1
|
Ummadisetty O, Akhilesh, Gadepalli A, Chouhan D, Patil U, Singh SP, Singh S, Tiwari V. Dermorphin [D-Arg2, Lys4] (1-4) Amide Alleviates Frostbite-Induced Pain by Regulating TRP Channel-Mediated Microglial Activation and Neuroinflammation. Mol Neurobiol 2024; 61:6089-6100. [PMID: 38277118 DOI: 10.1007/s12035-024-03949-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/02/2024] [Indexed: 01/27/2024]
Abstract
Cold injury or frostbite is a common medical condition that causes serious clinical complications including sensory abnormalities and chronic pain ultimately affecting overall well-being. Opioids are the first-choice drug for the treatment of frostbite-induced chronic pain; however, their notable side effects, including sedation, motor incoordination, respiratory depression, and drug addiction, present substantial obstacle to their clinical utility. To address this challenge, we have exploited peripheral mu-opioid receptors as potential target for the treatment of frostbite-induced chronic pain. In this study, we investigated the effect of dermorphin [D-Arg2, Lys4] (1-4) amide (DALDA), a peripheral mu-opioid receptor agonist, on frostbite injury and hypersensitivity induced by deep freeze magnet exposure in rats. Animals with frostbite injury displayed significant hypersensitivity to mechanical, thermal, and cold stimuli which was significant ameliorated on treatment with different doses of DALDA (1, 3, and 10 mg/kg) and ibuprofen (100 mg/kg). Further, molecular biology investigations unveiled heightened oxido-nitrosative stress, coupled with a notable upregulation in the expression of TRP channels (TRPA1, TRPV1, and TRPM8), glial cell activation, and neuroinflammation (TNF-α, IL-1β) in the sciatic nerve, dorsal root ganglion (DRG), and spinal cord of frostbite-injured rats. Treatment with DALDA leads to substantial reduction in TRP channels, microglial activation, and suppression of the inflammatory cascade in the ipsilateral L4-L5 DRG and spinal cord of rats. Overall, findings from the present study suggest that activation of peripheral mu-opioid receptors mitigates chronic pain in rats by modulating the expression of TRP channels and suppressing glial cell activation and neuroinflammation.
Collapse
Affiliation(s)
- Obulapathi Ummadisetty
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India
| | - Akhilesh
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India
| | - Anagha Gadepalli
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India
| | - Deepak Chouhan
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India
| | - Utkarsh Patil
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India
| | - Surya Pratap Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Sanjay Singh
- Baba Saheb Bhim Rao Ambedkar Central University (BBAU), Lucknow, Uttar Pradesh, 226025, India
| | - Vinod Tiwari
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
2
|
Hasriadi, Dasuni Wasana PW, Thongphichai W, Samun Y, Sukrong S, Towiwat P. Curcuma latifolia Roscoe extract reverses inflammatory pain in mice and offers a favorable CNS safety profile. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116877. [PMID: 37442490 DOI: 10.1016/j.jep.2023.116877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Curcuma latifolia Roscoe, a plant in the Curcuma genus, has been used as a food additive and folk medicine in Thailand to treat pelvic pain and improve premenstrual syndrome. Although it has been used for centuries, no scientific studies have proved its potential effects on inflammatory pain and central nervous system (CNS) safety profiles. AIM OF THE STUDY This study aimed to evaluate the potential effects of the ethanolic extract of C. latifolia rhizome on inflammatory pain in mice, together with its CNS safety profiles. MATERIALS AND METHODS First, network pharmacology was employed to identify the role of bioactive constituents in C. latifolia on inflammatory pain. In addition, in vitro pharmacology was also evaluated to confirm the anti-inflammatory activity of C. latifolia extract at cellular levels in activated macrophages and microglia. Furthermore, the efficacy of the plant extract in attenuating formalin-induced pain-like behaviors in mice was evaluated. Mice were orally administered the extract (125, 250, 500 mg/kg) followed by the measurement of formalin-induced pain-like behaviors. The LABORAS automated behavioral analysis and rotarod test were used to assess potential CNS side effects of C. latifolia extract (500 mg/kg) in mice. RESULTS The results demonstrated that major bioactive constituents present in C. latifolia have the ability to regulate multiple targets, biological processes and pathways associated with inflammatory pain as assessed by network pharmacology. C. latifolia modulated peripheral and central immune cells via reducing proinflammatory mediators (NO, TNF-α, and IL-6). C. latifolia extract improved formalin-induced pain-like behaviors in a dose-dependent manner during phase II of the formalin test. The efficacy of the plant extract at doses of 250 and 500 mg/kg was comparable to that of the positive control (indomethacin 10 mg/kg). Furthermore, the highest therapeutic dose of the extract did not affect motor coordination, exploratory behaviors, general behaviors, and overall well-being of mice, indicating no development of potential CNS adverse effects after administration of the extract. CONCLUSION These findings provide novel perspectives on using C. latifolia extract for pain management, considering its therapeutic efficacy and CNS safety.
Collapse
Affiliation(s)
- Hasriadi
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, 10330, Bangkok, Thailand.
| | - Peththa Wadu Dasuni Wasana
- Pharmaceutical Sciences and Technology Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, 10330, Bangkok, Thailand; Department of Pharmacy, Faculty of Allied Health Sciences, University of Ruhuna, Galle, 80000, Sri Lanka.
| | - Wisuwat Thongphichai
- Center of Excellence in DNA Barcoding of Thai Medicinal Plants, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Yodsagon Samun
- Center of Excellence in DNA Barcoding of Thai Medicinal Plants, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Suchada Sukrong
- Center of Excellence in DNA Barcoding of Thai Medicinal Plants, Chulalongkorn University, Bangkok, 10330, Thailand; Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Pasarapa Towiwat
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, 10330, Bangkok, Thailand; Natural Products for Ageing and Chronic Diseases Research Unit, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
3
|
da Silva PR, Nunes Pazos ND, de Andrade JC, de Sousa NF, Oliveira Pires HF, de Figueiredo Lima JL, Dias AL, da Silva Stiebbe Salvadori MG, de Oliveira Golzio AMF, de Castro RD, Scotti MT, Patil VM, Bezerra Felipe CF, de Almeida RN, Scotti L. An In Silico Approach to Exploring the Antinociceptive Biological Activities of Linalool and its Metabolites. Mini Rev Med Chem 2024; 24:1556-1574. [PMID: 38243945 DOI: 10.2174/0113895575261945231122062659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 10/18/2023] [Accepted: 10/25/2023] [Indexed: 01/22/2024]
Abstract
Pain is characterized by the unpleasant sensory and emotional sensation associated with actual or potential tissue damage, whereas nociception refers to the mechanism by which noxious stimuli are transmitted from the periphery to the CNS. The main drugs used to treat pain are nonsteroidal anti-inflammatory drugs (NSAIDs) and opioid analgesics, which have side effects that limit their use. Therefore, in the search for new drugs with potential antinociceptive effects, essential oils have been studied, whose constituents (monoterpenes) are emerging as a new therapeutic possibility. Among them, linalool and its metabolites stand out. The present study aims to investigate the antinociceptive potential of linalool and its metabolites through a screening using an in silico approach. Molecular docking was used to evaluate possible interactions with important targets involved in antinociceptive activity, such as α2-adrenergic, GABAergic, muscarinic, opioid, adenosinergic, transient potential, and glutamatergic receptors. The compounds in the investigated series obtained negative energies for all enzymes, representing satisfactory interactions with the targets and highlighting the multi-target potential of the L4 metabolite. Linalool and its metabolites have a high likelihood of modulatory activity against the targets involved in nociception and are potential candidates for future drugs.
Collapse
Affiliation(s)
- Pablo Rayff da Silva
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051- 085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Natalia Diniz Nunes Pazos
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051- 085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Jéssica Cabral de Andrade
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051- 085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Natália Ferreira de Sousa
- Cheminformatics Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-900, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Hugo Fernandes Oliveira Pires
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051- 085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Jaislânia Lucena de Figueiredo Lima
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051- 085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Arthur Lins Dias
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051- 085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | | | | | - Ricardo Dias de Castro
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051- 085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Marcus T Scotti
- Cheminformatics Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-900, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Vaishali M Patil
- KIET School of Pharmacy, KIET Group of Institutions, Ghaziabad 201206, Uttar Pradesh, India
| | - Cícero Francisco Bezerra Felipe
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051- 085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Reinaldo Nóbrega de Almeida
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051- 085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Luciana Scotti
- Cheminformatics Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-900, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| |
Collapse
|
4
|
Molot J, Sears M, Anisman H. Multiple Chemical Sensitivity: It's time to catch up to the science. Neurosci Biobehav Rev 2023; 151:105227. [PMID: 37172924 DOI: 10.1016/j.neubiorev.2023.105227] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 05/06/2023] [Indexed: 05/15/2023]
Abstract
Multiple chemical sensitivity (MCS) is a complex medical condition associated with low dose chemical exposures. MCS is characterized by diverse features and common comorbidities, including fibromyalgia, cough hypersensitivity, asthma, and migraine, and stress/anxiety, with which the syndrome shares numerous neurobiological processes and altered functioning within diverse brain regions. Predictive factors linked to MCS comprise genetic influences, gene-environment interactions, oxidative stress, systemic inflammation, cell dysfunction, and psychosocial influences. The development of MCS may be attributed to the sensitization of transient receptor potential (TRP) receptors, notably TRPV1 and TRPA1. Capsaicin inhalation challenge studies demonstrated that TRPV1 sensitization is manifested in MCS, and functional brain imaging studies revealed that TRPV1 and TRPA1 agonists promote brain-region specific neuronal variations. Unfortunately, MCS has often been inappropriately viewed as stemming exclusively from psychological disturbances, which has fostered patients being stigmatized and ostracized, and often being denied accommodation for their disability. Evidence-based education is essential to provide appropriate support and advocacy. Greater recognition of receptor-mediated biological mechanisms should be incorporated in laws, and regulation of environmental exposures.
