1
|
Pavlović M, Margetić A, Leonardi A, Križaj I, Kojić M, Vujčić Z, Šokarda Slavić M. Improvement of fruit juice quality: novel endo-polygalacturonase II from Aspergillus tubingensis FAT 43 for enhanced liquefaction, clarification, and antioxidant potential. Food Funct 2024; 15:2906-2919. [PMID: 38385285 DOI: 10.1039/d3fo05297d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
This study focuses on the isolation, purification, and characterisation of endo-polygalacturonase II from Aspergillus tubingensis FAT43, particularly emphasising its potential applications in the fruit juice industry. A comprehensive screening test revealed the temporal dynamics of endo-polygalacturonase production during a 96-hour fermentation process. The purification process, involving ammonium sulfate and ethanol precipitation followed by ion-exchange chromatography, resulted in a 3.3-fold purification of PG II with a yield of 16% and a specific activity of 6001.67 U mg-1. Molecular analysis confirmed the identity of PG II, its gene (pgaII), and a high degree of sequence identity with Aspergillus tubingensis in the SWISS-PROT database. The optimal pH for PG II activity was 3.5-4.5, with robust stability across a broad pH spectrum (3-7). The enzyme exhibited optimal temperature activity at 45 °C, with a retention of 90% activity at 50 °C. The calculated activation energy for PG II was 62.1 kJ mol-1, indicating good stability. Inactivation kinetics revealed a half-life of 13.7 h at 40 °C, 5.4 h at 50 °C, and 0.85 h at 60 °C, with an activation energy of denaturation of 32.8 kJ mol-1. Compared to literature-reported PGs, PG II from A. tubingensis FAT43 demonstrated superior thermal stability. Hydrolysis experiments on different pectins revealed the highest specificity for non-methylated substrates (polygalacturonic acid). In fruit juice processing, PG II significantly increased juice yield and clarity, with the highest impact observed in strawberry juice. Antioxidant activity assays indicated enhanced antioxidant potential in enzyme-treated juices, especially strawberry, quince, and apple juices. The study highlights PG II's potential as an industrially valuable enzyme for fruit juice processing, offering improved thermostability and versatility across various fruit types.
Collapse
Affiliation(s)
- Marija Pavlović
- University of Belgrade - Institute of Chemistry, Technology and Metallurgy - National Institute of the Republic of Serbia, Department of Chemistry, Belgrade, Republic of Serbia.
| | - Aleksandra Margetić
- University of Belgrade - Institute of Chemistry, Technology and Metallurgy - National Institute of the Republic of Serbia, Department of Chemistry, Belgrade, Republic of Serbia.
| | - Adrijana Leonardi
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Igor Križaj
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Milan Kojić
- Institute of Virology, Vaccines and Sera "Torlak", Belgrade, Republic of Serbia
| | - Zoran Vujčić
- University of Belgrade -Faculty of Chemistry, Department of Biochemistry, Belgrade, Republic of Serbia
| | - Marinela Šokarda Slavić
- University of Belgrade - Institute of Chemistry, Technology and Metallurgy - National Institute of the Republic of Serbia, Department of Chemistry, Belgrade, Republic of Serbia.
| |
Collapse
|
2
|
Yi X, Chen W, Guan J, Zhu J, Zhang Q, Yang H, Yang H, Zhong S, Chen C, Tan F, Ren T, Luo P. Genome-Wide Analysis of the Polygalacturonase Gene Family Sheds Light on the Characteristics, Evolutionary History, and Putative Function of Akebia trifoliata. Int J Mol Sci 2023; 24:16973. [PMID: 38069295 PMCID: PMC10707396 DOI: 10.3390/ijms242316973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Polygalacturonase (PG) is one of the largest families of hydrolytic enzymes in plants. It is involved in the breakdown of pectin in the plant cell wall and even contributes to peel cracks. Here, we characterize PGs and outline their expression profiles using the available reference genome and transcriptome of Akebia trifoliata. The average length and exon number of the 47 identified AktPGs, unevenly assigned on 14 chromosomes and two unassembled contigs, were 5399 bp and 7, respectively. The phylogenetic tree of 191 PGs, including 47, 57, 51, and 36 from A. trifoliata, Durio zibethinus, Actinidia chinensis, and Vitis vinifera, respectively, showed that AktPGs were distributed in all groups except group G and that 10 AktPGs in group E were older, while the remaining 37 AktPGs were younger. Evolutionarily, all AktPGs generally experienced whole-genome duplication (WGD)/segmental repeats and purifying selection. Additionally, the origin of conserved domain III was possibly associated with a histidine residue (H) substitute in motif 8. The results of both the phylogenetic tree and expression profiling indicated that five AktPGs, especially AktPG25, could be associated with the cracking process. Detailed information and data on the PG family are beneficial for further study of the postharvest biology of A. trifoliata.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Peigao Luo
- Key Laboratory of Plant Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China; (X.Y.); (W.C.); (J.G.); (J.Z.); (Q.Z.); (H.Y.); (H.Y.); (S.Z.); (C.C.); (F.T.); (T.R.)
| |
Collapse
|
3
|
López-Casado G, Sánchez-Raya C, Ric-Varas PD, Paniagua C, Blanco-Portales R, Muñoz-Blanco J, Pose S, Matas AJ, Mercado JA. CRISPR/Cas9 editing of the polygalacturonase FaPG1 gene improves strawberry fruit firmness. HORTICULTURE RESEARCH 2023; 10:uhad011. [PMID: 36960432 PMCID: PMC10028403 DOI: 10.1093/hr/uhad011] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Firmness is one of the most important fruit quality traits in strawberries. The postharvest shelf life of this soft fruit is highly limited by the loss of firmness, where cell wall disassembly plays an important role. Previous studies demonstrated that the polygalacturonase FaPG1 has a key role in remodelling pectins during strawberry softening. In this study, FaPG1 knockout strawberry plants have been generated using the CRISPR/Cas9 system delivered via Agrobacterium tumefaciens. Ten independent lines, cv. "Chandler", were obtained, and all of them were successfully edited as determined by PCR amplification and T7 endonuclease assay. The targeted mutagenesis insertion and deletion rates were analyzed using targeted deep sequencing. The percentage of edited sequences varied from 47% up to almost 100%, being higher than 95% for seven of the selected lines. Phenotypic analyses showed that 7 out of the eight lines analyzed produced fruits significantly firmer than the control, ranging from 33 to 70% increase in firmness. There was a positive relationship between the degree of FaPG1 editing and the rise in fruit firmness. Minor changes were observed in other fruit quality traits, such as colour, soluble solids, titratable acidity or anthocyanin content. Edited fruits showed a reduced softening rate during postharvest, displayed a reduced transpirational water loss, and were less damaged by Botrytis cinerea inoculation. The analysis of four potential off-target sites revealed no mutation events. In conclusion, editing the FaPG1 gene using the CRISPR/Cas9 system is an efficient method for improving strawberry fruit firmness and shelf life.
Collapse
Affiliation(s)
| | | | - Pablo D Ric-Varas
- Departamento de Botánica y Fisiología Vegetal, Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’ (IHSM-UMA-CSIC), Universidad de Málaga, 29071 Málaga, Spain
| | - Candelas Paniagua
- Departamento de Botánica y Fisiología Vegetal, Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’ (IHSM-UMA-CSIC), Universidad de Málaga, 29071 Málaga, Spain
| | - Rosario Blanco-Portales
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, 14071, Córdoba, Spain
| | - Juan Muñoz-Blanco
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, 14071, Córdoba, Spain
| | - Sara Pose
- Departamento de Botánica y Fisiología Vegetal, Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’ (IHSM-UMA-CSIC), Universidad de Málaga, 29071 Málaga, Spain
| | - Antonio J Matas
- Departamento de Botánica y Fisiología Vegetal, Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’ (IHSM-UMA-CSIC), Universidad de Málaga, 29071 Málaga, Spain
| | | |
Collapse
|
4
|
Marciniak K, Przedniczek K. Anther dehiscence is regulated by gibberellic acid in yellow lupine (Lupinus luteus L.). BMC PLANT BIOLOGY 2021; 21:314. [PMID: 34215194 PMCID: PMC8252261 DOI: 10.1186/s12870-021-03085-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 06/04/2021] [Indexed: 05/28/2023]
Abstract
BACKGROUND Anther dehiscence resulting in the release of pollen grains is tightly regulated in a spatiotemporal manner by various factors. In yellow lupine (Lupinus luteus L.), a species that shows cleistogamy, the anthers split before the flowers open, but the course and regulation of this process are unknown. The specific control of anther development takes place via hormonal pathways, the wide action of which ensures reproductive success. In our previous research concerning flower and early pod development in yellow lupine, we showed that the lowest transcript level of LlDELLA1, a main repressor of gibberellin (GA) signalling, occurs approximately at the time of anther opening; therefore, the main purpose of this study was to precisely investigate the gibberellic acid (GA3)-dependent regulation of the anther dehiscence in this species. RESULTS In this paper, we showed the specific changes in the yellow lupine anther structure during dehiscence, including secondary thickening in the endothecium by lignocellulosic deposition, enzymatic cell wall breakdown at the septum/stomium and cell degeneration via programmed cell death (PCD), and identified several genes widely associated with this process. The expression profile of genes varied over time, with the most intense mRNA accumulation in the phases prior to or at the time of anther opening. The transcriptional activity also revealed that these genes are highly coexpressed and regulated in a GA-dependent manner. The cellular and tissue localization of GA3 showed that these molecules are present before anther opening, mainly in septum cells, near the vascular bundle and in the endothecium, and that they are subsequently undetectable. GA3 localization strongly correlates with the transcriptional activity of genes related to GA biosynthesis and deactivation. The results also suggest that GA3 controls LlGAMYB expression via an LlMIR159-dependent pathway. CONCLUSIONS The presented results show a clear contribution of GA3 in the control of the extensive anther dehiscence process in yellow lupine. Understanding the processes underlying pollen release at the hormonal and molecular levels is a significant aspect of controlling fertility in this economically important legume crop species and is of increasing interest to breeders.
