1
|
Methela NJ, Pande A, Islam MS, Rahim W, Hussain A, Lee DS, Mun BG, Maria Joseph Raj NP, Kim SJ, Kim Y, Yun BW. Chitosan-GSNO nanoparticles: a positive modulator of drought stress tolerance in soybean. BMC PLANT BIOLOGY 2023; 23:639. [PMID: 38082263 PMCID: PMC10712192 DOI: 10.1186/s12870-023-04640-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023]
Abstract
BACKGROUND Chitosan biopolymer is an emerging non-toxic and biodegradable plant elicitor or bio-stimulant. Chitosan nanoparticles (CSNPs) have been used for the enhancement of plant growth and development. On the other hand, NO is an important signaling molecule that regulates several aspects of plant physiology under normal and stress conditions. Here we report the synthesis, characterization, and use of chitosan-GSNO nanoparticles for improving drought stress tolerance in soybean. RESULTS The CSGSNONPs released NO gas for a significantly longer period and at a much lower rate as compared to free GSNO indicating that incorporation of GSNO in CSNPs can protect the NO-donor from rapid decomposition and ensure optimal NO release. CS-GSNONPs improved drought tolerance in soybean plants reflected by a significant increase in plant height, biomass, root length, root volume, root surface area, number of root tips, forks, and nodules. Further analyses indicated significantly lower electrolyte leakage, higher proline content, higher catalase, and ascorbate peroxidase activity, and reduction in MDA and H2O2 contents after treatment with 50 μM CS-GSNONPs under drought stress conditions. Quantitative real-time PCR analysis indicated that CS-GSNONPs protected against drought-induced stress by regulating the expression of drought stress-related marker genes such as GmDREB1a, GmP5CS, GmDEFENSIN, and NO-related genes GmGSNOR1 and GmNOX1. CONCLUSIONS This study highlights the potential of nano-technology-based delivery systems for nitric oxide donors to improve plant growth, and development and protect against stresses.
Collapse
Affiliation(s)
- Nusrat Jahan Methela
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, South Korea
- Department of Agriculture, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Anjali Pande
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, South Korea
| | - Mohammad Shafiqul Islam
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, South Korea
- Department of Agriculture, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Waqas Rahim
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, South Korea
| | - Adil Hussain
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, South Korea.
- Department of Agriculture, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Mardan, 23200, Pakistan.
| | - Da-Sol Lee
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, South Korea
| | - Bong-Gyu Mun
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, South Korea
| | - Nirmal Prashanth Maria Joseph Raj
- Nanomaterials and Systems Lab, Mechatronics Engineering, Faculty of Applied Energy System, Jeju National University, Jeju, 63243, South Korea
- Energy Harvesting Research Group, School of Physics & Astronomy, SUPA, University of St Andrews, St. Andrews, Fife, KY16 9SS, UK
| | - Sang-Jae Kim
- Nanomaterials and Systems Lab, Mechatronics Engineering, Faculty of Applied Energy System, Jeju National University, Jeju, 63243, South Korea
| | - Yoonha Kim
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, South Korea
| | - Byung-Wook Yun
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, South Korea.
