1
|
Kan HW, Hsieh JH, Wang SW, Yeh TY, Chang MF, Tang TY, Chao CC, Feng FP, Hsieh ST. Nonpermissive skin environment impairs nerve regeneration in diabetes via Sec31a. Ann Neurol 2022; 91:821-833. [PMID: 35285061 DOI: 10.1002/ana.26347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 02/09/2022] [Accepted: 03/02/2022] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Although the microenvironment for peripheral nerve regeneration is permissive, such a mechanism is defective in diabetes, and the molecular mediators remain elusive. This study aimed to (1) investigate the relationship between skin innervation and collagen pathology in diabetic neuropathy and to (2) clarify the molecular alterations that occur in response to hyperglycemia and their effects on axon regeneration. METHODS We addressed this issue using two complementary systems: (1) human skin from patients with diabetic neuropathy and to (2) a coculture model of human dermal fibroblasts (HDFs) with rat dorsal root ganglia neurons in the context of intrinsic neuronal factor and extrinsic microenvironmental collagen and its biosynthetic pathways. RESULTS In diabetic neuropathy, the skin innervation of intraepidermal nerve fiber density (IENFd), a measure of sensory nerve degeneration, was reduced with similar expression of a growth associated protein 43, a marker of nerve regeneration. In contrast, the content and packing of collagen in the diabetic skin became more rigid than the control skin. Sec31a, a protein that regulates the collagen biosynthetic pathway, was upregulated and inversely correlated with IENFd. In the cell model, activated HDFs exposed to high-glucose medium enhanced the expression of Sec31a and collagen I through the activation of transforming growth factor β, a profibrotic molecule. Sec31a upregulation impaired neurite outgrowth. This effect was reversed by silencing Sec31a expression and neurite outgrowth was resumed. INTERPRETATION The current study provides evidence that Sec31a plays a key role in inhibiting nerve regeneration in diabetic neuropathy. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hung-Wei Kan
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung, 824005, Taiwan
| | - Jung-Hsien Hsieh
- Department of Surgery, National Taiwan University Hospital, Taipei, 100225, Taiwan
| | - Shih-Wei Wang
- Division of Rheumatology and Immunology, E-DA Hospital/I-Shou University, Kaohsiung, 824005, Taiwan
| | - Ti-Yen Yeh
- Department of Anatomy and Cell Biology, National Taiwan University, Taipei, 100233, Taiwan
| | - Ming-Fong Chang
- Department of Anatomy and Cell Biology, National Taiwan University, Taipei, 100233, Taiwan
| | - Tsz-Yi Tang
- Department of Anatomy and Cell Biology, National Taiwan University, Taipei, 100233, Taiwan
| | - Chi-Chao Chao
- Department of Neurology, National Taiwan University Hospital, Taipei, 100225, Taiwan
| | - Fang-Ping Feng
- Department of Neurology, National Taiwan University Hospital, Taipei, 100225, Taiwan
| | - Sung-Tsang Hsieh
- Department of Anatomy and Cell Biology, National Taiwan University, Taipei, 100233, Taiwan.,Department of Neurology, National Taiwan University Hospital, Taipei, 100225, Taiwan.,Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei, 100233, Taiwan
| |
Collapse
|
2
|
Chen L, Chen Z, Xu Z, Feng W, Yang X, Qi Z. Polydatin protects Schwann cells from methylglyoxal induced cytotoxicity and promotes crushed sciatic nerves regeneration of diabetic rats. Phytother Res 2021; 35:4592-4604. [PMID: 34089208 DOI: 10.1002/ptr.7177] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 03/25/2021] [Accepted: 05/07/2021] [Indexed: 01/03/2023]
Abstract
Oxidative stress plays the main role in the pathogenesis of diabetes mellitus and peripheral neuropathy. Polydatin (PD) has been shown to exhibit strong antioxidative and antiinflammatory effects. At present, no research has focused on the possible effects of PD on Schwann cells and impaired peripheral nerves in diabetic models. Here, we used an in vitro Schwann cell damage model induced by methylglyoxal and an in vivo diabetic sciatic nerve crush model to study problems in such an area. In our experiment, we demonstrated that PD potently alleviated the decrease of cellular viability, prevented reactive oxygen species generation, and suppressed mitochondrial depolarization as well as cellular apoptosis in damaged Schwann cells. Moreover, we found that PD could upregulate Nrf2 and Glyoxalase 1 (GLO1) expression and inhibit Keap1 and receptor of AGEs (RAGE) expression of damaged Schwann cells. Finally, our in vivo experiment showed that PD could promote sciatic nerves repair of diabetic rats. Our results revealed that PD exhibited prominent neuroprotective effects on Schwann cells and sciatic nerves in diabetic models. The molecular mechanisms were associated with activating Nfr2 and GLO1 and inhibiting Keap1 and RAGE.
Collapse
Affiliation(s)
- Lulu Chen
- Department No.16 of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zixiang Chen
- Department No.16 of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhuqiu Xu
- Department No.16 of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weifeng Feng
- Department No.16 of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaonan Yang
- Department No.16 of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zuoliang Qi
- Department No.16 of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
3
|
Vaeggemose M, Haakma W, Pham M, Ringgaard S, Tankisi H, Ejskjaer N, Heiland S, Poulsen PL, Andersen H. Diffusion tensor imaging MR Neurography detects polyneuropathy in type 2 diabetes. J Diabetes Complications 2020; 34:107439. [PMID: 31672457 DOI: 10.1016/j.jdiacomp.2019.107439] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/22/2019] [Accepted: 08/26/2019] [Indexed: 12/17/2022]
Abstract
AIM To evaluate if diffusion-tensor-imaging MR-Neurography (DTI-MRN) can detect lesions of peripheral nerves due to polyneuropathy in patients with type 2 diabetes. METHODS Ten patients with type 2 diabetes with polyneuropathy (DPN), 10 patients with type 2 diabetes without polyneuropathy (nDPN) as well as 20 healthy controls (HC) were included. DTI-MRN covered proximal (sciatic nerve) and distal regions (tibial nerve) of the lower extremity. Fractional-anisotropy (FA) and diffusivity (mean (MD), axial (AD) and radial (RD)) were calculated and compared to neuropathy severity. Conventional T2-relaxation-time and proton-spin-density data were obtained from a multi-echo SE sequence. Furthermore, we evaluated sensitivity and specificity of DTI-MRN from receiver operating characteristics (ROC). RESULTS The proximal and distal FA was lowest in patients with DPN compared with nDPN and HC (p < 0.01). Likewise, proximal and distal RD was highest in patients with DPN (p < 0.01). MD and AD were also significantly different though less pronounced. ROC curve analyses of DTI separated nDPN and DPN with area-under-the-curve values ranging from 0.65 to 0.98. T2-relaxation-time and proton-spin-density could not differentiate between nDPN and DPN. CONCLUSION DTI-MRN accurately detects DPN by lower nerve FA and higher RD. These alterations are likely to reflect both proximal and distal nerve fiber pathology in patients with type 2 diabetes.
Collapse
Affiliation(s)
- M Vaeggemose
- Department of Neurology, Aarhus University Hospital, Denmark; Danish Diabetes Academy, Odense, Denmark.
