis. Therefore, we summarized the role of SIRT2 in liver, kidney and cardiac fibrosis during aging.
Collapse
Affiliation(s)
- Yongjiao Huang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Basic Medicine, DeHong Vocational College, Dehong, Yunnan, China
- School of Basic Medicine, Kunming Medical University, Kunming, China
| | - Wei He
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Basic Medicine, Kunming Medical University, Kunming, China
- Toxicology Department, Sichuan Center For Disease Control and Prevention, Chengdu, Sichuan, China
| | - Yingting Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhihui Zou
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Longchuan Han
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Luo
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Basic Medicine, Kunming Medical University, Kunming, China
| | - Yunqiu Wang
- Department of Biomedical Sciences and Synthetic Organic Chemistry, University College London, United Kingdom
| | - Xinxin Tang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Li
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuhan Bao
- Department of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Ying Huang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xi-Dai Long
- Clinicopathological Diagnosis &;amp Research Center, the Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, China
| | - Yinkun Fu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming He
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Pathology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| |
Collapse
|
4
|
Luo X, Jiao L, Guo Q, Chen Y, Wang N, Wen Y, Song J, Chen H, Zhou J, Song X. Diagnostic model for hepatocellular carcinoma using small extracellular vesicle-propagated miRNA signatures. Front Mol Biosci 2024; 11:1419093. [PMID: 39006969 PMCID: PMC11239443 DOI: 10.3389/fmolb.2024.1419093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 05/23/2024] [Indexed: 07/16/2024] Open
Abstract
Background Hepatocellular carcinoma (HCC) is the most common type of liver cancer. Small extracellular vesicles (sEVs) are bilayer lipid membrane vesicles containing RNA that exhibit promising diagnostic and prognostic potential as cancer biomarkers. Aims To establish a miRNA panel from peripheral blood for use as a noninvasive biomarker for the diagnosis of HCC. Methods sEVs obtained from plasma were profiled using high-throughput sequencing. The identified differential miRNA expression patterns were subsequently validated using quantitative real-time polymerase chain reaction analysis. Results The random forest method identified ten distinct miRNAs distinguishing HCC plasma from non-HCC plasma. During validation, miR-140-3p (p = 0.0001) and miR-3200-3p (p = 0.0017) exhibited significant downregulation. Enrichment analysis uncovered a notable correlation between the target genes of these miRNAs and cancer development. Utilizing logistic regression, we developed a diagnostic model incorporating these validated miRNAs. Receiver operating characteristic (ROC) curve analysis revealed an area under the curve (AUC) of 0.951, with a sensitivity of 90.1% and specificity of 87.8%. Conclusion These aberrantly expressed miRNAs delivered by sEVs potentially contribute to HCC pathology and may serve as diagnostic biomarkers for HCC.
Collapse
Affiliation(s)
- Xinyi Luo
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Lin Jiao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Qin Guo
- Department of Laboratory Medicine, the First People's Hospital of Ziyang, Ziyang, China
| | - Yi Chen
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Nian Wang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Wen
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - JiaJia Song
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Chen
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Juan Zhou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Xingbo Song
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Xiong Y, Wang Z, Liu J, Li K, Zhang Y. The Effect of Low HBV-DNA Viral Load on Recurrence in Hepatocellular Carcinoma Patients Who Underwent Primary Locoregional Treatment and the Development of a Nomogram Prediction Model. Microorganisms 2024; 12:976. [PMID: 38792805 PMCID: PMC11124523 DOI: 10.3390/microorganisms12050976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/23/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
(1) Background: HBV-DNA is an essential clinical indicator of primary hepatocellular carcinoma (HCC) prognosis. Our study aimed to investigate the prognostic implication of a low load of HBV-DNA in HCC patients who underwent local treatment. Additionally, we developed and validated a nomogram to predict the recurrence of patients with low (20-100 IU/mL) viral loads (L-VL). (2) Methods: A total of 475 HBV-HCC patients were enrolled, including 403 L-VL patients and 72 patients with very low (<20 IU/mL) viral loads (VL-VL). L-VL HCC patients were randomly divided into a training set (N = 282) and a validation set (N = 121) at a ratio of 7:3. Utilizing the Lasso-Cox regression analysis, we identified independent risk factors for constructing a nomogram. (3) Results: L-VL patients had significantly shorter RFS than VL-VL patients (38.2 m vs. 23.4 m, p = 0.024). The content of the nomogram included gender, BCLC stage, Glob, and MLR. The C-index (0.682 vs. 0.609); 1-, 3-, and 5-year AUCs (0.729, 0.784, and 0.783, vs. 0.631, 0.634, the 0.665); calibration curves; and decision curve analysis (DCA) curves of the training and validation cohorts proved the excellent predictive performance of the nomogram. There was a statistically significant difference in RFS between the low-, immediate-, and high-risk groups both in the training and validation cohorts (p < 0.001); (4) Conclusions: Patients with L-VL had a worse prognosis. The nomogram developed and validated in this study has the advantage of predicting patients with L-VL.
Collapse
Affiliation(s)
- Yiqi Xiong
- Interventional Therapy Center for Oncology, Beijing You’an Hospital, Capital Medical University, Beijing 100069, China; (Y.X.)
| | - Ziling Wang
- Interventional Therapy Center for Oncology, Beijing You’an Hospital, Capital Medical University, Beijing 100069, China; (Y.X.)
| | - Jiajun Liu
- Interventional Therapy Center for Oncology, Beijing You’an Hospital, Capital Medical University, Beijing 100069, China; (Y.X.)
| | - Kang Li
- Research Center for Biomedical Resources, Beijing You’an Hospital, Capital Medical University, Beijing 100069, China
| | - Yonghong Zhang
- Interventional Therapy Center for Oncology, Beijing You’an Hospital, Capital Medical University, Beijing 100069, China; (Y.X.)
| |
Collapse
|
6
|
Shen Y, Chen J, Wu J, Li T, Yi C, Wang K, Wang P, Sun C, Ye H. Combination of an Autoantibody Panel and Alpha-Fetoprotein for Early Detection of Hepatitis B Virus-Associated Hepatocellular Carcinoma. Cancer Prev Res (Phila) 2024; 17:227-235. [PMID: 38489403 DOI: 10.1158/1940-6207.capr-23-0311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/04/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
The purpose of this study was to identify biomarkers associated with hepatitis B virus-associated hepatocellular carcinoma (HBV-HCC) and to develop a new combination with good diagnostic performance. This study was divided into four phases: discovery, verification, validation, and modeling. A total of four candidate tumor-associated autoantibodies (TAAb; anti-ZIC2, anti-PCNA, anti-CDC37L1, and anti-DUSP6) were identified by human proteome microarray (52 samples) and bioinformatics analysis. Subsequently, these candidate TAAbs were further confirmed by indirect ELISA with two testing cohorts (120 samples for verification and 663 samples for validation). The AUC for these four TAAbs to identify patients with HBV-HCC from chronic hepatitis B (CHB) patients ranged from 0.693 to 0.739. Finally, a diagnostic panel with three TAAbs (anti-ZIC2, anti-CDC37L1, and anti-DUSP6) was developed. This panel showed superior diagnostic efficiency in identifying early HBV-HCC compared with alpha-fetoprotein (AFP), with an AUC of 0.834 [95% confidence interval (CI), 0.772-0.897] for this panel and 0.727 (95% CI, 0.642-0.812) for AFP (P = 0.0359). In addition, the AUC for this panel to identify AFP-negative patients with HBV-HCC was 0.796 (95% CI, 0.734-0.858), with a sensitivity of 52.4% and a specificity of 89.0%. Importantly, the panel in combination with AFP significantly increased the positive rate for early HBV-HCC to 84.1% (P = 0.005) and for late HBV-HCC to 96.3% (P < 0.001). Our findings suggest that AFP and the autoantibody panel may be independent but complementary serologic biomarkers for HBV-HCC detection. PREVENTION RELEVANCE We developed a robust diagnostic panel for identifying patients with HBV-HCC from patients with CHB. This autoantibody panel provided superior diagnostic performance for HBV-HCC at an early stage and/or with negative AFP results. Our findings suggest that AFP and the autoantibody panel may be independent but complementary biomarkers for HBV-HCC detection.
Collapse
MESH Headings
- Adult
- Female
- Humans
- Male
- Middle Aged
- alpha-Fetoproteins/analysis
- alpha-Fetoproteins/immunology
- Autoantibodies/blood
- Autoantibodies/immunology
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/immunology
- Carcinoma, Hepatocellular/virology
- Carcinoma, Hepatocellular/diagnosis
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/blood
- Early Detection of Cancer/methods
- Enzyme-Linked Immunosorbent Assay
- Hepatitis B virus/immunology
- Hepatitis B virus/isolation & purification
- Hepatitis B, Chronic/immunology
- Hepatitis B, Chronic/virology
- Hepatitis B, Chronic/complications
- Hepatitis B, Chronic/blood
- Hepatitis B, Chronic/diagnosis
- Liver Neoplasms/virology
- Liver Neoplasms/diagnosis
- Liver Neoplasms/immunology
- Liver Neoplasms/blood
- Aged
Collapse
Affiliation(s)
- Yajing Shen
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
- The State Key Laboratory of Esophageal Cancer Prevention & Treatment and The Key Laboratory of Tumor Epidemiology of Henan, Zhengzhou, Henan, China
| | - Jiajun Chen
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Jinyu Wu
- Xi'an Center for Disease Control and Prevention, Xi'an, Shaanxi, China
| | - Tiandong Li
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
- The State Key Laboratory of Esophageal Cancer Prevention & Treatment and The Key Laboratory of Tumor Epidemiology of Henan, Zhengzhou, Henan, China
| | - Chuncheng Yi
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
- The State Key Laboratory of Esophageal Cancer Prevention & Treatment and The Key Laboratory of Tumor Epidemiology of Henan, Zhengzhou, Henan, China
| | - Keyan Wang
- The State Key Laboratory of Esophageal Cancer Prevention & Treatment and The Key Laboratory of Tumor Epidemiology of Henan, Zhengzhou, Henan, China
| | - Peng Wang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
- The State Key Laboratory of Esophageal Cancer Prevention & Treatment and The Key Laboratory of Tumor Epidemiology of Henan, Zhengzhou, Henan, China
| | - Changqing Sun
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
- School of Nursing and Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Hua Ye
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
- The State Key Laboratory of Esophageal Cancer Prevention & Treatment and The Key Laboratory of Tumor Epidemiology of Henan, Zhengzhou, Henan, China
| |
Collapse
|
7
|
Broholm M, Mathiasen AS, Apol ÁD, Weis N. The Adaptive Immune Response in Hepatitis B Virus-Associated Hepatocellular Carcinoma Is Characterized by Dysfunctional and Exhausted HBV-Specific T Cells. Viruses 2024; 16:707. [PMID: 38793588 PMCID: PMC11125979 DOI: 10.3390/v16050707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
This systematic review investigates the immunosuppressive environment in HBV-associated hepatocellular carcinoma (HCC), characterized by dysfunctional and exhausted HBV-specific T cells alongside an increased infiltration of HBV-specific CD4+ T cells, particularly regulatory T cells (Tregs). Heightened expression of checkpoint inhibitors, notably PD-1, is linked with disease progression and recurrence, indicating its potential as both a prognostic indicator and a target for immunotherapy. Nevertheless, using PD-1 inhibitors has shown limited effectiveness. In a future perspective, understanding the intricate interplay between innate and adaptive immune responses holds promise for pinpointing predictive biomarkers and crafting novel treatment approaches for HBV-associated HCC.
Collapse
Affiliation(s)
- Malene Broholm
- Department of Infectious Disease, Copenhagen University Hospital, 2650 Hvidovre, Denmark
| | - Anne-Sofie Mathiasen
- Department of Infectious Disease, Copenhagen University Hospital, 2650 Hvidovre, Denmark
| | - Ása Didriksen Apol
- Department of Infectious Disease, Copenhagen University Hospital, 2650 Hvidovre, Denmark
| | - Nina Weis
- Department of Infectious Disease, Copenhagen University Hospital, 2650 Hvidovre, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2300 Copenhagen, Denmark
| |
Collapse
|
8
|
Contreras A, Sánchez SA, Rodríguez-Medina C, Botero JE. The role and impact of viruses on cancer development. Periodontol 2000 2024. [PMID: 38641954 DOI: 10.1111/prd.12566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/13/2024] [Accepted: 03/16/2024] [Indexed: 04/21/2024]
Abstract
This review focuses on three major aspects of oncoviruses' role in cancer development. To begin, we discuss their geographic distribution, revealing that seven oncoviruses cause 20% of all human cancers worldwide. Second, we investigate the primary carcinogenic mechanisms, looking at how these oncogenic viruses can induce cellular transformation, angiogenesis, and local and systemic inflammation. Finally, we investigate the possibility of SARS-CoV-2 infection reactivating latent oncoviruses, which could increase the risk of further disease. The development of oncovirus vaccines holds great promise for reducing cancer burden. Many unanswered questions about the host and environmental cofactors that contribute to cancer development and prevention remain, which ongoing research is attempting to address.
Collapse
Affiliation(s)
| | - Sandra Amaya Sánchez
- Advanced Periodontology Program, Escuela de Odontología, Universidad del Valle, Cali, Colombia
| | | | | |
Collapse
|
9
|
Wang W, Li K, Xiao W. The pharmacological role of Ginsenoside Rg3 in liver diseases: A review on molecular mechanisms. J Ginseng Res 2024; 48:129-139. [PMID: 38465219 PMCID: PMC10920009 DOI: 10.1016/j.jgr.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/23/2023] [Accepted: 11/10/2023] [Indexed: 03/12/2024] Open
Abstract
Liver diseases are a significant global health burden and are among the most common diseases. Ginssennoside Rg3 (Rg3), which is one of the most abundant ginsenosides, has been found to have significant preventive and therapeutic effects against various types of diseases with minimal side effects. Numerous studies have demonstrated the significant preventive and therapeutic effects of Rg3 on various liver diseases such as viral hepatitis, acute liver injury, nonalcoholic liver diseases (NAFLD), liver fibrosis and hepatocellular carcinoma (HCC). The underlying molecular mechanism behind these effects is attributed to apoptosis, autophagy, antioxidant, anti-inflammatory activities, and the regulation of multiple signaling pathways. This review provides a comprehensive description of the potential molecular mechanisms of Rg3 in the development of liver diseases. The article focuses on the regulation of apoptosis, oxidative stress, autophagy, inflammation, and other related factors. Additionally, the review discusses combination therapy and liver targeting strategy, which can accelerate the translation of Rg3 from bench to bedside. Overall, this article serves as a valuable reference for researchers and clinicians alike.