| |
Collapse
|
2
|
Shalovylo YI, Yusypovych YM, Hrunyk NI, Roman II, Zaika VK, Krynytskyy HT, Nesmelova IV, Kovaleva VA. Seed-derived defensins from Scots pine: structural and functional features. PLANTA 2021; 254:129. [PMID: 34817648 DOI: 10.1007/s00425-021-03788-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
The recombinant PsDef5.1 defensin inhibits the growth of phytopathogenic fungi, Gram-positive and Gram-negative bacteria, and human pathogen Candida albicans. Expression of seed-derived Scots pine defensins is tissue-specific and developmentally regulated. Plant defensins are ubiquitous antimicrobial peptides that possess a broad spectrum of activities and multi-functionality. The genes for these antimicrobial proteins form a multigenic family in the plant genome and are expressed in every organ. Most of the known defensins have been isolated from seeds of various monocot and dicot species, but seed-derived defensins have not yet been characterized in gymnosperms. This study presents the isolation of two new 249 bp cDNA sequences from Scots pine seeds with 97.9% nucleotide homology named PsDef5.1 and PsDef5.2. Their deduced amino acid sequences have typical plant defensin features, including an endoplasmic reticulum signal sequence of 31 amino acids (aa), followed by a characteristic defensin domain of 51 aa. To elucidate the functional activity of new defensins, we expressed the mature form of PsDef5.1 in a prokaryotic system. The purified recombinant peptide exhibited activity against the phytopathogenic fungi and Gram-negative and Gram-positive bacteria with the IC50 of 5-18 µM. Moreover, it inhibited the growth of the human pathogen Candida albicans with the IC50 of 6.0 µM. Expression analysis showed that transcripts of PsDef5.1-2 genes were present in immature and mature pine seeds and different parts of seedlings at the early stage of germination. In addition, unlike the PsDef5.2, the PsDef5.1 gene was expressed in the reproductive organs. Our findings indicate that novel defensins are promising candidates for transgenic application and the development of new antimicrobial drugs.
Collapse
Affiliation(s)
- Yulia I Shalovylo
- Ukrainian National Forestry University, 103, Gen. Chuprynka, St., Lviv, 79057, Ukraine
| | - Yurii M Yusypovych
- Ukrainian National Forestry University, 103, Gen. Chuprynka, St., Lviv, 79057, Ukraine
| | - Nataliya I Hrunyk
- Ukrainian National Forestry University, 103, Gen. Chuprynka, St., Lviv, 79057, Ukraine
| | - Ivan I Roman
- Ivan Franko National University of Lviv, 1, Saksagansky St., Lviv, 79005, Ukraine
| | - Volodymyr K Zaika
- Ukrainian National Forestry University, 103, Gen. Chuprynka, St., Lviv, 79057, Ukraine
| | - Hryhoriy T Krynytskyy
- Ukrainian National Forestry University, 103, Gen. Chuprynka, St., Lviv, 79057, Ukraine
| | - Irina V Nesmelova
- University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, 28223, USA
| | - Valentina A Kovaleva
- Ukrainian National Forestry University, 103, Gen. Chuprynka, St., Lviv, 79057, Ukraine.
| |
Collapse
|
3
|
Santos-Silva CAD, Vilela LMB, Oliveira-Silva RLD, Silva JBD, Machado AR, Bezerra-Neto JP, Crovella S, Benko-Iseppon AM. Cassava (Manihot esculenta) defensins: Prospection, structural analysis and tissue-specific expression under biotic/abiotic stresses. Biochimie 2021; 186:1-12. [PMID: 33789147 DOI: 10.1016/j.biochi.2021.03.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 03/10/2021] [Accepted: 03/18/2021] [Indexed: 11/26/2022]
Abstract
Defensins are a prominent family of antimicrobial peptides. They play sophisticated roles in the defense against pathogens in all living organisms, but few works address their expression under different conditions and plant tissues. The present work prospected defensins of Manihot esculenta Crantz, popularly known as cassava. Five defensin candidates (MeDefs) were retrieved from the genome sequences and characterized. Considering chromosome distribution, only MeDef1 and 2 occupy adjacent positions in the same chromosome arm. All 3D structures had antiparallel ß-sheets, an α-helix, and amphipathic residues distributed throughout the peptides with a predominance of cationic surface charge. MeDefs expression was validated by RT-qPCR, including two stress types (biotic: fungus Macrophomina pseudophaseolina, and abiotic: mechanical injury) and a combination of both stresses (fungus+injury) in three different tissues (root, stem, and leaf). For this purpose, ten reference genes (RGs) were tested, and three were chosen to characterize MeDef expression. MeDef3 was up-regulated at roots in all stress situations tested. MeDef1 and MeDef5 were induced in leaves under biotic and abiotic stresses, but not in both stress types simultaneously. Only MeDef2 was down-regulated in the stem tissue also with biotic/abiotic combined stresses. These results indicate that although defensins are known to be responsive to pathogen infection, they may act as preformed defense or, still, have tissue or stress specificities. Aspects of their structure, stability and evolution are also discussed.