| | - W Haakma
- Department of Radiology, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - M Pham
- Department of Neuroradiology, Heidelberg University Hospital, Germany; Department of Neuroradiology, Würzburg University Hospital, Germany
| | - S Ringgaard
- MR Research Centre, Aarhus University Hospital, Denmark
| | - H Tankisi
- Department of Clinical Neurophysiology, Aarhus University Hospital, Denmark
| | - N Ejskjaer
- Department of Clinical Medicine, Aalborg University Hospital, Denmark
| | - S Heiland
- Department of Neuroradiology, Heidelberg University Hospital, Germany
| | - P L Poulsen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Denmark
| | - H Andersen
- Department of Neurology, Aarhus University Hospital, Denmark; The International Diabetic Neuropathy Consortium, Aarhus University Hospital, Denmark
| |
Collapse
|
4
|
Niemi JP, Filous AR, DeFrancesco A, Lindborg JA, Malhotra NA, Wilson GN, Zhou B, Crish SD, Zigmond RE. Injury-induced gp130 cytokine signaling in peripheral ganglia is reduced in diabetes mellitus. Exp Neurol 2017. [PMID: 28645526 DOI: 10.1016/j.expneurol.2017.06.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Neuropathy is a major diabetic complication. While the mechanism of this neuropathy is not well understood, it is believed to result in part from deficient nerve regeneration. Work from our laboratory established that gp130 family of cytokines are induced in animals after axonal injury and are involved in the induction of regeneration-associated genes (RAGs) and in the conditioning lesion response. Here, we examine whether a reduction of cytokine signaling occurs in diabetes. Streptozotocin (STZ) was used to destroy pancreatic β cells, leading to chronic hyperglycemia. Mice were injected with either low doses of STZ (5×60mg/kg) or a single high dose (1×200mg/kg) and examined after three or one month, respectively. Both low and high dose STZ treatment resulted in sustained hyperglycemia and functional deficits associated with the presence of both sensory and autonomic neuropathy. Diabetic mice displayed significantly reduced intraepidermal nerve fiber density and sudomotor function. Furthermore, low and high dose diabetic mice showed significantly reduced tactile touch sensation measured with Von Frey monofilaments. To look at the regenerative and injury-induced responses in diabetic mice, neurons in both superior cervical ganglia (SCG) and the 4th and 5th lumbar dorsal root ganglia (DRG) were unilaterally axotomized. Both high and low dose diabetic mice displayed significantly less axonal regeneration in the sciatic nerve, when measured in vivo, 48h after crush injury. Significantly reduced induction of two gp130 cytokines, leukemia inhibitory factor and interleukin-6, occurred in diabetic animals in SCG 6h after injury compared to controls. Injury-induced expression of interleukin-6 was also found to be significantly reduced in the DRG at 6h after injury in low and high dose diabetic mice. These effects were accompanied by reduced phosphorylation of signal transducer and activator of transcription 3 (STAT3), a downstream effector of the gp130 signaling pathway. We also found decreased induction of several gp130-dependent RAGs, including galanin and vasoactive intestinal peptide. Together, these data suggest a novel mechanism for the decreased response of diabetic sympathetic and sensory neurons to injury.
Collapse
Affiliation(s)
- Jon P Niemi
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA
| | - Angela R Filous
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA
| | - Alicia DeFrancesco
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA
| | - Jane A Lindborg
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA
| | - Nisha A Malhotra
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA
| | - Gina N Wilson
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA; School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Bowen Zhou
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA
| | - Samuel D Crish
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Richard E Zigmond
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
5
|
Neuropatia nei diabetici. Neurologia 2017. [DOI: 10.1016/s1634-7072(16)81776-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
6
|
Landowski LM, Dyck PJB, Engelstad J, Taylor BV. Axonopathy in peripheral neuropathies: Mechanisms and therapeutic approaches for regeneration. J Chem Neuroanat 2016; 76:19-27. [DOI: 10.1016/j.jchemneu.2016.04.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 03/18/2016] [Accepted: 04/30/2016] [Indexed: 01/01/2023]
|
7
|
Abstract
Diabetic neuropathy is a common secondary complication of diabetes that impacts on patient's health and well-being. Distal axon degeneration is a key feature of diabetic neuropathy, but the pathological changes which underlie axonal die-back are incompletely understood; despite decades of research a treatment has not yet been identified. Basic research must focus on understanding the complex mechanisms underlying changes that occur in the nervous system during diabetes. To this end, tissue culture techniques are invaluable as they enable researchers to examine the intricate mechanistic responses of cells to high glucose or other factors in order to better understand the pathogenesis of nerve dysfunction. This chapter describes the use of in vitro models to study a wide range of specific cellular effects pertaining to diabetic neuropathy including apoptosis, neurite outgrowth, neurodegeneration, activity, and bioenergetics. We consider problems associated with in vitro modeling and future refinement such as use of induced pluripotent stem cells and microfluidic technology.
Collapse
|
8
|
Singh B, Krishnan A, Micu I, Koshy K, Singh V, Martinez JA, Koshy D, Xu F, Chandrasekhar A, Dalton C, Syed N, Stys PK, Zochodne DW. Peripheral neuron plasticity is enhanced by brief electrical stimulation and overrides attenuated regrowth in experimental diabetes. Neurobiol Dis 2015; 83:134-51. [PMID: 26297317 DOI: 10.1016/j.nbd.2015.08.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 07/20/2015] [Accepted: 08/12/2015] [Indexed: 01/01/2023] Open
Abstract
Peripheral nerve regrowth is less robust than commonly assumed, particularly when it accompanies common clinical scenarios such as diabetes mellitus. Brief extracellular electrical stimulation (ES) facilitates the regeneration of peripheral nerves in part through early activation of the conditioning injury response and BDNF. Here, we explored intrinsic neuronal responses to ES to identify whether ES might impact experimental diabetes, where regeneration is attenuated. ES altered several regeneration related molecules including rises in tubulin, Shh (Sonic hedgehog) and GAP43 mRNAs. ES was associated with rises in neuronal intracellular calcium but its strict linkage to regrowth was not confirmed. In contrast, we identified PI3K-PTEN involvement, an association previously linked to diabetic regenerative impairment. Following ES there were declines in PTEN protein and mRNA both in vitro and in vivo and a PI3K inhibitor blocked its action. In vitro, isolated diabetic neurons were capable of mounting robust responsiveness to ES. In vivo, ES improved electrophysiological and behavioral indices of nerve regrowth in a chronic diabetic model of mice with pre-existing neuropathy. Regrowth of myelinated axons and reinnervation of the epidermis were greater following ES than sham stimulation. Taken together, these findings identify a role for ES in supporting regeneration during the challenges of diabetes mellitus.
Collapse
Affiliation(s)
- B Singh
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - A Krishnan
- Division of Neurology, Department of Medicine, Neurosciences and Mental Health Institute, University of Alberta, Edmonton, AB, T6G 2B7, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - I Micu
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - K Koshy
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - V Singh
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - J A Martinez
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - D Koshy
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - F Xu
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - A Chandrasekhar
- Division of Neurology, Department of Medicine, Neurosciences and Mental Health Institute, University of Alberta, Edmonton, AB, T6G 2B7, Canada
| | - C Dalton
- Electrical and Computer Engineering, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - N Syed
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - P K Stys
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - D W Zochodne
- Division of Neurology, Department of Medicine, Neurosciences and Mental Health Institute, University of Alberta, Edmonton, AB, T6G 2B7, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
9
|
Schuelert N, Gorodetskaya N, Just S, Doods H, Corradini L. Electrophysiological characterization of spinal neurons in different models of diabetes type 1- and type 2-induced neuropathy in rats. Neuroscience 2015; 291:146-54. [PMID: 25686525 DOI: 10.1016/j.neuroscience.2015.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 01/15/2015] [Accepted: 02/03/2015] [Indexed: 10/24/2022]
Abstract
Diabetic polyneuropathy (DPN) is a devastating complication of diabetes. The underlying pathogenesis of DPN is still elusive and an effective treatment devoid of side effects presents a challenge. There is evidence that in type-1 and -2 diabetes, metabolic and morphological changes lead to peripheral nerve damage and altered central nociceptive transmission, which may contribute to neuropathic pain symptoms. We characterized the electrophysiological response properties of spinal wide dynamic range (WDR) neurons in three diabetic models. The streptozotocin (STZ) model was used as a drug-induced model of type-1 diabetes, and the BioBreeding/Worcester (BB/Wor) and Zucker diabetic fatty (ZDF) rat models were used for genetic DPN models. Data were compared to the respective control group (BB/Wor diabetic-resistant, Zucker lean (ZL) and saline-injected Wistar rat). Response properties of WDR neurons to mechanical stimulation and spontaneous activity were assessed. We found abnormal response properties of spinal WDR neurons in all diabetic rats but not controls. Profound differences between models were observed. In BB/Wor diabetic rats evoked responses were increased, while in ZDF rats spontaneous activity was increased and in STZ rats mainly after discharges were increased. The abnormal response properties of neurons might indicate differential pathological, diabetes-induced, changes in spinal neuronal transmission. This study shows for the first time that specific electrophysiological response properties are characteristic for certain models of DPN and that these might reflect the diverse and complex symptomatology of DPN in the clinic.