Collapse
Affiliation(s)
- Wenhong Wang
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
- The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Ke Li
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
- The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Weihua Xiao
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
- The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
10
|
Wang K, Liao PY, Chang WC, Yang CR, Su YT, Wu PC, Wu YC, Hung YC, Akhtar N, Lai HC, Ma WL. Linoleate-pazopanib conjugation as active pharmacological ingredient to abolish hepatocellular carcinoma growth. Front Pharmacol 2024; 14:1281067. [PMID: 38293667 PMCID: PMC10824963 DOI: 10.3389/fphar.2023.1281067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/26/2023] [Indexed: 02/01/2024] Open
Abstract
Small molecule compounds targeting multiple kinases involved in neoangiogenesis have shown survival benefits in patients with unresectable hepatocellular carcinoma (HCC). Nonetheless, despite the beneficial effects of multikinase inhibitors (MKIs), a lack of boosting adjuvant limits their objective response rate. Lipid conjugates have been used to improve delivery efficacy or pharmaceutical benefits for decades. However, the feasibility of utilizing lipid-drug conjugates (LDCs) in HCC regimens remains untested. In this study, oral feeding of linoleate-fluorescein isothiocyanate conjugates showed that the compound was well distributed in a spontaneous HCC mouse model. Therefore, a rationale design was developed for chemically synthesizing a linoleate-pazopanib conjugate (LAPC). The LAPC showed a significantly improved cytotoxicity compared to the parental drug pazopanib. Pazopanib's angiogenic suppressing signals were not observed in LAPC-treated HCC cells, potentially suggesting an altered mechanism of action (MOA). In an efficacy trial comparing placebo, oral pazopanib, and LAPC treatments in the hepatitis B virus transgene-related spontaneous HCC mouse model (HBVtg-HCC), the LAPC treatment demonstrated superior tumor ablating capacity in comparison to both placebo and pazopanib treatments, without any discernible systemic toxicity. The LAPC exposure is associated with an apoptosis marker (Terminal deoxynucleotidyl transferase dUTP nick end labeling [TUNEL]) and an enhanced ferroptosis (glutathione peroxidase 4 [GPX4]) potential in HBVtg-HCC tumors. Therefore, the LAPC showed excellent HCC ablative efficacy with altered MOA. The molecular mechanisms of the LAPC and LDCs for HCC therapeutics are of great academic interest. Further comprehensive preclinical trials (e.g., chemical-manufacture-control, toxicity, distribution, and pharmacokinetics/pharmacodynamics) are expected.
Collapse
Affiliation(s)
- Ke Wang
- Graduate Institute of Biomedical Sciences, and Ph.D. Program for Health Science and Industry, School of Medicine, China Medical University, Taichung, Taiwan
- Department of Medical Research, Chinese Medicine Research and Development Center, and Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung, Taiwan
| | - Pei-Yin Liao
- Graduate Institute of Biomedical Sciences, and Ph.D. Program for Health Science and Industry, School of Medicine, China Medical University, Taichung, Taiwan
| | - Wei-Chun Chang
- Department of Medical Research, Chinese Medicine Research and Development Center, and Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung, Taiwan
| | - Cian-Ru Yang
- Graduate Institute of Biomedical Sciences, and Ph.D. Program for Health Science and Industry, School of Medicine, China Medical University, Taichung, Taiwan
| | - Yu-Ting Su
- Graduate Institute of Biomedical Sciences, and Ph.D. Program for Health Science and Industry, School of Medicine, China Medical University, Taichung, Taiwan
| | - Ping-Ching Wu
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
- Institute of Oral Medicine and Department of Stomatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan, Taiwan
- Medical Device Innovation Center, Taiwan Innovation Center of Medical Devices and Technology, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan
| | - Yang-Chang Wu
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Yao-Ching Hung
- Department of Medical Research, Chinese Medicine Research and Development Center, and Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung, Taiwan
- Department of Obstetrics and Gynecology, Asia University Hospital, Taichung, Taiwan
| | - Najim Akhtar
- Graduate Institute of Biomedical Sciences, and Ph.D. Program for Health Science and Industry, School of Medicine, China Medical University, Taichung, Taiwan
| | - Hsueh-Chou Lai
- Department of Medical Research, Chinese Medicine Research and Development Center, and Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung, Taiwan
- Center for Digestive Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Wen-Lung Ma
- Graduate Institute of Biomedical Sciences, and Ph.D. Program for Health Science and Industry, School of Medicine, China Medical University, Taichung, Taiwan
- Department of Medical Research, Chinese Medicine Research and Development Center, and Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
11
|
Tavakoli Pirzaman A, Alishah A, Babajani B, Ebrahimi P, Sheikhi SA, Moosaei F, Salarfar A, Doostmohamadian S, Kazemi S. The Role of microRNAs in Hepatocellular Cancer: A Narrative Review Focused on Tumor Microenvironment and Drug Resistance. Technol Cancer Res Treat 2024; 23:15330338241239188. [PMID: 38634139 PMCID: PMC11025440 DOI: 10.1177/15330338241239188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/26/2024] [Accepted: 02/26/2024] [Indexed: 04/19/2024] Open
Abstract
Globally, hepatic cancer ranks fourth in terms of cancer-related mortality and is the sixth most frequent kind of cancer. Around 80% of liver cancers are hepatocellular carcinomas (HCC), which are the leading cause of cancer death. It is well known that HCC may develop resistance to the available chemotherapy treatments very fast. One of the biggest obstacles in providing cancer patients with appropriate care is drug resistance. According to reports, more than 90% of cancer-specific fatalities are caused by treatment resistance. By binding to the 3'-untranslated region of target messenger RNAs (mRNAs), microRNAs (miRNAs), a group of noncoding RNAs which are around 17 to 25 nucleotides long, regulate target gene expression. Moreover, they play role in the control of signaling pathways, cell proliferation, and cell death. As a result, miRNAs play an important role in the microenvironment of HCC by changing immune phenotypes, hypoxic conditions, and acidification, as well as angiogenesis and extracellular matrix components. Moreover, changes in miRNA levels in HCC can effectively resist cancer cells to chemotherapy by affecting various cellular processes such as autophagy, apoptosis, and membrane transporter activity. In the current work, we narratively reviewed the role of miRNAs in HCC, with a special focus on tumor microenvironment and drug resistance.
Collapse
Affiliation(s)
| | - Ali Alishah
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Bahareh Babajani
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Pouyan Ebrahimi
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Seyyed Ali Sheikhi
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Farhad Moosaei
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | | | | | - Sohrab Kazemi
- Cellular and Molecular Biology Research Center, Health Research Center, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
12
|
Smith TC. Long COVID: Alice Evans, Brucellosis, and Reflections on Infectious Causes of Chronic Disease. Clin Infect Dis 2023; 77:1644-1647. [PMID: 37462272 DOI: 10.1093/cid/ciad427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Indexed: 12/17/2023] Open
Abstract
Despite more than a century of research on the link between infection and chronic diseases, we again find ourselves flummoxed by a new pathogen that causes long-term impairment. Patients have reported being ignored or minimized, resources are lacking for diagnosis and treatment, and frustrated individuals are turning outside of the scientific profession for answers. The experience mirrors that of American Society for Microbiology past president Alice C. Evans. Accidentally infected with Brucella melitensis during her laboratory research, Evans was chronically ill for more than 20 years, during which time friends, colleagues, and physicians cast doubt on her illness. As a result, she argued passionately for improved diagnostics and for those who reported chronic infection to be taken seriously rather than presumed to be "malingering" or using their illness for financial benefit. Lessons from Evans' experience are useful as we work toward understanding long COVID and patients suffering from the condition.
Collapse
Affiliation(s)
- Tara C Smith
- College of Public Health, Kent State University, Kent, Ohio, USA
| |
Collapse
|
13
|
Wang Y, Yan Q, Fan C, Mo Y, Wang Y, Li X, Liao Q, Guo C, Li G, Zeng Z, Xiong W, Huang H. Overview and countermeasures of cancer burden in China. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2515-2526. [PMID: 37071289 PMCID: PMC10111086 DOI: 10.1007/s11427-022-2240-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/03/2022] [Indexed: 04/19/2023]
Abstract
Cancer is one of the leading causes of human death worldwide. Treatment of cancer exhausts significant medical resources, and the morbidity and mortality caused by cancer is a huge social burden. Cancer has therefore become a serious economic and social problem shared globally. As an increasingly prevalent disease in China, cancer is a huge challenge for the country's healthcare system. Based on recent data published in the Journal of the National Cancer Center on cancer incidence and mortality in China in 2016, we analyzed the current trends in cancer incidence and changes in cancer mortality and survival rate in China. And also, we examined several key risk factors for cancer pathogenesis and discussed potential countermeasures for cancer prevention and treatment in China.
Collapse
Affiliation(s)
- Yian Wang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Qijia Yan
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Chunmei Fan
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, China
| | - Yongzhen Mo
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, China
| | - Yumin Wang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Xiayu Li
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Qianjin Liao
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Can Guo
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, China
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, China.
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, 410078, China.
| | - He Huang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, China.
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, 410078, China.
| |
Collapse
|
14
|
Xiong W, Yang C, Xia J, Wang W, Li N. G. lucidum triterpenes restores intestinal flora balance in non-hepatitis B virus-related hepatocellular carcinoma: evidence of 16S rRNA sequencing and network pharmacology analysis. Front Pharmacol 2023; 14:1197418. [PMID: 37790812 PMCID: PMC10544910 DOI: 10.3389/fphar.2023.1197418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/28/2023] [Indexed: 10/05/2023] Open
Abstract
Background: Ganoderma lucidum (G. lucidum) is a popular traditional remedy medicine used in Asia to promote health and longevity, which has also been highlighted for anti-cancer effects. This study investigated the molecular pharmacological mechanism of G. lucidum triterpenes in influencing intestinal flora imbalance in non-hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) based on 16S rRNA sequencing technology and network pharmacology analysis. Methods: 16S rRNA sequencing data of fecal samples from normal controls and HCC patients were obtained from the SRA database. G. lucidum triterpenes and HCC-related targets were screened by BATMAN-TCM, ETCM, and GeneCards databases. The TCGA-LIHC dataset was downloaded through the TCGA database to analyze the differential expression of key genes. NHBV-related HCC-related transcriptome RNA sequencing dataset was downloaded via the GEO database. Results: Abundance of intestinal flora in the HBV-related HCC and NHBV-related samples was higher than that of control samples. The intestinal flora of NHBV samples was mainly enriched in apoptosis and p53 pathways. Totally, 465 G. lucidum triterpenes-related targets were intersected with 4186 HCC-related targets, yielding 176 intersected targets. Among them, apoptosis and p53 pathway factors were located at the core of the protein-protein interactions network. Ganosporelactone B, the active component of G. lucidum triterpenes, had the lowest binding free energy to CASP3. CASP3 expression were upregulated in HCC tissue samples, and had higher predictive value in NHBV-related HCC patients. Conclusion: Therefore, Ganosporelactone B, the active ingredient of G. lucidum triterpenes, improves the imbalance of intestinal flora and ultimately curtails development of NHBV-related HCC.
Collapse
Affiliation(s)
| | | | | | - Wenxiang Wang
- Chongqing Three Gorges Medical College, Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing, China
| | - Ning Li
- Chongqing Three Gorges Medical College, Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing, China
| |
Collapse
|
15
|
Barik BK, Kumari J, Sahoo DK, Majumdar SKD, Barik SK, Das DK, Parida DK. Mono iso-centric VMAT planning for SBRT of multiple liver metastasis- A case report. J Med Imaging Radiat Sci 2023; 54:556-561. [PMID: 37455215 DOI: 10.1016/j.jmir.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 06/12/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023]
Abstract
INTRODUCTION Hepatocellular carcinoma (HCC) is the second most common cause of cancer mortality worldwide. The risk factors associated with the development of HCC are chronic Hepatitis B, Hepatitis C, and alcoholic cirrhosis. The standard care for HCC is surgical resection but the scope is limited for some patients. Continuous advancement of radiation therapy enabled the technique of stereotactic body radiotherapy (SBRT) as an option for the treatment of those cases for which surgery cannot be done. According to recent literature and meta-analysis, SBRT is an optimum treatment method with high local control with low toxicity. In SBRT, radiation is delivered with a smaller number of fractions than conventional radiation and employs high-precision delivery and accuracy with the help of image guidance. From a series of retrospective and prospective studies, it has been confirmed that SBRT achieves excellent local control in patients with early-stage inoperable, intermediate-stage, and advanced diseases. BACKGROUND A 42-year-old male patient related to HBeAg infection and high AFP levels developed HCC BCLC Stage A was admitted to our department. There were two lesions with PTV volumes of 41.07 cc and 9.573 cc with a distance between them of 3.51 cm. These two lesions were treated with a mono-isocentric VMAT planning with SBRT technique. In this case, we present an unusual clinical practice of mono-isocentric treatment planning for treating multiple liver lesions. Since radiation therapy was viewed as the primary form of treatment because the patient wasn't an ideal candidate for surgery, SBRT was selected as the patient's primary modality of treatment because of the tiny volume of the two lesions and the normal liver volume (>700cc). Triple-phase 4DCT was performed for simulation to account for the motion of target volume and normal structures. After delineating the target volume and other normal structures, treatment planning was done with a dose of 45 Gray which was to be delivered in 5 fractions. Two PTVs were created with a margin of 3.0 mm to IGTV. Considering the positions of the lesions, a single isocentre plan was created using a 6MV FFF photon beam for both the PTVs with the VMAT technique. The treatment was carried through with 3 arcs, one coplanar, and the other 2 non-coplanar. At the time of treatment, after the proper positioning of the patient, one CBCT image was taken to match with the planned CT image acquired at the time of the simulation. After applying the translational and rotational errors, the patient was treated. RESULTS The patient was treated successfully. After treatment, the condition of the patient was normal, and no toxicities have been observed in follow-up. CONCLUSION Mono isocentric VMAT planning can be used for closely spaced lesions considering the position of lesions and other normal structures in the vicinity.