Collapse
Affiliation(s)
- John Molot
- Family Medicine, University of Ottawa Faculty of Medicine, Ottawa ON Canada; Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Neuroscience, Carleton University, Ottawa Canada.
| | - Margaret Sears
- Family Medicine, University of Ottawa Faculty of Medicine, Ottawa ON Canada; Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Neuroscience, Carleton University, Ottawa Canada.
| | - Hymie Anisman
- Family Medicine, University of Ottawa Faculty of Medicine, Ottawa ON Canada; Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Neuroscience, Carleton University, Ottawa Canada.
| |
Collapse
|
5
|
Wang F, Cheung CW, Wong SSC. Use of pain-related gene features to predict depression by support vector machine model in patients with fibromyalgia. Front Genet 2023; 14:1026672. [PMID: 37065490 PMCID: PMC10090498 DOI: 10.3389/fgene.2023.1026672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
The prevalence rate of depression is higher in patients with fibromyalgia syndrome, but this is often unrecognized in patients with chronic pain. Given that depression is a common major barrier in the management of patients with fibromyalgia syndrome, an objective tool that reliably predicts depression in patients with fibromyalgia syndrome could significantly enhance the diagnostic accuracy. Since pain and depression can cause each other and worsen each other, we wonder if pain-related genes can be used to differentiate between those with major depression from those without. This study developed a support vector machine model combined with principal component analysis to differentiate major depression in fibromyalgia syndrome patients using a microarray dataset, including 25 fibromyalgia syndrome patients with major depression, and 36 patients without major depression. Gene co-expression analysis was used to select gene features to construct support vector machine model. The principal component analysis can help reduce the number of data dimensions without much loss of information, and identify patterns in data easily. The 61 samples available in the database were not enough for learning based methods and cannot represent every possible variation of each patient. To address this issue, we adopted Gaussian noise to generate a large amount of simulated data for training and testing of the model. The ability of support vector machine model to differentiate major depression using microarray data was measured as accuracy. Different structural co-expression patterns were identified for 114 genes involved in pain signaling pathway by two-sample KS test (p < 0.001 for the maximum deviation D = 0.11 > Dcritical = 0.05), indicating the aberrant co-expression patterns in fibromyalgia syndrome patients. Twenty hub gene features were further selected based on co-expression analysis to construct the model. The principal component analysis reduced the dimension of the training samples from 20 to 16, since 16 components were needed to retain more than 90% of the original variance. The support vector machine model was able to differentiate between those with major depression from those without in fibromyalgia syndrome patients with an average accuracy of 93.22% based on the expression levels of the selected hub gene features. These findings would contribute key information that can be used to develop a clinical decision-making tool for the data-driven, personalized optimization of diagnosing depression in patients with fibromyalgia syndrome.
Collapse
|
6
|
An International Multidisciplinary Delphi-Based Consensus on Heat Therapy in Musculoskeletal Pain. Pain Ther 2023; 12:93-110. [PMID: 35932408 PMCID: PMC9845456 DOI: 10.1007/s40122-022-00419-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/19/2022] [Indexed: 01/21/2023] Open
Abstract
INTRODUCTION Musculoskeletal pain (MP) is prevalent in our society, having a strong negative impact on physical and psychosocial quality of life. Heat therapy (HT) has been frequently described as a treatment strategy for musculoskeletal pain, but scientific evidence is still poor. The aim of the present Delphi method study is to gather a consensus among European experts on the role of HT in MP. METHODS To address this topic, a list of 54 statements was developed, concerning mechanism of action of heat on muscle, types of MP eligible for heat treatment, efficacy of HT, time and modalities of treatment, maximizing compliance to HT, safety (based on heat wraps), wrong beliefs and common errors in the prescription of HT and the role of HT in preventing muscular damage in athletes. The survey was distributed to 116 European experts, using a 5-point Likert scale to express agreement or disagreement with the statements; 66% concordance with the statements was needed to define a consensus. RESULTS Consensus was reached on 78% of statements. There was a strong consensus on the mechanism of action of heat on muscle, the indication in chronic MP, its effectiveness as part of a multimodal approach to MP and the safety and tolerability of superficial heat therapy. A low-level of consensus was obtained on the role of heat in preventing muscular damage and in acute MP. CONCLUSION This Delphi consensus recognizes the role of HT mostly in chronic MP and highlights the need for stronger scientific evidence to regulate the use of this therapy in clinical practice.
Collapse
|
7
|
Gómez-Cañas M, Rodríguez-Cueto C, Satta V, Hernández-Fisac I, Navarro E, Fernández-Ruiz J. Endocannabinoid-Binding Receptors as Drug Targets. Methods Mol Biol 2023; 2576:67-94. [PMID: 36152178 DOI: 10.1007/978-1-0716-2728-0_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cannabis plant has been used from ancient times with therapeutic purposes for treating human pathologies, but the identification of the cellular and molecular mechanisms underlying the therapeutic properties of the phytocannabinoids, the active compounds in this plant, occurred in the last years of the past century. In the late 1980s and early 1990s, seminal studies demonstrated the existence of cannabinoid receptors and other elements of the so-called endocannabinoid system. These G protein-coupled receptors (GPCRs) are a key element in the functions assigned to endocannabinoids and appear to serve as promising pharmacological targets. They include CB1, CB2, and GPR55, but also non-GPCRs can be activated by endocannabinoids, like ionotropic receptor TRPV1 and even nuclear receptors of the PPAR family. Their activation, inhibition, or simply modulation have been associated with numerous physiological effects at both central and peripheral levels, which may have therapeutic value in different human pathologies, then providing a solid experimental explanation for both the ancient medicinal uses of Cannabis plant and the recent advances in the development of cannabinoid-based specific therapies. This chapter will review the scientific knowledge generated in the last years around the research on the different endocannabinoid-binding receptors and their signaling mechanisms. Our intention is that this knowledge may help readers to understand the relevance of these receptors in health and disease conditions, as well as it may serve as the theoretical basis for the different experimental protocols to investigate these receptors and their signaling mechanisms that will be described in the following chapters.
Collapse
Affiliation(s)
- María Gómez-Cañas
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Carmen Rodríguez-Cueto
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Valentina Satta
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Inés Hernández-Fisac
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Elisa Navarro
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Javier Fernández-Ruiz
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.
| |
Collapse
|
8
|
Yan S, Huang Y, Xiao Q, Su Z, Xia L, Xie J, Zhang F, Du Z, Hou X, Deng J, Hao E. Regulation of transient receptor potential channels by traditional Chinese medicines and their active ingredients. Front Pharmacol 2022; 13:1039412. [PMID: 36313301 PMCID: PMC9606675 DOI: 10.3389/fphar.2022.1039412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 09/30/2022] [Indexed: 12/02/2022] Open
Abstract
In recent years, activation of thermal transient receptor potential (TRP) ion channels at a range of temperatures has received widespread attention as a target for traditional Chinese medicine (TCM) to regulate body temperature and relieve pain. Discovery of transient receptor potential vanilloid 1 (TRPV1) was awarded a Nobel Prize, reflecting the importance of these channels. Here, the regulatory effects of TCMs and their active ingredients on TRP ion channels are reviewed, and future directions for research on the cold, hot, warm, cool, and neutral natures of TCMs are considered. In herbs with cold, hot, warm, cool, and neutral natures, we found 29 TCMs with regulatory effects on TRP ion channels, including Cinnamomi Cortex, Capsici Fructus, Rhei Radix et Rhizoma, Macleayae cordatae Herba, Menthae Haplocalycis Herba, and Rhodiolae Crenulatae Radix et Rhizoma. Although some progress has been made in understanding the regulation of TRP ion channels by TCMs and their ingredients, the molecular mechanism by which TCMs have this effect remains to be further studied. We hope this review will provide a reference for further research on the cold, hot, warm, cool, and neutral natures of TCMs.
Collapse
Affiliation(s)
- Shidu Yan
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center of Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Yuchan Huang
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center of Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Qian Xiao
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center of Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Zixia Su
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center of Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Lei Xia
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center of Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Jinling Xie
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center of Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Fan Zhang
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center of Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Zhengcai Du
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center of Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Xiaotao Hou
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center of Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Jiagang Deng
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center of Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Erwei Hao
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center of Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- *Correspondence: Erwei Hao,
| |
Collapse
|
9
|
Zhang K, Liu P, Yuan L, Geng Z, Li B, Zhang B. Neuroprotective effects of TRPV1 by targeting GDF11 in the Mpp+/MPTP-induced Parkinson's disease model. Biochem Biophys Res Commun 2022; 623:104-110. [PMID: 35921703 DOI: 10.1016/j.bbrc.2022.07.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/13/2022] [Accepted: 07/14/2022] [Indexed: 11/02/2022]
|
10
|
Kudsi SQ, Piccoli BC, Ardisson-Araújo D, Trevisan G. Transcriptional landscape of TRPV1, TRPA1, TRPV4, and TRPM8 channels throughout human tissues. Life Sci 2022; 308:120977. [PMID: 36126722 DOI: 10.1016/j.lfs.2022.120977] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/02/2022] [Accepted: 09/14/2022] [Indexed: 10/31/2022]
Abstract
AIMS This article aims to analyze the baseline distribution of TRPA1, TRPV1, TRPV4, and TRPM8 channels in human systems at the transcriptional level. MAIN METHODS Using the RNA-seq dataset from the National Center for Biotechnology Information (NCBI) gene database, we investigated and compared the transcriptional levels of TRPV1, TRPA1, TRPV4 and TRPM8 found in 95 human subjects representing 33 different tissues to determine the tissue specificity of all protein-coding genes. KEY FINDING In this study, we observed higher transcriptional levels for TRPV1 (duodenum), TRPA1 (Urinary bladder), TRPV4 (Kidney) and TRPM8 (Prostate) compared to the other TRPs. SIGNIFICANCE These channels are involved in developing inflammatory and painful pathologies and seem to participate in cancer development. This information on transcriptional levels of TRPV1, TRPA1, TRPV4 and TRPM8 in human systems may provide essential suggestions for further studies on these proteins.