Collapse
Affiliation(s)
- N Schuelert
- Department of CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co KG, 88397 Biberach, Germany.
| | - N Gorodetskaya
- Department of CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co KG, 88397 Biberach, Germany
| | - S Just
- Department of CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co KG, 88397 Biberach, Germany
| | - H Doods
- Department of CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co KG, 88397 Biberach, Germany
| | - L Corradini
- Department of CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co KG, 88397 Biberach, Germany
| |
Collapse
|
10
|
Morphometric analysis of connective tissue sheaths of sural nerve in diabetic and nondiabetic patients. BIOMED RESEARCH INTERNATIONAL 2014; 2014:870930. [PMID: 25147820 PMCID: PMC4132315 DOI: 10.1155/2014/870930] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 06/13/2014] [Accepted: 06/27/2014] [Indexed: 02/06/2023]
Abstract
One of the most common complications of diabetes mellitus is diabetic neuropathy. It may be provoked by metabolic and/or vascular factors, and depending on duration of disease, various layers of nerve may be affected. Our aim was to investigate influence of diabetes on the epineurial, perineurial, and endoneurial connective tissue sheaths. The study included 15 samples of sural nerve divided into three groups: diabetic group, peripheral vascular disease group, and control group. After morphological analysis, morphometric parameters were determined for each case using ImageJ software. Compared to the control group, the diabetic cases had significantly higher perineurial index (P < 0.05) and endoneurial connective tissue percentage (P < 0.01). The diabetic group showed significantly higher epineurial area (P < 0.01), as well as percentage of endoneurial connective tissue (P < 0.01), in relation to the peripheral vascular disease group. It is obvious that hyperglycemia and ischemia present in diabetes lead to substantial changes in connective tissue sheaths of nerve, particularly in peri- and endoneurium. Perineurial thickening and significant endoneurial fibrosis may impair the balance of endoneurial homeostasis and regenerative ability of the nerve fibers. Future investigations should focus on studying the components of extracellular matrix of connective tissue sheaths in diabetic nerves.
Collapse
|
11
|
Abstract
Pathologic study of a disease provides insights into the precise mechanisms and targets of damage and may provide insights into new therapies. The main targets in diabetic neuropathy are myelinated and unmyelinated fibers as dysfunction and damage to them explains the symptoms of painful neuropathy and the major end points of foot ulceration and amputation as well as mortality. Demyelination and axonal degeneration are established hallmarks of the pathology of human diabetic neuropathy and were derived from pioneering light and electronmicroscopic studies of sural nerve biopsies in the late 1960s and early 1970s. Additional abnormalities, which are relevant to the pathogenesis of human diabetic neuropathy, include pathology of the microvessels and extracellular space. Intraepidermal and sudomotor nerve quantification in skin biopsies provides a minimally invasive means for the detection of early nerve damage. Studies of muscle biopsies are limited and show significant alterations in the expression of neurotrophins, but limited changes in muscle fiber size and capillary density.
Collapse
Affiliation(s)
- R A Malik
- Centre for Endocrinology and Diabetes, Institute of Human Development, Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK; Weill Cornell Medical College in Qatar, Doha, Qatar.
| |
Collapse
|
12
|
Hur J, Sullivan KA, Callaghan BC, Pop-Busui R, Feldman EL. Identification of factors associated with sural nerve regeneration and degeneration in diabetic neuropathy. Diabetes Care 2013; 36:4043-9. [PMID: 24101696 PMCID: PMC3836098 DOI: 10.2337/dc12-2530] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Patients with diabetic neuropathy (DN) demonstrate variable degrees of nerve regeneration and degeneration. Our aim was to identify risk factors associated with sural nerve degeneration in patients with DN. RESEARCH DESIGN AND METHODS Demographic, anthropometric, biochemical, and anatomical data of subjects with DN from a 52-week trial of acetyl-L-carnitine were retrospectively examined. Based on the change in sural nerve myelinated fiber density (ΔMFD%), subjects were divided into three groups: regenerator (top 16 percentiles, n = 67), degenerator (bottom 16 percentiles, n = 67), and intermediate (n = 290), with dramatically increased, decreased, and steady ΔMFD%, respectively. ANOVA, Fisher exact test, and multifactorial logistic regression were used to evaluate statistical significance. RESULTS ΔMFD%s were 35.6 ± 17.4 (regenerator), -4.8 ± 12.1 (intermediate), and -39.8 ± 11.0 (degenerator). HbA1c at baseline was the only factor significantly different across the three groups (P = 0.01). In multifactorial logistic regression, HbA1c at baseline was also the only risk factor significantly different between regenerator (8.3 ± 1.6%) and degenerator (9.2 ± 1.8%) (odds ratio 0.68 [95% CI 0.54-0.85]; P < 0.01). Support Vector Machine classifier using HbA1c demonstrated 62.4% accuracy of classifying subjects into regenerator or degenerator. A preliminary microarray experiment revealed that upregulated genes in the regenerator group are enriched with cell cycle and myelin sheath functions, while downregulated genes are enriched in immune/inflammatory responses. CONCLUSIONS These data, based on the largest cohort with ΔMFD% information, suggest that HbA1c levels predict myelinated nerve fiber regeneration and degeneration in patients with DN. Therefore, maintaining optimal blood glucose control is likely essential in patients with DN to prevent continued nerve injury.
Collapse
|
13
|
High Glucose Induces Reactive Oxygen Species-Dependent Matrix Metalloproteinase-9 Expression and Cell Migration in Brain Astrocytes. Mol Neurobiol 2013; 48:601-14. [DOI: 10.1007/s12035-013-8442-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 03/08/2013] [Indexed: 10/27/2022]
|
14
|
Shelton GD, Johnson GC, O'Brien DP, Katz ML, Pesayco JP, Chang BJ, Mizisin AP, Coates JR. Degenerative myelopathy associated with a missense mutation in the superoxide dismutase 1 (SOD1) gene progresses to peripheral neuropathy in Pembroke Welsh Corgis and Boxers. J Neurol Sci 2012; 318:55-64. [DOI: 10.1016/j.jns.2012.04.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Revised: 03/31/2012] [Accepted: 04/02/2012] [Indexed: 12/13/2022]
|
15
|
Gardiner NJ. Integrins and the extracellular matrix: Key mediators of development and regeneration of the sensory nervous system. Dev Neurobiol 2011; 71:1054-72. [DOI: 10.1002/dneu.20950] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
16
|
Malysz T, Ilha J, Severo do Nascimento P, Faccioni-Heuser MC, De Angelis K, D'agord Schaan B, Achaval M. Exercise training improves the soleus muscle morphology in experimental diabetic nerve regeneration. Muscle Nerve 2011; 44:571-82. [DOI: 10.1002/mus.22133] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
17
|
Malysz T, Ilha J, Nascimento PSD, De Angelis K, Schaan BD, Achaval M. Beneficial effects of treadmill training in experimental diabetic nerve regeneration. Clinics (Sao Paulo) 2010; 65:1329-37. [PMID: 21340223 PMCID: PMC3020345 DOI: 10.1590/s1807-59322010001200017] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 09/05/2010] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVES We investigated the effects of treadmill training (10 weeks) on hindlimb motor function and nerve morphometric parameters in diabetic rats submitted to sciatic nerve crush. MATERIALS AND METHOD Wistar rats (n = 64) were divided into the following groups: non-diabetic; trained non-diabetic; non-diabetic with sciatic nerve crush; trained non-diabetic with sciatic nerve crush; diabetic; trained diabetic; diabetic with sciatic nerve crush or trained diabetic with sciatic nerve crush. Diabetes was induced by streptozotocin injection (50 mg/kg, iv). Hindlimb motor function was evaluated weekly by assessing sciatic functional indices, and the proximal and distal portions of the sciatic nerve were used for morphometric analysis. RESULTS At 13 weeks post-injury, the distal nerve portion of all injured groups and the proximal nerve portion of the diabetic with sciatic nerve crush group presented altered morphometric parameters such as decreased myelinated fiber diameter (~7.4 + 0.3μm vs ~4.8 + 0.2μm), axonal diameter (~5 + 0.2μm vs ~3.5 + 0.1μm) and myelin sheath thickness (~1.2 + 0.07μm vs ~0.65 + 0.07μm) and an increase in the percentage of area occupied by endoneurium (~28 + 3% vs ~60 + 3%). In addition, in the non-diabetic with sciatic nerve crush group the proximal nerve portion showed a decreased myelinated fiber diameter (7.4+0.3μm vs 5.8 + 0.3μm) and myelin sheath thickness (1.29 + 0.08μm vs 0.92 + 0.08μm). The non-diabetic with sciatic nerve crush, trained non-diabetic with sciatic nerve crush, diabetic with sciatic nerve crush and trained diabetic with sciatic nerve crush groups showed normal sciatic functional index from the 4th,4th,9th and 7th week post-injury, respectively. Morphometric alterations in the proximal nerve portion of the diabetic with sciatic nerve crush and non-diabetic with sciatic nerve crush groups were either prevented or reverted to values similar to the non-diabetic group by treadmill training. CONCLUSION Diabetic condition promoted delay in sciatic nerve regeneration. Treadmill training is able to accelerate hindlimb motor function recovery in diabetic injured rats and prevent or revert morphometric alterations in proximal nerve portions in non-diabetic and diabetic injured rats.