Collapse
Affiliation(s)
- Katarzyna Marciniak
- Faculty of Biological and Veterinary Sciences, Department of Plant Physiology and Biotechnology, Nicolaus Copernicus University, Lwowska 1 St, 87-100, Toruń, Poland.
| | - Krzysztof Przedniczek
- Faculty of Biological and Veterinary Sciences, Department of Plant Physiology and Biotechnology, Nicolaus Copernicus University, Lwowska 1 St, 87-100, Toruń, Poland
| |
Collapse
|
5
|
Maor U, Barda O, Sadhasivam S, Bi Y, Levin E, Zakin V, Prusky DB, Sionov E. Functional roles of LaeA, polyketide synthase, and glucose oxidase in the regulation of ochratoxin A biosynthesis and virulence in Aspergillus carbonarius. MOLECULAR PLANT PATHOLOGY 2021; 22:117-129. [PMID: 33169928 PMCID: PMC7749749 DOI: 10.1111/mpp.13013] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/25/2020] [Accepted: 10/07/2020] [Indexed: 05/04/2023]
Abstract
Aspergillus carbonarius is the major producer of ochratoxin A (OTA) among Aspergillus species, but the contribution of this secondary metabolite to fungal virulence has not been assessed. We characterized the functions and addressed the roles of three factors in the regulation of OTA synthesis and pathogenicity in A. carbonarius: LaeA, a transcriptional factor regulating the production of secondary metabolites; polyketide synthase, required for OTA biosynthesis; and glucose oxidase (GOX), regulating gluconic acid (GLA) accumulation and acidification of the host tissue during fungal growth. Deletion of laeA in A. carbonarius resulted in significantly reduced OTA production in colonized nectarines and grapes. The ∆laeA mutant was unable to efficiently acidify the colonized tissue, as a direct result of diminished GLA production, leading to attenuated virulence in infected fruit compared to the wild type (WT). The designed Acpks-knockout mutant resulted in complete inhibition of OTA production in vitro and in colonized fruit. Interestingly, physiological analysis revealed that the colonization pattern of the ∆Acpks mutant was similar to that of the WT strain, with high production of GLA in the colonized tissue, suggesting that OTA accumulation does not contribute to A. carbonarius pathogenicity. Disruption of the Acgox gene inactivated GLA production in A. carbonarius, and this mutant showed attenuated virulence in infected fruit compared to the WT strain. These data identify the global regulator LaeA and GOX as critical factors modulating A. carbonarius pathogenicity by controlling transcription of genes important for fungal secondary metabolism and infection.
Collapse
Affiliation(s)
- Uriel Maor
- Institute of Postharvest and Food SciencesThe Volcani CenterAgricultural Research OrganizationRishon LeZionIsrael
- Institute of Biochemistry, Food Science and NutritionThe Robert H. Smith Faculty of Agriculture, Food and EnvironmentThe Hebrew University of JerusalemRehovotIsrael
| | - Omer Barda
- Institute of Postharvest and Food SciencesThe Volcani CenterAgricultural Research OrganizationRishon LeZionIsrael
| | - Sudharsan Sadhasivam
- Institute of Postharvest and Food SciencesThe Volcani CenterAgricultural Research OrganizationRishon LeZionIsrael
| | - Yang Bi
- College of Food Science and EngineeringGansu Agricultural UniversityLanzhouChina
| | - Elena Levin
- Institute of Postharvest and Food SciencesThe Volcani CenterAgricultural Research OrganizationRishon LeZionIsrael
| | - Varda Zakin
- Institute of Postharvest and Food SciencesThe Volcani CenterAgricultural Research OrganizationRishon LeZionIsrael
| | - Dov B. Prusky
- Institute of Postharvest and Food SciencesThe Volcani CenterAgricultural Research OrganizationRishon LeZionIsrael
- College of Food Science and EngineeringGansu Agricultural UniversityLanzhouChina
| | - Edward Sionov
- Institute of Postharvest and Food SciencesThe Volcani CenterAgricultural Research OrganizationRishon LeZionIsrael
| |
Collapse
|
6
|
Paniagua C, Ric-Varas P, García-Gago JA, López-Casado G, Blanco-Portales R, Muñoz-Blanco J, Schückel J, Knox JP, Matas AJ, Quesada MA, Posé S, Mercado JA. Elucidating the role of polygalacturonase genes in strawberry fruit softening. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:7103-7117. [PMID: 32856699 DOI: 10.1093/jxb/eraa398] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 08/24/2020] [Indexed: 05/04/2023]
Abstract
To disentangle the role of polygalacturonase (PG) genes in strawberry softening, the two PG genes most expressed in ripe receptacles, FaPG1 and FaPG2, were down-regulated. Transgenic ripe fruits were firmer than those of the wild type when PG genes were silenced individually. Simultaneous silencing of both PG genes by transgene stacking did not result in an additional increase in firmness. Cell walls from ripe fruits were characterized by a carbohydrate microarray. Higher signals of homogalacturonan and rhamnogalacturonan I pectin epitopes in polysaccharide fractions tightly bound to the cell wall were observed in the transgenic genotypes, suggesting a lower pectin solubilization. At the transcriptomic level, the suppression of FaPG1 or FaPG2 alone induced few transcriptomic changes in the ripe receptacle, but the amount of differentially expressed genes increased notably when both genes were silenced. Many genes encoding cell wall-modifying enzymes were down-regulated. The expression of a putative high affinity potassium transporter was induced in all transgenic genotypes, indicating that cell wall weakening and loss of cell turgor could be linked. These results suggest that, besides the disassembly of pectins tightly linked to the cell wall, PGs could play other roles in strawberry softening, such as the release of oligogalacturonides exerting a positive feedback in softening.
Collapse
Affiliation(s)
- Candelas Paniagua
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' (IHSM-UMA-CSIC), Departamento de Botánica y Fisiología Vegetal, Universidad de Málaga, Málaga, Spain
| | - Pablo Ric-Varas
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' (IHSM-UMA-CSIC), Departamento de Botánica y Fisiología Vegetal, Universidad de Málaga, Málaga, Spain
| | - Juan A García-Gago
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' (IHSM-UMA-CSIC), Departamento de Botánica y Fisiología Vegetal, Universidad de Málaga, Málaga, Spain
| | - Gloria López-Casado
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' (IHSM-UMA-CSIC), Departamento de Botánica y Fisiología Vegetal, Universidad de Málaga, Málaga, Spain
| | | | - Juan Muñoz-Blanco
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Córdoba, Spain
| | - Julia Schückel
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - J Paul Knox
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Antonio J Matas
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' (IHSM-UMA-CSIC), Departamento de Botánica y Fisiología Vegetal, Universidad de Málaga, Málaga, Spain
| | - Miguel A Quesada
- Departamento de Botánica y Fisiología Vegetal, Universidad de Málaga, Málaga, Spain
| | - Sara Posé
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' (IHSM-UMA-CSIC), Departamento de Botánica y Fisiología Vegetal, Universidad de Málaga, Málaga, Spain
| | - José A Mercado
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' (IHSM-UMA-CSIC), Departamento de Botánica y Fisiología Vegetal, Universidad de Málaga, Málaga, Spain
| |
Collapse
|
7
|
Patterns of Expansion and Expression Divergence of the Polygalacturonase Gene Family in Brassica oleracea. Int J Mol Sci 2020; 21:ijms21165706. [PMID: 32784897 PMCID: PMC7461206 DOI: 10.3390/ijms21165706] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/01/2020] [Accepted: 08/06/2020] [Indexed: 01/13/2023] Open
Abstract
Plant polygalacturonases (PGs) are closely related to cell-separation events during plant growth and development by degrading pectin. Identifying and investigating their diversification of evolution and expression could shed light on research on their function. We conducted sequence, molecular evolution, and gene expression analyses of PG genes in Brassica oleracea. Ninety-nine B. oleracea PGs (BoPGs) were identified and divided into seven clades through phylogenetic analysis. The exon/intron structures and motifs were conserved within, but divergent between, clades. The second conserved domain (GDDC) may be more closely related to the identification of PGs. There were at least 79 common ancestor PGs between Arabidopsis thaliana and B. oleracea. The event of whole genome triplication and tandem duplication played important roles in the rapid expansion of the BoPG gene family, and gene loss may be an important mechanism in the generation of the diversity of BoPGs. By evaluating the expression in five tissues, we found that most of the expressed BoPGs in clades A, B, and E showed ubiquitous expression characteristics, and the expressed BoPGs in clades C, D, and F were mainly responsible for reproduction development. Most of the paralogous gene pairs (76.2%) exhibited divergent expression patterns, indicating that they may have experienced neofunctionalization or subfunctionalization. The cis-elements analysis showed that up to 96 BoPGs contained the hormone response elements in their promoters. In conclusion, our comparative analysis may provide a valuable data foundation for the further functional analysis of BoPGs during the development of B. oleracea.