Collapse
Affiliation(s)
- Sabrina Qader Kudsi
- Graduate Program in Pharmacology, Center of Health Sciences, Federal University of Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Bruna Candia Piccoli
- Graduate Program in Biological Sciences: Biochemistry Toxicology, Center of Natural and Exact Sciences, Federal University of Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Daniel Ardisson-Araújo
- Laboratory of Baculovirus, Cell Biology Department, University of Brasilia, Brasília, DF 70910-900, Brazil
| | - Gabriela Trevisan
- Graduate Program in Pharmacology, Center of Health Sciences, Federal University of Santa Maria, 97105-900 Santa Maria, RS, Brazil.
| |
Collapse
|
11
|
Iannone LF, Nassini R, Patacchini R, Geppetti P, De Logu F. Neuronal and non-neuronal TRPA1 as therapeutic targets for pain and headache relief. Temperature (Austin) 2022; 10:50-66. [PMID: 37187829 PMCID: PMC10177743 DOI: 10.1080/23328940.2022.2075218] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 10/18/2022] Open
Abstract
The transient receptor potential ankyrin 1 (TRPA1), a member of the TRP superfamily of channels, has a major role in different types of pain. TRPA1 is primarily localized to a subpopulation of primary sensory neurons of the trigeminal, vagal, and dorsal root ganglia. This subset of nociceptors produces and releases the neuropeptide substance P (SP) and calcitonin gene-related peptide (CGRP), which mediate neurogenic inflammation. TRPA1 is characterized by unique sensitivity for an unprecedented number of reactive byproducts of oxidative, nitrative, and carbonylic stress and to be activated by several chemically heterogenous, exogenous, and endogenous compounds. Recent preclinical evidence has revealed that expression of TRPA1 is not limited to neurons, but its functional role has been reported in central and peripheral glial cells. In particular, Schwann cell TRPA1 was recently implicated in sustaining mechanical and thermal (cold) hypersensitivity in mouse models of macrophage-dependent and macrophage-independent inflammatory, neuropathic, cancer, and migraine pain. Some analgesics and herbal medicines/natural products widely used for the acute treatment of pain and headache have shown some inhibitory action at TRPA1. A series of high affinity and selective TRPA1 antagonists have been developed and are currently being tested in phase I and phase II clinical trials for different diseases with a prominent pain component. Abbreviations: 4-HNE, 4-hydroxynonenal; ADH-2, alcohol dehydrogenase-2; AITC, allyl isothiocyanate; ANKTD, ankyrin-like protein with transmembrane domains protein 1; B2 receptor, bradykinin 2 receptor; CIPN, chemotherapeutic-induced peripheral neuropathy; CGRP, calcitonin gene related peptide; CRISPR, clustered regularly interspaced short palindromic repeats; CNS, central nervous system; COOH, carboxylic terminal; CpG, C-phosphate-G; DRG, dorsal root ganglia; EP, prostaglandins; GPCR, G-protein-coupled receptors; GTN, glyceryl trinitrate; MAPK, mitogen-activated protein kinase; M-CSF, macrophage-colony stimulating factor; NAPQI, N-Acetyl parabenzoquinone-imine; NGF, nerve growth factor; NH2, amino terminal; NKA, neurokinin A; NO, nitric oxide; NRS, numerical rating scale; PAR2, protease-activated receptor 2; PMA, periorbital mechanical allodynia; PLC, phospholipase C; PKC, protein kinase C; pSNL, partial sciatic nerve ligation; RCS, reactive carbonyl species; ROS, reactive oxygen species; RNS, nitrogen oxygen species; SP, substance P; TG, trigeminal ganglion; THC, Δ9-tetrahydrocannabinol; TrkA, neurotrophic receptor tyrosine kinase A; TRP, transient receptor potential; TRPC, TRP canonical; TRPM, TRP melastatin; TRPP, TRP polycystin; TRPM, TRP mucolipin; TRPA, TRP ankyrin; TRPV, TRP vanilloid; VG, vagal ganglion.
Collapse
Affiliation(s)
- Luigi F. Iannone
- Headache Center and Clinical Pharmacology Unit, Careggi University Hospital, Florence, Italy
- Section of Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Romina Nassini
- Section of Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Riccardo Patacchini
- Corporate Drug Development, Chiesi Farmaceutici S.p.A, Nuovo Centro Ricerche, Parma, Italy
| | - Pierangelo Geppetti
- Headache Center and Clinical Pharmacology Unit, Careggi University Hospital, Florence, Italy
- Section of Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Francesco De Logu
- Section of Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, Florence, Italy
| |
Collapse
|
12
|
He J, Li B, Han S, Zhang Y, Liu K, Yi S, Liu Y, Xiu M. Drosophila as a Model to Study the Mechanism of Nociception. Front Physiol 2022; 13:854124. [PMID: 35418874 PMCID: PMC8996152 DOI: 10.3389/fphys.2022.854124] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/28/2022] [Indexed: 12/15/2022] Open
Abstract
Nociception refers to the process of encoding and processing noxious stimuli, which allow animals to detect and avoid potentially harmful stimuli. Several types of stimuli can trigger nociceptive sensory transduction, including thermal, noxious chemicals, and harsh mechanical stimulation that depend on the corresponding nociceptors. In view of the high evolutionary conservation of the mechanisms that govern nociception from Drosophila melanogaster to mammals, investigation in the fruit fly Drosophila help us understand how the sensory nervous system works and what happen in nociception. Here, we present an overview of currently identified conserved genetics of nociception, the nociceptive sensory neurons responsible for detecting noxious stimuli, and various assays for evaluating different nociception. Finally, we cover development of anti-pain drug using fly model. These comparisons illustrate the value of using Drosophila as model for uncovering nociception mechanisms, which are essential for identifying new treatment goals and developing novel analgesics that are applicable to human health.
Collapse
Affiliation(s)
- Jianzheng He
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory for Transfer of Dunhuang Medicine at the Provincial and Ministerial Level, Gansu University of Chinese Medicine, Lanzhou, China
| | - Botong Li
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Shuzhen Han
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yuan Zhang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Kai Liu
- College of Integrated Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Simeng Yi
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yongqi Liu
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory for Transfer of Dunhuang Medicine at the Provincial and Ministerial Level, Gansu University of Chinese Medicine, Lanzhou, China
- *Correspondence: Yongqi Liu,
| | - Minghui Xiu
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory for Transfer of Dunhuang Medicine at the Provincial and Ministerial Level, Gansu University of Chinese Medicine, Lanzhou, China
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou, China
- Minghui Xiu,
| |
Collapse
|
13
|
Martín-Escura C, Medina-Peris A, Spear LA, de la Torre Martínez R, Olivos-Oré LA, Barahona MV, González-Rodríguez S, Fernández-Ballester G, Fernández-Carvajal A, Artalejo AR, Ferrer-Montiel A, González-Muñiz R. β-Lactam TRPM8 Antagonist RGM8-51 Displays Antinociceptive Activity in Different Animal Models. Int J Mol Sci 2022; 23:ijms23052692. [PMID: 35269831 PMCID: PMC8910920 DOI: 10.3390/ijms23052692] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 02/05/2023] Open
Abstract
Transient receptor potential melastatin subtype 8 (TRPM8) is a cation channel extensively expressed in sensory neurons and implicated in different painful states. However, the effectiveness of TRPM8 modulators for pain relief is still a matter of discussion, since structurally diverse modulators lead to different results, depending on the animal pain model. In this work, we described the antinociceptive activity of a β–lactam derivative, RGM8-51, showing good TRPM8 antagonist activity, and selectivity against related thermoTRP channels and other pain-mediating receptors. In primary cultures of rat dorsal root ganglion (DRG) neurons, RGM8-51 potently reduced menthol-evoked neuronal firing without affecting the major ion conductances responsible for action potential generation. This compound has in vivo antinociceptive activity in response to cold, in a mouse model of oxaliplatin-induced peripheral neuropathy. In addition, it reduces cold, mechanical and heat hypersensitivity in a rat model of neuropathic pain arising after chronic constriction of the sciatic nerve. Furthermore, RGM8-51 exhibits mechanical hypersensitivity-relieving activity, in a mouse model of NTG-induced hyperesthesia. Taken together, these preclinical results substantiate that this TRPM8 antagonist is a promising pharmacological tool to study TRPM8-related diseases.
Collapse
Affiliation(s)
- Cristina Martín-Escura
- Instituto de Química Médica (IQM-CSIC), 28006 Madrid, Spain; (C.M.-E.); (L.A.S.)
