1
|
Nordquist RE, Zeinstra EC, Dougherty A, Riber AB. Effects of Dark Brooder Rearing and Age on Hypothalamic Vasotocin and Feather Corticosterone Levels in Laying Hens. Front Vet Sci 2020; 7:19. [PMID: 32083103 PMCID: PMC7002395 DOI: 10.3389/fvets.2020.00019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 01/10/2020] [Indexed: 12/15/2022] Open
Abstract
Chickens cannot independently thermoregulate at hatch and lack opportunity to behaviorally thermoregulate with a hen in the egg layer industry, thus barns are heated to thermoneutral temperatures. Dark brooders are low-energy-consuming hot plates, which may be environmentally advantageous while providing welfare-enhancing aspects of maternal care (i.e., shelter and separation of active and inactive individuals). Dark brooder use has been demonstrated to decrease injurious pecking and mortality well into the production period of layers. To further understand hen development around lay onset and effects of dark brooders on the brain and HPA-axis, we examined effects of rearing with dark brooders on expression of vasotocin (AVT) in the hypothalamus and corticosterone (CORT) in the feathers of in total 48 layer Isa Warren hens at 16 w and 28 w of age (n = 12 per age and treatment). An age-dependent decreased number of AVT-positive neurons was seen in the medial preoptic area, medial preoptic nucleus, paraventricular nucleus, rostral part (prepeduncular hypothalamus), and lateral preoptic area. Trends to effects of brooder rearing were found in both anteromedial preoptic nucleus and supraoptic nucleus, with dark brooder reared animals showing higher mean counts of AVT-positive neurons in both areas. No interactions between brooder raising and age were observed in AVT-positive neuron count. CORT levels were higher in primary wing feathers from 28 week old hens than in those from 16 week hens. No main effects of rearing with dark brooders or interactions between age and treatment were found on CORT levels. The age-dependent effects seen in the hypothalamus and CORT aids in further understanding of the development of chickens around puberty. The use of brooders tended to increase AVT expression in the anteromedial preoptic nucleus and supraoptic nucleus, an indication that dark brooder rearing may affect physiological responses regulated by these areas. The lack of effect of dark brooders on CORT in feathers is at the least an indication that the use of dark brooders is not stressful; in combination with the benefits of dark brooders on injurious pecking, fearfulness and early mortality, this pleads for the use of dark brooders in on-farm situations.
Collapse
Affiliation(s)
- Rebecca E Nordquist
- Behaviour and Welfare Research Group, Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands.,UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, Netherlands
| | - Elisabeth C Zeinstra
- Behaviour and Welfare Research Group, Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Alyssa Dougherty
- Behaviour and Welfare Research Group, Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Anja B Riber
- Department of Animal Science, Aarhus University, Tjele, Denmark
| |
Collapse
|
2
|
Differential and temporal expression of corticotropin releasing hormone and its receptors in the nucleus of the hippocampal commissure and paraventricular nucleus during the stress response in chickens (Gallus gallus). Brain Res 2019; 1714:1-7. [DOI: 10.1016/j.brainres.2019.02.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 02/06/2019] [Accepted: 02/14/2019] [Indexed: 12/21/2022]
|
3
|
Nagarajan G, Jurkevich A, Kang SW, Kuenzel WJ. Anatomical and functional implications of corticotrophin-releasing hormone neurones in a septal nucleus of the avian brain: an emphasis on glial-neuronal interaction via V1a receptors in vitro. J Neuroendocrinol 2017; 29. [PMID: 28614607 DOI: 10.1111/jne.12494] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/31/2017] [Accepted: 06/09/2017] [Indexed: 01/30/2023]
Abstract
Previously, we showed that corticotrophin-releasing hormone immunoreactive (CRH-IR) neurones in a septal structure are associated with stress and the hypothalamic-pituitary-adrenal axis in birds. In the present study, we focused upon CRH-IR neurones located within the septal structure called the nucleus of the hippocampal commissure (NHpC). Immunocytochemical and gene expression analyses were used to identify the anatomical and functional characteristics of cells within the NHpC. A comparative morphometry analysis showed that CRH-IR neurones in the NHpC were significantly larger than CRH-IR parvocellular neurones in the paraventricular nucleus of the hypothalamus (PVN) and lateral bed nucleus of the stria terminalis. Furthermore, these large neurones in the NHpC usually have more than two processes, showing characteristics of multipolar neurones. Utilisation of an organotypic slice culture method enabled testing of how CRH-IR neurones could be regulated within the NHpC. Similar to the PVN, CRH mRNA levels in the NHpC were increased following forskolin treatment. However, dexamethasone decreased forskolin-induced CRH gene expression only in the PVN and not in the NHpC, indicating differential inhibitory mechanisms in the PVN and the NHpC of the avian brain. Moreover, immunocytochemical evidence also showed that CRH-IR neurones reside in the NHpC along with the vasotocinergic system, comprising arginine vasotocin (AVT) nerve terminals and immunoreactive vasotocin V1a receptors (V1aR) in glia. Hence, we hypothesised that AVT acts as a neuromodulator within the NHpC to modulate activity of CRH neurones via glial V1aR. Gene expression analysis of cultured slices revealed that AVT treatment increased CRH mRNA levels, whereas a combination of AVT and a V1aR antagonist treatment decreased CRH mRNA expression. Furthermore, an attempt to identify an intercellular mechanism in glial-neuronal communication in the NHpC revealed that brain-derived neurotrophic factor (BDNF) and its receptor (TrkB) could be involved in the signalling mechanism. Immunocytochemical results further showed that both BDNF and TrkB receptors were found in glia of the NHpC. Interestingly, in cultured brain slices containing the NHpC, the use of a selective TrkB antagonist decreased the AVT-induced increase in CRH gene expression levels. The results from the present study collectively suggest that CRH neuronal activity is modulated by AVT via V1aR involving BDNF and TrkB glia in the NHpC.