Collapse
Affiliation(s)
- Tais Malysz
- Universidade Federal do Rio Grande do Sul - Programa de Pós-Graduação em Neurociências, Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Porto Alegre, Rio Grande do Sul, Brazil
| | | | | | | | | | | |
Collapse
|
18
|
Duran-Jimenez B, Dobler D, Moffatt S, Rabbani N, Streuli CH, Thornalley PJ, Tomlinson DR, Gardiner NJ. Advanced glycation end products in extracellular matrix proteins contribute to the failure of sensory nerve regeneration in diabetes. Diabetes 2009; 58:2893-903. [PMID: 19720799 PMCID: PMC2780874 DOI: 10.2337/db09-0320] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE The goal of this study was to characterize glycation adducts formed in both in vivo extracellular matrix (ECM) proteins of endoneurium from streptozotocin (STZ)-induced diabetic rats and in vitro by glycation of laminin and fibronectin with methylglyoxal and glucose. We also investigated the impact of advanced glycation end product (AGE) residue content of ECM on neurite outgrowth from sensory neurons. RESEARCH DESIGN AND METHODS Glycation, oxidation, and nitration adducts of ECM proteins extracted from the endoneurium of control and STZ-induced diabetic rat sciatic nerve (3-24 weeks post-STZ) and of laminin and fibronectin that had been glycated using glucose or methylglyoxal were examined by liquid chromatography with tandem mass spectrometry. Methylglyoxal-glycated or unmodified ECM proteins were used as substrata for dissociated rat sensory neurons as in vitro models of regeneration. RESULTS STZ-induced diabetes produced a significant increase in early glycation N(epsilon)-fructosyl-lysine and AGE residue contents of endoneurial ECM. Glycation of laminin and fibronectin by methylglyoxal and glucose increased glycation adduct residue contents with methylglyoxal-derived hydroimidazolone and N(epsilon)-fructosyl-lysine, respectively, of greatest quantitative importance. Glycation of laminin caused a significant decrease in both neurotrophin-stimulated and preconditioned sensory neurite outgrowth. This decrease was prevented by aminoguanidine. Glycation of fibronectin also decreased preconditioned neurite outgrowth, which was prevented by aminoguanidine and nerve growth factor. CONCLUSIONS Early glycation and AGE residue content of endoneurial ECM proteins increase markedly in STZ-induced diabetes. Glycation of laminin and fibronectin causes a reduction in neurotrophin-stimulated neurite outgrowth and preconditioned neurite outgrowth. This may provide a mechanism for the failure of collateral sprouting and axonal regeneration in diabetic neuropathy.
Collapse
Affiliation(s)
| | - Darin Dobler
- Clinical Sciences Research Institute, Warwick Medical School, University of Warwick, Coventry, U.K
| | - Sarah Moffatt
- Faculty of Life Sciences, University of Manchester, Manchester, U.K
| | - Naila Rabbani
- Clinical Sciences Research Institute, Warwick Medical School, University of Warwick, Coventry, U.K
| | | | - Paul J. Thornalley
- Clinical Sciences Research Institute, Warwick Medical School, University of Warwick, Coventry, U.K
| | | | - Natalie J. Gardiner
- Faculty of Life Sciences, University of Manchester, Manchester, U.K
- Corresponding author: Natalie J. Gardiner,
| |
Collapse
|
19
|
|
20
|
Abstract
The extracellular matrix of peripheral nerve plays a vital role in terms of normal nerve fibre function and also in the regenerative response following nerve injury. Nerve fibre loss is a major feature of diabetic neuropathy; however, the regenerative response is limited and this may be associated with changes in the composition of the extracellular matrix. Glycoproteins and collagens are major components of the extracellular matrix and are known to be important in terms of axonal growth. This work has therefore examined whether changes in the expression of two major glycoproteins, laminin and tenascin, and three collagen types (IV, V and VI) occur in the endoneurial and perineurial connective tissue compartments of human diabetic nerve. Despite being known to have a positive effect in terms of axonal growth, laminin levels were not elevated in the diabetic nerves. However, the pattern of tenascin expression did differ between the two groups being found in association with axon myelin units in the diabetic samples only. The pattern of collagen IV expression was the same in both tissue groups and was not found to be up-regulated. However, levels of collagen V and VI were both significantly increased in the endoneurium and for collagen VI also in the perineurium.
Collapse
Affiliation(s)
- Rebecca Hill
- The Department of Biological Sciences, The University of Hull, UK.
| |
Collapse
|
21
|
Said G, Baudoin D, Toyooka K. Sensory loss, pains, motor deficit and axonal regeneration in length-dependent diabetic polyneuropathy. J Neurol 2008; 255:1693-702. [PMID: 18825430 DOI: 10.1007/s00415-008-0999-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Revised: 04/11/2008] [Accepted: 05/06/2008] [Indexed: 12/13/2022]
Abstract
In order to learn more on the occurrence of pains and motor deficit in severe diabetic polyneuropathy we reviewed the data of a series of 30 diabetic patients with an uncommonly severe length-dependent diabetic polyneuropathy (LDDP). Extensive sensory loss predominated with pains and temperature sensations and affected all four limb extremities, anterior trunk in all, plus the top of the scalp in 9 patients and the cauda equina territory in 2. Twenty patients had neuropathic pains. Symptomatic autonomic dysfunction was present in 28/30 patients, mild distal motor deficit in 12 patients, severe in only one. Vibratory sensation was impaired in the lower limbs in 18 patients; position sense in 8. In the 10 nerve biopsy specimens, the density of myelinated axons was reduced to 23 % and that of unmyelinated axons to 8.5 % of control values. Regenerating axons accounted for 32.4 +/- 19.8 % of the myelinated fibres. On teased fibre preparations 13.9 % of fibres were undergoing axonal degeneration, while 29.4 % of fibres showed focal abnormalities of the myelin sheath.We conclude that distal motor deficit occurs only after major loss of sensory fibres in LDDP; the unmyelinated axons are predominantly affected; absence of clinical improvement contrasts with the high proportion of regenerating axons; detection of alteration of pain and temperature sensation in the feet seems the best method for neuropathy screening in diabetic patients.
Collapse
Affiliation(s)
- G Said
- Fédération de Neurologie, CHU Pitié-Salpétrière, 75013 Paris, France.
| | | | | |
Collapse
|
22
|
Abstract
Neurons have a constantly high glucose demand, and unlike muscle cells they cannot accommodate episodic glucose uptake under the influence of insulin. Neuronal glucose uptake depends on the extracellular concentration of glucose, and cellular damage can ensue after persistent episodes of hyperglycaemia--a phenomenon referred to as glucose neurotoxicity. This article reviews the pathophysiological manifestation of raised glucose in neurons and how this can explain the major components of diabetic neuropathy.
Collapse
Affiliation(s)
- David R Tomlinson
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, UK.
| | | |
Collapse
|
23
|
Karamoysoyli E, Burnand RC, Tomlinson DR, Gardiner NJ. Neuritin mediates nerve growth factor-induced axonal regeneration and is deficient in experimental diabetic neuropathy. Diabetes 2008; 57:181-9. [PMID: 17909094 DOI: 10.2337/db07-0895] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
OBJECTIVE Axonal regeneration is defective in both experimental and clinical diabetic neuropathy, contributing to loss of axonal extremities and neuronal dysfunction. The mechanisms behind this failure are not fully understood; however, a deficit in neurotrophic support and signaling has been implicated. RESEARCH DESIGN AND METHODS We investigated the expression of neuritin (also known as candidate plasticity gene 15, cpg15) in the sensory nervous system of control rats and rats with streptozotocin (STZ)-induced diabetes using microarray PCR, Western blotting, and immunocytochemical analysis. The functional role of neuritin in sensory neurons in vitro was assessed using silencing RNA. RESULTS Neuritin was expressed by a population of small-diameter neurons in the dorsal root ganglia (DRG) and was anterogradely and retrogradely transported along the sciatic nerve in vivo. Nerve growth factor (NGF) treatment induced an increase in the transcription and translation of neuritin in sensory neurons in vitro. This increase was both time and dose dependent and occurred via mitogen-activated protein kinase or phosphatidylinositol-3 kinase activation. Inhibition of neuritin using silencing RNA abolished NGF-mediated neurite outgrowth, demonstrating the crucial role played by neuritin in mediating regeneration. Neuritin levels were reduced in both the DRG and sciatic nerve of rats with 12 weeks of STZ-induced diabetes, and these deficits were reversed in vivo by treatment with NGF. CONCLUSIONS Manipulation of neuritin levels in diabetes may therefore provide a potential target for therapeutic intervention in the management of neuropathy.