- Alodia Farmacéutica SL, 28108 Alcobendas, Spain
| | - Alicia Medina-Peris
- IDiBE, Universidad Miguel Hernández, 03202 Elche, Spain; (A.M.-P.); (R.d.l.T.M.); (S.G.-R.); (G.F.-B.); (A.F.-M.)
| | - Luke A. Spear
- Instituto de Química Médica (IQM-CSIC), 28006 Madrid, Spain; (C.M.-E.); (L.A.S.)
| | - Roberto de la Torre Martínez
- IDiBE, Universidad Miguel Hernández, 03202 Elche, Spain; (A.M.-P.); (R.d.l.T.M.); (S.G.-R.); (G.F.-B.); (A.F.-M.)
| | - Luis A. Olivos-Oré
- Departamento de Farmacología y Toxicología, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain; (L.A.O.-O.); (M.V.B.); (A.R.A.)
- Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - María Victoria Barahona
- Departamento de Farmacología y Toxicología, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain; (L.A.O.-O.); (M.V.B.); (A.R.A.)
- Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Sara González-Rodríguez
- IDiBE, Universidad Miguel Hernández, 03202 Elche, Spain; (A.M.-P.); (R.d.l.T.M.); (S.G.-R.); (G.F.-B.); (A.F.-M.)
| | - Gregorio Fernández-Ballester
- IDiBE, Universidad Miguel Hernández, 03202 Elche, Spain; (A.M.-P.); (R.d.l.T.M.); (S.G.-R.); (G.F.-B.); (A.F.-M.)
| | - Asia Fernández-Carvajal
- IDiBE, Universidad Miguel Hernández, 03202 Elche, Spain; (A.M.-P.); (R.d.l.T.M.); (S.G.-R.); (G.F.-B.); (A.F.-M.)
- Correspondence: (A.F.-C.); (R.G.-M.); Tel.: +00-34-258-74-34 (R.G.-M.)
| | - Antonio R. Artalejo
- Departamento de Farmacología y Toxicología, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain; (L.A.O.-O.); (M.V.B.); (A.R.A.)
- Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Antonio Ferrer-Montiel
- IDiBE, Universidad Miguel Hernández, 03202 Elche, Spain; (A.M.-P.); (R.d.l.T.M.); (S.G.-R.); (G.F.-B.); (A.F.-M.)
| | - Rosario González-Muñiz
- Instituto de Química Médica (IQM-CSIC), 28006 Madrid, Spain; (C.M.-E.); (L.A.S.)
- Correspondence: (A.F.-C.); (R.G.-M.); Tel.: +00-34-258-74-34 (R.G.-M.)
| |
Collapse
|
14
|
Iannone LF, De Logu F, Geppetti P, De Cesaris F. The role of TRP ion channels in migraine and headache. Neurosci Lett 2022; 768:136380. [PMID: 34861342 DOI: 10.1016/j.neulet.2021.136380] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 10/08/2021] [Accepted: 10/17/2021] [Indexed: 12/15/2022]
Abstract
Migraine afflicts more than 10% of the general population. Although its mechanism is poorly understood, recent preclinical and clinical evidence has identified calcitonin gene related peptide (CGRP) as a major mediator of migraine pain. CGRP, which is predominantly expressed in a subset of primary sensory neurons, including trigeminal afferents, when released from peripheral terminals of nociceptors, elicits arteriolar vasodilation and mechanical allodynia, a hallmark of migraine attack. Transient receptor potential (TRP) channels include several cationic channels with pleiotropic functions and ubiquitous distribution in various cells and tissues. Some members of the TRP channel family, such as the ankyrin 1 (TRPA1), vanilloid 1 and 4 (TRPV1 and TRPV4, respectively), and TRPM3, are abundantly expressed in primary sensory neurons and are recognized as sensors of chemical-, heat- and mechanical-induced pain, and play a primary role in several models of pain diseases, including inflammatory, neuropathic cancer pain, and migraine pain. In addition, TRP channel stimulation results in CGRP release, which can be activated or sensitized by various endogenous and exogenous stimuli, some of which have been proven to trigger or worsen migraine attacks. Moreover, some antimigraine medications seem to act through TRPA1 antagonism. Here we review the preclinical and clinical evidence that highlights the role of TRP channels, and mainly TRPA1, in migraine pathophysiology and may be proposed as new targets for its treatment.
Collapse
Affiliation(s)
- Luigi Francesco Iannone
- Headache Center and Clinical Pharmacology Unit, Careggi University Hospital, Florence, Italy
| | - Francesco De Logu
- Section of Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Pierangelo Geppetti
- Headache Center and Clinical Pharmacology Unit, Careggi University Hospital, Florence, Italy; Section of Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Francesco De Cesaris
- Headache Center and Clinical Pharmacology Unit, Careggi University Hospital, Florence, Italy.
| |
Collapse
|
15
|
Cui W, Wu H, Yu X, Song T, Xu X, Xu F. The Calcium Channel α2δ1 Subunit: Interactional Targets in Primary Sensory Neurons and Role in Neuropathic Pain. Front Cell Neurosci 2021; 15:699731. [PMID: 34658790 PMCID: PMC8514986 DOI: 10.3389/fncel.2021.699731] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 09/10/2021] [Indexed: 11/13/2022] Open
Abstract
Neuropathic pain is mainly triggered after nerve injury and associated with plasticity of the nociceptive pathway in primary sensory neurons. Currently, the treatment remains a challenge. In order to identify specific therapeutic targets, it is necessary to clarify the underlying mechanisms of neuropathic pain. It is well established that primary sensory neuron sensitization (peripheral sensitization) is one of the main components of neuropathic pain. Calcium channels act as key mediators in peripheral sensitization. As the target of gabapentin, the calcium channel subunit α2δ1 (Cavα2δ1) is a potential entry point in neuropathic pain research. Numerous studies have demonstrated that the upstream and downstream targets of Cavα2δ1 of the peripheral primary neurons, including thrombospondins, N-methyl-D-aspartate receptors, transient receptor potential ankyrin 1 (TRPA1), transient receptor potential vanilloid family 1 (TRPV1), and protein kinase C (PKC), are involved in neuropathic pain. Thus, we reviewed and discussed the role of Cavα2δ1 and the associated signaling axis in neuropathic pain conditions.
Collapse
Affiliation(s)
- Wenqiang Cui
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hongyun Wu
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaowen Yu
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ting Song
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiangqing Xu
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Fei Xu
- Department of Geriatric Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
16
|
Chalazias A, Plemmenos G, Evangeliou E, Piperi C. Pivotal role of Transient Receptor Potential Channels in oral physiology. Curr Med Chem 2021; 29:1408-1425. [PMID: 34365940 DOI: 10.2174/0929867328666210806113132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Transient Receptor Potential (TRP) Channels constitute a large family of non-selective permeable ion channels involved in the perception of environmental stimuli with a central and continuously expanding role in oral tissue homeostasis. Recent studies indicate the regulatory role of TRPs in pulp physiology, oral mucosa sensation, dental pain nociception and salivary gland secretion. This review provides an update on the diverse functions of TRP channels in the physiology of oral cavity, with emphasis on their cellular location, the underlying molecular mechanisms and clinical significance. METHODS A structured search of bibliographic databases (PubMed and MEDLINE) was performed for peer reviewed studies on TRP channels function on oral cavity physiology the last ten years. A qualitative content analysis was performed in screened papers and a critical discussion of main findings is provided. RESULTS TRPs expression has been detected in major cell types of the oral cavity, including odontoblasts, periodontal ligament, oral epithelial, salivary gland cells, and chondrocytes of temporomandibular joints, where they mediate signal perception and transduction of mechanical, thermal, and osmotic stimuli. They contribute to pulp physiology through dentin formation, mineralization, and periodontal ligament formation along with alveolar bone remodeling in dental pulp and periodontal ligament cells. TRPs are also involved in oral mucosa sensation, dental pain nociception, saliva secretion, swallowing reflex and temporomandibular joints' development. CONCLUSION Various TRP channels regulate oral cavity homeostasis, playing an important role in the transduction of external stimuli to intracellular signals in a cell type-specific manner and presenting promising drug targets for the development of pharmacological strategies to manage oral diseases.
Collapse
Affiliation(s)
- Andreas Chalazias
- School of Dentistry, National and Kapodistrian University of Athens, 2 Thivon Str, Goudi, 115 27 Athens. Greece
| | - Grigorios Plemmenos
- School of Dentistry, National and Kapodistrian University of Athens, 2 Thivon Str, Goudi, 115 27 Athens. Greece
| | - Evangelos Evangeliou
- School of Dentistry, National and Kapodistrian University of Athens, 2 Thivon Str, Goudi, 115 27 Athens. Greece
| | - Christina Piperi
- School of Dentistry, National and Kapodistrian University of Athens, 2 Thivon Str, Goudi, 115 27 Athens. Greece
| |
Collapse
|
17
|
Dong RG, Wu JZ, Xu XS, Welcome DE, Krajnak K. A Review of Hand-Arm Vibration Studies Conducted by US NIOSH since 2000. VIBRATION 2021; 4:482-528. [PMID: 34414357 PMCID: PMC8371562 DOI: 10.3390/vibration4020030] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Studies on hand-transmitted vibration exposure, biodynamic responses, and biological effects were conducted by researchers at the Health Effects Laboratory Division (HELD) of the National Institute for Occupational Safety and Health (NIOSH) during the last 20 years. These studies are systematically reviewed in this report, along with the identification of areas where additional research is needed. The majority of the studies cover the following aspects: (i) the methods and techniques for measuring hand-transmitted vibration exposure; (ii) vibration biodynamics of the hand-arm system and the quantification of vibration exposure; (iii) biological effects of hand-transmitted vibration exposure; (iv) measurements of vibration-induced health effects; (iv) quantification of influencing biomechanical effects; and (v) intervention methods and technologies for controlling hand-transmitted vibration exposure. The major findings of the studies are summarized and discussed.