Collapse
Affiliation(s)
- G Nagarajan
- The Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, USA
| | - A Jurkevich
- Molecular Cytology Research Core Facility, University of Missouri, Columbia, MO, USA
| | - S W Kang
- The Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, USA
| | - W J Kuenzel
- The Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
4
|
Jiang N, Wang Z, Cao J, Dong Y, Chen Y. Effect of monochromatic light on circadian rhythmic expression of clock genes in the hypothalamus of chick. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 173:476-484. [PMID: 28668516 DOI: 10.1016/j.jphotobiol.2017.06.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/13/2017] [Accepted: 06/21/2017] [Indexed: 11/19/2022]
Abstract
To clarify the effect of monochromatic light on circadian clock gene expression in chick hypothalamus, a total 240 newly hatched chickens were reared under blue light (BL), green light (GL), red light (RL) and white light (WL), respectively. On the post-hatched day 14, 24-h profiles of seven core clock genes (cClock, cBmal1, cBmal2, cCry1, cCry2, cPer2 and cPer3) were measured at six time points (CT 0, CT 4, CT 8, CT 12, CT 16, CT 20, circadian time). We found all these clock genes expressed with a significant rhythmicity in different light wavelength groups. Meanwhile, cClock and cBmal1 showed a high level under GL, and followed a corresponding high expression of cCry1. However, RL decreased the expression levels of these genes. Be consistent with the mRNA level, CLOCK and BMAL1 proteins also showed a high level under GL. The CLOCK-like immunoreactive neurons were observed not only in the SCN, but also in the non-SCN brain region such as the nucleus anterior medialis hypothalami, the periventricularis nucleus, the paraventricular nucleus and the median eminence. All these results are consistent with the auto-regulatory circadian feedback loop, and indicate that GL may play an important role on the circadian time generation and development in the chick hypothalamus. Our results also suggest that the circadian clock in the chick hypothalamus such as non-SCN brain region were involved in the regulation of photo information.
Collapse
Affiliation(s)
- Nan Jiang
- Laboratory of Anatomy of Domestic Animals, College of Animal Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Zixu Wang
- Laboratory of Anatomy of Domestic Animals, College of Animal Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Jing Cao
- Laboratory of Anatomy of Domestic Animals, College of Animal Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Yulan Dong
- Laboratory of Anatomy of Domestic Animals, College of Animal Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Yaoxing Chen
- Laboratory of Anatomy of Domestic Animals, College of Animal Medicine, China Agricultural University, Haidian, Beijing 100193, China.
| |
Collapse
|
5
|
Nagarajan G, Kang SW, Kuenzel WJ. Functional evidence that the nucleus of the hippocampal commissure shows an earlier activation from a stressor than the paraventricular nucleus: Implication of an additional structural component of the avian hypothalamo-pituitary-adrenal axis. Neurosci Lett 2017; 642:14-19. [DOI: 10.1016/j.neulet.2017.01.064] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/29/2016] [Accepted: 01/27/2017] [Indexed: 01/10/2023]
|
6
|
Nagarajan G, Jurkevich A, Kang SW, Kuenzel WJ. Diencephalic and septal structures containing the avian vasotocin receptor (V1aR) involved in the regulation of food intake in chickens, Gallus gallus. Physiol Behav 2016; 164:268-76. [PMID: 27317836 DOI: 10.1016/j.physbeh.2016.06.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 05/23/2016] [Accepted: 06/14/2016] [Indexed: 12/31/2022]
Abstract
Recently, it was found that the avian central vasotocin receptor (V1aR) is associated with the regulation of food intake. To identify V1aR-containing brain structures regulating food intake, a selective V1aR antagonist SR-49059 that induced food intake was administrated intracerebroventricularly in male chickens followed by detection of brain structures using FOS immunoreactivity. Particularly, the hypothalamic core region of the paraventricular nucleus, lateral hypothalamic area, dorsomedial hypothalamic nucleus, a subnucleus of the central extended amygdalar complex [dorsolateral bed nucleus of the stria terminalis], medial septal nucleus and caudal brainstem [nucleus of the solitary tract] showed significantly increased FOS-ir cells. On the other hand, the supraoptic nucleus of the preoptic area and the nucleus of the hippocampal commissure of the septum showed suppressed FOS immunoreactivity in the V1aR antagonist treatment group. Further investigation revealed that neuronal activity of arginine vasotocin (AVT-ir) magnocellular neurons in the supraoptic nucleus, preoptic periventricular nucleus, paraventricular nucleus and ventral periventricular hypothalamic nucleus and most likely corticotropin releasing hormone (CRH-ir) neurons in the nucleus of the hippocampal commissure were reduced following the antagonist treatment. Dual immunofluorescence labeling results showed that perikarya of AVT-ir magnocellular neurons in the preoptic area and hypothalamus were colabeled with V1aR. Within the nucleus of the hippocampal commissure, CRH-ir neurons were shown in close contact with V1aR-ir glial cells. Results of the present study suggest that the V1aR plays a role in the regulation of food intake by modulating neurons that synthesize and release anorectic neuropeptides in the avian brain.