Collapse
Affiliation(s)
- Bijay Kumar Barik
- Department of Radiation Oncology, All India Institute of Medical Sciences, Sijua, Patrapada, Bhubaneswar, Odisha PIN- 751019, India.
| | - Jyoti Kumari
- Department of Radiation Oncology, All India Institute of Medical Sciences, Sijua, Patrapada, Bhubaneswar, Odisha PIN- 751019, India
| | - Dillip Kumar Sahoo
- Department of Radiation Oncology, All India Institute of Medical Sciences, Sijua, Patrapada, Bhubaneswar, Odisha PIN- 751019, India
| | - Saroj Kumar Das Majumdar
- Department of Radiation Oncology, All India Institute of Medical Sciences, Sijua, Patrapada, Bhubaneswar, Odisha PIN- 751019, India
| | - Sandip Kumar Barik
- Department of Radiation Oncology, All India Institute of Medical Sciences, Sijua, Patrapada, Bhubaneswar, Odisha PIN- 751019, India
| | - Deepak Kumar Das
- Department of Radiation Oncology, All India Institute of Medical Sciences, Sijua, Patrapada, Bhubaneswar, Odisha PIN- 751019, India
| | - Dillip Kumar Parida
- Department of Radiation Oncology, All India Institute of Medical Sciences, Sijua, Patrapada, Bhubaneswar, Odisha PIN- 751019, India
| |
Collapse
|
16
|
Wang X, Zhao M, Zhang C, Chen H, Liu X, An Y, Zhang L, Guo X. Establishment and Clinical Application of the Nomogram Related to Risk or Prognosis of Hepatocellular Carcinoma: A Review. J Hepatocell Carcinoma 2023; 10:1389-1398. [PMID: 37637500 PMCID: PMC10460189 DOI: 10.2147/jhc.s417123] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/17/2023] [Indexed: 08/29/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most prevalent primary liver malignancy, accounting for approximately 90% of all primary liver cancers, with high mortality and a poor prognosis. A large number of predictive models have been applied that integrate multiple clinical factors and biomarkers to predict the prognosis of HCC. Nomograms, as easy-to-use prognostic predictive models, are widely used to predict the probability of clinical outcomes. We searched PubMed with the keywords "hepatocellular carcinoma" and "nomogram", and 974 relative literatures were retrieved. According to the construction methodology and the real validity of the nomograms, in this study, 97 nomograms for HCC were selected in 77 publications. These 97 nomograms were established based on more than 100,000 patients, covering seven main prognostic outcomes. The research data of 56 articles are from hospital-based HCC patients, and 13 articles provided external validation results of the nomogram. In addition to AFP, tumor size, tumor number, stage, vascular invasion, age, and other common prognostic risk factors are included in the HCC-related nomogram, more and more biomarkers, including gene mRNA expression, gene polymorphisms, and gene signature, etc. were also included in the nomograms. The establishment, assessment and validation of these nomograms are also discussed in depth. This study would help clinicians construct and select appropriate nomograms to guide precise judgment and appropriate treatments.
Collapse
Affiliation(s)
- Xiangze Wang
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 475004, People’s Republic of China
| | - Minghui Zhao
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 475004, People’s Republic of China
| | - Chensheng Zhang
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 475004, People’s Republic of China
| | - Haobo Chen
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 475004, People’s Republic of China
| | - Xingyu Liu
- School of Computer and Information Engineering, Henan University, Kaifeng, 475004, People’s Republic of China
| | - Yang An
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 475004, People’s Republic of China
| | - Lu Zhang
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 475004, People’s Republic of China
| | - Xiangqian Guo
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 475004, People’s Republic of China
| |
Collapse
|
17
|
Zheng L. Analysis of hepatocellular carcinoma associated with hepatitis B virus. J Cell Mol Med 2023; 27:2271-2277. [PMID: 37517004 PMCID: PMC10424288 DOI: 10.1111/jcmm.17867] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 08/01/2023] Open
Abstract
The hepatitis B virus (HBV) is considered one of the main driving forces in the development of hepatocellular carcinoma (HCC). Human HBV is a partially double-stranded DNA (dsDNA) virus consisting of approximately 3.2 kbp. HBV predominantly infects hepatocytes via the receptor sodium taurocholate cotransporting polypeptide (NTCP) and coreceptor hepatic proteoglycan. The replication of HBV in hepatocytes leads to apoptosis while simultaneously leading to cirrhosis and cancer. Although the integration of dsDNA into the hepatocyte genome seems to be the main cause of mutation, since the discovery of their function, viral proteins have been shown to regulate the P53 pathway or P13K/AKT pathway to prevent host cell apoptosis, causing uncontrolled proliferation of liver cells leading to the formation of solid tumours. The most common treatments involve nucleo(s)tide analogue (NA) and polyethylene glycol (PEG)ylated interferon-alpha (PegIFN-α). NA treatment has been found to be effective for the majority of patients and induces few side effects. Nevertheless, the rate of seroconversion is relatively low. PegIFN treatment is contraindicated during pregnancy and leads to a higher morbidity rate, but the seroconversion rate is high. Since medicines and vaccines have been developed, the incidence and mortality of HBV related to HCC have profoundly decreased compared to those in 2000. This review investigates what can be the potential mechanism that HBV can cause HBV and the treatment used in chronic and acute infection.
Collapse
|
18
|
Dwikat M, Amer J, Jaradat N, Salhab A, Rahim AA, Qadi M, Aref A, Ghanim M, Murad H, Modallal A, Shalabni K. Arum palaestinum delays hepatocellular carcinoma proliferation through the PI3K-AKT-mTOR signaling pathway and exhibits anticoagulant effects with antimicrobial properties. Front Pharmacol 2023; 14:1180262. [PMID: 37332348 PMCID: PMC10270306 DOI: 10.3389/fphar.2023.1180262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 05/10/2023] [Indexed: 06/20/2023] Open
Abstract
Background: Arum palaestinum Boiss (AP) is a wild plant in Palestine whose leaves have a long history as food and medicine in Middle Eastern countries. The current study aimed to evaluate the biological characteristics of AP flower extract, including its antimicrobial and coagulation cascade activities and its effects on anticancer molecular pathways. Methods: The antimicrobial activity of the aqueous extract of AP flowers was assessed using a microdilution assay against eight pathogens. The coagulation properties were assessed by prothrombin time (PT), activated partial thromboplastin time (aPTT), and thrombin time (TT) tests using standard hematological methods. The biological effects of AP on hepatocellular carcinoma were measured by assessing the impact of AP on cell cycle, proliferation (CFSE), apoptosis (annexin-v+/PI), and tumorigenicity (αFP and HBsAg), as well as its effects on the PI3K-AKT-mTOR molecular signaling pathway. Results: The antimicrobial screening results revealed that the aqueous extract of AP had potent antibacterial effects against P. vulgaris and E. faecium compared to ampicillin, with MIC values of 6.25, 6.25, and 18 μg/mL, respectively. Moreover, the AP aqueous extract exerted anticoagulant activity, with significant prolonged results in the aPTT and TT tests (25 μg/mL and 50 μg/mL, respectively) and slightly prolonged results in the PT test (50 μg/mL). The anticancer results indicated a delay in the cell cycle through decreased cell proliferation rates following incubation with AP fractions. The effect of the aqueous fraction was most evident in a delay in the S phase. The aqueous and DMSO fractions maintained the cells in the G2-M phase, similar to the DOX, while the flower extract in methanol accelerated the cells in the G2-M phase, suggesting that AF flower extracts may have anti-cancer properties. The aqueous extract of AP 1) reduced secretions of HCC αFP by 1.55-fold and 3.3-fold at the 50 and 100 μg/mL concentrations, respectively (p = 0.0008); 2) decreased phosphorylation in the PI3K-AKT-mTOR signaling pathway (p < 0.05); and 3) shifted cells from necrosis to apoptosis by 50% and 70% at the 50 and 100 μg/mL concentrations, respectively (p < 0.05). Conclusion: The results of this study showed the activities of the bioactive components for the treatment of infectious diseases and blood coagulation disorders, which could also be a potential therapeutic approach for delaying HCC tumorigenicity.
Collapse
Affiliation(s)
- Majdi Dwikat
- Department of Allied Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Johnny Amer
- Department of Allied Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Nidal Jaradat
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Ahmad Salhab
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Ahmad Abdal Rahim
- Department of Allied Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Mohammad Qadi
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Aseel Aref
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Mustafa Ghanim
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Haya Murad
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Ali Modallal
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Kawkab Shalabni
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| |
Collapse
|
19
|
Lin C, Chen Y, Zhang F, Zhu P, Yu L, Chen W. Single-cell RNA sequencing reveals the mediatory role of cancer-associated fibroblast PTN in hepatitis B virus cirrhosis-HCC progression. Gut Pathog 2023; 15:26. [PMID: 37259127 DOI: 10.1186/s13099-023-00554-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 05/19/2023] [Indexed: 06/02/2023] Open
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs) are essential stromal components in the tumor microenvironment of hepatocellular carcinoma (HCC). Hepatitis B virus (HBV) infection induces pathological changes such as liver fibrosis/cirrhosis and HCC. The aim of this research was to explore the novel mediators of CAFs to modulate HBV cirrhosis-HCC progression. METHODS The single-cell transcriptome data of HCC were divided into subsets, and the significant subset related to fibrotic cells, along with biological function, and clinical information of HCC was revealed by integrated data analyses. The cell communication, cells communicated weight analysis of signaling pathways, and key genes in signaling pathways analysis of significant CAFs subclasses were conducted to discover the novel gene of CAFs. Bioinformatics, vitro and HBV transfection assays were used to verify the novel gene is an important target for promoting the progression HBV cirrhosis-HCC progression. RESULTS Fibroblasts derived from HCC single-cell data could be separated into three cell subclasses (CAF0-2), of which CAF2 was associated with the HCC clinical information. Fibroblasts have opposite developmental trajectories to immune B cells and CD8 + T cells. CAF0-2 had strong interaction with B cells and CD8 + T cells, especially CAF2 had the highest interaction frequency and weight with B cells and CD8 + T cells. Moreover, PTN participated in CAF2-related pathways involved in the regulation of cell communication, and the interactions among CAF2 and PTN contributed the most to B cells and CD8 + T cells. Furthermore, the genes of PTN, SDC1, and NCL from PTN signaling were highest expression in CAF2, B cells, and CD8 + T cells, respectively, and the interaction of PTN- SDC1 and PTN- NCL contributed most to the interaction of CAF2- B cells and CAF2-CD8 + T cells. Bioinformatics and vitro experiments confirm PTN was upregulated in HCC and promoted the proliferation of tumor cells, and HBV infection could initiate PTN to perform cirrhosis-HCC progression. CONCLUSION Our findings revealed CAF was associated with hepatocarcinogenesis, and the functional importance of B cells and CD8 + T cells in modulating CAF in HCC. Importantly, PTN maybe a novel mediator of CAF to mediate HBV cirrhosis-HCC progression.
Collapse
Affiliation(s)
- Chenhong Lin
- Department of Endoscopy Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Yeda Chen
- Central Laboratory, People's Hospital of Longhua, The Affiliated Hospital of Southern Medical University, Shenzhen, 518109, China
| | - Feng Zhang
- Intensive Care Unit, The First Affiliated Hospital of Jinan University, Guangzhou, 510000, China
| | - Peng Zhu
- Central Laboratory, Shenzhen Pingshan District People's Hospital, Pingshan General Hospital, Southern Medical University, Shenzhen, 518110, China
| | - Liangliang Yu
- Department of Endoscopy Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Wenbiao Chen
- Central Laboratory, People's Hospital of Longhua, The Affiliated Hospital of Southern Medical University, Shenzhen, 518109, China.
| |
Collapse
|
20
|
Kouroumalis E, Tsomidis I, Voumvouraki A. Pathogenesis of Hepatocellular Carcinoma: The Interplay of Apoptosis and Autophagy. Biomedicines 2023; 11:1166. [PMID: 37189787 PMCID: PMC10135776 DOI: 10.3390/biomedicines11041166] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/09/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
The pathogenesis of hepatocellular carcinoma (HCC) is a multifactorial process that has not yet been fully investigated. Autophagy and apoptosis are two important cellular pathways that are critical for cell survival or death. The balance between apoptosis and autophagy regulates liver cell turnover and maintains intracellular homeostasis. However, the balance is often dysregulated in many cancers, including HCC. Autophagy and apoptosis pathways may be either independent or parallel or one may influence the other. Autophagy may either inhibit or promote apoptosis, thus regulating the fate of the liver cancer cells. In this review, a concise overview of the pathogenesis of HCC is presented, with emphasis on new developments, including the role of endoplasmic reticulum stress, the implication of microRNAs and the role of gut microbiota. The characteristics of HCC associated with a specific liver disease are also described and a brief description of autophagy and apoptosis is provided. The role of autophagy and apoptosis in the initiation, progress and metastatic potential is reviewed and the experimental evidence indicating an interplay between the two is extensively analyzed. The role of ferroptosis, a recently described specific pathway of regulated cell death, is presented. Finally, the potential therapeutic implications of autophagy and apoptosis in drug resistance are examined.