Collapse
|
8
|
Ye J, Yang X, Yang Z, Niu F, Chen Y, Zhang L, Song X. Comprehensive analysis of polygalacturonase gene family highlights candidate genes related to pollen development and male fertility in wheat (Triticum aestivum L.). PLANTA 2020; 252:31. [PMID: 32740680 DOI: 10.1007/s00425-020-03435-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 07/24/2020] [Indexed: 06/11/2023]
Abstract
Four polygalacturonase gene family members were highlighted that contribute to elucidate the roles of polygalacturonase during the fertility conversion process in male-sterile wheat. Polygalacturonase (PG) belongs to a large family of hydrolases with important functions in cell separation during plant growth and development via the degradation of pectin. Specific expressed PGs in anthers may be significant for male sterility research and hybrid wheat breeding, but they have not been characterized in wheat (Triticum aestivum L.). In this study, we systematically studied the PG gene family using the latest published wheat reference genomic information. In total, 113 wheat PG genes were identified, which could be classified into six categories A-F according to their structure characteristics and phylogenetic comparisons with Arabidopsis and rice. Polyploidy and segmental duplications in wheat were proved to be mainly responsible for the expansion of the wheat PG gene family. RNA-seq showed that TaPGs have specific temporal and spatial expression characteristics, in which 12 TaPGs with spike-specific expression patterns were detected by qRT-PCR in different fertility anthers of KTM3315A, a thermo-sensitive cytoplasmic male-sterile wheat. Four of them specific upregulated (TaPG09, TaPG95, and TaPG93) or downregulated (TaPG87) at trinucleate stage of fertile anthers, and further aligning with the homologous in Arabidopsis revealed that they may undertake functions such as anther dehiscence, separation of pollen, pollen development, and pollen tube elongation, thereby inducing male fertility conversion in KTM3315A. These findings facilitate function investigations of the wheat PG gene family and provide new insights into the fertility conversion mechanism in male-sterile wheat.
Collapse
Affiliation(s)
- Jiali Ye
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xuetong Yang
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhiquan Yang
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Fuqiang Niu
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yanru Chen
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Lingli Zhang
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Xiyue Song
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
9
|
Yang Y, Yu Y, Liang Y, Anderson CT, Cao J. A Profusion of Molecular Scissors for Pectins: Classification, Expression, and Functions of Plant Polygalacturonases. FRONTIERS IN PLANT SCIENCE 2018; 9:1208. [PMID: 30154820 PMCID: PMC6102391 DOI: 10.3389/fpls.2018.01208] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 07/27/2018] [Indexed: 05/21/2023]
Abstract
In plants, the construction, differentiation, maturation, and degradation of the cell wall are essential for development. Pectins, which are major constituents of primary cell walls in eudicots, function in multiple developmental processes through their synthesis, modification, and degradation. Several pectin modifying enzymes regulate pectin degradation via different modes of action. Polygalacturonases (PGs), which function in the last step of pectin degradation, are a crucial class of pectin-modifying enzymes. Based on differences in their hydrolyzing activities, PGs can be divided into three main types: exo-PGs, endo-PGs, and rhamno-PGs. Their functions were initially investigated based on the expression patterns of PG genes and measurements of total PG activity in organs. In most plant species, PGs are encoded by a large, multigene family. However, due to the lack of genome sequencing data in early studies, the number of identified PG genes was initially limited. Little was initially known about the evolution and expression patterns of PG family members in different species. Furthermore, the functions of PGs in cell dynamics and developmental processes, as well as the regulatory pathways that govern these functions, are far from fully understood. In this review, we focus on how recent studies have begun to fill in these blanks. On the basis of identified PG family members in multiple species, we review their structural characteristics, classification, and molecular evolution in terms of plant phylogenetics. We also highlight the diverse expression patterns and biological functions of PGs during various developmental processes, as well as their mechanisms of action in cell dynamic processes. How PG functions are potentially regulated by hormones, transcription factors, environmental factors, pH and Ca2+ is discussed, indicating directions for future research into PG function and regulation.
Collapse
Affiliation(s)
- Yang Yang
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture – Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou, China
| | - Youjian Yu
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
- Department of Horticulture, College of Agriculture and Food Science, Zhejiang A & F University, Hangzhou, China
| | - Ying Liang
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture – Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou, China
| | - Charles T. Anderson
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, PA, United States
- Center for Lignocellulose Structure and Formation, The Pennsylvania State University, University Park, Pennsylvania, PA, United States
| | - Jiashu Cao
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture – Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou, China
- *Correspondence: Jiashu Cao,
| |
Collapse
|
10
|
The interaction of induction and repression mechanisms in the regulation of galacturonic acid-induced genes in Aspergillus niger. Fungal Genet Biol 2015; 82:32-42. [DOI: 10.1016/j.fgb.2015.06.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 06/04/2015] [Accepted: 06/08/2015] [Indexed: 02/05/2023]
|
11
|
|
12
|
Andersen MR, Giese M, de Vries RP, Nielsen J. Mapping the polysaccharide degradation potential of Aspergillus niger. BMC Genomics 2012; 13:313. [PMID: 22799883 PMCID: PMC3542576 DOI: 10.1186/1471-2164-13-313] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 06/08/2012] [Indexed: 11/10/2022] Open
Abstract
Background The degradation of plant materials by enzymes is an industry of increasing importance. For sustainable production of second generation biofuels and other products of industrial biotechnology, efficient degradation of non-edible plant polysaccharides such as hemicellulose is required. For each type of hemicellulose, a complex mixture of enzymes is required for complete conversion to fermentable monosaccharides. In plant-biomass degrading fungi, these enzymes are regulated and released by complex regulatory structures. In this study, we present a methodology for evaluating the potential of a given fungus for polysaccharide degradation. Results Through the compilation of information from 203 articles, we have systematized knowledge on the structure and degradation of 16 major types of plant polysaccharides to form a graphical overview. As a case example, we have combined this with a list of 188 genes coding for carbohydrate-active enzymes from Aspergillus niger, thus forming an analysis framework, which can be queried. Combination of this information network with gene expression analysis on mono- and polysaccharide substrates has allowed elucidation of concerted gene expression from this organism. One such example is the identification of a full set of extracellular polysaccharide-acting genes for the degradation of oat spelt xylan. Conclusions The mapping of plant polysaccharide structures along with the corresponding enzymatic activities is a powerful framework for expression analysis of carbohydrate-active enzymes. Applying this network-based approach, we provide the first genome-scale characterization of all genes coding for carbohydrate-active enzymes identified in A. niger.
Collapse
Affiliation(s)
- Mikael R Andersen
- Department of Systems Biology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | | | | | |
Collapse
|
13
|
Samson RA, Noonim P, Meijer M, Houbraken J, Frisvad JC, Varga J. Diagnostic tools to identify black aspergilli. Stud Mycol 2011; 59:129-45. [PMID: 18490945 PMCID: PMC2275192 DOI: 10.3114/sim.2007.59.13] [Citation(s) in RCA: 211] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The present taxonomy of the black aspergilli reveals that there are 19
accepted taxa. However the identification of species of Aspergillus
section Nigri is often problematic in spite of the existence of
numerous methods proposed. An overview is provided of phenotypic and molecular
methods to identify the accepted species of the black aspergilli. Colony
morphology, conidial size and ornamentation of the ex type cultures is
presented in a pictorial overview. The temperature range of all species is
given and their growth characteristics on creatine agar and boscalid agar, a
medium which was developed as a selective medium for the isolation of A.
carbonarius are also shown. The extrolites produced by each species are
listed while the response of the Ehrlich reaction is described. The literature
on the various molecular methods to be used for species identification is
reviewed and a critical evaluation of the usefulness of various techniques and
genomic loci for species identification of black aspergilli is presented.