Collapse
Affiliation(s)
- Gurueswar Nagarajan
- The Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - Alexander Jurkevich
- The Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - Seong W Kang
- The Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - Wayne J Kuenzel
- The Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA.
| |
Collapse
|
7
|
Goodson JL, Kelly AM, Kingsbury MA. Evolving nonapeptide mechanisms of gregariousness and social diversity in birds. Horm Behav 2012; 61:239-50. [PMID: 22269661 PMCID: PMC3312996 DOI: 10.1016/j.yhbeh.2012.01.005] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 01/06/2012] [Accepted: 01/07/2012] [Indexed: 12/22/2022]
Abstract
Of the major vertebrate taxa, Class Aves is the most extensively studied in relation to the evolution of social systems and behavior, largely because birds exhibit an incomparable balance of tractability, diversity, and cognitive complexity. In addition, like humans, most bird species are socially monogamous, exhibit biparental care, and conduct most of their social interactions through auditory and visual modalities. These qualities make birds attractive as research subjects, and also make them valuable for comparative studies of neuroendocrine mechanisms. This value has become increasingly apparent as more and more evidence shows that social behavior circuits of the basal forebrain and midbrain are deeply conserved (from an evolutionary perspective), and particularly similar in birds and mammals. Among the strongest similarities are the basic structures and functions of avian and mammalian nonapeptide systems, which include mesotocin (MT) and arginine vasotocin (VT) systems in birds, and the homologous oxytocin (OT) and vasopressin (VP) systems, respectively, in mammals. We here summarize these basic properties, and then describe a research program that has leveraged the social diversity of estrildid finches to gain insights into the nonapeptide mechanisms of grouping, a behavioral dimension that is not experimentally tractable in most other taxa. These studies have used five monogamous, biparental finch species that exhibit group sizes ranging from territorial male-female pairs to large flocks containing hundreds or thousands of birds. The results provide novel insights into the history of nonapeptide functions in amniote vertebrates, and yield remarkable clarity on the nonapeptide biology of dinosaurs and ancient mammals. This article is part of a Special Issue entitled Oxytocin, Vasopressin, and Social Behavior.
Collapse
Affiliation(s)
- James L Goodson
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| | | | | |
Collapse
|
8
|
Saito N, Fujii M, Sugiura K, Aste N, Shimada K. TonEBP regulates hyperosmolality-induced arginine vasotocin gene expression in the chick (Gallus domesticus). Neurosci Lett 2009; 468:334-8. [PMID: 19914332 DOI: 10.1016/j.neulet.2009.11.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Revised: 11/06/2009] [Accepted: 11/10/2009] [Indexed: 10/20/2022]
Abstract
Arginine vasotocin (AVT) is expressed mainly in the paraventircular and supraoptic nuclei of the hypothalamus in chicken. This peptide is known to act as an antidiuretic hormone and its gene expression is stimulated by hyperosmolality. However, the transcription factors that regulate the AVT gene expression induced by hyperosmolality are still unknown. In this study, we examined the role of hyper-tonicity enhancer binding protein (TonEBP) in the transcriptional regulation of AVT gene in chicken. TonEBP mRNA expression levels increased at 1h after salt-loading treatment in the hypothalamus. This increase preceded that in AVT and c-fos mRNA expression. Intracerebroventricular injections of TonEBP antisense oligonucleotides, before the salt-loading treatment, prevented the increase in AVT gene expression. These results, all together, suggest that the transcription factor TonEBP may be involved in the regulation of AVT genes expression in response to a hyperosmotic environment in chicken.
Collapse
Affiliation(s)
- Noboru Saito
- Laboratory of Animal Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan.
| | | | | | | | | |
Collapse
|
9
|
Goodson JL, Rinaldi J, Kelly AM. Vasotocin neurons in the bed nucleus of the stria terminalis preferentially process social information and exhibit properties that dichotomize courting and non-courting phenotypes. Horm Behav 2009; 55:197-202. [PMID: 19013174 PMCID: PMC2652745 DOI: 10.1016/j.yhbeh.2008.10.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Revised: 10/09/2008] [Accepted: 10/09/2008] [Indexed: 11/17/2022]
Abstract
Neurons within the medial bed nucleus of the stria terminalis (BSTm) that produce arginine vasotocin (VT; in non-mammals) or arginine vasopressin (VP; in mammals) have been intensively studied with respect to their anatomy and neuroendocrine regulation. However, almost no studies have examined how these neurons process stimuli in the animals' immediate environment. We recently showed that in five estrildid finch species, VT-immunoreactive (-ir) neurons in the BSTm increase their Fos expression selectively in response to positively-valenced social stimuli (i.e., stimuli that should elicit affiliation). Using male zebra finches, a highly gregarious estrildid, we now extend those findings to show that VT-Fos coexpression is induced by a positive social stimulus (a female), but not by a positive non-social stimulus (a water bath in bath-deprived birds), although the female and bath stimuli induced Fos equally within a nearby control region, the medial preoptic nucleus. In concurrent experiments, we also show that the properties of BSTm VT-ir neurons strongly differentiate males that diverge in social phenotype. Males who reliably fail to court females ("non-courters") have dramatically fewer VT-ir neurons in the BSTm than do reliable courters, and the VT-ir neurons of non-courters fail to exhibit Fos induction in response to a female stimulus.