Collapse
Affiliation(s)
- Ren G. Dong
- Physical Effects Research Branch, Health Effects Laboratory Division (HELD), National Institute for Occupational Safety and Health (NIOSH), Morgantown, WV 26505, USA
| | - John Z. Wu
- Physical Effects Research Branch, Health Effects Laboratory Division (HELD), National Institute for Occupational Safety and Health (NIOSH), Morgantown, WV 26505, USA
| | - Xueyan S. Xu
- Physical Effects Research Branch, Health Effects Laboratory Division (HELD), National Institute for Occupational Safety and Health (NIOSH), Morgantown, WV 26505, USA
| | - Daniel E. Welcome
- Physical Effects Research Branch, Health Effects Laboratory Division (HELD), National Institute for Occupational Safety and Health (NIOSH), Morgantown, WV 26505, USA
| | - Kristine Krajnak
- Physical Effects Research Branch, Health Effects Laboratory Division (HELD), National Institute for Occupational Safety and Health (NIOSH), Morgantown, WV 26505, USA
| |
Collapse
|
18
|
Ticona LA, Sánchez ÁR, Estrada CT, Palomino OM. Identification of TRPV1 Ion Channels Agonists of Tropaeolum tuberosum in Human Skin Keratinocytes. PLANTA MEDICA 2021; 87:383-394. [PMID: 33007786 DOI: 10.1055/a-1264-0572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Tropaeolum tuberosum, commonly known as Mashua, is an herbal remedy used in traditional Andean medicine for the relief of kidney and bladder pain, as well as contusions. This study aimed to evaluate the fractions and isolated compounds from T. tuberosum with analgesic activity mediated by the transient receptor potential vanilloid-1 receptor. A bioguided phytochemical analysis based on NMR/MS was performed to identify the compounds of the n-heptane fractions from samples of purple tubers of T. tuberosum. The transient receptor potential vanilloid-1 agonist and antagonist activity were assessed through the measurement of intracellular Ca2+ in HEK001 cells. The chemical structure determination led to the identification of two alkamides: N-(2-hydroxyethyl)-7Z,10Z,13Z,16Z-docosatetraenamide (1: ) and N-oleoyldopamine (2: ). Both compounds induced increased intracellular calcium flow with IC50 values of 3.2 nM and 7.9 nM, respectively, thus activating the transient receptor potential vanilloid-1 receptor. Our research is the first report to show that these two compounds isolated from T. tuberosum can act as agonists of the transient receptor potential vanilloid-1 receptor, providing scientific evidence for the traditional use of this species in pain relief.
Collapse
Affiliation(s)
- Luis Apaza Ticona
- Department of Organic Chemistry, Faculty of Sciences, University Autónoma of Madrid, Madrid, Spain
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, University Complutense of Madrid, Madrid, Spain
| | - Ángel Rumbero Sánchez
- Department of Organic Chemistry, Faculty of Sciences, University Autónoma of Madrid, Madrid, Spain
| | | | - Olga M Palomino
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, University Complutense of Madrid, Madrid, Spain
| |
Collapse
|
19
|
Backaert W, Steelant B, Hellings PW, Talavera K, Van Gerven L. A TRiP Through the Roles of Transient Receptor Potential Cation Channels in Type 2 Upper Airway Inflammation. Curr Allergy Asthma Rep 2021; 21:20. [PMID: 33738577 PMCID: PMC7973410 DOI: 10.1007/s11882-020-00981-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Despite their high prevalence, the pathophysiology of allergic rhinitis (AR) and chronic rhinosinusitis (CRS) remains unclear. Recently, transient receptor potential (TRP) cation channels emerged as important players in type 2 upper airway inflammatory disorders. In this review, we aim to discuss known and yet to be explored roles of TRP channels in the pathophysiology of AR and CRS with nasal polyps. RECENT FINDINGS TRP channels participate in a plethora of cellular functions and are expressed on T cells, mast cells, respiratory epithelial cells, and sensory neurons of the upper airways. In chronic upper airway inflammation, TRP vanilloid 1 is mostly studied in relation to nasal hyperreactivity. Several other TRP channels such as TRP vanilloid 4, TRP ankyrin 1, TRP melastatin channels, and TRP canonical channels also have important functions, rendering them potential targets for therapy. The role of TRP channels in type 2 inflammatory upper airway diseases is steadily being uncovered and increasingly recognized. Modulation of TRP channels may offer therapeutic perspectives.
Collapse
Affiliation(s)
- Wout Backaert
- Department of Otorhinolaryngology, University Hospitals Leuven, Herestraat 49, B-3000, Leuven, Belgium
- Department of Microbiology, Immunology and transplantation, Allergy and Clinical Immunology Research Unit, KU Leuven, Leuven, Belgium
| | - Brecht Steelant
- Department of Microbiology, Immunology and transplantation, Allergy and Clinical Immunology Research Unit, KU Leuven, Leuven, Belgium
| | - Peter W Hellings
- Department of Otorhinolaryngology, University Hospitals Leuven, Herestraat 49, B-3000, Leuven, Belgium
- Department of Microbiology, Immunology and transplantation, Allergy and Clinical Immunology Research Unit, KU Leuven, Leuven, Belgium
- Department of Otorhinolaryngology, Academic Medical Center, Amsterdam, The Netherlands
- Department of Otorhinolaryngology, Laboratory of Upper Airways Research, University of Ghent, Ghent, Belgium
| | - Karel Talavera
- Department of Cellular and Molecular Medicine, Laboratory of Ion Channel Research, KU Leuven, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
| | - Laura Van Gerven
- Department of Otorhinolaryngology, University Hospitals Leuven, Herestraat 49, B-3000, Leuven, Belgium.
- Department of Microbiology, Immunology and transplantation, Allergy and Clinical Immunology Research Unit, KU Leuven, Leuven, Belgium.
- Department of Neurosciences, Experimental Otorhinolaryngology, KU Leuven, Leuven, Belgium.
| |
Collapse
|
20
|
Milici A, Talavera K. TRP Channels as Cellular Targets of Particulate Matter. Int J Mol Sci 2021; 22:2783. [PMID: 33803491 PMCID: PMC7967245 DOI: 10.3390/ijms22052783] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 02/07/2023] Open
Abstract
Particulate matter (PM) is constituted by particles with sizes in the nanometer to micrometer scales. PM can be generated from natural sources such as sandstorms and wildfires, and from human activities, including combustion of fuels, manufacturing and construction or specially engineered for applications in biotechnology, food industry, cosmetics, electronics, etc. Due to their small size PM can penetrate biological tissues, interact with cellular components and induce noxious effects such as disruptions of the cytoskeleton and membranes and the generation of reactive oxygen species. Here, we provide an overview on the actions of PM on transient receptor potential (TRP) proteins, a superfamily of cation-permeable channels with crucial roles in cell signaling. Their expression in epithelial cells and sensory innervation and their high sensitivity to chemical, thermal and mechanical stimuli makes TRP channels prime targets in the major entry routes of noxious PM, which may result in respiratory, metabolic and cardiovascular disorders. On the other hand, the interactions between TRP channel and engineered nanoparticles may be used for targeted drug delivery. We emphasize in that much further research is required to fully characterize the mechanisms underlying PM-TRP channel interactions and their relevance for PM toxicology and biomedical applications.
Collapse
Affiliation(s)
| | - Karel Talavera
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, VIB Center for Brain & Disease Research, 3000 Leuven, Belgium;
| |
Collapse
|
21
|
Fang J, Du J, Xiang X, Shao X, He X, Jiang Y, Liu B, Liang Y, Fang J. SNI and CFA induce similar changes in TRPV1 and P2X3 expressions in the acute phase but not in the chronic phase of pain. Exp Brain Res 2021; 239:983-995. [PMID: 33464388 DOI: 10.1007/s00221-020-05988-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/18/2020] [Indexed: 12/17/2022]
Abstract
Peripheral inflammation and nerve injury usually accompany each other. However, whether inflammatory and neuropathic pain share similar mechanisms at all stages is unknown. TRPV1 and P2X3 are two major ion channels in dorsal root ganglia (DRGs) and are involved in chronic pain. Here, their function and expression in DRGs at different phases of the two types of pain were investigated. Both the paw withdrawal threshold (PWT) and paw withdrawal latency were decreased in rats injected with complete Freud's adjuvant (CFA). However, only the PWT was decreased in rats with spared nerve injury (SNI). CFA increased the magnitude of the TRPV1-mediated Ca2+ response but not the P2X3-mediated Ca2+ response 14 days after injection. Consistent with this result, the P2X3 expression level in CFA rats was increased only at 3 days after injection. SNI surgery increased the magnitudes of the TRPV1- and P2X3-mediated Ca2+ responses and upregulated both TRPV1 and P2X3 expression in lumbar DRGs. The distributions of TRPV1 and P2X3 in DRGs after modeling were observed, and TRPV1 was found to be highly expressed mainly in the L4-L5 DRGs in CFA rats and in the L5-L6 DRGs in SNI rats. P2X3 was highly expressed in the L4-L6 DRGs in CFA rats 3 days after injection but was only highly expressed in the L4 DRG 14 days after modeling. On the other hand, SNI promoted the P2X3 expression L4-L5 DRGs 3 days after surgery, but only L6 DRG 14 days after modeling. All the results indicate that P2X3 and TPRV1 are involved in inflammatory and neuropathic pain by different expression levels and distributions in the lumbar DRG in the chronic stage.