Collapse
Affiliation(s)
- R A Samson
- CBS Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
14
|
YOSHINO-YASUDA S, KATO M, KITAMOTO N. Sequence Analysis and Heterologous Expression of Polygalacturonase Gene (AspecA) from a Shoyu Koji Mold, Aspergillus sojae KBN1340. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2011. [DOI: 10.3136/fstr.17.579] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
15
|
Rojas NL, Ortiz GE, Baruque DJ, Cavalitto SF, Ghiringhelli PD. Production of heterologous polygalacturonase I from Aspergillus kawachii in Saccharomyces cerevisiae in batch and fed-batch cultures. J Ind Microbiol Biotechnol 2010; 38:1437-47. [DOI: 10.1007/s10295-010-0929-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Accepted: 12/06/2010] [Indexed: 11/29/2022]
|
16
|
|
17
|
Xiao Z, Wang S, Bergeron H, Zhang J, Lau PCK. A flax-retting endopolygalacturonase-encoding gene from Rhizopus oryzae. Antonie van Leeuwenhoek 2008; 94:563-71. [DOI: 10.1007/s10482-008-9274-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Accepted: 07/31/2008] [Indexed: 10/21/2022]
|
18
|
Degrassi G, Devescovi G, Kim J, Hwang I, Venturi V. Identification, characterization and regulation of two secreted polygalacturonases of the emerging rice pathogen Burkholderia glumae. FEMS Microbiol Ecol 2008; 65:251-62. [DOI: 10.1111/j.1574-6941.2008.00516.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
19
|
Hsiao YM, Zheng MH, Hu RM, Yang TC, Tseng YH. Regulation of the pehA gene encoding the major polygalacturonase of Xanthomonas campestris by Clp and RpfF. Microbiology (Reading) 2008; 154:705-713. [DOI: 10.1099/mic.0.2007/012930-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Yi-Min Hsiao
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung 406, Taiwan, ROC
| | - Mei-Huei Zheng
- Institute of Biotechnology, Chaoyang University of Technology, Taichung 413, Taiwan, ROC
| | - Rouh-Mei Hu
- Department of Biotechnology and Bioinformatics, Asia University, Taichung 413, Taiwan, ROC
| | - Tsuey-Ching Yang
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 404, Taiwan, ROC
| | - Yi-Hsiung Tseng
- Institute of Medical Biotechnology, Central Taiwan University of Science and Technology, Taichung 406, Taiwan, ROC
| |
Collapse
|
20
|
Asif MH, Nath P. Expression of multiple forms of polygalacturonase gene during ripening in banana fruit. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2005; 43:177-84. [PMID: 15820666 DOI: 10.1016/j.plaphy.2005.01.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2004] [Accepted: 01/20/2005] [Indexed: 05/03/2023]
Abstract
The activity of polygalacturonase (PG, E.C 3.2.1.15) during ripening in climacteric fruits has been positively correlated with softening of the fruit tissue and differential expression of its gene is suspected to be regulated by the plant hormone ethylene. We have cloned four partial cDNAs, MAPG1 (acc. no. AF311881), MAPG2 (acc. no. AF311882), MAPG3 (acc. no. AF542382) and MAPG4 (acc. no. AY603341) for PG genes and studied their differential expression during ripening in banana. MAPG3 and MAPG4 are believed to be ripening related and regulated by ethylene whereas MAPG2 is associated more with senescence. MAPG1 shows constitutive expression and is not significantly expressed in fruit tissue. The genomic clone MAGPG (acc. No. AY603340) includes the complete MAPG3 gene, which consists of four exons and three introns. The structure of the gene has more similarity to tomato abscission PG rather than tomato fruit PG. It is concluded that softening during ripening in banana fruit results from the concerted action of at least four PG genes, which are differentially expressed during ripening.
Collapse
Affiliation(s)
- Mehar H Asif
- Plant Gene Expression Laboratory, National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, India
| | | |
Collapse
|
21
|
Ward OP, Qin WM, Dhanjoon J, Ye J, Singh A. Physiology and Biotechnology of Aspergillus. ADVANCES IN APPLIED MICROBIOLOGY 2005; 58C:1-75. [PMID: 16543029 DOI: 10.1016/s0065-2164(05)58001-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- O P Ward
- Department of Biology, University of Waterloo Waterloo, Ontario, Canada N2L 3G1
| | | | | | | | | |
Collapse
|
22
|
Aro N, Pakula T, Penttilä M. Transcriptional regulation of plant cell wall degradation by filamentous fungi. FEMS Microbiol Rev 2004; 29:719-39. [PMID: 16102600 DOI: 10.1016/j.femsre.2004.11.006] [Citation(s) in RCA: 286] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2004] [Revised: 10/29/2004] [Accepted: 11/01/2004] [Indexed: 11/22/2022] Open
Abstract
Plant cell wall consists mainly of the large biopolymers cellulose, hemicellulose, lignin and pectin. These biopolymers are degraded by many microorganisms, in particular filamentous fungi, with the aid of extracellular enzymes. Filamentous fungi have a key role in degradation of the most abundant biopolymers found in nature, cellulose and hemicelluloses, and therefore are essential for the maintenance of the global carbon cycle. The production of plant cell wall degrading enzymes, cellulases, hemicellulases, ligninases and pectinases, is regulated mainly at the transcriptional level in filamentous fungi. The genes are induced in the presence of the polymers or molecules derived from the polymers and repressed under growth conditions where the production of these enzymes is not necessary, such as on glucose. The expression of the genes encoding the enzymes is regulated by various environmental and cellular factors, some of which are common while others are more unique to either a certain fungus or a class of enzymes. This review summarises our current knowledge on the transcriptional regulation, focusing on the recently characterized transcription factors that regulate genes coding for enzymes involved in the breakdown of plant cell wall biopolymers.
Collapse
Affiliation(s)
- Nina Aro
- VTT Biotechnology, Espoo, Finland.
| | | | | |
Collapse
|
23
|
Yoshida S, Suzuki F, Tsukiboshi T, Shinohara H. Cloning and characterization of a gene rpg1 encoding polygalacturonase of Rhizopus oryzae. ACTA ACUST UNITED AC 2004; 108:1407-14. [PMID: 15757176 DOI: 10.1017/s0953756204001571] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The polygalacturonase (PG)-encoding gene (rpg1) of Rhizopus oryzae, the causal pathogen of rhizopus rot of mulberry, was cloned and sequenced. PGs were partially purified from incubation mixture of 2% pectin medium and their N-terminal amino acid sequences were determined by a gas-phase protein sequencer. RT-PCR was performed using degenerate primers designed from the amino acid sequences, which resulted in part of a PG-encoding gene being obtained. By 3'-RACE and TAIL-PCR analyses, the entire region of the PG-encoding gene was cloned and sequenced. The structural gene comprised 1199 bp coding for 383 amino acids with a putative signal peptide of 26 amino acids, and the open reading frame was interrupted by single intron of 47 bp. Phylogenetic analysis using the deduced amino acid sequence revealed that R. oryzae RPG1 belonged to a clade consisting of exo-PGs of ascomycete fungi.