Collapse
Affiliation(s)
- James L Goodson
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| | | | | |
Collapse
|
10
|
Tachibana T, Hirofuji K, Matsumoto M, Furuse M, Hasegawa S, Yoshizawa F, Sugahara K. The hypothalamus is involved in the anorexic effect of glucagon-like peptide-1 in chicks. Comp Biochem Physiol A Mol Integr Physiol 2004; 137:183-8. [PMID: 14720603 DOI: 10.1016/j.cbpb.2003.09.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study was carried out to investigate whether the hypothalamus is involved in the anorexic effect of glucagon-like peptide-1 (GLP-1) in chicks. To examine this, Fos expression in the chick hypothalamus were immunohistochemically detected after intracerebroventricular (ICV) injection of 30-pmol GLP-1. ICV injection of GLP-1 stimulated the expression of Fos-like immunoreactive (FLI) cells in the ventromedial hypothalamic nucleus (VMN). When 15-pmol GLP-1 was directly injected into the chick VMN, the chick's food intake was significantly decreased compared with the control treatment. Microinjection of GLP-1 into the (LHA) also inhibited feeding in chicks, although ICV injection of GLP-1 did not stimulate FLI expression in the brain area. These results suggest that VMN and some brain regions are involved in the anorexic effect of GLP-1 in chicks.
Collapse
Affiliation(s)
- Tetsuya Tachibana
- United Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan.
| | | | | | | | | | | | | |
Collapse
|
11
|
Millam JR, Craig-Veit CB, Siopes TD. Photostimulated fos-like immunoreactivity in tuberal hypothalamus of photosensitive vs. photorefractory turkey hens. Gen Comp Endocrinol 2003; 134:175-81. [PMID: 14511988 DOI: 10.1016/s0016-6480(03)00249-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Photorefractoriness in commercial turkey hens can be viewed as a failure of previously sexually stimulatory photoperiods to maintain egg production via activation of cGnRH I neurons, but the neural locus of photorefractoriness, i.e., where in the brain failure occurs, is not known. We used a c-fos antiserum that detects c-Fos and Fos-related antigens to characterize Fos-like immunoreactivity (FLI) as a measure of neuronal activation. FLI was measured in somatically mature, photosensitive hens (held on short photoperiods [8L:16D] for at least 10 weeks) before (non-photostimulated-photosensitive group) and after 48 h of exposure to long photoperiods (16L:8D; photostimulated-photosensitive group). We also measured FLI in hens that had become photorefractory, transferred to short photoperiods for 1 week--an insufficient time period to reverse photorefractoriness--and then exposed to long photoperiods for 48 h (photostimulated-photorefractory group). FLI was nearly absent in the tuberal hypothalamus of non-photostimulated-photosensitive hens but FLI was abundant in photostimulated-photosensitive hens. FLI was greatly reduced (P<0.01) in the rostral tuberal hypothalamus of photostimulated-photorefractory hens. All hens showed variable extra-tuberal FLI in locations associated with stress, e.g., paraventricular nucleus, lateral septal area, and nucleus taenia. Double-label fluorescence immunohistochemistry with c-fos antiserum and anti-Neu-N, a neuron-specific protein, showed that a substantial fraction of tuberal FLI-positive cells in photostimulated-photosensitive hens were neuronal. These results implicate neurons in the rostral tuberal hypothalamus as a potential neural locus of photorefractoriness, as FLI in this region appears coupled with cGnRH I activation in photostimulated-photosensitive but not photostimulated-photorefractory turkey hens.
Collapse
Affiliation(s)
- J R Millam
- Department of Animal Science, University of California, One Shields Avenue, Davis, CA 95616-8532, USA.
| | | | | |
Collapse
|
12
|
Panzica G, Viglietti-Panzica C, Balthazart J. Sexual dimorphism in the neuronal circuits of the quail preoptic and limbic regions. Microsc Res Tech 2001; 54:364-74. [PMID: 11668649 DOI: 10.1002/jemt.1149] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A sexually dimorphic nucleus is located in the preoptic area of Japanese quail and plays a key role in the activation of male copulatory behavior. The medial preoptic nucleus (POM) is significantly larger in adult male than in adult female quail. Its volume is steroid-sensitive in adulthood and consequently decreases after castration but is restored to normal levels by a treatment with exogenous testosterone. This volumetric difference appears to result only from a sex difference in the adult hormonal milieu and is not affected by embryonic treatments that permanently modify sexual behavior (no organizational effects). In contrast, some cytoarchitectonic features of the POM such as the size of neurons in the dorso-lateral part of nucleus appear to be irreversibly affected by embryonic steroids. The POM is characterized by the presence of a wide variety of neurotransmitters, neuropeptides, and receptors and can be specifically identified by the presence of a dense cluster of aromatase-immunoreactive cells, by a high density of neurotensin-immunoreactive cells and fibers and by a dense vasotocinergic innervation. Some of these neurochemical markers of the dimorphic nucleus are themselves modulated by steroids. Many of these neurochemical changes appear to play a causal role in the control of male sexual behavior. The quail POM thus represents an excellent model for the analysis of steroid-induced brain plasticity in a behaviorally relevant context.