Collapse
Affiliation(s)
- Carlos André Dos Santos-Silva
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235, CEP 50.670-423, Recife, PE, Brazil
| | - Lívia Maria Batista Vilela
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235, CEP 50.670-423, Recife, PE, Brazil
| | - Roberta Lane de Oliveira-Silva
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235, CEP 50.670-423, Recife, PE, Brazil
| | - Jéssica Barboza da Silva
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235, CEP 50.670-423, Recife, PE, Brazil
| | - Alexandre Reis Machado
- Departamento de Micologia, Centro de Biociências, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235, CEP 50.670-423, Recife, PE, Brazil
| | - João Pacífico Bezerra-Neto
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235, CEP 50.670-423, Recife, PE, Brazil
| | - Sergio Crovella
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235, CEP 50.670-423, Recife, PE, Brazil
| | - Ana Maria Benko-Iseppon
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235, CEP 50.670-423, Recife, PE, Brazil.
| |
Collapse
|
4
|
Srivastava S, Dashora K, Ameta KL, Singh NP, El-Enshasy HA, Pagano MC, Hesham AEL, Sharma GD, Sharma M, Bhargava A. Cysteine-rich antimicrobial peptides from plants: The future of antimicrobial therapy. Phytother Res 2020; 35:256-277. [PMID: 32940412 DOI: 10.1002/ptr.6823] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/26/2020] [Accepted: 07/03/2020] [Indexed: 12/13/2022]
Abstract
There has been a spurt in the spread of microbial resistance to antibiotics due to indiscriminate use of antimicrobial agents in human medicine, agriculture, and animal husbandry. It has been realized that conventional antibiotic therapy would be less effective in the coming decades and more emphasis should be given for the development of novel antiinfective therapies. Cysteine rich peptides (CRPs) are broad-spectrum antimicrobial agents that modulate the innate immune system of different life forms such as bacteria, protozoans, fungi, plants, insects, and animals. These are also expressed in several plant tissues in response to invasion by pathogens, and play a crucial role in the regulation of plant growth and development. The present work explores the importance of CRPs as potent antimicrobial agents, which can supplement and/or replace the conventional antibiotics. Different plant parts of diverse plant species showed the presence of antimicrobial peptides (AMPs), which had significant structural and functional diversity. The plant-derived AMPs exhibited potent activity toward a range of plant and animal pathogens, protozoans, insects, and even against cancer cells. The cysteine-rich AMPs have opened new avenues for the use of plants as biofactories for the production of antimicrobials and can be considered as promising antimicrobial drugs in biotherapeutics.
Collapse
Affiliation(s)
- Shilpi Srivastava
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, India
| | - Kavya Dashora
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, India
| | - Keshav Lalit Ameta
- Department of Chemistry, School of Liberal Arts and Sciences, Mody University of Science and Technology, Lakshmangarh, Rajasthan, India
| | | | - Hesham Ali El-Enshasy
- Institute of Bioproduct Development (IBD), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), Skudai, Johor Bahru, Malaysia.,City of Scientific Research and Technology Applications (SRTA), New Burg Al Arab, Alexandria, Egypt
| | | | - Abd El-Latif Hesham
- Genetics Department, Faculty of Agriculture, Beni-Suef University, Beni-Suef, Egypt
| | | | - Minaxi Sharma
- Department of Food Technology, Akal College of Agriculture, Eternal University, Baru Sahib, India
| | - Atul Bhargava
- Department of Botany, Mahatma Gandhi Central University, Motihari, India
| |
Collapse
|
5
|
Kumar M, Yusuf MA, Yadav P, Narayan S, Kumar M. Overexpression of Chickpea Defensin Gene Confers Tolerance to Water-Deficit Stress in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2019; 10:290. [PMID: 30915095 PMCID: PMC6423178 DOI: 10.3389/fpls.2019.00290] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 02/21/2019] [Indexed: 05/22/2023]
Abstract
Plant defensins are mainly known for their antifungal activity. However, limited information is available regarding their function in abiotic stresses. In this study, a defensin gene, Ca-AFP, from Cicer arietinum, commonly known as chickpea, was cloned and transformed in Arabidopsis thaliana for its functional characterization under simulated water-deficit conditions. Under simulated water-deficit conditions (mannitol and polyethylene glycol-6000 induced), the transgenic A. thaliana plants had higher accumulation of the Ca-AFP transcript compared to that under non-stress condition and showed higher germination rate, root length, and biomass than the wild-type (WT) plants. To get further insights into the role of Ca-AFP in conferring tolerance to water-deficit stress, we determined various physiological parameters and found significant reduction in the transpiration rate and stomatal conductance whereas the net photosynthesis and water use efficiency was increased in the transgenic plants compared to that in the WT plants under water deficit conditions. The transgenic plants showed enhanced superoxide dismutase, ascorbate peroxidase, and catalase activities, had higher proline, chlorophyll, and relative water content, and exhibited reduced ion leakage and malondialdehyde content under water-deficit conditions. Overall, our results indicate that overexpression of Ca-AFP could be an efficient approach for conferring tolerance to water-deficit stress in plants.