Collapse
Affiliation(s)
- Elias Kouroumalis
- Department of Gastroenterology, PAGNI University Hospital, University of Crete School of Medicine, 71500 Heraklion, Crete, Greece
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Crete, Greece
| | - Ioannis Tsomidis
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Crete, Greece
- 1st Department of Internal Medicine, AHEPA University Hospital, 54621 Thessaloniki, Central Macedonia, Greece
| | - Argyro Voumvouraki
- 1st Department of Internal Medicine, AHEPA University Hospital, 54621 Thessaloniki, Central Macedonia, Greece
| |
Collapse
|
21
|
Padarath K, Deroubaix A, Kramvis A. The Complex Role of HBeAg and Its Precursors in the Pathway to Hepatocellular Carcinoma. Viruses 2023; 15:v15040857. [PMID: 37112837 PMCID: PMC10144019 DOI: 10.3390/v15040857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Hepatitis B virus (HBV) is one of the seven known human oncogenic viruses and has adapted to coexist with a single host for prolonged periods, requiring continuous manipulation of immunity and cell fate decisions. The persistence of HBV infection is associated with the pathogenesis of hepatocellular carcinoma, and various HBV proteins have been implicated in promoting this persistence. The precursor of hepatitis e antigen (HBeAg), is translated from the precore/core region and is post-translationally modified to yield HBeAg, which is secreted in the serum. HBeAg is a non-particulate protein of HBV and can act as both a tolerogen and an immunogen. HBeAg can protect hepatocytes from apoptosis by interfering with host signalling pathways and acting as a decoy to the immune response. By evading the immune response and interfering with apoptosis, HBeAg has the potential to contribute to the hepatocarcinogenic potential of HBV. In particular, this review summarises the various signalling pathways through which HBeAg and its precursors can promote hepatocarcinogenesis via the various hallmarks of cancer.
Collapse
|
22
|
Tumor resident, TRA anti-viral CDR3 chemical sequence motifs are associated with a better breast cancer outcome. Genes Immun 2023; 24:92-98. [PMID: 36805542 DOI: 10.1038/s41435-023-00201-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/20/2023]
Abstract
While for certain cancers, such as cervical cancer, the link to viral infections is very strong and very clear, other cancers represent a history of links to viral infections that are either co-morbidities or drive the cancer in ways that are not yet fully understood, for example the "hit and run" possibility. To further understand the connection of viral infections and the progress of breast cancer, we identified the chemical features of known anti-viral, T-cell receptor alpha chain (TRA) complementarity determining region-3 (CDR3) amino acid sequences among the CDR3s of breast cancer patient TRA recombinations and assessed the association of those features with patient outcomes. The application of this novel paradigm indicated consistent associations of tumor-derived, anti-CMV CDR3 chemical sequence motifs with better breast cancer patient outcomes but did not indicate an opportunity to establish risk stratifications for other cancer types. Interestingly, breast cancer samples with no detectable TRA recombinations represented a better outcome than samples with the non-anti-CMV CDR3s, further adding to a rapidly developing series of results allowing a distinction between positive and possibly harmful cancer immune responses.
Collapse
|
23
|
Li MY, Li TT, Li KJ, Zhou C. Type 2 diabetes mellitus characteristics affect hepatocellular carcinoma development in chronic hepatitis B patients with cirrhosis. World J Clin Cases 2023; 11:1009-1018. [PMID: 36874430 PMCID: PMC9979280 DOI: 10.12998/wjcc.v11.i5.1009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/24/2022] [Accepted: 01/16/2023] [Indexed: 02/14/2023] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) has been shown to be correlated with hepatocellular carcinoma (HCC) development. However, further investigation is needed to understand how T2DM characteristics affect the prognosis of chronic hepatitis B (CHB) patients.
AIM To assess the effect of T2DM on CHB patients with cirrhosis and to determine the risk factors for HCC development.
METHODS Among the 412 CHB patients with cirrhosis enrolled in this study, there were 196 with T2DM. The patients in the T2DM group were compared to the remaining 216 patients without T2DM (non-T2DM group). Clinical characteristics and outcomes of the two groups were reviewed and compared.
RESULTS T2DM was significantly related to hepatocarcinogenesis in this study (P = 0.002). The presence of T2DM, being male, alcohol abuse status, alpha-fetoprotein > 20 ng/mL, and hepatitis B surface antigen > 2.0 log IU/mL were identified to be risk factors for HCC development in the multivariate analysis. T2DM duration of more than 5 years and treatment with diet control or insulin ± sulfonylurea significantly increased the risk of hepatocarcinogenesis.
CONCLUSION T2DM and its characteristics increase the risk of HCC in CHB patients with cirrhosis. The importance of diabetic control should be emphasized for these patients.
Collapse
Affiliation(s)
- Man-Yu Li
- Division I of In Vitro Diagnostics for Infectious Diseases, Institute for In Vitro Diagnostics Control, National Institutes for Food and Drug Control, Beijing 100050, China
| | - Ting-Ting Li
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Ke-Jian Li
- Division I of In Vitro Diagnostics for Infectious Diseases, Institute for In Vitro Diagnostics Control, National Institutes for Food and Drug Control, Beijing 100050, China
| | - Cheng Zhou
- Division I of In Vitro Diagnostics for Infectious Diseases, Institute for In Vitro Diagnostics Control, National Institutes for Food and Drug Control, Beijing 100050, China
| |
Collapse
|
24
|
Min Y, Wei X, Xia X, Wei Z, Li R, Jin J, Liu Z, Hu X, Peng X. Hepatitis B virus infection: An insight into the clinical connection and molecular interaction between hepatitis B virus and host extrahepatic cancer risk. Front Immunol 2023; 14:1141956. [PMID: 36936956 PMCID: PMC10014788 DOI: 10.3389/fimmu.2023.1141956] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/20/2023] [Indexed: 03/05/2023] Open
Abstract
The evidence for chronic hepatitis B virus (HBV) infection and hepatocellular carcinoma (HCC) occurrence is well established. The hepatocyte epithelium carcinogenesis caused by HBV has been investigated and reviewed in depth. Nevertheless, recent findings from preclinical and observational studies suggested that chronic HBV infection is equally important in extrahepatic cancer occurrence and survival, specifically gastrointestinal system-derived cancers. Immune microenvironment changes (immune-suppressive cytokine infiltration), epigenetic modification (N6-methyladenosine), molecular signaling pathways (PI3K-Akt and Wnt), and serum biomarkers such as hepatitis B virus X (HBx) protein are potential underlying mechanisms in chronic HBV infection-induced extrahepatic cancers. This narrative review aimed to comprehensively summarize the most recent advances in evaluating the association between chronic HBV infection and extrahepatic cancer risk and explore the potential underlying molecular mechanisms in the carcinogenesis induction of extrahepatic cancers in chronic HBV conditions.
Collapse
Affiliation(s)
- Yu Min
- Department of Biotherapy and National Clinical Research Center for Geriatrics, Cancer Center, West China Hospital, Sichuan University, Sichuan, China
| | - Xiaoyuan Wei
- Department of Head and Neck Oncology, Department of Radiation Oncology, Cancer Center, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan, China
| | - Xi Xia
- Research and Development Department Shanghai ETERN Biopharma Co., Ltd., Shanghai, China
| | - Zhigong Wei
- Department of Biotherapy and National Clinical Research Center for Geriatrics, Cancer Center, West China Hospital, Sichuan University, Sichuan, China
| | - Ruidan Li
- Department of Biotherapy and National Clinical Research Center for Geriatrics, Cancer Center, West China Hospital, Sichuan University, Sichuan, China
| | - Jing Jin
- Department of Biotherapy and National Clinical Research Center for Geriatrics, Cancer Center, West China Hospital, Sichuan University, Sichuan, China
| | - Zheran Liu
- Department of Biotherapy and National Clinical Research Center for Geriatrics, Cancer Center, West China Hospital, Sichuan University, Sichuan, China
| | - Xiaolin Hu
- West China School of Nursing, West China Hospital, Sichuan University, Sichuan, China
- *Correspondence: Xingchen Peng, ; Xiaolin Hu,
| | - Xingchen Peng
- Department of Biotherapy and National Clinical Research Center for Geriatrics, Cancer Center, West China Hospital, Sichuan University, Sichuan, China
- *Correspondence: Xingchen Peng, ; Xiaolin Hu,
| |
Collapse
|
25
|
Gao D, Xu X, Liu L, Liu L, Zhang X, Liang X, Cen L, Liu Q, Yuan X, Yu Z. Combination of Peglated-H1/HGFK1 Nanoparticles and TAE in the Treatment of Hepatocellular Carcinoma. Appl Biochem Biotechnol 2023; 195:505-518. [PMID: 36094649 PMCID: PMC9832107 DOI: 10.1007/s12010-022-04153-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2022] [Indexed: 01/14/2023]
Abstract
Transarterial embolization (TAE) constitutes the gold standard for the treatment of hepatocellular carcinoma. The effect of combination of TAE and peglated-H1/HGFK1 nanoparticles was explored on hepatocellular carcinoma. MTT and Annexin V-FITC were used to determine the cell viability and apoptosis of HepG2, ml-1, LO2, and VX2 cells after the treatment of HGFK1. Next, the orthotopic rabbit was selected to establish the in situ models of VX2 hepatocellular carcinoma. Nanoparticles were synthesized with peglated-PH1 and used to deliver HGFK1 overexpressing plasmids. MRI was performed to monitor tumor volume after being treated with TAE. The protein expression levels of CD31, CD90, and Ki67 were determined by immunohistochemistry. H&E and TUNEL staining were used to determine the necrosis and apoptosis in vivo. HGFK1 significantly inhibited the proliferation and increased the apoptosis of HepG2 and ml-1 cells (P < 0.05). MRI on 14 days after modeling suggested that the tumor showed ring enhancement. MRI on 7 days and 14 days after interventional therapy showed that tumor volume was significantly inhibited after the treatment with TAE and HGFK1 (P < 0.05). The immunohistochemical results 7 days after interventional therapy indicated that the expressions of CD31, CD90, and Ki67 were significantly lower after treatment with TAE and HGFK1 (P < 0.05). TAE and HGFK1 all extended the survival period of rabbits (P < 0.05). PH1/HGFK1 nanoparticle is an innovative and effective embolic agent, which could limit angiogenesis post-TAE treatment. The combination of TAE with PH1/HGFK1 is a promising strategy and might alter the way that surgeons manage hepatocellular carcinoma (HCC).
Collapse
Affiliation(s)
- Dazhi Gao
- The First Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing, 210029 China ,Department of Interventional Therapy, Jinling Hospital Affiliated to Nanjing University, Nanjing, 210002 China
| | - Xiangxian Xu
- Department of Radiology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029 China
| | - Ling Liu
- Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004 China
| | - Li Liu
- The First Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing, 210029 China
| | - Xiang Zhang
- Medical Imaging College, Xuzhou Medical University, Xuzhou, 221004 China
| | - Xianxian Liang
- Medical Imaging College, Xuzhou Medical University, Xuzhou, 221004 China
| | - Lanqi Cen
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009 China
| | - Qian Liu
- Department of Pharmacy, Xuzhou Infectious Disease Hospital, Xuzhou, 221004 China
| | - Xiaoli Yuan
- Department of Psychiatry, Jinling Hospital Affiliated to Nanjing University, No. 305 Zhongshan East Road, Nanjing, 210002 Jiangsu Province China
| | - Zhenghong Yu
- The First Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing, 210029 China ,Department of Oncology, Jinling Hospital Affiliated to Nanjing University, No. 305 Zhongshan East Road, Nanjing, 210029 Jiangsu Province China
| |
Collapse
|
26
|
Yan Y, Sun H, Chang L, Ji H, Jiang X, Song S, Xiao Y, Feng K, Nuermaimaiti A, Lu Z, Wang L. Circulating immune complexes and mutations of HBsAg are associated with the undetectable HBsAg in anti-HBs and HBeAg positive occult hepatitis B virus infection. Front Microbiol 2022; 13:1063616. [DOI: 10.3389/fmicb.2022.1063616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/14/2022] [Indexed: 11/30/2022] Open
Abstract
IntroductionOccult hepatitis B virus infection (OBI) is an HBsAg negative state in HBV infection with usually inactive HBV replication. However, there were a minority of individuals with positive HBeAg and anti-HBs among OBI blood donors and few studies have focused on this unusual serological pattern.Methods2022 plasma of blood donors that preliminary screened reactive for HBV DNA and non-reactive for HBsAg were collected from 16 provinces in China from 2015 to 2018. HBV DNA and HBsAg in these samples were retested using the Cobas TaqScreen MPX test and ARCHITECT HBsAg Quantitative II assay. Lumipulse HBsAg-HQ assay and polyethylene glycol (PEG)-double precipitation following HCl and trypsin digestion were performed to detect HBsAg from HBsAg-anti-HBs circulating immune complexes (CICs).Results1487 of 2022 samples were positive for Cobas HBV DNA test and non-reactive for ARCHITECT HBsAg assay, while 404 of them were positive using Lumipulse HBsAg-HQ assay. 10 HBsAg-/anti-HBs+/HBeAg+ OBI blood donor samples were further dissociated and HBsAg-CICs were detected in 7 samples. Sequencing analysis showed that D44N, N98T, G73S, Del 56-116, and I161T occurred in the pre-S region, and immune escape mutations such as P127T, F134L, G145R, V168A, and I126T/S in the S region were found.DiscussionIn conclusion, there were a minority of HBsAg-/anti-HBs+/HBeAg+ individuals in OBI blood donors. The undetectable HBsAg in these individuals was mainly due to HBsAg-CICs. Immune escape-associated mutations also happened under the host’s selective pressure. HBsAg dissociation methods or Lumipulse HBsAg-HQ assay is recommended to distinguish these individuals.
Collapse
|
27
|
An Update on the Metabolic Landscape of Oncogenic Viruses. Cancers (Basel) 2022; 14:cancers14235742. [PMID: 36497226 PMCID: PMC9738352 DOI: 10.3390/cancers14235742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/10/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022] Open
Abstract
Viruses play an important role in cancer development as about 12% of cancer types are linked to viral infections. Viruses that induce cellular transformation are known as oncoviruses. Although the mechanisms of viral oncogenesis differ between viruses, all oncogenic viruses share the ability to establish persistent chronic infections with no obvious symptoms for years. During these prolonged infections, oncogenic viruses manipulate cell signaling pathways that control cell cycle progression, apoptosis, inflammation, and metabolism. Importantly, it seems that most oncoviruses depend on these changes for their persistence and amplification. Metabolic changes induced by oncoviruses share many common features with cancer metabolism. Indeed, viruses, like proliferating cancer cells, require increased biosynthetic precursors for virion production, need to balance cellular redox homeostasis, and need to ensure host cell survival in a given tissue microenvironment. Thus, like for cancer cells, viral replication and persistence of infected cells frequently depend on metabolic changes. Here, we draw parallels between metabolic changes observed in cancers or induced by oncoviruses, with a focus on pathways involved in the regulation of glucose, lipid, and amino acids. We describe whether and how oncoviruses depend on metabolic changes, with the perspective of targeting them for antiviral and onco-therapeutic approaches in the context of viral infections.