Collapse
Affiliation(s)
- Junfan Fang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Junying Du
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xuaner Xiang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xiaomei Shao
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xiaofeng He
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yongliang Jiang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Boyi Liu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yi Liang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jianqiao Fang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
22
|
Páramo-Cano T, Ortiz MI, Gómez-Busto FJ, Espinoza-Ramírez AL. Management of Procedural Pain in Children. Curr Pediatr Rev 2021; 17:288-328. [PMID: 33820520 DOI: 10.2174/1573396317666210405150526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/02/2020] [Accepted: 01/25/2021] [Indexed: 11/22/2022]
Abstract
In recent years, there has been increased interest in the study of pain in children and its treatment. It is known that when facing diagnostic and therapeutic procedures similar to those performed on adults, children either do not receive specific pain treatment or receive it on a significantly lower scale. However, recent research suggests a change in attitude and an improvement in the current treatment of children's pain. Although current knowledge demonstrates the falsity of many preconceived ideas about pain and its management, our results suggest that attitudinal change towards childhood pain remains slow and that real improvement in the training and practical application of the pediatrician who has to treat childhood pain is urgently needed. In this context, this manuscript has prepared standards and guidelines to improve pain management practices in a large number of national and international professional settings.
Collapse
Affiliation(s)
- Tatjana Páramo-Cano
- Academic Area of Medicine, Institute of Health Sciences, Universidad Autónoma del Estado de Hidalgo, Pachuca, Hidalgo, Mexico., Dr. Eliseo Ramírez Ulloa 400, Col. Doctores, 42090, Pachuca, Hidalgo,Mexico
| | - Mario I Ortiz
- Academic Area of Medicine, Institute of Health Sciences, Universidad Autónoma del Estado de Hidalgo, Pachuca, Hidalgo, Mexico., Dr. Eliseo Ramírez Ulloa 400, Col. Doctores, 42090, Pachuca, Hidalgo,Mexico
| | - Federico J Gómez-Busto
- Academic Area of Medicine, Institute of Health Sciences, Universidad Autónoma del Estado de Hidalgo, Pachuca, Hidalgo, Mexico., Dr. Eliseo Ramírez Ulloa 400, Col. Doctores, 42090, Pachuca, Hidalgo,Mexico
| | - Ana L Espinoza-Ramírez
- Academic Area of Medicine, Institute of Health Sciences, Universidad Autónoma del Estado de Hidalgo, Pachuca, Hidalgo, Mexico., Dr. Eliseo Ramírez Ulloa 400, Col. Doctores, 42090, Pachuca, Hidalgo,Mexico
| |
Collapse
|
23
|
Tsagareli MG, Nozadze I, Tsiklauri N, Carstens MI, Gurtskaia G, Carstens E. Thermal Hyperalgesia and Mechanical Allodynia Elicited by Histamine and Non-histaminergic Itch Mediators: Respective Involvement of TRPV1 and TRPA1. Neuroscience 2020; 449:35-45. [PMID: 33010342 PMCID: PMC8219216 DOI: 10.1016/j.neuroscience.2020.09.048] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/12/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023]
Abstract
Acute itch is elicited by histamine, as well as non-histaminergic itch mediators including chloroquine, BAM8-22 and Ser-Leu-Ile-Gly-Arg-Leu (SLIGRL). When injected intradermally, histamine binds to histamine H1 and H4 receptors that activate transient receptor potential vanilloid 1 (TRPV1) to depolarize pruriceptors. Chloroquine, BAM8-22, and SLIGRL, respectively, bind to Mas-related G-protein-coupled receptors MrgprA3, MrgprC11, and MrgprC11/PAR2 that in turn activate transient receptor potential ankyrin 1 (TRPA1). In this study we tested if histamine, chloroquine, BAM8-22 and SLIGRL elicit thermal hyperalgesia and mechanical allodynia in adult male mice. We measured the latency of hindpaw withdrawal from a noxious heat stimulus, and the threshold for hindpaw withdrawal from a von Frey mechanical stimulus. Intraplantar injection of histamine resulted in significant thermal hyperalgesia (p < 0.001) and mechanical allodynia (p < 0.001) ipsilaterally that persisted for 1 h. Pretreatment with the TRPV1 antagonist AMG-517 (10 or 20 μg), but not the TRPA1 antagonist HC-030031 (50 or 100 μg), significantly attenuated the magnitude and time course of thermal hyperalgesia and mechanical allodynia elicited by histamine (p < 0.001 for both), indicating that these effects are mediated by TRPV1. In contrast, pretreatment with the TRPA1 antagonist significantly reduced thermal hyperalgesia and mechanical allodynia elicited by chloroquine (p < 0.001 for both ), BAM-822 (p < 0.01, p < 0.001, respectively) and SLGRL (p < 0.05, p < 0.001, respectively), indicating that effects elicited by these non-histaminergic itch mediators require TRPA1. TRPV1 and TRPA1 channel inhibitors thus may have potential use in reducing hyperalgesia and allodynia associated with histaminergic and non-histaminergic itch, respectively.
Collapse
Affiliation(s)
| | - Ivliane Nozadze
- Beritashvili Center for Experimental Biomedicine, Tbilisi, Georgia
| | - Nana Tsiklauri
- Beritashvili Center for Experimental Biomedicine, Tbilisi, Georgia
| | | | - Gulnaz Gurtskaia
- Beritashvili Center for Experimental Biomedicine, Tbilisi, Georgia
| | - E Carstens
- University of California, Davis, CA, USA.
| |
Collapse
|
24
|
Mai L, Huang F, Zhu X, He H, Fan W. Role of Nerve Growth Factor in Orofacial Pain. J Pain Res 2020; 13:1875-1882. [PMID: 32801845 PMCID: PMC7399448 DOI: 10.2147/jpr.s250030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 07/06/2020] [Indexed: 12/18/2022] Open
Abstract
Some chronic pain conditions in the orofacial region are common and the mechanisms underlying orofacial pain are unresolved. Nerve growth factor (NGF) is a member of a family of neurotrophins and regulates the growth, maintenance and development of neurons. Increasing evidence suggests that NGF plays a crucial role in the generation of pain and hyperalgesia in different pain states. This review investigates the role of NGF in orofacial pain and their underlying cellular mechanisms, which may provide essential guidance to drug-discovery programmes. A systemic literature search was conducted in Pubmed focusing on NGF and orofacial pain. Articles were reviewed, and those discussing in vitro studies, animal evidence, clinical course, and possible mechanisms were summarized. We found a hyperalgesic effect of NGF in peripheral sensitization in orofacial pain models. We also summarize the current knowledge regarding NGF-dependent pain mechanism, which is initiated by retrograde transport of the ligand-receptor complex, ensuing transcriptional regulation of many important nociceptor genes involved in nociceptive processing. Phase III trials suggest that anti-NGF drug is endorsed with anti-inflammatory and pain-relieving effects with good tolerance in a variety of pain conditions, including pain associated with osteoarthritis and chronic lower back pain. Based on the data reviewed herein, NGF is believed to be an important hyperalgesic mediator in orofacial pain. The identification of underlying mechanisms and pathways of orofacial pain opens new frontiers for pain management.
Collapse
Affiliation(s)
- Lijia Mai
- Department of Anesthesiology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510080, People's Republic of China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510080, People's Republic of China
| | - Fang Huang
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510080, People's Republic of China
| | - Xiao Zhu
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, People's Republic of China
| | - Hongwen He
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510080, People's Republic of China
| | - Wenguo Fan
- Department of Anesthesiology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510080, People's Republic of China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510080, People's Republic of China
| |
Collapse
|
25
|
Aroke EN, Powell-Roach KL, Jaime-Lara RB, Tesfaye M, Roy A, Jackson P, Joseph PV. Taste the Pain: The Role of TRP Channels in Pain and Taste Perception. Int J Mol Sci 2020; 21:E5929. [PMID: 32824721 PMCID: PMC7460556 DOI: 10.3390/ijms21165929] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/12/2020] [Accepted: 08/16/2020] [Indexed: 12/11/2022] Open
Abstract
Transient receptor potential (TRP) channels are a superfamily of cation transmembrane proteins that are expressed in many tissues and respond to many sensory stimuli. TRP channels play a role in sensory signaling for taste, thermosensation, mechanosensation, and nociception. Activation of TRP channels (e.g., TRPM5) in taste receptors by food/chemicals (e.g., capsaicin) is essential in the acquisition of nutrients, which fuel metabolism, growth, and development. Pain signals from these nociceptors are essential for harm avoidance. Dysfunctional TRP channels have been associated with neuropathic pain, inflammation, and reduced ability to detect taste stimuli. Humans have long recognized the relationship between taste and pain. However, the mechanisms and relationship among these taste-pain sensorial experiences are not fully understood. This article provides a narrative review of literature examining the role of TRP channels on taste and pain perception. Genomic variability in the TRPV1 gene has been associated with alterations in various pain conditions. Moreover, polymorphisms of the TRPV1 gene have been associated with alterations in salty taste sensitivity and salt preference. Studies of genetic variations in TRP genes or modulation of TRP pathways may increase our understanding of the shared biological mediators of pain and taste, leading to therapeutic interventions to treat many diseases.