Collapse
Affiliation(s)
- Manoj Kumar
- Department of Biosciences, Integral University, Lucknow, India
- Department of Biotechnology, CSIR-National Botanical Research Institute, Lucknow, India
| | - Mohd Aslam Yusuf
- Department of Bioengineering, Integral University, Lucknow, India
| | - Pooja Yadav
- Department of Biotechnology, CSIR-National Botanical Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Shiv Narayan
- Plant Physiology Laboratory, CSIR-National Botanical Research Institute, Lucknow, India
| | - Manoj Kumar
- Department of Biotechnology, CSIR-National Botanical Research Institute, Lucknow, India
- *Correspondence: Manoj Kumar,
| |
Collapse
|
6
|
Rogozhin E, Ryazantsev D, Smirnov A, Zavriev S. Primary Structure Analysis of Antifungal Peptides from Cultivated and Wild Cereals. PLANTS 2018; 7:plants7030074. [PMID: 30213105 PMCID: PMC6160967 DOI: 10.3390/plants7030074] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 08/31/2018] [Accepted: 09/06/2018] [Indexed: 12/17/2022]
Abstract
Cereal-derived bioactive peptides with antimicrobial activity have been poorly explored compared to those from dicotyledonous plants. Furthermore, there are a few reports addressing the structural differences between antimicrobial peptides (AMPs) from cultivated and wild cereals, which may shed light on significant varieties in the range and level of their antimicrobial activity. We performed a primary structure analysis of some antimicrobial peptides from wild and cultivated cereals to find out the features that are associated with the much higher antimicrobial resistance characteristic of wild plants. In this review, we identified and analyzed the main parameters determining significant antifungal activity. They relate to a high variability level in the sequences of C-terminal fragments and a high content of hydrophobic amino acid residues in the biologically active defensins in wild cereals, in contrast to AMPs from cultivated forms that usually exhibit weak, if any, activity. We analyzed the similarity of various physicochemical parameters between thionins and defensins. The presence of a high divergence on a fixed part of any polypeptide that is close to defensins could be a determining factor. For all of the currently known hevein-like peptides of cereals, we can say that the determining factor in this regard is the structure of the chitin-binding domain, and in particular, amino acid residues that are not directly involved in intermolecular interaction with chitin. The analysis of amino acid sequences of alpha-hairpinins (hairpin-like peptides) demonstrated much higher antifungal activity and more specificity of the peptides from wild cereals compared with those from wheat and corn, which may be associated with the presence of a mini cluster of positively charged amino acid residues. In addition, at least one hydrophobic residue may be responsible for binding to the components of fungal cell membranes.
Collapse
Affiliation(s)
- Eugene Rogozhin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia.