Collapse
Affiliation(s)
- Eugenia Karamoysoyli
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | | | | | | |
Collapse
|
24
|
Oztürk G, Sekeroğlu MR, Erdoğan E, Oztürk M. The effect of non-enzymatic glycation of extracellular matrix proteins on axonal regeneration in vitro. Acta Neuropathol 2006; 112:627-32. [PMID: 16941113 DOI: 10.1007/s00401-006-0124-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2006] [Revised: 07/10/2006] [Accepted: 07/15/2006] [Indexed: 10/24/2022]
Abstract
Non-enzymatic glycation of peripheral nerve extracellular matrix (ECM) may contribute to the development of diabetic distal sensory neuropathy (DNP). We investigated the relative importance of glycation of collagen types I and IV, laminin and fibronectin in DNP-related impairment in peripheral nerve regeneration. Dorsal root ganglia (DRGs) from young adult mice were embedded in collagen type I modified by 10% substitution with normal or glycated forms of the proteins and incubated for 3 days. Outgrowth of axons and migration of cells into the ECM were quantified. Mean length of growing axons was significantly reduced by glycation of laminin and collagen type IV. The sum of lengths of all axons from each DRG was greatly reduced with glycated laminin, collagen types IV and I. Glycation of fibronectin had no effect on axonal growth. The number of migrating cells was not affected by glycation. We conclude that non-enzymatic glycation of laminin and collagen types IV and I (in decreasing order) impairs peripheral nerve regeneration in vitro.
Collapse
Affiliation(s)
- Gürkan Oztürk
- Department of Physiology/Neuroscience Research Unit, Yuzuncu Yil University, Medical School, Fizyoloji AD, Arastirma Hastanesi, 65200, Van, Turkey.
| | | | | | | |
Collapse
|
25
|
Berghoff M, Kilo S, Hilz MJ, Freeman R. Differential impairment of the sudomotor and nociceptor axon-reflex in diabetic peripheral neuropathy. Muscle Nerve 2006; 33:494-9. [PMID: 16411196 DOI: 10.1002/mus.20497] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
It is not known whether C-fiber functional subclasses are differentially affected by diabetes mellitus or whether the patterns of C-fiber dysfunction are different between type 1 and type 2 diabetes. We therefore examined efferent sympathetic sudomotor and primary afferent nociceptor C-fiber function in diabetic patients. Acetylcholine (10%) was used to evoke C-fiber (axon-reflex)-mediated responses. The nociceptor (flare) response was measured using a laser Doppler device. The sudomotor response was quantified with silastic imprints. The nociceptor C-fiber-mediated flare response was reduced in type 2 diabetic patients (P < 0.008) but was similar to controls in type 1 diabetic patients. The sympathetic C-fiber-mediated responses, including sweat volume (P < 0.05) and the number of activated sweat glands (P = 0.003), were increased in patients with type 1 diabetes. There also was a trend toward a larger axon-reflex sweat area in patients with type 1 diabetes (P = 0.09). No differences in these sweat responses were found in patients with type 2 diabetes compared to controls. These findings suggest that the functional abnormalities in diabetic peripheral neuropathy are not homogeneous and that C-fiber subclasses are differentially affected in type 1 and 2 diabetes mellitus.
Collapse
Affiliation(s)
- Martin Berghoff
- Department of Neurology, University of Münster, Münster, Germany
| | | | | | | |
Collapse
|
26
|
|
27
|
Abstract
Progressive diabetic neuropathy has hitherto been irreversible in humans. New approaches raise the question of whether islet cell reconstitution rendering euglycemia can reverse specific features of neuropathy. We evaluated physiological and structural features of experimental neuropathy in a long-term murine model of diabetes induced by streptozotocin. By serendipity, a subset of these diabetic mice spontaneously regained islet function and attained near-euglycemia. Our hypotheses were that this model might better reflect axon loss observed in human disease and that spontaneous recovery from diabetes might identify the features of neuropathy that are reversible. In this model, experimental neuropathy closely modeled that in humans in most critical aspects: declines in motor conduction velocities, attenuation of compound muscle (M waves) and nerve action potentials, axon atrophy, myelin thinning, loss of epidermal axons, and loss of sweat gland innervation. Overt sensory neuron loss in dorsal root ganglia was a feature of this model. In mice with recovery, there was robust electrophysiological improvement, less myelin thinning, and remarkable epidermal and sweat gland reinnervation. There was, however, no recovery of populations of lost sensory neurons. Our findings identify a robust model of human diabetic neuropathy and indicate that overt, irretrievable loss of sensory neurons is one of its features, despite collateral reinnervation of target organs. Sensory neurons deserve unique protective strategies irrespective of islet cell reconstitution.
Collapse
Affiliation(s)
- James M Kennedy
- Department of Clinical Neurosciences and Neuroscience Research Group, University of Calgary, 3330 Hospital Dr. NW, Calgary, Alberta T2N 4N1, Canada
| | | |
Collapse
|
28
|
Chilton L, Middlemas A, Gardiner N, Tomlinson DR. The p75 neurotrophin receptor appears in plasma in diabetic rats-characterisation of a potential early test for neuropathy. Diabetologia 2004; 47:1924-30. [PMID: 15558233 DOI: 10.1007/s00125-004-1550-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2004] [Accepted: 07/18/2004] [Indexed: 10/26/2022]
Abstract
AIMS/HYPOTHESIS This study tested the premise that immunoreactivity representing the p75 neurotrophin receptor (p75(NTR)) appears in plasma of diabetic rats in association with the early stages of neuronal dysfunction or damage. We also examined whether treatment beneficial to neuropathy might reduce the p75(NTR) immunoreactivity. METHODS Plasma proteins were fractionated by SDS-PAGE and immunoblots exposed to p75(NTR) antibody, using receptor protein from cultured PC12 cells as an external standard. Rats were made diabetic with streptozotocin for various periods and exsanguinated. Plasma glucose, HbA(1)c and plasma proteins were determined. We also studied plasma samples from diabetic mice lacking the gene coding for p75(NTR), as well as the effect of sciatic nerve crush on healthy male Wistar rats. RESULTS Plasma p75(NTR) immunoreactivity began to exceed normal levels at 8 weeks after induction of diabetes, and was significantly raised at 10 (p<0.05) and 12 weeks (p<0.001). Treatment between 8 and 12 weeks with insulin, fidarestat (an aldose reductase inhibitor), nerve growth factor and neurotrophin 3 all normalised the plasma p75(NTR) immunoreactivity. Plasma from p75(NTR) (-/-) mice contained no such immunoreactivity, though it was present in plasma from wild-type mice. Following nerve crush, p75(NTR) immunoreactivity appeared in plasma of non-diabetic mice, indicating that this can be a result of nerve trauma. CONCLUSIONS/INTERPRETATION These observations suggest that plasma p75(NTR) immunoreactivity may serve as an early indicator of neuronal dysfunction or damage in diabetes. The time course of its appearance relates well to that of early neuropathy and its response to interventions that are neuroprotective suggests that it might mirror neurological status.