Collapse
Affiliation(s)
- Edwin N. Aroke
- School of Nursing, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (E.N.A.); (P.J.)
| | | | - Rosario B. Jaime-Lara
- Sensory Science and Metabolism Unit (SenSMet), National Institute of Nursing Research, National Institutes of Health, Bethesda, MD 20892, USA; (R.B.J.-L.); (M.T.); (A.R.)
| | - Markos Tesfaye
- Sensory Science and Metabolism Unit (SenSMet), National Institute of Nursing Research, National Institutes of Health, Bethesda, MD 20892, USA; (R.B.J.-L.); (M.T.); (A.R.)
| | - Abhrabrup Roy
- Sensory Science and Metabolism Unit (SenSMet), National Institute of Nursing Research, National Institutes of Health, Bethesda, MD 20892, USA; (R.B.J.-L.); (M.T.); (A.R.)
| | - Pamela Jackson
- School of Nursing, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (E.N.A.); (P.J.)
| | - Paule V. Joseph
- Sensory Science and Metabolism Unit (SenSMet), National Institute of Nursing Research, National Institutes of Health, Bethesda, MD 20892, USA; (R.B.J.-L.); (M.T.); (A.R.)
| |
Collapse
|
26
|
Duitama M, Vargas-López V, Casas Z, Albarracin SL, Sutachan JJ, Torres YP. TRP Channels Role in Pain Associated With Neurodegenerative Diseases. Front Neurosci 2020; 14:782. [PMID: 32848557 PMCID: PMC7417429 DOI: 10.3389/fnins.2020.00782] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/02/2020] [Indexed: 01/09/2023] Open
Abstract
Transient receptor potential (TRP) are cation channels expressed in both non-excitable and excitable cells from diverse tissues, including heart, lung, and brain. The TRP channel family includes 28 isoforms activated by physical and chemical stimuli, such as temperature, pH, osmotic pressure, and noxious stimuli. Recently, it has been shown that TRP channels are also directly or indirectly activated by reactive oxygen species. Oxidative stress plays an essential role in neurodegenerative disorders, such as Alzheimer's and Parkinson's diseases, and TRP channels are involved in the progression of those diseases by mechanisms involving changes in the crosstalk between Ca2+ regulation, oxidative stress, and production of inflammatory mediators. TRP channels involved in nociception include members of the TRPV, TRPM, TRPA, and TRPC subfamilies that transduce physical and chemical noxious stimuli. It has also been reported that pain is a complex issue in patients with Alzheimer's and Parkinson's diseases, and adequate management of pain in those conditions is still in discussion. TRPV1 has a role in neuroinflammation, a critical mechanism involved in neurodegeneration. Therefore, some studies have considered TRPV1 as a target for both pain treatment and neurodegenerative disorders. Thus, this review aimed to describe the TRP-dependent mechanism that can mediate pain sensation in neurodegenerative diseases and the therapeutic approach available to palliate pain and neurodegenerative symptoms throughout the regulation of these channels.
Collapse
|
27
|
Canonical Transient Receptor Potential (TRPC) Channels in Nociception and Pathological Pain. Neural Plast 2020; 2020:3764193. [PMID: 32273889 PMCID: PMC7115173 DOI: 10.1155/2020/3764193] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 02/26/2020] [Accepted: 03/07/2020] [Indexed: 12/13/2022] Open
Abstract
Chronic pathological pain is one of the most intractable clinical problems faced by clinicians and can be devastating for patients. Despite much progress we have made in understanding chronic pain in the last decades, its underlying mechanisms remain elusive. It is assumed that abnormal increase of calcium levels in the cells is a key determinant in the transition from acute to chronic pain. Exploring molecular players mediating Ca2+ entry into cells and molecular mechanisms underlying activity-dependent changes in Ca2+ signaling in the somatosensory pain pathway is therefore helpful towards understanding the development of chronic, pathological pain. Canonical transient receptor potential (TRPC) channels form a subfamily of nonselective cation channels, which permit the permeability of Ca2+ and Na+ into the cells. Initiation of Ca2+ entry pathways by these channels triggers the development of many physiological and pathological functions. In this review, we will focus on the functional implication of TRPC channels in nociception with the elucidation of their role in the detection of external stimuli and nociceptive hypersensitivity.
Collapse
|
28
|
Stokłosa P, Borgström A, Kappel S, Peinelt C. TRP Channels in Digestive Tract Cancers. Int J Mol Sci 2020; 21:E1877. [PMID: 32182937 PMCID: PMC7084354 DOI: 10.3390/ijms21051877] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/03/2020] [Accepted: 03/06/2020] [Indexed: 12/24/2022] Open
Abstract
Cancers of the digestive tract are among the most prevalent types of cancer. These types of cancers are often diagnosed at a late stage, which results in a poor prognosis. Currently, many biomedical studies focus on the role of ion channels, in particular transient receptor potential (TRP) channels, in cancer pathophysiology. TRP channels show mostly non-selective permeability to monovalent and divalent cations. TRP channels are often dysregulated in digestive tract cancers, which can result in alterations of cancer hallmark functions, such as enhanced proliferation, migration, invasion and the inability to induce apoptosis. Therefore, TRP channels could serve as potential diagnostic biomarkers. Moreover, TRP channels are mostly expressed on the cell surface and ion channel targeting drugs do not need to enter the cell, making them attractive candidate drug targets. In this review, we summarize the current knowledge about TRP channels in connection to digestive tract cancers (oral cancer, esophageal cancer, liver cancer, pancreatic cancer, gastric cancer and colorectal cancer) and give an outlook on the potential of TRP channels as cancer biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Paulina Stokłosa
- Institute of Biochemistry and Molecular Medicine, National Center of Competence in Research NCCR TransCure, University of Bern, 3012 Bern, Switzerland; (A.B.); (S.K.); (C.P.)
| | | | | | | |
Collapse
|
29
|
Kassab M, Almomani B, Nuseir K, Alhouary AA. Efficacy of Sucrose in Reducing Pain during Immunization among 10- to 18-Month-Old Infants and Young Children: A Randomized Controlled Trial. J Pediatr Nurs 2020; 50:e55-e61. [PMID: 31870702 DOI: 10.1016/j.pedn.2019.11.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 11/18/2019] [Accepted: 11/20/2019] [Indexed: 11/29/2022]
Abstract
PURPOSE Sucrose is recommended to reduce pain associated with vaccination in neonates. However, research results concerning its effectiveness in infants and young children are inconclusive. This study aims to determine the efficacy of sucrose administration in reducing pain during immunization in 10- to 18-month-old infants and young children as assessed by behavioral pain parameters, crying time, and saliva substance (P) concentration. DESIGN AND METHODS This was a double-blind, randomized controlled trial and included healthy infants and young children undergoing their 10- to 18-month immunization. Behavioral pain outcome was measured during, and shortly after the last injection. The infant's pain was also measured by a salivary test using substance (P), and videotaping of crying time. RESULTS The study results indicate that, compared with a placebo group, the sucrose group had significantly less pain post-immunization (F (1,129) = 1.72, p = 0.001). Moreover, substance (P) was lower in the intervention group post-immunization, and it could be considered a good predictor of pain reduction associated with immunization. CONCLUSIONS Sucrose administration during immunization injection helps in reducing pain, which is one of the most critical factors affecting compliance with the immunization schedule. Substance (P) measurement can be used as a predictor of immunization pain level in 10- to 18-month-old infants and young children. PRACTICE IMPLICATIONS Sucrose is an effective method to reduce needle pain during immunization; therefore, healthcare providers should administer sucrose as a pain relief intervention in the immunization clinical setting.
Collapse
Affiliation(s)
- Manal Kassab
- Department of Maternal and Child Health, Faculty of Nursing, Jordan University of Science and Technology, Irbid, Jordan; University of Technology, Sydney (UTS), Sydney, Australia.
| | - Basima Almomani
- Department of Clinical Pharmacy, Faculty of Pharmacy, University of Science and Technology, Irbid, Jordan.
| | - Khawla Nuseir
- Department of Clinical Pharmacy, Faculty of Pharmacy, University of Science and Technology, Irbid, Jordan.
| | - Ala A Alhouary
- Department of Anesthesia, King Abdullah University Hospital (KAUH), Faculty of Medicine, Jordan University of Science and Technology (JUST), Irbid, Jordan.
| |
Collapse
|
30
|
Jansen C, Shimoda L, Kawakami J, Ang L, Bacani A, Baker J, Badowski C, Speck M, Stokes A, Small-Howard A, Turner H. Myrcene and terpene regulation of TRPV1. Channels (Austin) 2019; 13:344-366. [PMID: 31446830 PMCID: PMC6768052 DOI: 10.1080/19336950.2019.1654347] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 01/30/2023] Open
Abstract
Nociceptive Transient Receptor Potential channels such as TRPV1 are targets for treating pain. Both antagonism and agonism of TRP channels can promote analgesia, through inactivation and chronic desensitization. Since plant-derived mixtures of cannabinoids and the Cannabis component myrcene have been suggested as pain therapeutics, we screened terpenes found in Cannabis for activity at TRPV1. We used inducible expression of TRPV1 to examine TRPV1-dependency of terpene-induced calcium flux responses. Terpenes contribute differentially to calcium fluxes via TRPV1 induced by Cannabis-mimetic cannabinoid/terpenoid mixtures. Myrcene dominates the TRPV1-mediated calcium responses seen with terpenoid mixtures. Myrcene-induced calcium influx is inhibited by the TRPV1 inhibitor capsazepine and Myrcene elicits TRPV1 currents in the whole-cell patch-clamp configuration. TRPV1 currents are highly sensitive to internal calcium. When Myrcene currents are evoked, they are distinct from capsaicin responses on the basis of Imax and their lack of shift to a pore-dilated state. Myrcene pre-application and residency at TRPV1 appears to negatively impact subsequent responses to TRPV1 ligands such as Cannabidiol, indicating allosteric modulation and possible competition by Myrcene. Molecular docking studies suggest a non-covalent interaction site for Myrcene in TRPV1 and identifies key residues that form partially overlapping Myrcene and Cannabidiol binding sites. We identify several non-Cannabis plant-derived sources of Myrcene and other compounds targeting nociceptive TRPs using a data mining approach focused on analgesics suggested by non-Western Traditional Medical Systems. These data establish TRPV1 as a target of Myrcene and suggest the therapeutic potential of analgesic formulations containing Myrcene.