Collapse
|
28
|
Sun X, Feng W, Cui P, Ruan R, Ma W, Han Z, Sun J, Pan Y, Zhu J, Zhong X, Li J, Ma M, Hu R, Lv M, Huang Q, Zhang W, Feng M, Zhuang X, Huang B, Zhou X. Detection and monitoring of HBV-related hepatocellular carcinoma from plasma cfDNA fragmentation profiles. Genomics 2022; 114:110502. [PMID: 36220554 DOI: 10.1016/j.ygeno.2022.110502] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 01/15/2023]
Abstract
Most hepatocellular carcinomas (HCCs) are associated with hepatitis B virus infection (HBV) in China. Early detection of HCC can significantly improve prognosis but is not yet fully clinically feasible. This study aims to develop methods for detecting HCC and studying the carcinogenesis of HBV using plasma cell-free DNA (cfDNA) whole-genome sequencing (WGS) data. Low coverage WGS was performed for 452 participants, including healthy individuals, hepatitis B patients, cirrhosis patients, and HCC patients. Then the sequencing data were processed using various machine learning models based on cfDNA fragmentation profiles for cancer detection. Our best model achieved a sensitivity of 87.10% and a specificity of 88.37%, and it showed an increased sensitivity with higher BCLC stages of HCC. Overall, this study proves the potential of a non-invasive assay based on cfDNA fragmentation profiles for the detection and prognosis of HCC and provides preliminary data on the carcinogenic mechanism of HBV.
Collapse
Affiliation(s)
- Xinfeng Sun
- Department of Liver Disease, the fourth Clinical Medical School, Guangzhou University of Chinese Medicine, Shenzhen 518033, China; Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518033, China
| | - Wenxing Feng
- Department of Liver Disease, the fourth Clinical Medical School, Guangzhou University of Chinese Medicine, Shenzhen 518033, China; Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518033, China
| | - Pin Cui
- Shenzhen Rapha Biotechnology Incorporate, Shenzhen 518118, China
| | - Ruyun Ruan
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen 518118, China
| | - Wenfeng Ma
- Department of Liver Disease, the fourth Clinical Medical School, Guangzhou University of Chinese Medicine, Shenzhen 518033, China; Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518033, China
| | - Zhiyi Han
- Department of Liver Disease, the fourth Clinical Medical School, Guangzhou University of Chinese Medicine, Shenzhen 518033, China; Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518033, China
| | - Jialing Sun
- Department of Liver Disease, the fourth Clinical Medical School, Guangzhou University of Chinese Medicine, Shenzhen 518033, China; Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518033, China
| | - Yuanke Pan
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen 518118, China
| | - Jinxin Zhu
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen 518118, China
| | - Xin Zhong
- Department of Liver Disease, the fourth Clinical Medical School, Guangzhou University of Chinese Medicine, Shenzhen 518033, China; Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518033, China
| | - Jing Li
- Department of Liver Disease, the fourth Clinical Medical School, Guangzhou University of Chinese Medicine, Shenzhen 518033, China; Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518033, China
| | - Mengqing Ma
- Department of Liver Disease, the fourth Clinical Medical School, Guangzhou University of Chinese Medicine, Shenzhen 518033, China; Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518033, China
| | - Rui Hu
- Department of Liver Disease, the fourth Clinical Medical School, Guangzhou University of Chinese Medicine, Shenzhen 518033, China; Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518033, China
| | - Minling Lv
- Department of Liver Disease, the fourth Clinical Medical School, Guangzhou University of Chinese Medicine, Shenzhen 518033, China; Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518033, China
| | - Qi Huang
- Department of Liver Disease, the fourth Clinical Medical School, Guangzhou University of Chinese Medicine, Shenzhen 518033, China; Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518033, China
| | - Wei Zhang
- Department of Liver Disease, the fourth Clinical Medical School, Guangzhou University of Chinese Medicine, Shenzhen 518033, China; Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518033, China
| | - Mingji Feng
- Shenzhen Rapha Biotechnology Incorporate, Shenzhen 518118, China
| | - Xintao Zhuang
- Shenzhen Rapha Biotechnology Incorporate, Shenzhen 518118, China
| | - Bingding Huang
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen 518118, China.
| | - Xiaozhou Zhou
- Department of Liver Disease, the fourth Clinical Medical School, Guangzhou University of Chinese Medicine, Shenzhen 518033, China; Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518033, China.
| |
Collapse
|
29
|
Aghamajidi A, Farhangnia P, Pashangzadeh S, Damavandi AR, Jafari R. Tumor-promoting myeloid cells in the pathogenesis of human oncoviruses: potential targets for immunotherapy. Cancer Cell Int 2022; 22:327. [PMID: 36303138 PMCID: PMC9608890 DOI: 10.1186/s12935-022-02727-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/25/2022] [Indexed: 11/10/2022] Open
Abstract
Oncoviruses, known as cancer-causing viruses, are typically involved in cancer progression by inhibiting tumor suppressor pathways and uncontrolled cell division. Myeloid cells are the most frequent populations recruited to the tumor microenvironment (TME) and play a critical role in cancer development and metastasis of malignant tumors. Tumor-infiltrating myeloid cells, including tumor-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), tumor-associated dendritic cells (TADCs), and tumor-associated neutrophils (TANs) exert different states from anti-tumorigenic to pro-tumorigenic phenotypes in TME. Although their role in the anti-tumorigenic state is well introduced, their opposing roles, pro-tumorigenic activities, such as anti-inflammatory cytokine and reactive oxygen species (ROS) production, should not be ignored since they result in inflammation, tumor progression, angiogenesis, and evasion. Since the blockade of these cells had promising results against cancer progression, their inhibition might be helpful in various cancer immunotherapies. This review highlights the promoting role of tumor-associated myeloid cells (TAMCs) in the pathophysiology of human virus tumorigenesis.
Collapse
Affiliation(s)
- Azin Aghamajidi
- grid.411746.10000 0004 4911 7066Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Pooya Farhangnia
- grid.411746.10000 0004 4911 7066Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Salar Pashangzadeh
- grid.411705.60000 0001 0166 0922Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High-Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirmasoud Rayati Damavandi
- grid.411705.60000 0001 0166 0922Students’ Scientific Research Center, Exceptional Talents Development Center, Tehran University of Medical Sciences, Tehran, Iran ,grid.411705.60000 0001 0166 0922School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Jafari
- grid.412763.50000 0004 0442 8645Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
30
|
Cellular, Molecular and Proteomic Characteristics of Early Hepatocellular Carcinoma. Curr Issues Mol Biol 2022; 44:4714-4734. [PMID: 36286037 PMCID: PMC9600540 DOI: 10.3390/cimb44100322] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/26/2022] [Accepted: 10/03/2022] [Indexed: 11/19/2022] Open
Abstract
Hepatocellular carcinoma (HCC) accounts for the majority of primary liver cancers. Early detection/diagnosis is vital for the prognosis of HCC, whereas diagnosis at late stages is associated with very low survival rate. Early diagnosis is based on 6-month surveillance of the patient and the use of at least two imaging modalities. The aim of this study was to investigate diagnostic markers for the detection of early HCC based on proteome analysis, microRNAs (miRNAs) and circulating tumor cells (CTCs) in the blood of patients with cirrhosis or early or advanced HCC. We studied 89 patients with HCC, of whom 33 had early HCC and 28 were cirrhotic. CTCs were detected by real-time quantitative reverse transcription PCR and immunofluorescence using the markers epithelial cell adhesion molecule (EPCAM), vimentin, alpha fetoprotein (aFP) and surface major vault protein (sMVP). Expression of the five most common HCC-involved miRNAs (miR-122, miR-200a, miR-200b, miR-221, miR-222) was examined in serum using quantitative real time PCR (qRT-PCR). Finally, patient serum was analyzed via whole proteome analysis (LC/MS). Of 53 patients with advanced HCC, 27 (51%) had detectable CTCs. Among these, 10/27 (37%) presented evidence of mesenchymal or intermediate stage cells (vimentin and/or sMVP positive). Moreover, 5/17 (29%) patients with early HCC and 2/28 (7%) cirrhotic patients had detectable CTCs. Patients with early or advanced HCC exhibited a significant increase in miR-200b when compared to cirrhotic patients. Our proteome analysis indicated that early HCC patients present a significant upregulation of APOA2, APOC3 proteins when compared to cirrhotic patients. When taken in combination, this covers the 100% of the patients with early HCC. miR-200b, APOA2 and APOC3 proteins are sensitive markers and can be potentially useful in combination for the early diagnosis of HCC.
Collapse
|
31
|
Guo Z, Zhu H, Zhang X, Huang L, Wang X, Shi H, Yu L, Qiu Y, Tu F. The efficacy and safety of conventional transcatheter arterial chemoembolization combined with PD-1 inhibitor and anti-angiogenesis tyrosine kinase inhibitor treatment for patients with unresectable hepatocellular carcinoma: a real-world comparative study. Front Oncol 2022; 12:941068. [PMID: 36248989 PMCID: PMC9558003 DOI: 10.3389/fonc.2022.941068] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/12/2022] [Indexed: 11/29/2022] Open
Abstract
Aim We sought to evaluate the efficacy and safety of conventional transcatheter arterial chemoembolization (cTACE) sequentially combined with systemic treatment by programmed cell death protein 1 (PD-1) inhibitor and anti-angiogenesis tyrosine kinase inhibitor (Anti-angiogenesis TKI) in patients with unresectable hepatocellular carcinoma (HCC). Materials and methods One hundred and forty-seven advanced HCC patients who received PD-1 inhibitors and TKIs as first-line systemic treatment between August 2019 and April 2021 were collected retrospectively. Fifty-four patients were finally included and divided into cTACE and no-cTACE groups, according to whether cTACE treatment was performed within 8 weeks before systemic treatment. The tumor objective response ratio (ORR), progression-free survival (PFS), overall survival (OS), and adverse events (AEs) were compared between the groups. Significant factors affecting PFS and OS were determined by Cox regression. Results Thirty-one patients received cTACE followed by systemic treatment and 23 patients received systemic treatment only. The ORRs of the cTACE group were 48.4% (after two cycles of systemic treatment) and 51.6% (after four cycles of systemic treatment), while those of the no-cTACE group were only 17.4% and 21.7%. cTACE patients also had a longer median PFS (11.70 vs. 4.00 months, P = 0.031) and median OS (19.80 vs. 11.6 months, P = 0.006) than no-cTACE patients. Regression analyses indicated that cTACE therapy and Eastern Cooperative Oncology Group performance status were independent risk factors for PFS and OS. AEs by type were similar between the cTACE and no-cTACE groups, except for liver function injury, which was more common among cTACE patients. Fourteen patients suffered with grade 1-2 of rash in 21 patients with objective response, while only 10 patients suffered with rash in 33 patients without objective response, the adjusted hazard ratio (HR) was 4.382 (1.297–14.803). Conclusions The combination of cTACE and PD-1 inhibitors and anti-angiogenesis TKIs as therapy significantly improved markers of treatment efficacy, including ORR, PFS, and OS, in unresectable HCC patients, while no more serious AEs recorded in this population compared to those receiving systemic treatment alone. Skin rash might be a predict factor to the efficacy of PD-1 inhibitors and TKI treatment.
Collapse
Affiliation(s)
- Zheng Guo
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory, Hematology Institution of Shenzhen University, Shenzhen University General Hospital, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, China
| | - Huabin Zhu
- First school of clinical medicine, Gannan Medical University, Ganzhou, China
| | - Xiufang Zhang
- First school of clinical medicine, Gannan Medical University, Ganzhou, China
| | - Li Huang
- Department of Oncology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xiangcai Wang
- Department of Oncology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Huaqiu Shi
- Department of Oncology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Li Yu
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory, Hematology Institution of Shenzhen University, Shenzhen University General Hospital, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, China
- *Correspondence: Li Yu, ; Yingwei Qiu, ; Fuping Tu,
| | - Yingwei Qiu
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
- *Correspondence: Li Yu, ; Yingwei Qiu, ; Fuping Tu,
| | - Fuping Tu
- Department of Oncology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- *Correspondence: Li Yu, ; Yingwei Qiu, ; Fuping Tu,
| |
Collapse
|
32
|
Xing L, Zeng R, Huang K, Xue J, Liu H, Zhao Z, Peng Y, Hu X, Liu C. Fuzheng Huayu Recipe and its active compounds inhibited HBeAg production by promoting TOMM34 gene expression in HBV-infected hepatocytes. Front Pharmacol 2022; 13:907921. [PMID: 36249820 PMCID: PMC9555080 DOI: 10.3389/fphar.2022.907921] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 09/06/2022] [Indexed: 11/23/2022] Open
Abstract
Background and aim: Fuzheng Huayu Recipe (FZHY) is a Chinese patent medicine (approval No. Z20020074) included in the national medical insurance catalogue, which is mainly used for anti-hepatic fibrosis treatment of hepatitis B virus (HBV) induced liver fibrosis and liver cirrhosis. In clinical practice, we discovered that FZHY might also have a direct anti-HBV effect on inhibiting HBeAg production, but the mechanism underlying was unclear. This study aimed to clarify the molecular mechanism of the inhibition effect of FZHY on HBeAg production. Methods: The decrease degree of serum HBeAg titer in FZHY + entecavir (ETV) group patients were analyzed through clinical data. C57BL/6N-Tg (1.28HBV)/Vst HBV transgenic mice were used for in vivo experiments. HepG2. 2.15 cells (wild-type HBV replication cells) were used for in vitro experiments. Results: The clinical study results showed that the decrease degree of serum HBeAg titer in FZHY+ETV group was significantly higher than that in ETV group after 48 weeks treatment. In vivo experiments results showed that FZHY could significantly reduce the serum HBeAg titer in HBV transgenic mice, and promote HBeAg seroconversion. In vitro experiments results showed that FZHY could reduce HBeAg titer dependently, but it did not significantly inhibit the expression of HBsAg and HBV-DNA. Further cell experiments in vitro discovered that TOMM34 might be the key target for FZHY to inhibit HBeAg production. The subsequent pharmacological screening experiment of 20 active compounds in FZHY showed that quercetin, baicalin and cordycepin could promote the expression of TOMM34 gene and reduce the production of HBeAg. Conclusion: In conclusion, FZHY and its active compounds quercetin, baicalin and cordycepin could inhibit HBeAg production by promoting the expression of TOMM34 gene in HBV-infected hepatocytes.