Collapse
Affiliation(s)
- L Chilton
- Division of Neuroscience, Faculty of Life Sciences, University of Manchester, Stopford Building, Oxford Road, Manchester, M13 9PT, UK
| | | | | | | |
Collapse
|
29
|
Polydefkis M, Hauer P, Sheth S, Sirdofsky M, Griffin JW, McArthur JC. The time course of epidermal nerve fibre regeneration: studies in normal controls and in people with diabetes, with and without neuropathy. Brain 2004; 127:1606-15. [PMID: 15128618 DOI: 10.1093/brain/awh175] [Citation(s) in RCA: 286] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We sought to develop and validate a standardized cutaneous nerve regeneration model and to define the rate of epidermal nerve fibre (ENF) regeneration first in healthy control subjects and then in neuropathic and neuropathy-free subjects with diabetes. Next, we assessed the effect of different factors on the rate of nerve fibre regeneration and investigated whether such an approach might offer insight into novel trial designs and outcome measures. All subjects had a standardized topical capsaicin dressing applied to the distal lateral thigh. ENF densities derived from skin biopsies were determined at baseline, after capsaicin treatment and at reinnervation time points. For each subject, the best fit line from post-denervation data was determined and the slope was used as the rate of regeneration. In healthy control subjects, regeneration was correlated with psychophysical sensory testing, electron microscopy studies and immunohistochemistry with alternative axonal membrane markers. Topical capsaicin application produced complete or nearly complete denervation of the epidermis in both control subjects and people with diabetes. The rate of regeneration was associated with the baseline ENF density (P < 0.001), but not age (P = 0.75), gender (P = 0.18), epidermal thickness (P = 0.4) or post-capsaicin treatment density (P = 0.7). ENF regeneration, as determined by recovery of ENF density, occurred at a rate of 0.177 +/- 0.075 fibres/mm/day in healthy control subjects and was significantly reduced in subjects with diabetes (0.074 +/- 0.064, P < 0.001) after adjusting for changes in baseline ENF density. Among subjects with diabetes, the presence of neuropathy was associated with a further reduction in regenerative rate (0.10 +/- 0.07 versus 0.04 +/- 0.03, P = 0.03), though diabetes type (P = 0.7), duration of diabetes (P = 0.3) or baseline glycated haemoglobin (P = 0.6) were not significant. These results have several implications. First, topical capsaicin application can produce a uniform epidermal nerve fibre injury that is safe and well tolerated, and offers an efficient strategy to measure and study nerve regeneration in man. Secondly, using our techniques, reduced rates of nerve regeneration were found in people with diabetes without evidence of neuropathy and indicate that abnormalities in peripheral nerve function are present early in diabetes, before signs or symptoms develop. These results suggest that regenerative neuropathy trials could include non-neuropathic subjects and that trial duration can be dramatically shortened.
Collapse
Affiliation(s)
- Michael Polydefkis
- Department of Neurology, The Johns Hopkins University, Baltimore, MD 21287, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Anand P. Neurotrophic factors and their receptors in human sensory neuropathies. PROGRESS IN BRAIN RESEARCH 2004; 146:477-92. [PMID: 14699981 DOI: 10.1016/s0079-6123(03)46030-5] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Neurotrophic factors may play key roles in pathophysiological mechanisms of human neuropathies. Nerve growth factor (NGF) is trophic to small-diameter sensory fibers and regulates nociception. This review focuses on sensory dysfunction and the potential of neurotrophic treatments. Genetic neuropathy. Mutations of the NGF high-affinity receptor tyrosine kinase A (Trk A) have been found in congenital insensitivity to pain and anhidrosis; these are likely to be partial loss-of-function mutations, as axon-reflex vasodilatation and sweating can be elicited albeit reduced, suggesting rhNGF could restore nociception in some patients. Leprous neuropathy. Decreased NGF in leprosy skin may explain cutaneous hypoalgesia even with inflammation and rhNGF may restore sensation, as spared nerve fibers show Trk A-staining. Diabetic neuropathy. NGF is depleted in early human diabetic neuropathy skin, in correlation with dysfunction of nociceptor fibers. We proposed rhNGF prophylaxis may prevent diabetic foot ulceration. Clinical trials have been disappointed, probably related to difficulty delivering adequate doses and need for multiple trophic factors. NGF and glial cell line-derived neurotrophic factor (GDNF) are both produced by basal keratinocytes and neurotrophin (NT-3) by suprabasal keratinocytes: relative mRNA expression was significantly lower in early diabetic neuropathy skin compared to controls, for NGF (P < 0.02), BDNF (P < 0.05), NT-3 (P < 0.05), GDNF (< 0.02), but not NT4/5, Trk A or p75 neurotrophin receptor (all P > 0.05). Posttranslational modifications of mature and pro-NGF may also affect bioactivity and immunoreactivity. A 53 kD band that could correspond to a prepro-NGF-like molecule was reduced in diabetic skin. Traumatic neuropathy and pain. While NGF levels are acutely reduced in injured nerve trunks, neuropathic patients with chronic skin hyperalgesia and allodynia show marked local increases of NGF levels; here anti-NGF agents may provide analgesia. Physiological combinations of NGF, NT-3 and GDNF, to mimic a 'surrogate target organ', may provide a novel 'homeostatic' approach to prevent the development and ameliorate intractable neuropathic pain (e.g., at painful amputation stumps).
Collapse
Affiliation(s)
- Praveen Anand
- Department of Neurology, Peripheral Neuropathy Unit, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 ONN, UK.
| |
Collapse
|
31
|
Yasuda H, Terada M, Maeda K, Kogawa S, Sanada M, Haneda M, Kashiwagi A, Kikkawa R. Diabetic neuropathy and nerve regeneration. Prog Neurobiol 2003; 69:229-85. [PMID: 12757748 DOI: 10.1016/s0301-0082(03)00034-0] [Citation(s) in RCA: 180] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Diabetic neuropathy is the most common peripheral neuropathy in western countries. Although every effort has been made to clarify the pathogenic mechanism of diabetic neuropathy, thereby devising its ideal therapeutic drugs, neither convinced hypotheses nor unequivocally effective drugs have been established. In view of the pathologic basis for the treatment of diabetic neuropathy, it is important to enhance nerve regeneration as well as prevent nerve degeneration. Nerve regeneration or sprouting in diabetes may occur not only in the nerve trunk but also in the dermis and around dorsal root ganglion neurons, thereby being implicated in the generation of pain sensation. Thus, inadequate nerve regeneration unequivocally contributes to the pathophysiologic mechanism of diabetic neuropathy. In this context, the research on nerve regeneration in diabetes should be more accelerated. Indeed, nerve regenerative capacity has been shown to be decreased in diabetic patients as well as in diabetic animals. Disturbed nerve regeneration in diabetes has been ascribed at least in part to all or some of decreased levels of neurotrophic factors, decreased expression of their receptors, altered cellular signal pathways and/or abnormal expression of cell adhesion molecules, although the mechanisms of their changes remain almost unclear. In addition to their steady-state changes in diabetes, nerve injury induces injury-specific changes in individual neurotrophic factors, their receptors and their intracellular signal pathways, which are closely linked with altered neuronal function, varying from neuronal survival and neurite extension/nerve regeneration to apoptosis. Although it is essential to clarify those changes for understanding the mechanism of disturbed nerve regeneration in diabetes, very few data are now available. Rationally accepted replacement therapy with neurotrophic factors has not provided any success in treating diabetic neuropathy. Aside from adverse effects of those factors, more rigorous consideration for their delivery system may be needed for any possible success. Although conventional therapeutic drugs like aldose reductase (AR) inhibitors and vasodilators have been shown to enhance nerve regeneration, their efficacy should be strictly evaluated with respect to nerve regenerative capacity. For this purpose, especially clinically, skin biopsy, by which cutaneous nerve pathology including nerve regeneration can be morphometrically evaluated, might be a safe and useful examination.
Collapse
Affiliation(s)
- Hitoshi Yasuda
- Division of Neurology, Department of Medicine, Shiga University of Medical Science, Seta, Otsu, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
|
33
|
Arezzo JC, Zotova E. Electrophysiologic measures of diabetic neuropathy: mechanism and meaning. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2003; 50:229-55. [PMID: 12198812 DOI: 10.1016/s0074-7742(02)50079-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Whole nerve electrophysiologic procedures afford a battery of measures that can provide a noninvasive and objective index of the onset and progression of diabetic polyneuropathy (DPN). Advances in physiologic procedures, digital hardware, and mathematical models have allowed assessment of activity in slower conducting fibers, as well as measures that reflect changes in refractory periods and threshold excitability. These expanded options can augment standard measures of maximal conduction velocity and compound amplitude and greatly enhance the sensitivity of whole nerve measure to both structural (e.g. demyelination) and "nonstructural" (e.g. redistribution of ion channels) deficits associated with DPN. The mechanisms underlying the physiologic events in DPN are multifactorial and their sequence in complex, with different mechanisms contributing to change at overlapping, but distinct points in the progression. Factors influencing early change in velocity may differ from those contributing to chronic deficits and these mechanisms may also differ in their response to various putative therapies. This review attempts to summarize the pattern of whole nerve electrophysiologic change associated with DPN, outlines the strengths and limitations of the various measures that are feasible, and discusses the specific impact of know pathophysiologic mechanisms on these end points.
Collapse
Affiliation(s)
- Joseph C Arezzo
- Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | |
Collapse
|
34
|
Abstract
The relationships among Schwann cells, axons, and the perineurial barrier emphasize the key role Schwann cells play in normal functions of the nerve. Schwann cells are responsible for action potential velocity through insulation of axons, maintenance of axonal caliber, and correct localization of Na+ channels; immunological and funcitonal integrity of the nerve through the perineurial blood-nerve-barrier; and effective nerve regeneration. In diabetic neuropathy, many of these facets of nerve function are defective. Hypoxia, hyerglycemia, and increased oxidative stress contribute directly and indirectly to Schwann cell dysfunction. The results include impaired paranodal barrier function, damaged myelin, reduced antioxidative capacity, and decreased neurotrophic support for axons. This chapter discusses the role of the Schwann cell in the normal or regenerating nerve nad in the altered metabolic conditons of diabetes.