Collapse
Affiliation(s)
- C. Jansen
- Laboratory of Immunology and Signal Transduction, Chaminade University, Honolulu, HI, USA
| | - L.M.N Shimoda
- Laboratory of Immunology and Signal Transduction, Chaminade University, Honolulu, HI, USA
| | - J.K. Kawakami
- Department of Chemistry, Chaminade University, Honolulu, HI, USA
| | - L. Ang
- Undergraduate Program in Biology, Chaminade University, Honolulu, HI, USA
| | - A.J. Bacani
- Undergraduate Program in Biology, Chaminade University, Honolulu, HI, USA
| | - J.D. Baker
- Department of Biology, Chaminade University, Honolulu, HI, USA
| | - C. Badowski
- Laboratory of Experimental Medicine, John A. Burns School of Medicine, Honolulu, HI, USA
| | - M. Speck
- Laboratory of Immunology and Signal Transduction, Chaminade University, Honolulu, HI, USA
| | - A.J. Stokes
- Laboratory of Experimental Medicine, John A. Burns School of Medicine, Honolulu, HI, USA
| | | | - H Turner
- Laboratory of Immunology and Signal Transduction, Chaminade University, Honolulu, HI, USA
| |
Collapse
|
31
|
Wang S, Hu X, Li X. Sub-chronic exposure to Tris(1,3-dichloro-2-propyl) phosphate induces sex-dependent hepatotoxicity in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:33351-33362. [PMID: 31522405 DOI: 10.1007/s11356-019-06383-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 08/29/2019] [Indexed: 06/10/2023]
Abstract
As the application and environmental release of tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) are being increased rapidly, serious concerns have been raised regarding its adverse effects on human health. Exposure to TDCIPP has been implicated in hepatotoxicity, but the molecular mechanisms remain unclear. Here, both male and female Sprague Dawley rats were administered TDCIPP with 125, 250, or 500 mg/kg/day for 12 weeks. Then the ultrastructure of liver, biochemical indicators in serum and liver, and hepatic gene expression were analyzed to reveal molecular mechanisms of hepatotoxicity induced by TDCIPP. Continuous TDCIPP exposure decreased body weight, particularly in 500 mg/kg/day TDCIPP-exposed males, and dose dependently increased the ratio of liver to body weight in both genders. The decreased levels of triglyceride, cholesterol, and transaminase in the serum and livers were observed in both genders after TDCIPP exposure, which indicated dysfunction in the hepatic metabolism. Liver histopathology revealed hepatocellular damages in males and females after TDCIPP exposure. The transcriptomic analysis indicated that TDCIPP exposure significantly changed pathways of bile acid metabolism, inflammatory response, oxidative phosphorylation and carcinogenicity in 250 and 500 mg/kg/day TDCIPP-exposed males and 500 mg/kg/day TDCIPP-exposed females, and there was no statistical significance in any other TDCIPP-exposed groups. The transcriptional analysis showed that TDCIPP exposure led to oxidative stress in the livers of rats, thereby increasing the inflammatory response and promoting mechanisms of carcinogenesis in both genders. Finally, TDCIPP led to more severe adverse phenotypic effects in male than female rats.
Collapse
Affiliation(s)
- Simin Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Xueyan Li
- Department of Digestion, General Hospital, Shenyang Military Command, Shenyang, 110016, China.
| |
Collapse
|
32
|
Borbély É, Payrits M, Hunyady Á, Mező G, Pintér E. Important regulatory function of transient receptor potential ankyrin 1 receptors in age-related learning and memory alterations of mice. GeroScience 2019; 41:643-654. [PMID: 31327098 PMCID: PMC6885083 DOI: 10.1007/s11357-019-00083-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 07/02/2019] [Indexed: 12/11/2022] Open
Abstract
Expression of the transient receptor potential ankyrin 1 (TRPA1) receptor has been demonstrated not only in the dorsal root and trigeminal ganglia but also in different brain regions (e.g., hippocampus, hypothalamus, and cortex). However, data concerning their role in neurodegenerative and age-related diseases of the CNS is still indistinct. The aim of our study was to investigate the potential role of TRPA1 in a mouse model of senile dementia. For the investigation of changes during aging, we used male young (3-4-month-old) and old (18-month-old) wild-type (TRPA1+/+;WT) and TRPA1 receptor gene-deleted (TRPA1-/-) mice. Novel object recognition (NOR) test as well as Y maze (YM), radial arm maze (RAM), and Morris water maze (MWM) tests were used to assess the decline of memory and learning skills. In the behavioral studies, significant memory loss was detected in aged TRPA1+/+ mice with the NOR and RAM, but there was no difference measured by YM and MWM tests regarding the age and gene. TRPA1-/- showed significantly reduced memory loss, which could be seen as higher discrimination index in the NOR and less exploration time in the RAM. Furthermore, young TRPA1-/- animals showed significantly less reference memory error in the RAM and notably higher mobility in NOR, RAM, and YM compared with the age-matched WTs. Our present work has provided the first evidence that TRPA1 receptors mediate deteriorating effects in the old age memory decline. Understanding the underlying mechanisms could open new perspectives in the pharmacotherapy of dementia.
Collapse
Affiliation(s)
- Éva Borbély
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti u.12., Pécs, 7624, Hungary
- Szentágothai Research Center, Center for Neuroscience, University of Pécs, Ifjúság u. 20, Pécs, 7624, Hungary
| | - Maja Payrits
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti u.12., Pécs, 7624, Hungary
- Szentágothai Research Center, Center for Neuroscience, University of Pécs, Ifjúság u. 20, Pécs, 7624, Hungary
| | - Ágnes Hunyady
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti u.12., Pécs, 7624, Hungary
- Szentágothai Research Center, Center for Neuroscience, University of Pécs, Ifjúság u. 20, Pécs, 7624, Hungary
| | - Gréta Mező
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti u.12., Pécs, 7624, Hungary
| | - Erika Pintér
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti u.12., Pécs, 7624, Hungary.
- Szentágothai Research Center, Center for Neuroscience, University of Pécs, Ifjúság u. 20, Pécs, 7624, Hungary.
| |
Collapse
|
33
|
Abstract
All preclinical procedures for analgesic drug discovery involve two components: 1) a "pain stimulus" (the principal independent variable), which is delivered to an experimental subject with the intention of producing a pain state; and 2) a "pain behavior" (the principal dependent variable), which is measured as evidence of that pain state. Candidate analgesics are then evaluated for their effectiveness to reduce the pain behavior, and results are used to prioritize drugs for advancement to clinical testing. This review describes a taxonomy of preclinical procedures organized into an "antinociception matrix" by reference to their types of pain stimulus (noxious, inflammatory, neuropathic, disease related) and pain behavior (unconditioned, classically conditioned, operant conditioned). Particular emphasis is devoted to pain behaviors and the behavioral principals that govern their expression, pharmacological modulation, and preclinical-to-clinical translation. Strengths and weaknesses are compared and contrasted for procedures using each type of behavioral outcome measure, and the following four recommendations are offered to promote strategic use of these procedures for preclinical-to-clinical analgesic drug testing. First, attend to the degree of homology between preclinical and clinical outcome measures, and use preclinical procedures with behavioral outcome measures homologous to clinically relevant outcomes in humans. Second, use combinations of preclinical procedures with complementary strengths and weaknesses to optimize both sensitivity and selectivity of preclinical testing. Third, take advantage of failed clinical translation to identify drugs that can be back-translated preclinically as active negative controls. Finally, increase precision of procedure labels by indicating both the pain stimulus and the pain behavior in naming preclinical procedures.
Collapse
Affiliation(s)
- S Stevens Negus
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
34
|
Modulators of Transient Receptor Potential (TRP) Channels as Therapeutic Options in Lung Disease. Pharmaceuticals (Basel) 2019; 12:ph12010023. [PMID: 30717260 PMCID: PMC6469169 DOI: 10.3390/ph12010023] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 12/25/2022] Open
Abstract
The lungs are essential for gas exchange and serve as the gateways of our body to the external environment. They are easily accessible for drugs from both sides, the airways and the vasculature. Recent literature provides evidence for a role of Transient Receptor Potential (TRP) channels as chemosensors and essential members of signal transduction cascades in stress-induced cellular responses. This review will focus on TRP channels (TRPA1, TRPC6, TRPV1, and TRPV4), predominantly expressed in non-neuronal lung tissues and their involvement in pathways associated with diseases like asthma, cystic fibrosis, chronic obstructive pulmonary disease (COPD), lung fibrosis, and edema formation. Recently identified specific modulators of these channels and their potential as new therapeutic options as well as strategies for a causal treatment based on the mechanistic understanding of molecular events will also be evaluated.
Collapse
|