Collapse
Affiliation(s)
- Lu Xing
- Institute of Liver diseases, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rui Zeng
- Department of Biology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Kai Huang
- Institute of Liver diseases, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jingbo Xue
- Institute of Liver diseases, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hongliang Liu
- Institute of Liver diseases, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhimin Zhao
- Institute of Liver diseases, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuan Peng
- Institute of Liver diseases, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xudong Hu
- Department of Biology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Xudong Hu, ; Chenghai Liu,
| | - Chenghai Liu
- Institute of Liver diseases, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
- *Correspondence: Xudong Hu, ; Chenghai Liu,
| |
Collapse
|
33
|
On the Core Prescriptions and Their Mechanisms of Traditional Chinese Medicine in Hepatitis B, Liver Cirrhosis, and Liver Cancer Treatment. JOURNAL OF ONCOLOGY 2022; 2022:5300523. [PMID: 36193202 PMCID: PMC9525786 DOI: 10.1155/2022/5300523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 07/23/2022] [Indexed: 12/02/2022]
Abstract
Background As a frequent cause of death in cancer patients, liver cancer usually occurs in hepatitis B and cirrhosis. In China, Chinese people have been using traditional Chinese medicine (TCM) in treating various chronic liver diseases, which could effectively improve the symptoms and slow down the progression of liver diseases. However, due to the complexity rules of TCM prescription, their action mechanisms are still not clearly understood, which may affect the popularization of effective prescriptions. This study aims to identify the core TCM herbs in the treatment of hepatitis B, liver cirrhosis, and liver cancer so as to clarify the mechanism of action of the core herb networks. Methods There were 1,673 prescriptions for chronic liver diseases collected in this study, of which 854 were hepatic B prescriptions, 530 were for liver cirrhosis, and 289 were for liver cancer. The basic characteristics of herbal medicine were firstly explained via descriptive analysis, then the core prescriptions of herbal medicine were analyzed through association rule, and finally, the mechanism of core prescriptions was explored with the help of systematic network pharmacology and by applying such databases as TCMIP, HERB, OMIM, GeneCards, KEGG, and software like RStudio and Cytoscape. Results The rule of the core prescriptions in these cases was characterized by the application of herbs with both cold and warm properties, in which bitter herbs with cold property took priority. Tonifying deficiency, clearing heat, and activating blood circulations to remove stasis were common treatment principles for the three liver diseases. Turmeric Root Tuber (YuJin), White Peony Root (BaiShao), Bupleurum (ChaiHu), Salvia miltiorrhiza (DanShen), and Astragali Radix (HuangQi) were prescribed the most in hepatitis B treatment to invigorate the spleen and soothe the liver. Astragali Radix (HuangQi), Tuckahoe (FuLing), Atractylodis Macrocephalae Rhizoma (BaiZhu), Fructus Polygoni Orientalis (ShuiHongHuaZi), and Curcumae Rhizome (EZhu) were most frequently applied in liver cirrhosis treatment to replenish qi and activate blood. Oldenlandia (BaiHuaSheSheCao), Bearded Scutellaria (BanZhiLian), Curcumae Rhizome (EZhu), and Cardamom (DouKou) were most frequently prescribed to eliminate cancer toxin, invigorate the spleen, and activate blood. These core herbs mainly act through signal transduction and immune system pathways, in which the PI3K-Akt pathway plays a key role. The core prescription for liver cirrhosis regulated more endocrine system pathways than the hepatitis B prescription, and liver cancer prescription regulated more nervous system-related pathways. Conclusion Three core prescriptions for hepatitis B, liver cirrhosis, and liver cancer treatment were identified, which acted mainly through signal transduction and immune system pathways to regulate immunity and cell growth and participate in inflammation inhibition, in which liver cancer prescription regulated more pathways, especially more nervous system-related pathways than the other two.
Collapse
|
34
|
Jiao HB, Wang W, Guo MN, Su YL, Pang DQ, Wang BL, Shi J, Wu JH. Evaluation of high-risk factors and the diagnostic value of alpha-fetoprotein in the stratification of primary liver cancer. World J Clin Cases 2022; 10:9264-9275. [PMID: 36159417 PMCID: PMC9477695 DOI: 10.12998/wjcc.v10.i26.9264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/10/2021] [Accepted: 08/05/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Alpha-fetoprotein (AFP) is one of the diagnostic standards for primary liver cancer (PLC); however, AFP exhibits insufficient sensitivity and specificity for diagnosing PLC.
AIM To evaluate the effects of high-risk factors and the diagnostic value of AFP in stratified PLC.
METHODS In total, 289 PLC cases from 2013 to 2019 were selected for analysis. First, the contributions of high-risk factors in stratifying PLC were compared according to the following criteria: Child–Pugh score, clinical stage of liver cirrhosis, tumor size, and Barcelona Clinic Liver Cancer (BCLC) stage. Then, the diagnostic value of AFP was evaluated in different stratifications of PLC by receiver operating characteristic curves. For PLC cases in which AFP played little role, the diagnostic values of carcinoembryonic antigen (CEA), carbohydrate antigen 19-9 (CA 19-9), gamma-glutamyl transferase (GGT), and AFP were analyzed.
RESULTS The roles of high-risk factors differed in stratified PLC. The incidence of smoking and drinking history was higher in PLC with Child–Pugh scores of C (P < 0.0167). The hepatitis B virus (HBV) infection rate in PLC with cirrhosis was more than in PLC without cirrhosis (P < 0.0167). Small tumors were more prone to cirrhosis than large tumors (P < 0.005). BCLC stage D PLC was more likely to be associated with HBV infection and cirrhosis (P < 0.0083). AFP levels were higher in PLC with cirrhosis, diffuse tumors, and BCLC stage D disease. In diagnosing PLC defined as Child–Pugh A, B, and C, massive hepatoma, diffuse hepatoma, BCLC stage B, C, and D, and AFP showed significant diagnostic value [all area under the curve (AUC) > 0.700]. However, these measures were meaningless (AUC < 0.600) in small hepatomas and BCLC A stage PLC, but could be replaced by the combined detection of CEA, CA 19-9, GGT, and AFP (AUC = 0.810 and 0.846, respectively).
CONCLUSION Stratification of PLC was essential for precise diagnoses and benefited from evaluating AFP levels.
Collapse
Affiliation(s)
- Hong-Bin Jiao
- Clinical Laboratory, Tangshan Maternal and Child Health Care Hospital, North China University of Science and Technology, Tangshan 063000, Hebei Province, China
| | - Wei Wang
- Clinical Laboratory, Tangshan Maternal and Child Health Care Hospital, North China University of Science and Technology, Tangshan 063000, Hebei Province, China
| | - Meng-Nan Guo
- Clinical Laboratory, Tangshan Maternal and Child Health Care Hospital, North China University of Science and Technology, Tangshan 063000, Hebei Province, China
| | - Ya-Li Su
- Clinical Laboratory, Tangshan Maternal and Child Health Care Hospital, North China University of Science and Technology, Tangshan 063000, Hebei Province, China
| | - De-Quan Pang
- Department of Oncology, Tangshan Maternal and Child Health Care Hospital, North China University of Science and Technology, Tangshan 063000, Hebei Province, China
| | - Bao-Lin Wang
- Clinical Laboratory, Tangshan Maternal and Child Health Care Hospital, North China University of Science and Technology, Tangshan 063000, Hebei Province, China
| | - Jun Shi
- Clinical Laboratory, Tangshan Nanhu Hospital, Tangshan 063000, Hebei Province, China
| | - Jing-Hua Wu
- Clinical Laboratory, Tangshan Maternal and Child Health Care Hospital, North China University of Science and Technology, Tangshan 063000, Hebei Province, China
| |
Collapse
|
35
|
Kumari S, Sharma S, Advani D, Khosla A, Kumar P, Ambasta RK. Unboxing the molecular modalities of mutagens in cancer. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:62111-62159. [PMID: 34611806 PMCID: PMC8492102 DOI: 10.1007/s11356-021-16726-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 09/22/2021] [Indexed: 04/16/2023]
Abstract
The etiology of the majority of human cancers is associated with a myriad of environmental causes, including physical, chemical, and biological factors. DNA damage induced by such mutagens is the initial step in the process of carcinogenesis resulting in the accumulation of mutations. Mutational events are considered the major triggers for introducing genetic and epigenetic insults such as DNA crosslinks, single- and double-strand DNA breaks, formation of DNA adducts, mismatched bases, modification in histones, DNA methylation, and microRNA alterations. However, DNA repair mechanisms are devoted to protect the DNA to ensure genetic stability, any aberrations in these calibrated mechanisms provoke cancer occurrence. Comprehensive knowledge of the type of mutagens and carcinogens and the influence of these agents in DNA damage and cancer induction is crucial to develop rational anticancer strategies. This review delineated the molecular mechanism of DNA damage and the repair pathways to provide a deep understanding of the molecular basis of mutagenicity and carcinogenicity. A relationship between DNA adduct formation and cancer incidence has also been summarized. The mechanistic basis of inflammatory response and oxidative damage triggered by mutagens in tumorigenesis has also been highlighted. We elucidated the interesting interplay between DNA damage response and immune system mechanisms. We addressed the current understanding of DNA repair targeted therapies and DNA damaging chemotherapeutic agents for cancer treatment and discussed how antiviral agents, anti-inflammatory drugs, and immunotherapeutic agents combined with traditional approaches lay the foundations for future cancer therapies.
Collapse
Affiliation(s)
- Smita Kumari
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Sudhanshu Sharma
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Dia Advani
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Akanksha Khosla
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India.
| |
Collapse
|
36
|
RECK gene polymorphisms in hepatitis B-related hepatocellular carcinoma: A case-control study. Arab J Gastroenterol 2022; 23:201-205. [PMID: 35941073 DOI: 10.1016/j.ajg.2022.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 01/31/2022] [Accepted: 05/10/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND AND STUDY AIMS Chronic hepatitis B (CHB) infection is a major risk factor for hepatocellular carcinoma (HCC). The RECK gene is a critical tumor suppressor gene. This study aimed to assess the association between RECK gene single nucleotide polymorphisms (SNPs) and the development of HCC in Egyptian patients with chronic hepatitis B. PATIENTS AND METHOD In this case-control study, we enrolled patients with CHB from the Gastroenterology Department, Benha University, from June 2016 to February 2018. The RECK gene SNP rs10814325 was identified using real-time PCR allelic discrimination via TaqMan SNP genotyping assays (Applied Biosystems, USA). RESULTS We enrolled 140 participants in this study. The participants were divided into Group I, which comprised 50 participants with CHB only, Group II, which comprised 50 participants with CHB and HCC, and Group III, which comprised 40 healthy participants. A significantly higher hepatitis B virus DNA viremia level was found in patients with HCC. The predominant RECK genotype was the T/T allele, followed by the T/C allele; however, no significant difference in the distribution of RECK gene SNPs was found between the study groups. No statistically significant difference in RECK gene SNPs was reported among patients with HCC of different Child classes or based on the number, site, size of HCC, and lymph node involvement. Receiver operating characteristic curves showed that a serum alpha-fetoprotein level of 92 ng/ml was 96 % sensitive and 100 % specific for the detection of HCC, with an area under the operating characteristic curve of 0.98. CONCLUSION RECK gene SNPs have no significant association with the development and characteristics of hepatitis B-related HCC in Egyptian patients.
Collapse
|
37
|
Ramani A, Tapper EB, Griffin C, Shankar N, Parikh ND, Asrani SK. Hepatocellular Carcinoma-Related Mortality in the USA, 1999-2018. Dig Dis Sci 2022; 67:4100-4111. [PMID: 35288828 DOI: 10.1007/s10620-022-07433-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 12/13/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS The burden of hepatocellular carcinoma (HCC) is increasing, and certain groups may be at higher risk. METHODS We analyzed trends in HCC-related mortality in the USA (1999-2018) using national death data. Age-adjusted trends in death rates (annual percentage change, APC) were calculated using joinpoint regression analysis. RESULTS HCC-related death rates increased by 2.1% (95% CI 1.9 to 2.3) annually. Hepatitis C (HCV)-related HCC death rates increased from 1999 to 2012 (8.9%, 95% CI 7.6 to 10.2) followed by a -1.3% (95% CI -3.5 to 0.9) decrease annually. For adults > 65 years, HCV-related HCC death rates increased (7.3% annually, 95% CI 6.5 to 8.1), especially for rural areas (11.1% annually, 95% CI 6.9 to 15.5) with high rates among African-Americans and Hispanics. Increases in non-HCV-related HCC death rates were larger: 13.5% annually (95% CI 3.6 to 24.3, 2005-2010) followed by 4.2% annually (95% CI 2.3 to 6.2, 2010-2018). Annual rates of increase were similar for men (6.8%, 95% CI 5.9 to 7.8) and women (7.0%, 95% CI 5.5 to 8.4) from 1999 to 2018. Rate of increase across races was Whites 8.3% (95% CI 7.2 to 9.4, 1999-2018), African-Americans 11.2% (95% CI -6.6 to 32.3, 2015-2018), and Hispanics 3.7% (95% CI 1.0 to 6.5, 2012-2018). CONCLUSION HCC-related mortality has increased, driven by increases in non-HCV-related mortality with important demographic and regional trends. In addition, HCV-HCC mortality remains high particularly in older persons and those in rural areas despite advances in HCV therapy. These data underscore the need for targeted approaches to mitigate the burden of HCC-related mortality similar to efforts for other cancers.