Collapse
Affiliation(s)
- Shigenobu Yoshida
- Natural Resources Inventory Center, National Institute for Agro-Environmental Sciences, 3-1-3, Kan-nondai, Tsukuba, Ibaraki 305-8604, Japan.
| | | | | | | |
Collapse
|
24
|
Swoboda I, Grote M, Verdino P, Keller W, Singh MB, De Weerd N, Sperr WR, Valent P, Balic N, Reichelt R, Suck R, Fiebig H, Valenta R, Spitzauer S. Molecular Characterization of Polygalacturonases as Grass Pollen-Specific Marker Allergens: Expulsion from Pollen via Submicronic Respirable Particles. THE JOURNAL OF IMMUNOLOGY 2004; 172:6490-500. [PMID: 15128842 DOI: 10.4049/jimmunol.172.10.6490] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Grass pollen belong to the most important allergen sources involved in the elicitation of allergic asthma. We have isolated cDNAs coding for Bermuda grass (Cynodon dactylon) and timothy grass (Phleum pratense) pollen allergens, belonging to a family of pectin-degrading enzymes (i.e., polygalacturonases). The corresponding allergens, termed Cyn d 13 and Phl p 13, represent glycoproteins of approximately 42 kDa and isoelectric points of 7.5. rPhl p 13 was expressed in Escherichia coli and purified to homogeneity. Immunogold electron microscopy using rabbit anti-rPhl p 13 Abs demonstrated that in dry pollen group 13, allergens represent primarily intracellular proteins, whereas exposure of pollen to rainwater caused a massive release of cytoplasmic material containing submicronic particles of respirable size, which were coated with group 13 allergens. The latter may explain respiratory sensitization to group 13 allergens and represents a possible pathomechanism in the induction of asthma attacks after heavy rainfalls. rPhl p 13 was recognized by 36% of grass pollen allergic patients, showed IgE binding capacity comparable to natural Phl p 13, and induced specific and dose-dependent basophil histamine release. Epitope mapping studies localized major IgE epitopes to the C terminus of the molecule outside the highly conserved functional polygalacturonase domains. The latter result explains why rPhl p 13 contains grass pollen-specific IgE epitopes and may be used to diagnose genuine sensitization to grass pollen. Our finding that rabbit anti-rPhl p 13 Abs blocked patients' IgE binding to the allergen suggests that rPhl p 13 may be used for immunotherapy of sensitized patients.
Collapse
Affiliation(s)
- Ines Swoboda
- Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Vienna, Vienna, Austria.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Rodríguez-Gacio MDC, Nicolás C, Matilla AJ. Cloning and analysis of a cDNA encoding an endo-polygalacturonase expressed during the desiccation period of the silique-valves of turnip-tops (Brassica rapa L. cv. Rapa). JOURNAL OF PLANT PHYSIOLOGY 2004; 161:219-227. [PMID: 15022837 DOI: 10.1078/0176-1617-01153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
During zygotic embryogenesis of turnip-tops (Brassica rapa L. cv. Rapa), the polygalacturonase activity (PG; EC 3.2.1.15), measured as a decrease in viscosity of polygalacturonic acid, reached a high when the desiccation process in the seeded silique was triggered and the valves had lost more than 70-75% of their moisture (45-50 DPA). The PG activity was not detected in any phases of developing seeds. This work also characterizes a cDNA with an open reading frame of 1303 bp and that codes for a putative PG called BrPG1. This falls into the category of clade-B, which includes PG related to shattering and abscission processes. The deduced BrPG1 sequence predicted a 434-residue-long precursor protein (46.7kDa) with a transit peptide sequence 23 amino acids long. A molecular mass of 44.3 kDa was calculated for the mature form of BrPG1, which showed high sequence similarity to PGA1 (97%) of B. napus (X98373) and ADPG1 (87%) of Arabidopsis thaliana (AJ002532). All conserved amino acids at the catalytic site of PGs belonging to clade-B were preserved on BrPG1. This BrPG1 gene was specifically expressed in the silique valves of turnip-tops and was temporally expressed at the beginning of its desiccation.
Collapse
Affiliation(s)
- María del Carmen Rodríguez-Gacio
- Departamento de Fisiología Vegetal, Facultad de Farmacia, Universidad de Santiago de Compostela, Campus Sur s/n. 15782-Santiago de Compostela, Spain
| | | | | |
Collapse
|
26
|
de Vries RP, Jansen J, Aguilar G, Parenicová L, Joosten V, Wülfert F, Benen JAE, Visser J. Expression profiling of pectinolytic genes from Aspergillus niger. FEBS Lett 2002; 530:41-7. [PMID: 12387863 DOI: 10.1016/s0014-5793(02)03391-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The expression of 26 pectinolytic genes from Aspergillus niger was studied in a wild type strain and a CreA derepressed strain, under 16 different growth conditions, to obtain an expression profile for each gene. These expression profiles were then submitted to cluster analysis to identify subsets of genes with similar expression profiles. With the exception of the feruloyl esterase encoding genes, all genes were expressed in the presence of D-galacturonic acid, polygalacturonate, and/or sugar beet pectin. Despite this general observation five distinct groups of genes were identified. The major group consisted of 12 genes of which the corresponding enzymes act on the pectin backbone and for which the expression, in general, is higher after 8 and 24 h of incubation, than after 2 or 4 h. Two other groups of genes encoding pectin main chain acting enzymes were detected. Two additional groups contained genes encoding L-arabinose and D-galactose releasing enzymes, and ferulic acid releasing enzymes, respectively. The genes encoding beta-galactosidase and the L-arabinose releasing enzymes were not only expressed in the presence of D-galacturonic acid, but also in the presence of L-arabinose, suggesting that they are under the control of two regulatory systems. Similarly, the rhamnogalacturonan acetylesterase encoding gene was not only expressed in the presence of D-galacturonic acid, polygalacturonate and sugar beet pectin, but also in the presence of L-rhamnose. The data presented provides indications for a general pectinolytic regulatory system responding to D-galacturonic acid or a metabolite derived from it. In addition, subsets of pectinolytic genes are expressed in response to the presence of L-arabinose, L-rhamnose or ferulic acid.
Collapse
Affiliation(s)
- Ronald P de Vries
- Molecular Genetics of Industrial Microorganisms, Wageningen University, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
dos Santos Cunha Chellegatti MA, Fonseca MJV, Said S. Purification and partial characterization of exopolygalacturonase I from Penicillium frequentans. Microbiol Res 2002; 157:19-24. [PMID: 11911610 DOI: 10.1078/0944-5013-00127] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A polygalacturonase with a molecular mass of 74 kDa, an isoelectric point around pH 4.2 and pH--and temperature optima of 3.9 and 50 degrees C, respectively, was purified from a culture fluid of Penicillium frequentans. The enzyme was characterized as an exo-alpha-1,4-polygalacturonase (exo-PG I). Km and Vmax for sodium polypectate hydrolysis were 0.68 g/l and 596.8 U x mg(-1), respectively. The enzyme, a glycoprotein with a carbohydrate content of 81%, is probably the main pectinase of Penicillium frequentans responsible for cleaving monomer units from the non-reducing end of pectin.
Collapse
|
28
|
Williams HL, Tang Y, Hintz WE. Endopolygalacturonase is encoded by a multigene family in the basidiomycete Chondrostereum purpureum. Fungal Genet Biol 2002; 36:71-83. [PMID: 12051896 DOI: 10.1016/s1087-1845(02)00005-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The basidiomycete Chondrostereum purpureum produces several plant cell wall-degrading enzymes, including endopolygalacturonase (endoPG). Degenerate oligonucleotide primers were designed according to conserved regions of endoPG genes from various fungi, plants, and bacteria and used to amplify members of this gene family from C. purpureum. Four different amplification products showed significant similarity to known endoPGs and were used as hybridization probes to screen a library of genomic DNA sequences and to retrieve five full-length endoPG genes (epgA, epgB1, epgB2, epgC, and epgD). The identities between the deduced polypeptides for epgA, epgB1, epgC, and epgD ranged from 61.8 to 80.0%, while the deduced polypeptides for epgB1 and epgB2 shared 97.1% identity. Phylogenetic analysis suggested that the duplication of existing endoPG genes occurred after the divergence of the ascomycetes and basidiomycetes. C. purpureum is the first basidiomycete fungus for which the endoPG gene family has been described.
Collapse
Affiliation(s)
- Holly L Williams
- Department of Biology, University of Victoria, P.O. Box 3020, Victoria, BC, Canada V8W 3N5
| | | | | |
Collapse
|
29
|
Hugouvieux-Cotte-Pattat N, Shevchik VE, Nasser W. PehN, a polygalacturonase homologue with a low hydrolase activity, is coregulated with the other Erwinia chrysanthemi polygalacturonases. J Bacteriol 2002; 184:2664-73. [PMID: 11976295 PMCID: PMC135015 DOI: 10.1128/jb.184.10.2664-2673.2002] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Erwinia chrysanthemi 3937 secretes an arsenal of pectinolytic enzymes, including at least eight endo-pectate lyases encoded by pel genes, which play a major role in the soft-rot disease caused by this bacterium on various plants. E. chrysanthemi also produces some hydrolases that cleave pectin. Three adjacent hydrolase genes, pehV, pehW, and pehX, encoding exo-poly-alpha-D-galacturonosidases, have been characterized. These enzymes liberate digalacturonides from the nonreducing end of pectin. We report the identification of a novel gene, named pehN, encoding a protein homologous to the glycosyl hydrolases of family 28, which includes mainly polygalacturonases. PehN has a low hydrolase activity on polygalacturonate and on various pectins. PehN action favors the activity of the secreted endo-pectate lyases, mainly PelB and PelC, and that of the periplasmic exo-pectate lyase PelX. However, removal of the pehN gene does not significantly alter the virulence of E. chrysanthemi. Regulation of pehN transcription was analyzed by using gene fusions. Like other pectinase genes, pehN transcription is dependent on several environmental conditions. It is induced by pectic catabolic products and is affected by growth phase, catabolite repression, osmolarity, anaerobiosis, nitrogen starvation, and the presence of calcium ions. The transcription of pehN is modulated by the repressor KdgR, which controls almost all the steps of pectin catabolism, and by cyclic AMP receptor protein (CRP), the global activator of sugar catabolism. The regulator PecS, which represses the transcription of the pel genes but activates that of pehV, pehW, and pehX, also activates transcription of pehN. The three regulators KdgR, PecS, and CRP act by direct interaction with the pehN promoter region. The sequences involved in the binding of these three regulators and of RNA polymerase have been precisely defined. Analysis of the simultaneous binding of these proteins indicates that CRP and RNA polymerase bind cooperatively and that the binding of KdgR could prevent pehN transcription. In contrast, the activator effect of PecS is not linked to competition with KdgR or to cooperation with CRP or RNA polymerase. This effect probably results from competition between PecS and an unidentified repressor involved in peh regulation.