- Gause Institute of New Antibiotics, ul. Bolshaya Pirogovskaya, 11, 119021 Moscow, Russia.
| | - Dmitry Ryazantsev
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia.
| | - Alexey Smirnov
- Department of Plant Protection Timiryazev Russian Agricultural University, ul. Timiryazevskaya 49, 127550 Moscow, Russia.
| | - Sergey Zavriev
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia.
| |
Collapse
|
7
|
Monazzah M, Tahmasebi Enferadi S, Rabiei Z. Enzymatic activities and pathogenesis-related genes expression in sunflower inbred lines affected by Sclerotinia sclerotiorum culture filtrate. J Appl Microbiol 2018; 125:227-242. [PMID: 29569305 DOI: 10.1111/jam.13766] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/26/2018] [Accepted: 03/12/2018] [Indexed: 12/25/2022]
Abstract
AIMS Studying biochemical responses and pathogenesis-related gene expression in sunflower-Sclerotinia interaction can shed light on factors participating to disease resistance. METHODS AND RESULTS Partially resistant and susceptible lines were exposed to pathogen culture filtrate. The activity of antioxidant enzymes and proline was much more pronounced in partially resistant line. The more resistant to Sclerotinia sclerotiorum, the less (1,4)-β-glucanase activity was observed. PDF 1.2 and PR5-1 exhibited higher transcript abundance in the partially resistant line than in the susceptible line. CONCLUSIONS Considering the dual roles of oxalic acid, activation of the antioxidant system in partially resistant line might lead to suppression of oxidative burst which is beneficial for the growth of fungus at later stages of infection. The ability of the partially resistant line in balancing antioxidant enzymes could reserve H2 O2 as a substrate for peroxidase that might lead to lignification. The contribution of (1,4)-β-glucanase defence responses against Sclerotinia was observed. The roles of SA and JA marker genes were demonstrated in sunflower defence responses. SIGNIFICANCE AND IMPACT OF THE STUDY The time of antioxidant system activation in host is important in order to contribute to defence responses. To date, the changes in the expression of PR1 and PDF 1.2 and contribution of (1,4)-β-glucanase enzyme in sunflower defence responses were not reported in previous studies.
Collapse
Affiliation(s)
- M Monazzah
- Department of Plant Molecular Biotechnology, Institute of Agricultural Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - S Tahmasebi Enferadi
- Department of Plant Molecular Biotechnology, Institute of Agricultural Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Z Rabiei
- Department of Plant Molecular Biotechnology, Institute of Agricultural Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
8
|
Tam JP, Wang S, Wong KH, Tan WL. Antimicrobial Peptides from Plants. Pharmaceuticals (Basel) 2015; 8:711-57. [PMID: 26580629 PMCID: PMC4695807 DOI: 10.3390/ph8040711] [Citation(s) in RCA: 290] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 08/06/2015] [Accepted: 09/01/2015] [Indexed: 12/25/2022] Open
Abstract
Plant antimicrobial peptides (AMPs) have evolved differently from AMPs from other life forms. They are generally rich in cysteine residues which form multiple disulfides. In turn, the disulfides cross-braced plant AMPs as cystine-rich peptides to confer them with extraordinary high chemical, thermal and proteolytic stability. The cystine-rich or commonly known as cysteine-rich peptides (CRPs) of plant AMPs are classified into families based on their sequence similarity, cysteine motifs that determine their distinctive disulfide bond patterns and tertiary structure fold. Cystine-rich plant AMP families include thionins, defensins, hevein-like peptides, knottin-type peptides (linear and cyclic), lipid transfer proteins, α-hairpinin and snakins family. In addition, there are AMPs which are rich in other amino acids. The ability of plant AMPs to organize into specific families with conserved structural folds that enable sequence variation of non-Cys residues encased in the same scaffold within a particular family to play multiple functions. Furthermore, the ability of plant AMPs to tolerate hypervariable sequences using a conserved scaffold provides diversity to recognize different targets by varying the sequence of the non-cysteine residues. These properties bode well for developing plant AMPs as potential therapeutics and for protection of crops through transgenic methods. This review provides an overview of the major families of plant AMPs, including their structures, functions, and putative mechanisms.