Collapse
Affiliation(s)
- Azaan Ramani
- Baylor University Medical Center, Baylor Scott and White, 3410 Worth Street, Suite 860, Dallas, TX, 75246, USA
| | - Elliot B Tapper
- Division of Gastroenterology and Hepatology, University of Michigan, Michigan, MI, USA.,Gastroenterology Section, VA Ann Arbor Healthcare System, Ann Arbor, MI, USA
| | - Connor Griffin
- Baylor University Medical Center, Baylor Scott and White, 3410 Worth Street, Suite 860, Dallas, TX, 75246, USA
| | - Nagasri Shankar
- Baylor University Medical Center, Baylor Scott and White, 3410 Worth Street, Suite 860, Dallas, TX, 75246, USA
| | - Neehar D Parikh
- Division of Gastroenterology and Hepatology, University of Michigan, Michigan, MI, USA
| | - Sumeet K Asrani
- Baylor University Medical Center, Baylor Scott and White, 3410 Worth Street, Suite 860, Dallas, TX, 75246, USA.
| |
Collapse
|
38
|
Zhang Y, Zou J, Chen R. An M0 macrophage-related prognostic model for hepatocellular carcinoma. BMC Cancer 2022; 22:791. [PMID: 35854246 PMCID: PMC9294844 DOI: 10.1186/s12885-022-09872-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 07/04/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The role of M0 macrophages and their related genes in the prognosis of hepatocellular carcinoma (HCC) remains poorly characterized. METHODS Multidimensional bioinformatic methods were used to construct a risk score model using M0 macrophage-related genes (M0RGs). RESULTS Infiltration of M0 macrophages was significantly higher in HCC tissues than in normal liver tissues (P = 2.299e-07). Further analysis revealed 35 M0RGs that were associated with HCC prognosis; two M0RGs (OLA1 and ATIC) were constructed and validated as a prognostic signature for overall survival of patients with HCC. Survival analysis revealed the positive relationship between the M0RG signature and unfavorable prognosis. Correlation analysis showed that this risk model had positive associations with clinicopathological characteristics, somatic gene mutations, immune cell infiltration, immune checkpoint inhibitor targets, and efficacy of common drugs. CONCLUSIONS The constructed M0RG-based risk model may be promising for the clinical prediction of prognoses and therapeutic responses in patients with HCC.
Collapse
Affiliation(s)
- Yiya Zhang
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Ju Zou
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,Department of Infectious Disease, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Ruochan Chen
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China. .,Department of Infectious Disease, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
39
|
Immune-Related lncRNAs with WGCNA Identified the Function of SNHG10 in HBV-Related Hepatocellular Carcinoma. JOURNAL OF ONCOLOGY 2022; 2022:9332844. [PMID: 35847362 PMCID: PMC9279027 DOI: 10.1155/2022/9332844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/14/2022] [Accepted: 05/17/2022] [Indexed: 11/18/2022]
Abstract
Objective. The hepatitis B virus (HBV) infection led to hepatitis, which was one of common reasons for hepatocellular carcinoma (HCC). The immune microenvironment alteration played a crucial role in this process. The study aimed to identify immune-related long noncoding RNAs (lncRNAs) in HBV-related HCC and explore potential mechanisms. Methods. In total, 1,072 immune‐related genes (IRGs) were enriched in different co-expression modules with weighted gene co-expression network analysis (WGCNA) combining the corresponding clinical features in HBV-related HCC. The immune-related lncRNAs were selected from the crucial co-expression model based on the correlation analysis with IRGs. The immune-related lncRNAs were furtherly used to construct prognostic signature by the Cox proportional hazards regression and Lasso regression. Furthermore, the proliferation and migration ability of lncRNA SNHG10 were verified in vitro. Results. A total of nine co-expression modules were identified by WGCNA of which the “red” co-expression module was most correlated with various clinical characteristics. Additionally, the IRGs in this module were significantly enriched in multiple immune-related pathways. The twelve immune-related lncRNAs prognostic signature (HAND2-AS1, LINC00844, SNHG10, MALAT1, LINC00460, LBX2-AS1, MIR31HG, SEMA6A-AS1, LINC1278, LINC00514, CTBP-AS2, and LINC00205) was constructed. The risk score was an independent risk factor in HBV-related HCC and verified by principal components analysis (PCA), nomogram, and PCR between different cell lines. Moreover, the proportion of immune cells were significantly different between high-risk score group and low-risk score group. The malignant behavior of Hep3B was significantly different between si-lncRNA SNHG10 and control group. Conclusions. The immune-related lncRNAs prognostic signature provided some potential biomarkers and molecular mechanisms in HBV-related HCC.
Collapse
|
40
|
Shiue SJ, Cheng CL, Shiue HS, Chen CN, Cheng SW, Wu LW, Jargalsaikhan G, Chan TS, Lin HY, Wu MS. Arthrospira Enhances Seroclearance in Patients with Chronic Hepatitis B Receiving Nucleos(t)ide Analogue through Modulation of TNF-α/IFN-γ Profile. Nutrients 2022; 14:2790. [PMID: 35889747 PMCID: PMC9325115 DOI: 10.3390/nu14142790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/30/2022] [Accepted: 07/04/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic hepatitis B (CHB) virus infection, causing immune dysfunction and chronic hepatitis, is one of the leading risk factors for hepatocellular cancer. We investigated how Arthrospira affected hepatitis B surface antigen (HBsAg) reduction in CHB patients under continued nucleos(t)ide analogues (NA). Sixty CHB patients who had been receiving NA for at least one year with undetectable HBV DNA were randomized into three groups: control and oral Arthrospira at 3 or 6 g daily add-on therapy groups. Patients were followed up for 6 months. Oral Arthrospira-diet mice were established to investigate the possible immunological mechanism of Arthrospira against HBV. Within 6 months, mean quantitative HBsAg (qHBsAg) decreased in the oral Arthrospira add-on therapy group. Interestingly, interferon gamma (IFN-γ) increased but TNF-α, interleukin 6 (IL-6), hepatic fibrosis, and steatosis decreased in the add-on groups. In mice, Arthrospira enhanced both innate and adaptive immune system, especially natural killer (NK) cell cytotoxicity, B cell activation, and the interleukin 2 (IL-2), IFN-γ immune response. Arthrospira may modulate IL-2- and TNF-α/IFN-γ-mediated B and T cell activation to reduce HBsAg. Also, Arthrospira has the potential to restore immune tolerance and enhance HBsAg seroclearance in CHB patients through promoting T, B, and NK cell activation.
Collapse
Affiliation(s)
- Sheng-Jie Shiue
- Division of Gastroenterology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan; (S.-J.S.); (C.-L.C.); (H.-S.S.); (C.-N.C.); (S.-W.C.); (T.-S.C.)
- Integrative Therapy Center for Gastroenterologic Cancers, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
| | - Chao-Ling Cheng
- Division of Gastroenterology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan; (S.-J.S.); (C.-L.C.); (H.-S.S.); (C.-N.C.); (S.-W.C.); (T.-S.C.)
| | - Han-Shiang Shiue
- Division of Gastroenterology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan; (S.-J.S.); (C.-L.C.); (H.-S.S.); (C.-N.C.); (S.-W.C.); (T.-S.C.)
| | - Chun-Nan Chen
- Division of Gastroenterology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan; (S.-J.S.); (C.-L.C.); (H.-S.S.); (C.-N.C.); (S.-W.C.); (T.-S.C.)
| | - Sheng-Wei Cheng
- Division of Gastroenterology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan; (S.-J.S.); (C.-L.C.); (H.-S.S.); (C.-N.C.); (S.-W.C.); (T.-S.C.)
- Division of Gastroenterology, Department of Internal Medicine, Taiwan Adventist Hospital, Taipei 105, Taiwan
| | - Li-Wei Wu
- Department of Internal Medicine, National Taiwan University Hospital, YunLin Branch, YunLin 640, Taiwan;
| | | | - Tze-Sian Chan
- Division of Gastroenterology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan; (S.-J.S.); (C.-L.C.); (H.-S.S.); (C.-N.C.); (S.-W.C.); (T.-S.C.)
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Hsin-Yi Lin
- Institute of Chemical Engineering, National Taipei University of Technology, Taipei 106, Taiwan
- Institute of Biochemical and Biomedical Engineering, National Taipei University of Technology, Taipei 106, Taiwan
| | - Ming-Shun Wu
- Division of Gastroenterology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan; (S.-J.S.); (C.-L.C.); (H.-S.S.); (C.-N.C.); (S.-W.C.); (T.-S.C.)
- Integrative Therapy Center for Gastroenterologic Cancers, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
41
|
Jia JA, Zhang S, Bai X, Fang M, Chen S, Liang X, Zhu S, Wong DKH, Zhang A, Feng J, Sun F, Gao C. Sparse logistic regression revealed the associations between HBV PreS quasispecies and hepatocellular carcinoma. Virol J 2022; 19:114. [PMID: 35765099 PMCID: PMC9238101 DOI: 10.1186/s12985-022-01836-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 05/25/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chronic infection with hepatitis B virus (HBV) has been proved highly associated with the development of hepatocellular carcinoma (HCC). AIMS The purpose of the study is to investigate the association between HBV preS region quasispecies and HCC development, as well as to develop HCC diagnosis model using HBV preS region quasispecies. METHODS A total of 104 chronic hepatitis B (CHB) patients and 117 HBV-related HCC patients were enrolled. HBV preS region was sequenced using next generation sequencing (NGS) and the nucleotide entropy was calculated for quasispecies evaluation. Sparse logistic regression (SLR) was used to predict HCC development and prediction performances were evaluated using receiver operating characteristic curves. RESULTS Entropy of HBV preS1, preS2 regions and several nucleotide points showed significant divergence between CHB and HCC patients. Using SLR, the classification of HCC/CHB groups achieved a mean area under the receiver operating characteristic curve (AUC) of 0.883 in the training data and 0.795 in the test data. The prediction model was also validated by a completely independent dataset from Hong Kong. The 10 selected nucleotide positions showed significantly different entropy between CHB and HCC patients. The HBV quasispecies also classified three clinical parameters, including HBeAg, HBVDNA, and Alkaline phosphatase (ALP) with the AUC value greater than 0.6 in the test data. CONCLUSIONS Using NGS and SLR, the association between HBV preS region nucleotide entropy and HCC development was validated in our study and this could promote the understanding of HCC progression mechanism.
Collapse
Affiliation(s)
- Jian-an Jia
- Department of Laboratory Medicine, Eastern Hepatobiliary Surgery Hospital, Navy Military Medical University, Shanghai, 200438 China
- Department of Laboratory Medicine, The 901th Hospital of Joint Logistics Support Force of Chinese People’s Liberation Army, Hefei, 230031 China
| | - Shuqin Zhang
- Centre for Computational Systems Biology, School of Mathematical Sciences, Fudan University, Shanghai, 200433 China
| | - Xin Bai
- Molecular and Computational Program, Department of Biological Sciences, University of Southern California, 1050 Childs Way, Los Angeles, 90089 USA
| | - Meng Fang
- Department of Laboratory Medicine, Eastern Hepatobiliary Surgery Hospital, Navy Military Medical University, Shanghai, 200438 China
| | - Shipeng Chen
- Department of Laboratory Medicine, Eastern Hepatobiliary Surgery Hospital, Navy Military Medical University, Shanghai, 200438 China
| | - Xiaotao Liang
- Department of Computer Science, Fudan University, Shanghai, 200433 China
| | - Shanfeng Zhu
- Department of Computer Science, Fudan University, Shanghai, 200433 China
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433 China
| | - Danny Ka-Ho Wong
- State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong SAR, China
| | - Anye Zhang
- Department of Medicine, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033 China
| | - Jianfeng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433 China
- Department of Computer Science, University of Warwick, Coventry, CV4 7AL UK
| | - Fengzhu Sun
- Molecular and Computational Program, Department of Biological Sciences, University of Southern California, 1050 Childs Way, Los Angeles, 90089 USA
| | - Chunfang Gao
- Department of Laboratory Medicine, Eastern Hepatobiliary Surgery Hospital, Navy Military Medical University, Shanghai, 200438 China
- Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437 China
| |
Collapse
|
42
|
Pituitary Tumor-Transforming Gene 1/Delta like Non-Canonical Notch Ligand 1 Signaling in Chronic Liver Diseases. Int J Mol Sci 2022; 23:ijms23136897. [PMID: 35805898 PMCID: PMC9267054 DOI: 10.3390/ijms23136897] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/17/2022] [Accepted: 06/18/2022] [Indexed: 02/06/2023] Open
Abstract
The management of chronic liver diseases (CLDs) remains a challenge, and identifying effective treatments is a major unmet medical need. In the current review we focus on the pituitary tumor transforming gene (PTTG1)/delta like non-canonical notch ligand 1 (DLK1) axis as a potential therapeutic target to attenuate the progression of these pathological conditions. PTTG1 is a proto-oncogene involved in proliferation and metabolism. PTTG1 expression has been related to inflammation, angiogenesis, and fibrogenesis in cancer and experimental fibrosis. On the other hand, DLK1 has been identified as one of the most abundantly expressed PTTG1 targets in adipose tissue and has shown to contribute to hepatic fibrosis by promoting the activation of hepatic stellate cells. Here, we extensively analyze the increasing amount of information pointing to the PTTG1/DLK1 signaling pathway as an important player in the regulation of these disturbances. These data prompted us to hypothesize that activation of the PTTG1/DLK1 axis is a key factor upregulating the tissue remodeling mechanisms characteristic of CLDs. Therefore, disruption of this signaling pathway could be useful in the therapeutic management of CLDs.