Collapse
Affiliation(s)
- Nicole Hugouvieux-Cotte-Pattat
- Unité de Microbiologie et Génétique, CNRS-INSA-UCB UMR 5122, INSA, Batiment Louis Pasteur, 11 Avenue Jean Capelle, 69621 Villeurbanne Cedex, France.
| | | | | |
Collapse
|
30
|
de Vries RP, Visser J. Aspergillus enzymes involved in degradation of plant cell wall polysaccharides. Microbiol Mol Biol Rev 2001; 65:497-522, table of contents. [PMID: 11729262 PMCID: PMC99039 DOI: 10.1128/mmbr.65.4.497-522.2001] [Citation(s) in RCA: 542] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Degradation of plant cell wall polysaccharides is of major importance in the food and feed, beverage, textile, and paper and pulp industries, as well as in several other industrial production processes. Enzymatic degradation of these polymers has received attention for many years and is becoming a more and more attractive alternative to chemical and mechanical processes. Over the past 15 years, much progress has been made in elucidating the structural characteristics of these polysaccharides and in characterizing the enzymes involved in their degradation and the genes of biotechnologically relevant microorganisms encoding these enzymes. The members of the fungal genus Aspergillus are commonly used for the production of polysaccharide-degrading enzymes. This genus produces a wide spectrum of cell wall-degrading enzymes, allowing not only complete degradation of the polysaccharides but also tailored modifications by using specific enzymes purified from these fungi. This review summarizes our current knowledge of the cell wall polysaccharide-degrading enzymes from aspergilli and the genes by which they are encoded.
Collapse
Affiliation(s)
- R P de Vries
- Molecular Genetics of Industrial Microorganisms, Wageningen University, 6703 HA Wageningen, The Netherlands.
| | | |
Collapse
|
31
|
Markovic O, Janecek S. Pectin degrading glycoside hydrolases of family 28: sequence-structural features, specificities and evolution. PROTEIN ENGINEERING 2001; 14:615-31. [PMID: 11707607 DOI: 10.1093/protein/14.9.615] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Family 28 belongs to the largest families of glycoside hydrolases. It covers several enzyme specificities of bacterial, fungal, plant and insect origins. This study deals with all available amino acid sequences of family 28 members. First, it focuses on the detailed analysis of 115 sequences of polygalacturonases yielding their evolutionary tree. The large data set allowed modification of some of the existing family 28 sequence characteristics and to draw the sequence features specific for bacterial and fungal exopolygalacturonases discriminating them from the endopolygalacturonases. The evolutionary tree reflects both the taxonomy and specificity so that bacterial, fungal and plant enzymes form their own clusters, the endo- and exo-mode of action being respected, too. The only insect (animal) representative is most related to fungal endopolygalacturonases. The present study brings further: (i) the analysis of available rhamnogalacturonase sequences; (ii) the elucidation of relatedness between the recently added member, the endo-xylogalacturonan hydrolase and the rest of the family; and (iii) revealing the sequence features characteristic of the individual enzyme specificities and the evolutionary relationships within the entire family 28. The disulfides common for the individual enzyme groups were also proposed. With regard to functionally important residues of polygalacturonases, xylogalacturonan hydrolase possesses all of them, while the rhamnogalacturonases, known to lack the histidine residue (His223; Aspergillus niger polygalacturonase II numbering), have a further tyrosine (Tyr291) replaced by a conserved tryptophan. Evolutionarily, the xylogalacturonan hydrolase is most related to fungal exopolygalacturonases and the rhamnogalacturonases form their own cluster on the adjacent branch.
Collapse
Affiliation(s)
- O Markovic
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, SK-84238 Bratislava, Slovakia
| | | |
Collapse
|
32
|
Torki M, Mandaron P, Mache R, Falconet D. Characterization of a ubiquitous expressed gene family encoding polygalacturonase in Arabidopsis thaliana. Gene 2000; 242:427-36. [PMID: 10721737 DOI: 10.1016/s0378-1119(99)00497-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Pectin, as one of the major components of plant cell wall, has been implicated in many developmental processes occurring during plant growth. Among the different enzymes known to participate in the pectin structure modifications, polygalacturonase (PG) activity has been shown to be associated with fruit ripening, organ abscission and pollen grain development. Until now, sequence analyses of the deduced polypeptides of the plant PG genes allowed their grouping into three clades corresponding to genes involved in one of these three activities. In this study, we report the sequence of three genomic clones encoding PG in Arabidopsis thaliana. These genes, together with 16 other genes present in the databases form a large gene family, ubiquitously expressed, present on the five chromosomes with at least two gene clusters on chromosomes II and V, respectively. Phylogenetic analyses suggest that the A. thaliana gene family contains five classes of genes, with three of them corresponding to the previously defined clades. Comparison of positions and numbers of introns among the A. thaliana genes reveals structural conservation between genes belonging to the same class. The pattern of intron losses that could have given rise to the PG gene family is consistent with a mechanism of intron loss by replacement of an ancestral intron-containing gene with a reverse-transcribed DNA copy of a spliced mRNA. Following this event of intron loss, the acquisition of introns in novel positions is consistent with a mechanism of intron gain at proto-splice sites.
Collapse
Affiliation(s)
- M Torki
- Laboratoire de Génétique Moléculaire des Plantes, UMR 5575, CNRS and Université Joseph Fourier, Grenoble, France
| | | | | | | |
Collapse
|
33
|
van der Vlugt-Bergmans CJ, Meeuwsen PJ, Voragen AG, van Ooyen AJ. Endo-xylogalacturonan hydrolase, a novel pectinolytic enzyme. Appl Environ Microbiol 2000; 66:36-41. [PMID: 10618200 PMCID: PMC91782 DOI: 10.1128/aem.66.1.36-41.2000] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/1999] [Accepted: 10/01/1999] [Indexed: 11/20/2022] Open
Abstract
We screened an Aspergillus tubingensis expression library constructed in the yeast Kluyveromyces lactis for xylogalacturonan-hydrolyzing activity in microwell plates by using a bicinchoninic acid assay. This assay detects reducing carbohydrate groups when they are released from a carbohydrate by enzymatic activity. Two K. lactis recombinants exhibiting xylogalacturonan-hydrolyzing activity were found among the 3,400 colonies tested. The cDNA insert of these recombinants encoded a 406-amino-acid protein, designated XghA, which was encoded by a single-copy gene, xghA. A multiple-sequence alignment revealed that XghA was similar to both polygalacturonases (PGs) and rhamnogalacturonases. A detailed examination of conserved regions in the sequences of these enzymes revealed that XghA resembled PGs more. High-performance liquid chromatography and matrix-assisted laser desorption ionization-time of flight mass spectrometry of the products of degradation of xylogalacturonan and saponified modified hairy regions of apple pectin by XghA demonstrated that this enzyme uses an endo type of mechanism. XghA activity appeared to be specific for a xylose-substituted galacturonic acid backbone.