Collapse
Affiliation(s)
- James P Tam
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| | - Shujing Wang
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
- Department of Pharmacology and Pharmaceutical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China.
| | - Ka H Wong
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| | - Wei Liang Tan
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
9
|
Jaber E, Xiao C, Asiegbu FO. Comparative pathobiology of Heterobasidion annosum during challenge on Pinus sylvestris and Arabidopsis roots: an analysis of defensin gene expression in two pathosystems. PLANTA 2014; 239:717-733. [PMID: 24366684 DOI: 10.1007/s00425-013-2012-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 12/09/2013] [Indexed: 06/03/2023]
Abstract
Heterobasidion annosum is widely known as a major root and butt rot pathogen of conifer trees, but little information is available on its interaction with the roots of herbaceous angiosperm plants. We investigated the infection biology of H. annosum during challenge with the angiosperm model Arabidopsis and monitored the host response after exposure to different hormone elicitors, chemicals (chitin, glucan and chitosan) and fungal species that represent diverse basidiomycete life strategies [e.g., pathogen (H. annosum), saprotroph (Stereum sanguinolentum) and mutualist (Lactarius rufus)]. The results revealed that the tree pathogen (H. annosum) and the saprotroph (S. sanguinolentum) could infect the Col-8 (Columbia) ecotype of Arabidopsis in laboratory inoculation experiments. Germinated H. annosum spores had appressorium-like penetration structures attached to the surface of the Arabidopsis roots. Subsequent invasive fungal growth led to the disintegration of the vascular region of the root tissues. Progression of root rot symptoms in Arabidopsis was similar to the infection development that was previously documented in Scots pine seedlings. Scots pine PsDef1 and Arabidopsis DEFLs (AT5G44973.1) and PDF1.2 were induced at the initial stage of the infection. However, differences in the expression patterns of the defensin gene homologs from the two plant groups were observed under various conditions, suggesting functional differences in their regulation. The potential use of the H. annosum-Arabidopsis pathosystem as a model for studying forest tree diseases is discussed.
Collapse
Affiliation(s)
- Emad Jaber
- Department of Forest Sciences, University of Helsinki, Box 27, 00014, Helsinki, Finland,
| | | | | |
Collapse
|
10
|
Tan YC, Yeoh KA, Wong MY, Ho CL. Expression profiles of putative defence-related proteins in oil palm (Elaeis guineensis) colonized by Ganoderma boninense. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:1455-1460. [PMID: 23769496 DOI: 10.1016/j.jplph.2013.05.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 05/15/2013] [Accepted: 05/15/2013] [Indexed: 06/02/2023]
Abstract
Basal stem rot (BSR) is a major disease of oil palm caused by a pathogenic fungus, Ganoderma boninense. However, the interaction between the host plant and its pathogen is not well characterized. To better understand the response of oil palm to G. boninense, transcript profiles of eleven putative defence-related genes from oil palm were measured by quantitative reverse-transcription (qRT)-PCR in the roots of oil palms treated with G. boninense from 3 to 12 weeks post infection (wpi). These transcripts encode putative Bowman-Birk serine protease inhibitors (EgBBI1 and 2), defensin (EgDFS), dehydrin (EgDHN), early methionine-labeled polypeptides (EgEMLP1 and 2), glycine-rich RNA binding protein (EgGRRBP), isoflavone reductase (EgIFR), metallothionein-like protein (EgMT), pathogenesis-related-1 protein (EgPRP), and type 2 ribosome-inactivating protein (EgT2RIP). The transcript abundance of EgBBI2 increased in G. boninense-treated roots at 3 and 6wpi compared to those of controls; while the transcript abundance of EgBBI1, EgDFS, EgEMLP1, EgMT, and EgT2RIP increased in G. boninense-treated roots at 6 or 12wpi. Meanwhile, the gene expression of EgDHN was up-regulated at all three time points in G. boninense-treated roots. The expression profiles of the eleven transcripts were also studied in leaf samples upon inoculation of G. boninense and Trichoderma harzianum to identify potential biomarkers for early detection of BSR. Two candidate genes (EgEMLP1 and EgMT) that have different profiles in G. boninense-treated leaves compared to those infected by T. harzianum may have the potential to be developed as biomarkers for early detection of G. boninense infection.