Collapse
|
43
|
Hepatitis B Virus X Protein Is Stabilized by the Deubiquitinating Enzyme VCPIP1 in a Ubiquitin-Independent Manner by Recruiting the 26S Proteasome Subunit PSMC3. J Virol 2022; 96:e0061122. [PMID: 35695579 PMCID: PMC9278118 DOI: 10.1128/jvi.00611-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Abstract
Hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) is the sixth most common cancer worldwide, and the viral X protein (HBx) is an etiological factor in HCC development. HBx is a high-turnover protein, but knowledge of the role of deubiquitinating enzymes (DUBs) in maintaining HBx homeostasis is very limited. We used a 74-DUB library-based yeast two-hybrid assay and determined that a novel DUB, valosin-containing protein-interacting protein 1 (VCPIP1), interacted with HBx. VCPIP1 and its C-terminal amino acids 863 to 1221 upregulated the HBx protein expression, with or without HBV infection. Mechanistically, VCPIP1 stabilized HBx protein through a ubiquitin-independent pathway, which was validated by the HBx ubiquitination site mutant plasmid. Coimmunoprecipitation assays demonstrated the potency of VCPIP1 in recruiting 26S proteasome regulatory subunit 6A (PSMC3) and forming a ternary complex with HBx through mutual interaction. In vitro, purified His-tagged PSMC3 protein rescued HBx degradation induced by the 20S proteasome, and in vivo VCPIP1 synergized the mechanism. Functionally, HBx specifically binding to VCPIP1 significantly enhanced the transcriptional transactivation of HBx by activating NF-κB, AP-1, and SP-1 and inhibited hepatoma cell clonogenicity in Huh7 and HepG2 cells. Moreover, we further demonstrated that overexpression of VCPIP1 significantly affected the HBV covalently closed circular DNA (cccDNA) transcription in HBV-infected HepG2-NTCP cells. Altogether, our results indicate a novel mechanism by which VCPIP1 recruits PSMC3 to bind with HBx, stabilizing it in a ubiquitin-independent manner, which might be critical for developing DUB inhibitors in the future. IMPORTANCE HBx is a multifunctional viral oncoprotein that plays an essential role in the viral life cycle and hepatocarcinogenesis. HBx degradation occurs through the ubiquitin-proteasome system (UPS). However, whether novel compartments of the DUBs in the UPS also act in regulating HBx stability is not fully understood. Here, for the first time, we defined VCPIP1 as a novel DUB for preventing HBx degradation by the 20S proteasome in a ubiquitin-independent manner. PSMC3, encoding the 26S proteasome regulatory subunit, directly stabilized HBx through physical binding instead of a common approach in protein degradation, serving as the key downstream effector of VCPIP1 on HBx. Therefore, the ternary binding pattern between VCPIP1, HBx, and PSMC3 is initiated for the first time, which eventually promotes HBx stability and its functions. Our findings provide novel insights into host-virus cross talk by targeting DUBs in the UPS.
Collapse
|
44
|
Sun Y, He Y, Tong J, Liu D, Zhang H, He T, Bi Y. All-trans retinoic acid inhibits the malignant behaviors of hepatocarcinoma cells by regulating ferroptosis. Genes Dis 2022; 9:1742-1756. [PMID: 36157492 PMCID: PMC9485287 DOI: 10.1016/j.gendis.2022.04.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/12/2022] [Indexed: 11/28/2022] Open
Affiliation(s)
- Yanting Sun
- Stem Cell Biology and Therapy Laboratory, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, PR China
| | - Yun He
- Department of Pediatric Surgery, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China
| | - Jishuang Tong
- Stem Cell Biology and Therapy Laboratory, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, PR China
| | - Daijiang Liu
- Department of Gastroenterology, Chongqing Emergency Medical Centre, Chongqing 400014, PR China
| | - Haodong Zhang
- Stem Cell Biology and Therapy Laboratory, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, PR China
| | - Tongchuan He
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Centre, Chicago, IL 60637, USA
| | - Yang Bi
- Stem Cell Biology and Therapy Laboratory, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, PR China
- Corresponding author. Stem Cell Biology and Therapy Laboratory, Children's Hospital of Chongqing Medical University, Building 7, Room 905, 136 Zhongshan Er Road, Chongqing 400014, PR China.
| |
Collapse
|
45
|
LncRNA TSPEAR-AS1 predicts poor prognosis in patients with hepatitis B virus-associated hepatocellular carcinoma and promotes metastasis via miR-1915-5p. Virus Res 2022; 315:198788. [PMID: 35477008 DOI: 10.1016/j.virusres.2022.198788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/16/2022] [Accepted: 04/22/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Hepatitis B virus-related hepatocellular carcinoma (HBV-HCC) will contribute to more than half of the liver deaths worldwide. This study aimed to investigate the prognostic value of TSPEAR-AS1 in HBV-HCC and its role in the HBV-HCC progression. METHODS HBV-HCC tissue and adjacent non-cancerous tissues (ANT) were detected to figure out the expression level of TSPEAR-AS1 using real-time quantitative PCR. The relationship between TSPEAR-AS1 expression and each important clinical characteristic was evaluated. And the prognostic significance of TSPEAR-AS1 was assessed by Kaplan-Meier curve and Cox regression analysis. CCK-8 and Transwell assays were performed to observe the effects of TSPEAR-AS1 on HBV-HCC cell proliferation, migration, and invasion. RESULTS The TSPEAR-AS1 expression was downregulated in HBV-HCC tissues, as well as in HBV-HCC cell lines. The downregulation of TSPEAR-AS1 showed a significant association with TNM stage, clinical stage, and vascular invasion and predicted poor prognosis of HBV-HCC patients. Overexpression of TSPEAR-AS1 inhibited HBV-HCC cell ability of proliferation, migration, and invasiveness. TSPEAR-AS1 may bind to miR-1915-5p in HCC. CONCLUSION TSPEAR-AS1 expression was downregulated in HBV-HCC and may serve as a potential prognostic factor. TSPEAR-AS1 might exert a suppressor role in HBV-HCC through inhibiting tumor cell proliferation, migration, and invasion.
Collapse
|
46
|
Li L, Bi Y, Diao S, Li X, Yuan T, Xu T, Huang C, Li J. Exosomal LncRNAs and hepatocellular Carcinoma: From basic research to clinical practice. Biochem Pharmacol 2022; 200:115032. [PMID: 35395241 DOI: 10.1016/j.bcp.2022.115032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 03/31/2022] [Accepted: 03/31/2022] [Indexed: 12/18/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer with poor prognosis. The incidences of HCC and HCC-related deaths have increased over the last several decades. However, the treatment options for advanced HCC are very limited. Long noncoding RNAs (lncRNAs) wrapped in exosomes can change the expression of their target genes in recipient cells, thereby regulating the behavior of recipient cells. Increasing evidence has demonstrated that there is a correlation between the activation of exosomal lncRNAs and the development of HCC. In this review article, we highlighted the functions of exosomal lncRNAs in the development of HCC, showing that exosomal lncRNAs play a vital role in the growth and progression of HCC and are targets for HCC.
Collapse
Affiliation(s)
- Liangyun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, China
| | - Yihui Bi
- The Second Affiliated Hospital of Anhui Medical University, China
| | - Shaoxi Diao
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, China
| | - Xiaofeng Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, China
| | - Tong Yuan
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, China
| | - Tao Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, China
| | - Cheng Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, China
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, China.
| |
Collapse
|
47
|
Ouyang M, Yu C, Deng X, Zhang Y, Zhang X, Duan F. O-GlcNAcylation and Its Role in Cancer-Associated Inflammation. Front Immunol 2022; 13:861559. [PMID: 35432358 PMCID: PMC9010872 DOI: 10.3389/fimmu.2022.861559] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/14/2022] [Indexed: 12/24/2022] Open
Abstract
Cancer cells, as well as surrounding stromal and inflammatory cells, form an inflammatory tumor microenvironment (TME) to promote all stages of carcinogenesis. As an emerging post-translational modification (PTM) of serine and threonine residues of proteins, O-linked-N-Acetylglucosaminylation (O-GlcNAcylation) regulates diverse cancer-relevant processes, such as signal transduction, transcription, cell division, metabolism and cytoskeletal regulation. Recent studies suggest that O-GlcNAcylation regulates the development, maturation and functions of immune cells. However, the role of protein O-GlcNAcylation in cancer-associated inflammation has been less explored. This review summarizes the current understanding of the influence of protein O-GlcNAcylation on cancer-associated inflammation and the mechanisms whereby O-GlcNAc-mediated inflammation regulates tumor progression. This will provide a theoretical basis for further development of anti-cancer therapies.
Collapse
Affiliation(s)
- Muzi Ouyang
- Department of Pharmacology, School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Changmeng Yu
- School of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Xiaolian Deng
- Department of Pharmacology, School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Yingyi Zhang
- Department of Pharmacology, School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Xudong Zhang
- Department of Pharmacology, School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Fangfang Duan
- Department of Pharmacology, School of Medicine, Sun Yat-sen University, Shenzhen, China
- *Correspondence: Fangfang Duan,
| |
Collapse
|
48
|
Liou JW, Mani H, Yen JH. Viral Hepatitis, Cholesterol Metabolism, and Cholesterol-Lowering Natural Compounds. Int J Mol Sci 2022; 23:ijms23073897. [PMID: 35409259 PMCID: PMC8999150 DOI: 10.3390/ijms23073897] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/27/2022] [Accepted: 03/30/2022] [Indexed: 11/24/2022] Open
Abstract
Hepatitis is defined as inflammation of the liver; it can be acute or chronic. In chronic cases, the prolonged inflammation gradually damages the liver, resulting in liver fibrosis, cirrhosis, and sometimes liver failure or cancer. Hepatitis is often caused by viral infections. The most common causes of viral hepatitis are the five hepatitis viruses—hepatitis A virus (HAV), hepatitis B virus (HBV), hepatitis C virus (HCV), hepatitis D virus (HDV), and hepatitis E virus (HEV). While HAV and HEV rarely (or do not) cause chronic hepatitis, a considerable proportion of acute hepatitis cases caused by HBV (sometimes co-infected with HDV) and HCV infections become chronic. Thus, many medical researchers have focused on the treatment of HBV and HCV. It has been documented that host lipid metabolism, particularly cholesterol metabolism, is required for the hepatitis viral infection and life cycle. Thus, manipulating host cholesterol metabolism-related genes and proteins is a strategy used in fighting the viral infections. Efforts have been made to evaluate the efficacy of cholesterol-lowering drugs, particularly 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors, in the treatment of hepatitis viral infections; promising results have been obtained. This review provides information on the relationships between hepatitis viruses and host cholesterol metabolism/homeostasis, as well as the discovery/development of cholesterol-lowering natural phytochemicals that could potentially be applied in the treatment of viral hepatitis.
Collapse
Affiliation(s)
- Je-Wen Liou
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan;
- Institute of Medical Sciences, Tzu Chi University, Hualien 97004, Taiwan;
| | - Hemalatha Mani
- Institute of Medical Sciences, Tzu Chi University, Hualien 97004, Taiwan;
| | - Jui-Hung Yen
- Institute of Medical Sciences, Tzu Chi University, Hualien 97004, Taiwan;
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan
- Correspondence: or ; Tel.: +886-3-856-5301 (ext. 2683)
| |
Collapse
|
49
|
Qiu H, Wang N, Lin D, Yuan Y, Li J, Mao D, Meng Y. The positive feedback loop of furin and TGFβ1 enhances the immune responses of Tregs to hepatocellular carcinoma cells and hepatitis B virus in vitro. Cell Biol Int 2022; 46:1215-1226. [PMID: 35349767 DOI: 10.1002/cbin.11806] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 03/14/2022] [Accepted: 03/24/2022] [Indexed: 11/06/2022]
Abstract
Regulatory T cells (Tregs) can exert immunosuppressive activity. Furin can regulate Treg functions, hepatitis B virus (HBV) persistent infection, and hepatocellular carcinoma (HCC) development. However, it remains unknown whether furin can regulate the immune responses of Tregs to HBV and HCC cells. Here, coculture systems of HBV1.3P-HepG2.3P-HepG2 cells and Tregs transduced with or without lentiviral particles that could overexpress furin or knockdown furin/transforming growth factor β1 (TGFβ1) were established to investigate the regulatory relationship between furin and TGFβ1 and the effect of furin/TGFβ1 on Treg activity. Also, the effects of furin overexpression or furin/TGFβ1 knockdown in Tregs on the immunological activity of effector T cells (Teffs)/cytotoxic T lymphocytes (CTLs) and HBV replication/expression were explored in the coculture system of Teff/CTL, Treg, and HBV1.3P-HepG2 cells. Our results showed that furin expression and TGFβ1 secretion were notably increased in Tregs, and Furin and TGFβ1 formed a positive feedback loop to activate Tregs in the coculture system of Tregs and HBV1.3P-HepG2 cells. Furin or TGFβ1 knockdown in Tregs promoted Teff cell proliferation, stimulated interleukin-2 and interferon-γ secretion, and inhibited HBV replication/gene expression in the coculture system of Teff, Treg, and HBV1.3P-HepG2 cells. Moreover, furin or TGFβ1 depletion in Tregs enhanced the killing activity of CTLs against HBV1.3P-HepG2 cells and curbed HBV replication/gene expression in the coculture system of Tregs, CTLs, and HBV1.3P-HepG2 cells. In conclusion, the positive feedback loop of furin and TGFβ1 enhanced the immune responses of Tregs to HCC cells and HBV in vitro.
Collapse
Affiliation(s)
- Hua Qiu
- Department of Chinese Medicine (CM), Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Na Wang
- Department of Live Disease, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Dongyi Lin
- Department of Chinese Medicine (CM), Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Ying Yuan
- Department of Chinese Medicine (CM), Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Jinyuan Li
- Department of Chinese Medicine (CM), Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Dewen Mao
- Department of Live Disease, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Yinjie Meng
- Department of Live Disease, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| |
Collapse
|
50
|
Understanding the key functions of Myosins in viral infection. Biochem Soc Trans 2022; 50:597-607. [PMID: 35212367 DOI: 10.1042/bst20211239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/10/2022] [Accepted: 02/15/2022] [Indexed: 11/17/2022]
Abstract
Myosins, a class of actin-based motor proteins existing in almost any organism, are originally considered only involved in driving muscle contraction, reshaping actin cytoskeleton, and anchoring or transporting cargoes, including protein complexes, organelles, vesicles. However, accumulating evidence reveals that myosins also play vital roles in viral infection, depending on viral species and infection stages. This review systemically summarizes the described various myosins, the performed functions, and the involved mechanisms or molecular pathways during viral infection. Meanwhile, the existing issues are also discussed. Additionally, the important technologies or agents, including siRNA, gene editing, and myosin inhibitors, would facilitate dissecting the actions and mechanisms for described and undescribed myosins, which could be adopted to prevent or control viral infection are also characterized.
Collapse
|