Collapse
Affiliation(s)
- C J van der Vlugt-Bergmans
- Industrial Microbiology Group, Department of Food Technology and Nutritional Sciences, Wageningen Agricultural University, NL-6700 EV Wageningen, The Netherlands.
| | | | | | | |
Collapse
|
34
|
Sitrit Y, Hadfield KA, Bennett AB, Bradford KJ, Downie AB. Expression of a polygalacturonase associated with tomato seed germination. PLANT PHYSIOLOGY 1999; 121:419-28. [PMID: 10517833 PMCID: PMC59404 DOI: 10.1104/pp.121.2.419] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/1999] [Accepted: 06/30/1999] [Indexed: 05/20/2023]
Abstract
Radicle protrusion from tomato (Lycopersicon esculentum Mill.) seeds to complete germination requires weakening of the endosperm tissue opposite the radicle tip. In common with other cell wall disassembly processes in plants, polygalacturonases (PGs) may be involved. Only calcium-dependent exo-PG activity was detected in tomato seed protein extracts. Chromatographic profiles of a partially acid-hydrolyzed fraction of polygalacturonic acid further digested with seed extract were consistent with the presence of only calcium-dependent exo-PG activity. In addition, a transcript encoding a previously unknown PG was detected prior to the completion of germination. The mRNA, produced from a gene (LeXPG1) estimated by Southern analysis to be represented once in the genome, was also present in flowers (anthers) and in lower amounts in roots and stems. LeXPG1 mRNA abundance was low during seed development, increased during imbibition, and was even greater in seeds that had completed germination. Expression of LeXPG1 during germination predominates in the endosperm cap and radicle tip, and in the radicle appears as a distinct band possibly associated with vascular tissue differentiation. We suggest that PG is involved in cell wall loosening of the endosperm necessary for radicle protrusion from tomato seeds and in subsequent embryo and seedling growth.
Collapse
Affiliation(s)
- Y Sitrit
- Department of Vegetable Crops, One Shields Avenue, University of California, Davis, California 95616-8631, USA
| | | | | | | | | |
Collapse
|
35
|
Wubben JP, Mulder W, ten Have A, van Kan JA, Visser J. Cloning and partial characterization of endopolygalacturonase genes from Botrytis cinerea. Appl Environ Microbiol 1999; 65:1596-602. [PMID: 10103256 PMCID: PMC91226 DOI: 10.1128/aem.65.4.1596-1602.1999] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Botrytis cinerea is a plant-pathogenic fungus infecting over 200 different plant species. We use a molecular genetic approach to study the process of pectin degradation by the fungus. Recently, we described the cloning and characterization of an endopolygalacturonase (endoPG) gene from B. cinerea (Bcpg1) which is required for full virulence. Here we describe the cloning and characterization of five additional endoPG-encoding genes from B. cinerea SAS56. The identity at the amino acid level between the six endoPGs of B. cinerea varied from 34 to 73%. Phylogenetic analysis, by using a group of 35 related fungal endoPGs and as an outgroup one plant PG, resulted in the identification of five monophyletic groups of closely related proteins. The endoPG proteins from B. cinerea SAS56 could be assigned to three different monophyletic groups. DNA blot analysis revealed the presence of the complete endoPG gene family in other strains of B. cinerea, as well as in other Botrytis species. Differential gene expression of the gene family members was found in mycelium grown in liquid culture with either glucose or polygalacturonic acid as the carbon source.
Collapse
Affiliation(s)
- J P Wubben
- Section of Molecular Genetics of Industrial Micro-organisms, Wageningen Agricultural University, 6703 HA Wageningen, The Netherlands
| | | | | | | | | |
Collapse
|
36
|
Kojima Y, Sakamoto T, Kishida M, Sakai T, Kawasaki H. Acidic condition-inducible polygalacturonase of Aspergillus kawachii. ACTA ACUST UNITED AC 1999. [DOI: 10.1016/s1381-1177(98)00120-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
37
|
Blanco P, Sieiro C, Reboredo NM, Villa TG. Cloning, molecular characterization, and expression of an endo-polygalacturonase-encoding gene from Saccharomyces cerevisiae IM1-8b. FEMS Microbiol Lett 1998; 164:249-55. [PMID: 9682473 DOI: 10.1111/j.1574-6968.1998.tb13094.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
A structural polygalacturonase-encoding gene (PGU1) from Saccharomyces cerevisiae IM1-8b was cloned and sequenced. The predicted protein comprises 361 amino acids, with a signal peptide between residues 1 and 18 and two potential glycosylation points in residues 318 and 330. The putative active site is a conserved histidine in position 222. This polygalacturonase showed 54% homology with the fungal ones and only 24% homology with their plant and bacterial counterparts. The gene is present in a single gene copy per haploid genome and it is detected in all strains, regardless of their phenotype. The expression of PGU1 gene in several strains of S. cerevisiae revealed that the polygalacturonase activity depended on the plasmid used and also on the genetic background of each strain but in all cases the enzymatic activity increased.
Collapse
Affiliation(s)
- P Blanco
- Department of Microbiology, Faculty of Pharmacy, University of Santiago, Santiago de Compostela, Spain
| | | | | | | |
Collapse
|
38
|
Biological and biochemical studies on the ‘basic’ isoenzyme of endo-polygalacturonase secreted by Monilinia fructigena. ACTA ACUST UNITED AC 1997. [DOI: 10.1017/s0953756297003766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
39
|
Shieh MT, Brown RL, Whitehead MP, Cary JW, Cotty PJ, Cleveland TE, Dean RA. Molecular genetic evidence for the involvement of a specific polygalacturonase, P2c, in the invasion and spread of Aspergillus flavus in cotton bolls. Appl Environ Microbiol 1997; 63:3548-52. [PMID: 9293005 PMCID: PMC168660 DOI: 10.1128/aem.63.9.3548-3552.1997] [Citation(s) in RCA: 149] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Isolates of Aspergillus flavus can be differentiated based on production of the polygalacturonase P2c. One group of isolates produces P2c, whereas the other group does not. In general, the group that produces P2c causes more damage and spreads to a greater extent in cotton bolls than those isolates that do not produce P2c. To determine whether P2c contributes to disease, the expression of pecA, the gene previously determined to encode P2c, was genetically altered. Adding the pecA gene to a strain previously lacking the gene resulted in the ability to cause significantly more damage to the intercarpellary membrane and the ability spread to a greater extent within the adjacent locule compared to the abilities of a control transformant. Conversely, eliminating the expression of pecA by targeted disruption caused a significant reduction in aggressiveness compared to that of a nondisrupted control transformant. These results provide direct evidence that P2c contributes to the invasion and spread of A. flavus during infection of cotton bolls. However, other factors not evaluated in this study also contribute to aggressiveness.
Collapse
Affiliation(s)
- M T Shieh
- Department of Plant Pathology and Physiology, Clemson University, South Carolina 29634-0377, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Gonzalez CF, Pettit EA, Valadez VA, Provin EM. Mobilization, cloning, and sequence determination of a plasmid-encoded polygalacturonase from a phytopathogenic Burkholderia (Pseudomonas) cepacia. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 1997; 10:840-851. [PMID: 9304858 DOI: 10.1094/mpmi.1997.10.7.840] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Phytopathogenic strains of Burkholderia cepacia (synonym Pseudomonas cepacia) produce endopolygalacturonase, whereas strains of clinical and soil origin do not. Growth of a phytopathogenic strain (ATCC25416) at elevated temperatures resulted in nonpectolytic derivatives that were either cured of a resident plasmid or contained a plasmid of reduced mass. The resident 200-kb plasmid (pPEC320) in strain ATCC25416 was tagged with Tn5-Mob. The pPEC320::Tn5-Mob (pPEC321) plasmid was mobilized in B. cepacia strains of soil and clinical origin. Transconjugants containing pPEC321 expressed the endopolygalacturonase and showed differential activity on plant tissue. No evidence for self-transfer of pPEC320 or the tagged derivative was observed. A 285-kb cloned fragment from pPEC320 containing the plasmid-borne pehA gene was sequenced and compared to the pehA gene from Erwinia carotovora subsp. carotovora and Ralstonia solanacearum and the polygalacturonase sequence from Lycopersicon esculentum.
Collapse
Affiliation(s)
- C F Gonzalez
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station 77843-2132, USA.
| | | | | | | |
Collapse
|
41
|
Iguch KI, Hirano H, Kishida M, Kawasaki H, Sakai T. Cloning of a protopectinase gene of Trichosporon penicillatum and its expression in Saccharomyces cerevisiae. MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 5):1657-1664. [PMID: 9168614 DOI: 10.1099/00221287-143-5-1657] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A protopectinase (PPase)-encoding gene, PSE3, from Trichosporon penicillatum was cloned by colony hybridization using two oligonucleotide probes synthesized from the N-terminal amino acid sequences of native PPase SE1 and one peptide from a lysyl endopeptidase digest. Nucleotide sequencing revealed that PSE3 contains an ORF encoding a 367 amino acid protein. Mature PPase SE3 is composed of 340 amino acids and the N-terminus of the ORF appeared to correspond to a signal peptide and a propeptide processed by a KEX2-like proteinase. The deduced amino acid sequence of PSE3 was 65.4, 56.7, 58.1, 61.8 and 48.9% homologous to the polygalacturonases of Aspergillus oryzae, Aspergillus niger, Aspergillus tubigensis, Cochliobolus carbonum and Fusarium moniliforme, respectively. One domain, which might interact with polygalacturonic acid, is highly conserved not only in fungal polygalacturonases but also in bacterial and plant polygalacturonases. PSE3 was expressed in Saccharomyces cerevisiae, but three forms (the mature form, a glycosylated form and an uncharacterized processed form) of PPase SE3 were present among the PSE3 products.