Collapse
Affiliation(s)
- Yung-Chie Tan
- Institute of Tropical Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| | | | | | | |
Collapse
|
11
|
Nagy NE, Fossdal CG. Host responses in Norway spruce roots induced to the pathogen Ceratocystis polonica are evaded or suppressed by the ectomycorrhizal fungus Laccaria bicolor. PLANT BIOLOGY (STUTTGART, GERMANY) 2013; 15:99-110. [PMID: 22640005 DOI: 10.1111/j.1438-8677.2012.00596.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The outcome of a compatible mycorrhizal interaction is different from that in a compatible plant-pathogen interaction; however, it is not clear what mechanisms are used to evade or suppress the host defence. The aim of this work is to reveal differences between the interaction of Norway spruce roots to the pathogen Ceratocystis polonica and the ectomycorrhizal Laccaria bicolor, examine if L. bicolor is able to evade inducing host defence responses typically induced by pathogens, and test if prior inoculation with the ectomycorrhizal fungus affects the outcome of a later challenge with the pathogen. The pathogen was able to invade the roots and caused extensive necrosis, leading to seedling death, with or without prior inoculation with L. bicolor. The ectomycorrhizal L. bicolor colonised primary roots of the Norway spruce seedlings by partly covering, displacing and convoluting the cells of the outer root cortex, leaving the seedlings healthy. We detected increased total peroxidase activity, and staining indicating increased lignification in roots as a response to C. polonica. In L. bicolor inoculated roots there was no increase in total peroxidase activity, but an additional highly acidic peroxidase isoform appeared that was not present in healthy roots, or in roots invaded by the pathogen. Increased protease activity was detected in roots colonised by C. polonica, but little protease activity was detected in L. bicolor inoculated roots. These results suggest that the pathogen efficiently invades the roots despite the induced host defence responses, while L. bicolor suppresses or evades inducing such host responses in this experimental system.
Collapse
Affiliation(s)
- N E Nagy
- Norwegian Forest and Landscape Institute, Aas, Norway
| | | |
Collapse
|
12
|
Making Ends Meet: Microwave-Accelerated Synthesis of Cyclic and Disulfide Rich Proteins Via In Situ Thioesterification and Native Chemical Ligation. Int J Pept Res Ther 2012; 19:43-54. [PMID: 23504256 PMCID: PMC3597280 DOI: 10.1007/s10989-012-9331-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2012] [Indexed: 12/21/2022]
Abstract
The development of synthetic methodologies for cyclic peptides is driven by the discovery of cyclic peptide drug scaffolds such as the plant-derived cyclotides, sunflower trypsin inhibitor 1 (SFTI-1) and the development of cyclized conotoxins. Currently, the native chemical ligation reaction between an N-terminal cysteine and C-terminal thioester group remains the most robust method to obtain a head-to-tail cyclized peptide. Peptidyl thioesters are effectively generated by Boc SPPS. However, their generation is challenging using Fmoc SPPS because thioester linkers are not stable to repeated piperidine exposure during deprotection. Herein we describe a Fmoc-based protocol for synthesizing cyclic peptides adapted for microwave assisted solid phase peptide synthesis. The protocol relies on the linker Di-Fmoc-3,4-diaminobenzoic acid, and we demonstrate the use of Gly, Ser, Arg and Ile as C-terminal amino acids (using HBTU and HATU as coupling reagents). Following synthesis, an N-acylurea moiety is generated at the C-terminal of the peptide; the resin bound acylurea peptide is then deprotected and cleaved from the resin. The fully deprotected peptide undergoes thiolysis in aqueous buffer, generating the thioester in situ. Ultimately, the head-to-tail cyclized peptide is obtained via native chemical ligation. Two naturally occurring cyclic peptides, the prototypical Möbius cyclotide kalata B1 and SFTI-1 were synthesized efficiently, avoiding potential branching at the diamino linker, using the optimized protocol. In addition, we demonstrate the possibility to use the approach for the synthesis of long and synthetically challenging linear sequences, by the ligation of two truncated fragments of a 50-residue long plant defensin.