Collapse
Affiliation(s)
- Luke Eckersley
- Neuroscience Division, University of Manchester, School of Biological Sciences, Manchester M13 9PT, United Kingdom
| |
Collapse
|
35
|
Almhanna K, Wilkins PL, Bavis JR, Harwalkar S, Berti-Mattera LN. Hyperglycemia triggers abnormal signaling and proliferative responses in Schwann cells. Neurochem Res 2002; 27:1341-7. [PMID: 12512939 DOI: 10.1023/a:1021671615939] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Peripheral neuropathy is a serious diabetic complication. Delayed nerve regeneration in diabetic animal models suggests abnormalities in proliferation/differentiation of Schwann cells (SC). We recently reported that endothelins (ETs) regulate proliferation and phenotype in primary and immortalized SC (iSC). We now investigated changes in the effects of ETs on SC proliferation and signaling in nerve segments from streptozotocin-induced diabetic rats and in iSC exposed to high glucose. Cultured explants from diabetic rats displayed a delay in the time-course of [3H]-thymidine incorporation as well as enhanced sensitivity to endothelin-1 (ET-1) or insulin. iSC cultured in high (25 mM) glucose-containing media also exhibited higher [3H]-thymidine incorporation, along with an enhanced activation of p38 mitogen-activated protein kinase and phospholipase C in response to ET-1 or platelet-derived growth factor as compared to controls (5.5 mM glucose). These studies support an extra-vascular role of ETs in peripheral nerves and SC. The increased sensitivity to ET-1 in nerves and iSC exposed to high glucose may contribute to abnormal SC proliferation characterizing diabetic neuropathy.
Collapse
Affiliation(s)
- Khaldoun Almhanna
- Division of Hypertension, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | | | | | | | | |
Collapse
|
36
|
Kennedy JM, Zochodne DW. Influence of experimental diabetes on the microcirculation of injured peripheral nerve: functional and morphological aspects. Diabetes 2002; 51:2233-40. [PMID: 12086955 DOI: 10.2337/diabetes.51.7.2233] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Regeneration of diabetic axons has delays in onset, rate, and maturation. It is possible that microangiopathy of vasa nervorum, the vascular supply of the peripheral nerve, may render an unfavorable local environment for nerve regeneration. We examined local nerve blood flow proximal and distal to sciatic nerve transection in rats with long-term (8 month) experimental streptozotocin diabetes using laser Doppler flowmetry and microelectrode hydrogen clearance polarography. We then correlated these findings, using in vivo perfusion of an India ink preparation, by outlining the lumens of microvessels from unfixed nerve sections. There were no differences in baseline nerve blood flow between diabetic and nondiabetic uninjured nerves, and vessel number, density, and area were unaltered. After transection, there were greater rises in blood flow in proximal stumps of nondiabetic nerves than in diabetic animals associated with a higher number, density, and caliber of epineurial vessels. Hyperemia also developed in distal stumps of nondiabetic nerves but did not develop in diabetic nerves. In these stumps, diabetic rats had reduced vessel numbers and smaller mean endoneurial vessel areas. Failed or delayed upregulation of nerve blood flow after peripheral nerve injury in diabetes may create a relatively ischemic regenerative microenvironment.
Collapse
Affiliation(s)
- James M Kennedy
- Department of Clinical Neurosciences, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada T2N 4N1
| | | |
Collapse
|
37
|
Grandis M, Nobbio L, Abbruzzese M, Banchi L, Minuto F, Barreca A, Garrone S, Mancardi GL, Schenone A. Insulin treatment enhances expression of IGF-I in sural nerves of diabetic patients. Muscle Nerve 2001; 24:622-9. [PMID: 11317271 DOI: 10.1002/mus.1047] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We studied the expression of insulin-like growth factor I (IGF-I) and its receptor in sural nerves from 8 diabetic patients divided into insulin-treated (IT) and non-insulin-treated (NIT) groups, compared with 5 patients with axonal neuropathies and 4 control patients (undergoing biopsies for diagnostic purposes). Insulin-like growth factor I mRNA levels did not differ in diabetic cases compared with control subjects. In sural nerves from IT patients and axonal neuropathies, IGF-I expression was higher than in NIT subjects and diagnostic controls. Changes in IGF-I receptor mRNA levels paralleled those of the ligand. Insulin-like growth factor I immunoreactivity was higher in nerves undergoing axonal degeneration and higher in IT than NIT diabetic patients and diagnostic controls. These findings suggest that insulin treatment increases IGF-I expression in diabetic nerves. Our data do not support the hypothesis of an absolute IGF-I deficiency in human diabetic neuropathy. A Schwann cell's incapacity to increase IGF-I expression after severe nerve damage, as happens in axonal neuropathies, may be a cofactor in the pathogenesis of diabetic neuropathy.
Collapse
Affiliation(s)
- M Grandis
- Department of Neurological and Vision Sciences, University of Genoa, Via de Toni 5, 16132, Genoa, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
In this article we will review the clinical signs and symptoms of diabetic somatic polyneuropathy (DPN), its prevalence and clinical management. Staging and classification of DPN will be exemplified by various staging paradigms of varied sophistication. The results of therapeutic clinical trials will be summarized. The pathogenesis of diabetic neuropathy reviews an extremely complex issue that is still not fully understood. Various recent advances in the understanding of the disease will be discussed, particularly with respect to the differences between neuropathy in the two major types of diabetes. The neuropathology and natural history of diabetic neuropathy will be discussed pointing out the heterogeneities of the disease. Finally, the various prospective therapeutic avenues will be dealt with and discussed.
Collapse
Affiliation(s)
- K Sugimoto
- Department of Pathology, Wayne State University, School of Medicine and Detroit Medical Center, Detroit, MI 48201, USA
| | | | | |
Collapse
|
39
|
Althaus HH, Richter-Landsberg C. Glial cells as targets and producers of neurotrophins. INTERNATIONAL REVIEW OF CYTOLOGY 2000; 197:203-77. [PMID: 10761118 DOI: 10.1016/s0074-7696(00)97005-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Glial cells fulfill important tasks within the neural network of the central and peripheral nervous systems. The synthesis and secretion of various polypeptidic factors (cytokines) and a number of receptors, with which glial cells are equipped, allow them to communicate with their environment. Evidence has accumulated during recent years that neurotrophins play an important role not only for neurons but also for glial cells. This brief update of some morphological, immunocytochemical, and biochemical characteristics of glial cell lineages conveys our present knowledge about glial cells as targets and producers of neurotrophins under normal and pathological conditions. The chapter discusses the presence of neurotrophin receptors on glial cells, glial cells as producers of neurotrophins, signaling pathways downstream Trk and p75NTR, and the significance of neurotrophins and their receptors for glial cells during development, in cell death and survival, and in neurological disorders.
Collapse
Affiliation(s)
- H H Althaus
- AG Neural Regeneration, Max Planck Institute for Experimental Medicine, Göttingen, Germany
| | | |
Collapse
|
40
|
Geuna S, Tos P, Battiston B, Guglielmone R. Verification of the two-dimensional disector, a method for the unbiased estimation of density and number of myelinated nerve fibers in peripheral nerves. Ann Anat 2000; 182:23-34. [PMID: 10668555 DOI: 10.1016/s0940-9602(00)80117-x] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Quantification of the number of myelinated fibers in peripheral nerves is a common requirement in quantitative morphology. This parameter provides important information on the consequences of various physiological, pathological and experimental conditions on the nerve structure and is one of the main indicators of success of peripheral nerve repair. In this paper, the theoretical rationale for the application of stereological principles to obtain unbiased estimates of the density and total number of myelinated fibers in peripheral nerves is discussed and a simple stereological method is described. The method is applied together with a systematic random sampling scheme, that was optimized for the purposes of the present study, and with sampling scheme analysis by calculating the coefficient of error (CE). The stereological method, which consists of a two-dimensional variation of the classical disector procedure (two-dimensional disector), and the sampling scheme are verified by comparing estimates with the true density and total number of myelinated fibers in peripheral nerve trunks where true values have been accurately determined by extensive counting. The verification of the 2-D disector method, both of normal and regenerated nerves, showed that estimates of density and total number of myelinated nerve fibers are unbiased. The method also proved to be efficient (time-saving): Estimation of density and total number of myelinated fibers in a single nerve takes about 2-3 hours.