Collapse
Affiliation(s)
- G Panzica
- Rita Levi Montalcini Center for Brain Repair, Department of Anatomy, Pharmacology and Forensic Medicine, Laboratory of Neuroendocrinology, University of Torino, Torino, I-10126 Italy.
| | | | | |
Collapse
|
13
|
Tlemçani O, Ball GF, D'Hondt E, Vandesande F, Sharp PJ, Balthazart J. Fos induction in the Japanese quail brain after expression of appetitive and consummatory aspects of male sexual behavior. Brain Res Bull 2000; 52:249-62. [PMID: 10856822 DOI: 10.1016/s0361-9230(00)00233-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We investigated the expression of Fos, the protein product of the immediate early gene c-fos in the brain of male Japanese quail after they engaged in either appetitive or consummatory sexual behavior (i. e., copulation). For 1 h, castrated males treated with testosterone were either allowed to copulate with a female or to exhibit a learned social proximity response indicative of appetitive sexual behavior. Control birds were either left in their home cage or placed in the experimental chamber but did not exhibit the appetitive sexual behavior because they had never learned it. Fos expression was studied with an immunocytochemical procedure in two sets of adjacent sections through the entire forebrain. These sections were immunolabelled with 2 different antibodies raised against a synthetic fragment corresponding to the 21 carboxy-terminal residues of the chicken Fos sequence. Contrary to the results of a previous study in which gonadally intact birds were used, Fos induction was observed neither in the medial preoptic nucleus nor in the nucleus intercollicularis in birds that had interacted for 1 h with a female. This may be related to a lower frequency of copulation in the testosterone-implanted birds than in intact birds, or to differences in the time the brains were collected after the birds engaged in sexual behavior between the two studies (60 min in this study, 120 min in the previous study). The performance of copulation and/or appetitive sexual behavior increased the number of Fos-immunoreactive cells in the ventral hyperstriatum, medial archistriatum, and nucleus striae terminalis. These increases were observed using both antibodies, although each antibody produced minor differences in the number of Fos-immunoreactive cells observed. Using one of the antibodies, but not the other, increases in Fos immunoreactivity were also observed in the nucleus accumbens and hyperstriatum after either copulation or appetitive sexual behavior. These differences illustrate how minor technical variations in the Fos immunocytochemical procedure influence the results obtained. These differences also show that Fos induction in a number of brain regions is observed after performance of consummatory (copulation) as well as appetitive (looking at the female) sexual behavior. This induction is, therefore, not related solely to the control of copulatory acts but, presumably, also to the processing in a variety of telencephalic association areas of stimuli originating from the female. The observation that increased Fos immunoreactivity is present in birds that had learned the response indicative of appetitive sexual behavior, and not in those that had not learned the behavior, further indicates that it is not simply the sight of the female that results in this Fos induction, but the analysis of the relevant stimuli in a sexually explicit context. Conditioned neural activity resulting from a learned association between the stimulus female and the performance of copulatory behavior may also explain some aspects of the brain activation observed in birds viewing, but not allowed to interact with, the female.
Collapse
Affiliation(s)
- O Tlemçani
- University of Liege, Laboratory of Biochemistry, Liege, Belgium
| | | | | | | | | | | |
Collapse
|
14
|
Meddle SL, Maney DL, Wingfield JC. Effects of N-methyl-D-aspartate on luteinizing hormone release and Fos-like immunoreactivity in the male White-crowned sparrow (Zonotrichia leucophrys gambelii). Endocrinology 1999; 140:5922-8. [PMID: 10579359 DOI: 10.1210/endo.140.12.7206] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Seasonal breeding is terminated in the White-crowned sparrow by the onset of absolute photorefractoriness, a condition in which the reproductive system is switched off indefinitely until it is dissipated by short day lengths. Absolute photorefractoriness is controlled by the central nervous system; however, the mechanisms underlying GnRH quiescence in photorefractory birds have yet to be elucidated. Using the excitatory amino acid glutamate agonist N-methyl-D-aspartate (NMDA), plasma LH levels in White-crowned sparrows were significantly elevated regardless of the reproductive or photoperiodic condition. NMDA also significantly induced Fos-like immunoreactivity (FLI) within the infundibular nucleus and median eminence, regions previously shown to express FLI after a photoperiodically driven LH rise. NMDA did not induce FLI within GnRH I neurons; instead, it significantly activated cells within the organum vasculosum of the lamina terminalis in close proximity to GnRH I perikarya. These findings provide the first evidence that photorefractoriness is not due to depletion of GnRH stores, as LH and presumably GnRH were secreted in response to excitatory amino acid stimulation. NMDA activation of FLI in the region of the organum vasculosum of the lamina terminalis and the basal tuberal hypothalamus suggests that seasonal reproductive neuroendocrine control may be mediated via cells in the region of the GnRH I perikarya and terminals.