Collapse
|
13
|
|
14
|
|
15
|
Rogozhin EA, Oshchepkova YI, Odintsova TI, Khadeeva NV, Veshkurova ON, Egorov TA, Grishin EV, Salikhov SI. Novel antifungal defensins from Nigella sativa L. seeds. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2011; 49:131-7. [PMID: 21144761 DOI: 10.1016/j.plaphy.2010.10.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 05/18/2010] [Accepted: 10/23/2010] [Indexed: 05/22/2023]
Abstract
From seeds of Nigella sativa L. (Ranunculaceae), an endemic plant of Uzbekistan, two novel defensins named Ns-D1 and Ns-D2, were isolated and sequenced. The peptides differ by a single amino acid residue and show high sequence similarity to Raphanus sativus L. defensins Rs-AFP1 and Rs-AFP2. The Ns-D1 and Ns-D2 defensins display strong although divergent antifungal activity towards a number of phytopathogenic fungi. High antifungal activity of N. sativa defensins makes them promising candidates for engineering pathogen-resistant plants.
Collapse
Affiliation(s)
- Eugene A Rogozhin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, 117997 Moscow, Russian Federation.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Zamyatnin AA, Voronina OL. Antimicrobial and other oligopeptides of grapes. BIOCHEMISTRY (MOSCOW) 2010; 75:214-23. [DOI: 10.1134/s0006297910020124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Kovaleva V, Kiyamova R, Cramer R, Krynytskyy H, Gout I, Filonenko V, Gout R. Purification and molecular cloning of antimicrobial peptides from Scots pine seedlings. Peptides 2009; 30:2136-43. [PMID: 19683554 DOI: 10.1016/j.peptides.2009.08.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 08/02/2009] [Accepted: 08/04/2009] [Indexed: 10/20/2022]
Abstract
A novel protocol for rapid and efficient purification of antimicrobial peptides from plant seedlings has been developed. Two peptides with antimicrobial activity, designated p1 and p2, were purified nearly to homogeneity from Scots pine seedlings by a combination of sulfuric acid extraction, ammonium sulfate precipitation, heat-inactivation and ion-exchange chromatography on phosphocellulose. Purified proteins had molecular masses of 11 kDa (p1) and 5.8 kDa (p2) and were identified by mass spectrometry as defensin and lipid-transfer protein, respectively. We demonstrated their growth inhibitory effects against a group of phytopathogenic fungi. Furthermore, we report for the first time molecular cloning and characterization of defensin 1 cDNA from Scots pine. A cDNA expression library from 7 days Scots pine seedlings was generated and used to isolate a cDNA clone corresponding to Scots pine defensin, termed PsDef1. The full-length coding sequence of PsDef1 is 252 bp in length and has an open reading frame capable to encode a protein of 83 amino residues. The deduced sequence has the typical features of plant defensins, including an endoplasmic reticulum signal sequence of 33aa, followed by a characteristic defensin domain of 50 amino acids representing its active form. The calculated molecular weight of the mature form of PsDef1 is 5601.6 Da, which correlates well with the results of SDS-PAGE analysis. Finally, the antimicrobial properties of PsDef1 against a panel of fungi and bacteria define it as a member of the morphogenic group of plant defensins.
Collapse
Affiliation(s)
- Valentina Kovaleva
- National University of Forestry of Ukraine, Chuprynka St, 103 Lviv, Ukraine
| | | | | | | | | | | | | |
Collapse
|
18
|
|
19
|
Zhu S. Evidence for myxobacterial origin of eukaryotic defensins. Immunogenetics 2007; 59:949-54. [DOI: 10.1007/s00251-007-0259-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2007] [Accepted: 10/24/2007] [Indexed: 11/29/2022]
|
20
|
Modification of the Sunflower Defensin SD2 Gene Sequence and Its Expression in Bacterial and Yeast Cells. RUSS J GENET+ 2005. [DOI: 10.1007/s11177-005-0219-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
21
|
Plant antifungal peptides and their use in transgenic food crops. ACTA ACUST UNITED AC 2001. [DOI: 10.1016/s1874-5334(01)80008-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
22
|
Ahuja MR. Genetic Engineering in Forest Trees: State of the Art and Future Perspectives. MOLECULAR BIOLOGY OF WOODY PLANTS 2000. [DOI: 10.1007/978-94-017-2311-4_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|