Collapse
Affiliation(s)
- S Geuna
- Dipartimento di Scienze Cliniche e Biologiche, Università di Torino, Ospedale San Luigi, Italy
| | | | | | | |
Collapse
|
41
|
Walker D, Carrington A, Cannan SA, Sawicki D, Sredy J, Boulton AJ, Malik RA. Structural abnormalities do not explain the early functional abnormalities in the peripheral nerves of the streptozotocin diabetic rat. J Anat 1999; 195 ( Pt 3):419-27. [PMID: 10580857 PMCID: PMC1468011 DOI: 10.1046/j.1469-7580.1999.19530419.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The streptozotocin (STZ)-diabetic rat, the most commonly employed model of experimental diabetic neuropathy, is characterised by a reduction in nerve conduction velocity, pain threshold and blood flow. Whether or not structural abnormalities underlie these functional abnormalities is unclear. 10 adult male Sprague-Dawley STZ-diabetic rats (diabetes duration 27 d) and 10 age-matched (23 wk) control animals were studied. Motor nerve conduction velocity (m s(-1)) was significantly reduced in diabetic (41.31 +/- 0.8) compared with control (46.15 +/- 1.5) animals (P < 0.001). The concentration of sciatic nerve glucose (P < 0.001), fructose (P < 0.001) and sorbitol (P < 0.001) was elevated, and myoinositol (P < 0.001) was reduced in diabetic compared with control animals. Detailed morphometric studies demonstrated no significant difference in fascicular area, myelinated fibre density, fibre and axon areas as well as unmyelinated fibre density and diameter. Endoneurial capillary density, basement membrane area and endothelial cell profile number did not differ between diabetic and control animals. However, luminal area (P < 0.03) was increased and endothelial cell area (P < 0.08) was decreased in the diabetic rats. We conclude there is no detectable structural basis for the reduction in nerve conduction velocity, pain threshold or blood flow, observed in the streptozotocin diabetic rat.
Collapse
Affiliation(s)
- D Walker
- Department of Medicine, Manchester Royal Infirmary, UK
| | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Interest in diabetes mellitus research has escalated in Greece during the last decade. This may be attributed to the realization that diabetes is becoming a major problem for the Greek population, the effect of the St Vincent Declaration in passing specific government legislation, and the founding of the National Hellenic Center for the Prevention and Treatment of Diabetes and its Complications. Research areas include epidemiology, etiopathogenesis, glucose metabolism, complications, prevention and treatment of the disease.
Collapse
Affiliation(s)
- C S Bartsocas
- Department of Pediatrics, Faculty of Nursing, University of Athens at P & A Kyriakou Children's Hospital, Athens, Greece.
| |
Collapse
|
43
|
Unger JW, Klitzsch T, Pera S, Reiter R. Nerve growth factor (NGF) and diabetic neuropathy in the rat: morphological investigations of the sural nerve, dorsal root ganglion, and spinal cord. Exp Neurol 1998; 153:23-34. [PMID: 9743564 DOI: 10.1006/exnr.1998.6856] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A number of functions for nerve growth factor (NGF) have been described over the past years, including its role for neuronal function and regeneration during toxic or metabolic neuropathies. In order to further assess the effects of NGF on the somatosensory system in diabetic neuropathy, the sural nerve, dorsal root ganglia (DRG), and dorsal horn of the spinal cord were investigated by morphological and quantitative methods in rats after 12 weeks of uncontrolled streptozotocin-induced diabetes mellitus. The results from our study suggest a twofold effect of NGF: (1) In sural nerve treatment with NGF (0.1 or 0.5 mg/kg) for 12 weeks was able to reverse distinct diabetes-related alterations in myelinated nerve fiber morphology, such as myelin thickness. These changes occurred in the entire myelinated population of sensory nerves and were not restricted to nociceptive nerve fibers. (2) The NGF effect on neurotransmitters of the sensory, nociceptive system was reflected by increased CGRP and substance P content in the DRG and in the dorsal horn of the spinal cord. No change of trkA receptor immunostaining was seen in DRGs of diabetic rats; however, a reduction of trkA immunoreactivity of DRG neurons was noted after long-term NGF treatment of healthy controls. The data demonstrate that NGF regulates a number of neuronal parameters along peripheral and central parts of the somatosensory pathway in the adult. This neurotrophic support may be essential for inducing functionally significant regenerative mechanisms in diabetic neuropathy.
Collapse
Affiliation(s)
- J W Unger
- Department of Neuroanatomy, University of Munich, Pettenkoferstrasse 11, Munich, D-80336, Germany
| | | | | | | |
Collapse
|
44
|
Yamamoto Y, Yasuda Y, Kimura Y, Komiya Y. Effects of cilostazol, an antiplatelet agent, on axonal regeneration following nerve injury in diabetic rats. Eur J Pharmacol 1998; 352:171-8. [PMID: 9716352 DOI: 10.1016/s0014-2999(98)00356-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
To evaluate the ability of cilostazol, an antiplatelet and vasodilating agent, to promote axonal regeneration in streptozotocin-induced diabetic rats, the time until beginning of regeneration (initial delay) and the axonal regeneration rate of the sciatic nerve were estimated using the pinch test, and ornithine decarboxylase activity was measured in dorsal root ganglia. At 5 weeks of diabetes, axonal regeneration rate remained unchanged but the initial delay was prolonged and ornithine decarboxylase induction was delayed in diabetic rats compared with those in normal rats. Cilostazol had little effect on these parameters in normal or diabetic rats. At 10 weeks of diabetes, diabetic rats showed both prolongation of initial delay and a decrease in axonal regeneration rate. Cilostazol markedly increased axonal regeneration rate in diabetic rats. Ornithine decarboxylase induction following nerve injury disappeared almost completely in diabetic rats but was maintained by cilostazol treatment. The effect of cilostazol in diabetic rats is thought to be mediated through its preventive effect on circulatory disorders. The active site of the drug appears to be early processes in nerve regeneration before ornithine decarboxylase induction. Further, the results suggest that the both axonal regeneration and this induction are sensitive to circulatory defects in diabetes.
Collapse
Affiliation(s)
- Y Yamamoto
- Thrombosis and Vascular Research Laboratory, Otsuka Pharmaceutical, Tokushima, Japan.
| | | | | | | |
Collapse
|
45
|
Abstract
Better clinical characteristics and a standardized approach to the definition of neuropathy has enabled us to define more precisely the natural history of diabetic neuropathy. Detailed studies on the pathology and pathogenesis have allowed dissection of important pathogenetic pathways. Effective treatment is currently limited, although a number of new and potentially important therapeutic interventions, including modification of the vascular supply and antioxidant status and growth factors, may prove to be of benefit in preventing damage and also promoting repair of peripheral nerves in human diabetic neuropathy.
Collapse
Affiliation(s)
- A J Boulton
- Department of Medicine, University of Manchester, United Kingdom
| | | |
Collapse
|
46
|
Sobue G, Yamamoto M, Doyu M, Li M, Yasuda T, Mitsuma T. Expression of mRNAs for neurotrophins (NGF, BDNF, and NT-3) and their receptors (p75NGFR, trk, trkB, and trkC) in human peripheral neuropathies. Neurochem Res 1998; 23:821-9. [PMID: 9572670 DOI: 10.1023/a:1022434209787] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The steady-state mRNA levels of NGF, BDNF and NT-3, and the mRNA levels of their receptors p75NGFR, trk, trkB, and trkC were examined in various human peripheral neuropathies, to determine the correlation with myelinated fiber pathology and T cell and macrophage invasions in the diseased nerves. Steady state levels of p75NGFR mRNAs were significantly elevated in nerves with axonal pathology. In contrast, steady state levels of trkB and trkC mRNA levels were diminished. trk mRNA was not detected in the human nerves. The NGF, BDNF, and NT-3 mRNA levels were elevated in the diseased nerves. The increase in BDNF and NT-3 mRNA levels were proportional to the extent of invasion of the nerves by T cells and macrophages, but did not directly correlate with axonal nor demyelinating pathology, thus suggesting that inflammatory cell invasions are involved in the regulation of BDNF and NT-3 mRNA expressions. These neurotrophin and their receptor gene expressions in the diseased human nerves would be regulated by an underlying pathology-related process, and could play a role in peripheral nerve repair.
Collapse
Affiliation(s)
- G Sobue
- Department of Neurology, Nagoya University School of Medicine, Japan
| | | | | | | | | | | |
Collapse
|