Collapse
Affiliation(s)
- S L Meddle
- Department of Zoology, University of Washington, Seattle 98195, USA.
| | | | | |
Collapse
|
15
|
Meddle SL, Foidart A, Wingfield JC, Ramenofskyand M, Balthazart J. Effects of sexual interactions with a male on fos-like immunoreactivity in the female quail brain. J Neuroendocrinol 1999; 11:771-84. [PMID: 10520126 DOI: 10.1046/j.1365-2826.1999.00384.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Sexual interactions can cause changes in plasma hormone levels and activate immediate early genes within the mammalian brain. There are marked anatomical differences between the regions activated that relate directly to the sexual specific behaviour and neuroendocrinology of each sex. The aim of this study was to determine if such a sexual dimorphism exists in birds by examining the brain regions stimulated in adult virgin female Japanese quail (Coturnix japonica) during sexual behaviour and comparing this to previously reported data concerning males. Female quail were allowed to freely interact with adult males and both female and male sexual behaviour was recorded. Contrary to previous findings in male quail, no significant induction of Fos-like immunoreactive (FLI) cells was observed following sexual interactions in the preoptic area of females; this area is fundamentally involved in the control of male-type copulatory behaviour. Sexual interactions significantly induced FLI cells in the hyperstriatum ventrale, the part of the archistriatum just lateral to the anterior commissure, and the nucleus intercollicularis. Moreover, prominent activation was detected throughout most of the ventromedial nucleus of the hypothalamus, a region reported to be rich in oestrogen receptors. FLI induction was not a consequence of sexual behaviour induced changes in luteinizing hormone (LH) as plasma LH levels were unaltered. Instead, brain activation must be a consequence of copulation-associated somatosensory inputs or direct stimuli originating from the male. Male quail, like the majority of other birds, lack an intromittant organ (penis) so that the somatosensory inputs to the female are rather different from those in mammals; the precise nature of these inputs is yet to be determined.
Collapse
Affiliation(s)
- S L Meddle
- BBSRC Group on Photoperiodism and Reproduction, School of Biological Sciences, University of Bristol, Bristol, UK.
| | | | | | | | | |
Collapse
|
16
|
D'Hondt E, Vermeiren J, Peeters K, Balthazart J, Tlemçani O, Ball GF, Duffy DL, Vandesande F, Berghman LR. Validation of a new antiserum directed towards the synthetic c-terminus of the FOS protein in avian species: immunological, physiological and behavioral evidence. J Neurosci Methods 1999; 91:31-45. [PMID: 10522822 DOI: 10.1016/s0165-0270(99)00067-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the past 10 years, the study of the expression of immediate early genes, such as c-fos, in the brain has become a common method for the identification of brain areas involved in the regulation of specific physiological and behavioral functions. The use of this method in avian species has been limited by the paucity of suitable antibodies that cross-react with the FOS protein in birds. We describe in this paper the preparation of an antibody directed against a synthetic fragment of the protein product of the c-fos gene in chickens (Gallus domesticus). We demonstrate that this new antibody can be used in several avian species to study FOS expression induced by a variety of pharmacological, physiological and behavioral stimuli. Western blot studies indicated that this antibody recognizes a protein of the expected size (47 kDa) but also cross reacts to some extent with proteins of lower molecular weight that share sequence homology with FOS (Fos-related antigens). FOS immunocytochemistry was performed with this antibody in four species of birds in three different laboratories utilizing diverse variants of the immunocytochemical procedure. In all cases the antibody provided a reliable identification of the FOS antigen. The new antibody described here appears to be suitable for the study of FOS expression in several different avian species and situations. It is available in substantial amounts and will therefore make it possible to use FOS expression as a tool to map brain activity in birds as has now been done for several years in mammalian species.