Collapse
Affiliation(s)
- Ken-Ichi Iguch
- Department of Applied Biochemistry, College of Agriculture, Osaka Prefecture University, Gakuen-cho 1-1, Sakai, Osaka 593, Japan
| | - Haruka Hirano
- Department of Applied Biochemistry, College of Agriculture, Osaka Prefecture University, Gakuen-cho 1-1, Sakai, Osaka 593, Japan
| | - Masao Kishida
- Department of Applied Biochemistry, College of Agriculture, Osaka Prefecture University, Gakuen-cho 1-1, Sakai, Osaka 593, Japan
| | - Haruhiko Kawasaki
- Department of Applied Biochemistry, College of Agriculture, Osaka Prefecture University, Gakuen-cho 1-1, Sakai, Osaka 593, Japan
| | - Takuo Sakai
- Department of Food Science, Faculty of Agriculture, Kinki University, 3327-204, Nakamachi, Nara 631, Japan
- Department of Applied Biochemistry, College of Agriculture, Osaka Prefecture University, Gakuen-cho 1-1, Sakai, Osaka 593, Japan
| |
Collapse
|
42
|
Cloning and characterization of a polygalacturonase-encoding gene from Penicillium janthinellum. ACTA ACUST UNITED AC 1997. [DOI: 10.1016/s0922-338x(97)82065-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
43
|
Kester HC, Kusters-van Someren MA, Müller Y, Visser J. Primary structure and characterization of an exopolygalacturonase from Aspergillus tubingensis. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 240:738-46. [PMID: 8856078 DOI: 10.1111/j.1432-1033.1996.0738h.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
From the culture fluid of the hyphal fungus Aspergillus tubingensis, an exopolygalacturonase with a molecular mass of 78 kDa, an isoelectric point in the pH-range 3.7-4.4 and a pH optimum of 4.2 was purified. The enzyme has been characterized as an exopolygalacturonase [poly(1,4-alpha-D-galacturonide)galacturonohydrolase] that cleaves monomer units from the non-reducing end of the substrate molecule. K(m) and Vmax for polygalacturonic acid hydrolysis were 3.2 mg ml-1 and 3.1 mg ml-1 and 255 U mg-1 and 262 U mg-1 for the wild-type and recombinant enzymes, respectively. The kinetic data of exopolygalacturonase on oligogalacturonates of different degree of polymerization (2-7) were interpreted in terms of a subsite model to obtain more insight into catalysis and substrate binding. On oligogalacturonates of different degrees of polymerization (2-7), the Michaelis constant (K(m)) decreased with increasing chain length (n). The Vmax value increased with chain length up to n = 4, then reached a plateau value. The enzyme was competitively inhibited by galacturonic acid (Ki = 0.3 mM) as well as by reduced digalacturonate (Ki = 0.4 mM). The exopolygalacturonase gene (pgaX) was cloned by reverse genetics and shows only 13% overall amino acid sequence identity with A. niger endopolygalacturonases. The exopolygalacturonase is most related to plant polygalacturonases. Only four small stretches of amino acids are conserved between all known endogalacturonases and exopolygalacturonases. Expression of the pgaX gene is inducible with galacturonic acid and is subject to catabolite repression. A fusion between the promoter of the A. niger glycolytic gene encoding pyruvate kinase and the pgaX-coding region was used to achieve high level production of exopolygalacturonase under conditions where no endopolygalacturonases were produced.
Collapse
Affiliation(s)
- H C Kester
- Section Molecular Genetics of Industrial Microorganisms, Wageningen Agricultural University, The Netherlands
| | | | | | | |
Collapse
|
44
|
Centis S, Dumas B, Fournier J, Marolda M, Esquerré-Tugayé MT. Isolation and sequence analysis of Clpg1, a gene coding for an endopolygalacturonase of the phytopathogenic fungus Colletotrichum lindemuthianum. Gene 1996; 170:125-9. [PMID: 8621072 DOI: 10.1016/0378-1119(95)00867-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Oligodeoxyribonucleotide primers designed from the N-terminal amino acid (aa) sequence of the endopolygalacturonase (EndoPG) of Colletotrichum lindemuthianum (Cl) race beta and from an internal sequence conserved among different fungal EndoPG were used in a polymerase chain reaction (PCR) to amplify genomic related sequences of the fungus. A 542-bp fragment, designated pgA, was obtained and used as a probe to screen a partial genomic library of Cl. Among the positive clones, one was further analyzed. Nucleotide sequencing of this clone revealed on ORF encoding a 363-amino-acid (aa) polypeptide beginning with a signal peptide of 26 aa interrupted by an intron of 70 bp, and showing a high degree of homology to ten fungal EndoPG sequences. Consensus sequences were identified in the 5' non-coding region. This genomic clone was thereafter designated Clpg1. Southern analysis, performed with a Clpg1-specific probe, showed that this gene is present as a single copy in the Cl genome.
Collapse
Affiliation(s)
- S Centis
- Université Paul Sabatier, Centre de Biologie et Physiologie Végétale URA 1941 CNRS, Toulouse, France
| | | | | | | | | |
Collapse
|
45
|
Expression of anErwinia pectate lyase in three species ofAspergillus. Curr Genet 1996. [DOI: 10.1007/bf02221517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
46
|
Stratilová E, Dzúrová M, Markovic O, Jörnvall H. An essential tyrosine residue of Aspergillus polygalacturonase. FEBS Lett 1996; 382:164-6. [PMID: 8612742 DOI: 10.1016/0014-5793(96)00146-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Based on strict conservation of a tyrosine residue in 24 polygalacturonases, tyrosine modification was assessed in two different forms of the Aspergillus enzyme. The second subform was unknown in structure but submitted to sequence analysis and was found also to have the conserved tyrosine residue. Results of chemical modifications are consistent in showing inactivation of the proteins with all tyrosine-reactive agents tested, acetic anhydride, N-acetyl imidazole, and tetranitromethane. Furthermore, after acetylation, regeneration of enzyme activity was possible with hydroxylamine. Spectrophotometric pH titration showed that one accessible tyrosine residue is ionized at pH 9.3-9.5, whereas the remaining, masked residues are all ionized at pH 10.5. It is concluded that one tyrosine residue is catalytically important, in agreement with the inactivation and reactivation data, that this residue is accessible, and that it is likely to correspond to the strictly conserved residue observed in all forms.
Collapse
Affiliation(s)
- E Stratilová
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | | | | | | |
Collapse
|
47
|
Anjana Devi N, Appu Rao A. Fractionation, purification, and preliminary characterization of polygalacturonases produced by Aspergillus carbonarius. Enzyme Microb Technol 1996. [DOI: 10.1016/0141-0229(96)00055-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
48
|
Benen J, Parenicova L, Kusters-van Someren M, Kester H, Visser J. Molecular genetic and biochemical aspects of pectin degradation in Aspergillus. PROGRESS IN BIOTECHNOLOGY 1996. [DOI: 10.1016/s0921-0423(96)80265-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
49
|
Stratilov� E, Breierov� E, Vadkertiov� R. Effect of cultivation and storage pH on the production of multiple forms of polygalacturonase by Aspergillus niger. Biotechnol Lett 1996. [DOI: 10.1007/bf00137808] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
50
|
Lang C, Looman AC. Efficient expression and secretion of Aspergillus niger RH5344 polygalacturonase in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 1995; 44:147-56. [PMID: 8579828 DOI: 10.1007/bf00164494] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
An Aspergillus niger endopolygalacturonase (EC 3.2.1.15) cDNA was expressed in the yeast Saccharomyces cerevisiae. Secretion of the protein into the growth medium was efficiently directed by the fungal leader sequence, and processing occurred at the same site as in Aspergillus. The expression level was significantly enhanced by using a "short" version of the yeast ADHI promoter. An additional increase in the yield of heterologous protein was due to a higher plasmid stability and a rise in plasmid copy number. This was achieved by deleting most of the bacterial sequences from the expression vector. The yeast-derived enzyme showed the same enzymatic and biochemical properties as the fungal polygalacturonase, such as substrate specificity, pH and temperature optima and pI value. The yeast-derived enzyme, however, showed a higher degree of glycosylation and exhibited a more pronounced temperature stability than the fungal enzyme.
Collapse
Affiliation(s)
- C Lang
- Institut für Gärungsgewerbe und Biotechnologie, Abt. Biotechnologie Hüls, Berlin, Germany
| | | |
Collapse
|