Collapse
Affiliation(s)
- E D'Hondt
- Laboratory of Neuroendocrinology, University of Leuven, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Hübschle T, Küchenmeister I, Gerstberger R. Central action of nitric oxide in the saltwater-acclimated duck: modulation of extrarenal sodium excretion and vasotocin release. Brain Res 1999; 825:22-35. [PMID: 10216170 DOI: 10.1016/s0006-8993(99)01205-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Hypothalamic nuclei close to the third ventricle (VIII) represent key structures in avian osmoregulation concerned with the control of salt gland activity and release of the antidiuretic hormone [Arg8]vasotocin (AVT). Nitric oxide (NO) acting as a paracrine transmitter in the hypothalamus has been shown to contribute to the maintenance of salt and fluid balance in mammals. The saltwater-acclimated duck was used in the present study as a well-characterized osmoregulatory model to investigate the role of central NO in hypothalamic perception or integration of osmoregulatory signals in marine birds. During osmotically induced steady-state salt gland secretion, the VIII of conscious ducks was microperfused with artificial cerebrospinal fluid (aCSF) alone, aCSF containing the NO-donor SNAP or the peptide [Val5]angiotensin II (ANGII) and alterations in salt gland activity, arterial pressure and the release of AVT were continuously monitored. No changes occurred during intracerebroventricular microperfusion with aCSF. Central application of ANGII, a known inhibitory hypothalamic transmitter in the control of salt gland function, markedly blocked salt gland osmolal excretion. Central stimulation with the NO-donor SNAP significantly reduced osmolal excretion from 0.41+/-0.02 to 0. 22+/-0.04 mosmol/min. Both ANGII and SNAP caused a rise in plasma AVT at either slightly elevated (ANGII) or constant (SNAP) arterial pressure. Employing NADPH-diaphorase histochemistry in the duck hypothalamus to localize sites of NO synthesis, periventricular neurons, nerve fibers in close association to the VIII and also parvocellular neurons of the paraventricular nucleus could be labeled. These data suggest a modulatory role for hypothalamic NO within the central osmoregulatory circuitry controlling salt gland function and AVT release in marine birds.
Collapse
Affiliation(s)
- T Hübschle
- Max-Planck-Institute for Physiological and Clinical Research, W.G. Kerckhoff-Institute, Parkstr. 1, D-61231 Bad Nauheim, Germany.
| | | | | |
Collapse
|
18
|
Goodson JL, Adkins-Regan E. Effect of intraseptal vasotocin and vasoactive intestinal polypeptide infusions on courtship song and aggression in the male zebra finch (Taeniopygia guttata). J Neuroendocrinol 1999; 11:19-25. [PMID: 9918225 DOI: 10.1046/j.1365-2826.1999.00284.x] [Citation(s) in RCA: 143] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The present experiments were conducted to test the hypothesis that septal arginine vasotocin (AVT) and vasoactive intestinal polypeptide (VIP) modulate directed song (a courtship behaviour) and aggression in male zebra finches (Taeniopygia guttata). Subjects were surgically fitted with a guide cannula directed at the septum. Following recovery they were tested for aggression and directed song following infusions of AVT, its antagonist (anti-vasopressin, AVP), and saline volume control. Infusion of the AVT antagonist significantly reduced all three aggressive behaviours measured (pecks, beak fences and chases); and AVT infusion significantly facilitated beak fencing. Vasoactive intestinal polypeptide treatment significantly reduced pecking. No treatment produced a change in directed song. Comparison with findings in mammals suggests that modulation of aggression by septal AVT (or AVP) is evolutionarily conserved in vertebrates, but modulation of aggression by VIP has not previously been reported for any vertebrate.
Collapse
Affiliation(s)
- J L Goodson
- Department of Psychology, Cornell University, Ithaca, NY 14853, USA.
| | | |
Collapse
|
19
|
Rowland NE. Brain mechanisms of mammalian fluid homeostasis: insights from use of immediate early gene mapping. Neurosci Biobehav Rev 1998; 23:49-63. [PMID: 9861612 DOI: 10.1016/s0149-7634(97)00068-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A comprehensive review of the literature through mid-1997 is presented on the application of immediate early gene mapping to problems related to brain mechanisms of fluid homeostasis and cardiovascular regulation in mammals. First, the basic mechanisms of fluid intake and the principles and pitfalls of immediate early gene mapping are briefly introduced. Then, data from several principal paradigms are reviewed. These include fluid deprivation and intracellular dehydration, both of which are associated with thirst and water intake. The contributions of peripheral sodium receptors, and of both hindbrain and forebrain integrative mechanisms are evaluated. Extracellular dehydration, and associated aspects of both thirst and sodium appetite are then reviewed. The contributions of both structures along the lamina terminalis and the hypothalamic magnocellular neurosecretory groups figure prominently in most of these paradigms. Effects of hypotension and hypertension are discussed, including data from the endogenous generation and the exogenous application of angiotensin II. Lastly, we summarize the contribution of the early gene mapping technique and consider briefly the prospects for new advances using this method.
Collapse
Affiliation(s)
- N E Rowland
- Department of Psychology, University of Florida, Gainesville 32611-2250, USA.
| |
Collapse
|
20
|
Goodson JL. Vasotocin and vasoactive intestinal polypeptide modulate aggression in a territorial songbird, the violet-eared waxbill (Estrildidae: Uraeginthus granatina). Gen Comp Endocrinol 1998; 111:233-44. [PMID: 9679095 DOI: 10.1006/gcen.1998.7112] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous research demonstrates that intraseptal administrations of arginine vasotocin (AVT) inhibit male aggression in the territorial field sparrow (Emberizidae: Spizella pusilla) but facilitate aggression in the colonial zebra finch (Estrildidae: Taeniopygia guttata). In order to determine whether this difference may be related to the territorial and colonial social organizations of these two species, the effect of AVT infusions was examined in a territorial Estrildid species, the violet-eared waxbill (Uraeginthus granatina). This species is more closely related to the zebra finch than to the field sparrow and shares most critical features of breeding ecology in common with zebra finches, but differs in social organization. AVT infusions administered via chronic guide cannulae directed at the septum significantly inhibited aggressive behavior, consistent with results in the territorial field sparrow, supporting the hypothesis that social organization is correlated with AVT function. Similar experiments with mesotocin and substance P produced no effects on any of the behaviors measured, but infusions of vasoactive intestinal polypeptide (VIP) significantly facilitated aggression. This result contrasts with the inhibitory effect of septal VIP obtained in the colonial zebra finch, suggesting that VIP function may be correlated with social organization as well.
Collapse
Affiliation(s)
- J L Goodson
- Department of Psychology, Cornell University, Ithaca, New York, 14853, USA
| |
Collapse
|
21
|
Abstract
Systemic administration of cholecystokinin (CCK) inhibits feeding in birds. However, the signaling pathway through which CCK induces this effect is unknown, and its role as a natural satiety signal is controversial. To address these issues, we used immunocytochemistry for the immediate-early gene protein Fos to localize sites of neuronal activation in the brain of Japanese quail (Coturnix japonica) after CCK treatment. Food intake was inhibited in a dose-dependent manner following intraperitonal (i.p.) injection of CCK, with an effective dose range of 1-50 micrograms/kg. To test the hypothesis that CCK induces a distinct pattern of Fos-like immunoreactivity (FLI) in the brain, we compared FLI in birds given CCK (20 micrograms/kg, i.p.) with that in birds given a nonspecific chemical inhibitor of feeding, lithium chloride (LiCl, 40 mg/kg, i.p.), at doses that reduce feeding to a similar level (30% of saline controls). FLI-positive cell nuclei were counted in 14 brain regions after administration of CCK, LiCl, or saline. CCK uniquely induced FLI in the paraventricular, infundibular, periventricular hypothalamic, and medial mamillary nuclei of the hypothalamus. However, CCK and LiCl both induced a comparable pattern of FLI in the hindbrain, with strong staining in the nucleus of the solitary tract and dorsal motor nucleus of the vagus. These findings demonstrate the ability of CCK to activate the central nervous system in birds and suggest that the peptide exerts specific actions in the hypothalamus. However, the possibility that the FLI observed may have arisen through nonspecific effects of CCK on gastrointestinal physiology cannot be discounted.
Collapse
Affiliation(s)
- T Boswell
- Roslin Institute, Edinburgh, United Kingdom.
| | | |
Collapse
|
22
|
Meddle SL, King VM, Follett BK, Wingfield JC, Ramenofsky M, Foidart A, Balthazart J. Copulation activates Fos-like immunoreactivity in the male quail forebrain. Behav Brain Res 1997; 85:143-59. [PMID: 9105572 DOI: 10.1016/s0166-4328(97)87581-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
It has been demonstrated using Fos immunocytochemistry that copulation activates specific cell populations in the mammalian brain. Prior to this study, no similar work has been carried out in birds. In mammals, Fos has identified brain circuits activated by genital (penile)/somatosensory and by olfactory/vomeronasal stimuli. Such inputs, of course, should play little or no role in birds (no penis, little or no role for olfaction) and a differential responsiveness could therefore be expected. Male Japanese quail (Coturnix japonica) were allowed to interact freely with adult females and the presence of active sexual behavior, including cloacal contact movements, was confirmed in each case. Control subjects were exposed to a domestic chick (same size as an adult quail) and no sexual behavior was observed. Copulation induced the appearance of Fos-like immunoreactive (FLI) cells in the preoptic area, the hyperstriatum ventrale, parts of the archistriatum, and the nucleus intercollicularis. Induction of FLI cells was observed throughout the rostral to caudal extent of the preoptic region of males from the level of the tractus septomesencephalicus to the level of the anterior commissure, and in the rostral part of the hypothalamus to the level of the supraoptic decussation. The FLI cells did not lie directly adjacent to the third ventricle, but were located 500-1000 microns from the ventricle wall at the level of the lateral edge of the medial preoptic nucleus or, in more caudal sections, in a position ventrolateral to the bed nucleus striae terminalis. It is unlikely that the Fos induction in males resulted from copulation-induced endocrine changes because copulation did not affect plasma levels of luteinizing hormone or testosterone. It is concluded that the responses were due to copulation-associated somatosensory inputs and/or to stimuli originating from the female.
Collapse
Affiliation(s)
- S L Meddle
- BBSRC Group on Photoperiodism and Reproduction, School of Biological Sciences, University of Bristol, UK
| | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Mechanisms underlying the learned vocal behavior of songbirds were studied by examining expression of the protein product of the immediate early gene c-fos (Fos) in zebra finches. Auditory stimuli including the bird's own song did not induce Fos in the song system. In contrast, the motor act of singing induced Fos in two song sensorimotor nuclei, HVc and RA. This induction was independent of auditory feedback, since it occurred in deafened birds that sang. Double-labeling studies demonstrated that only one of the two sets of projection neurons in HVc expressed singing-related Fos. The motor-driven induction of Fos identifies functionally distinct cell populations in a network for singing and may point to sites of cellular plasticity necessary for song maintenance.
Collapse
Affiliation(s)
- R R Kimpo
- Keck Center for Integrative Neuroscience, Department of Physiology, University of California, San Francisco 94143-0444, USA
| | | |
Collapse
|