1
|
Balogh H, Anthony AK, Stempel R, Vossen L, Federico VA, Valenzano GZ, Blackledge MS, Miller HB. Novel anti-virulence compounds disrupt exotoxin expression in MRSA. Microbiol Spectr 2024:e0146424. [PMID: 39431895 DOI: 10.1128/spectrum.01464-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/20/2024] [Indexed: 10/22/2024] Open
Abstract
Hemolysins are lytic exotoxins expressed in most strains of S. aureus, but hemolytic activity varies between strains. We have previously reported several novel anti-virulence compounds that disrupt the S. aureus transcriptome, including hemolysin gene expression. This report delves further into our two lead compounds, loratadine and a structurally related brominated carbazole, and their effects on hemolysin production in methicillin-resistant S. aureus (MRSA). To gain understanding into how these compounds affect hemolysis, we analyzed these exotoxins at the DNA, RNA, and protein level after in vitro treatment. While lysis of red blood cells varied between strains, DNA sequence variation did not account for it. We hypothesized that our compounds would modulate gene expression of multiple hemolysins in two hospital-acquired strains of MRSA, both with staphylococcal cassette chromosome mec (SCCmec) type II. RNA-seq analysis of differential gene expression in untreated and compound-treated cultures revealed hundreds of differentially expressed genes, with a significant enrichment in genes involved in hemolysis. The brominated carbazole and loratadine both displayed the ability to reduce hemolysis in strain 43300 but displayed differential activity in strain USA100. These results corroborate gene expression studies as well as western blots of alpha hemolysin. Together, this work suggests that small molecules may alter exotoxin production in MRSA but that the directionality and/or magnitude of the difference are likely strain dependent.IMPORTANCEMethicillin-resistant S. aureus (MRSA) is a deadly human pathogen. In addition to evading antibiotics, these bacteria produce a wide range of toxins that negatively affect the host. Our work aims to identify and characterize novel compounds that can decrease the pathogenic effects of MRSA. Two lead compounds investigated in this study triggered changes in the production of multiple toxins. These changes were specific to the strain of MRSA investigated. Specifically, this work sheds light on novel compounds that decrease MRSA's ability to lyse host red blood cells. Importantly, it also highlights the importance of examining strain-specific differences in response to therapeutic interventions that could ultimately affect clinical outcomes.
Collapse
Affiliation(s)
- Halie Balogh
- Department of Chemistry, High Point University, High Point, North Carolina, USA
| | - Amaiya K Anthony
- Department of Biology, High Point University, High Point, North Carolina, USA
| | - Robin Stempel
- Department of Chemistry, High Point University, High Point, North Carolina, USA
| | - Lauren Vossen
- Department of Biology, High Point University, High Point, North Carolina, USA
| | - Victoria A Federico
- Department of Biology, High Point University, High Point, North Carolina, USA
| | - Gabriel Z Valenzano
- Department of Chemistry, High Point University, High Point, North Carolina, USA
| | - Meghan S Blackledge
- Department of Chemistry, High Point University, High Point, North Carolina, USA
| | - Heather B Miller
- Department of Chemistry, High Point University, High Point, North Carolina, USA
| |
Collapse
|
2
|
Mapar M, Rydzak T, Hommes JW, Surewaard BGJ, Lewis IA. Diverse molecular mechanisms underpinning Staphylococcus aureus small colony variants. Trends Microbiol 2024:S0966-842X(24)00251-8. [PMID: 39393939 DOI: 10.1016/j.tim.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/13/2024]
Abstract
Small colony variants (SCVs) of Staphylococcus aureus are a relatively rare but clinically significant growth morphotype. Infections with SCVs are frequently difficult to treat, inherently antibiotic-resistant, and can lead to persistent infections. Despite a long history of research, the molecular underpinnings of this morphotype and their impact on the clinical trajectory of infections remain unclear. However, a growing body of literature indicates that SCVs are caused by a diverse range of molecular factors. These recent findings suggest that SCVs should be thought of as an ensemble collection of loosely related phenotypes, and not as a single phenomenon. This review describes the diverse mechanisms currently known to contribute to SCVs and proposes an ensemble model for conceptualizing this morphotype.
Collapse
Affiliation(s)
- Maryam Mapar
- Alberta Centre for Advanced Diagnostics, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Thomas Rydzak
- Alberta Centre for Advanced Diagnostics, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Josefien W Hommes
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Bas G J Surewaard
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Ian A Lewis
- Alberta Centre for Advanced Diagnostics, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
3
|
Ingmer H, Leisner JJ, Fulaz S. Forssman and the staphylococcal hemolysins. APMIS 2024. [PMID: 39188243 DOI: 10.1111/apm.13459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/05/2024] [Indexed: 08/28/2024]
Abstract
Forssman was a Swedish pathologist and microbiologist who, in the 1920s and 1930s conducted a long series of experiments that led to unique insights into surface antigens of blood cells, as well as added to the discrimination of toxins produced by staphylococci that lyse red blood cells. This review takes offset in the studies published by Forssman in APMIS addressing the hemolytic properties of staphylococcal toxins displayed against erythrocytes of animal and human origin. In light of current knowledge, we will discuss the insights we now have and how they may pave the way for curing infections with pathogenic staphylococci, including Staphylococcus aureus.
Collapse
Affiliation(s)
- Hanne Ingmer
- Department of Veterinary and Animal Science, University of Copenhagen, Copenhagen, Denmark
| | - Jørgen J Leisner
- Department of Veterinary and Animal Science, University of Copenhagen, Copenhagen, Denmark
| | - Stephanie Fulaz
- Department of Veterinary and Animal Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Fletcher JR, Hansen LA, Martinez R, Freeman CD, Thorns N, Villareal AR, Penningroth MR, Vogt GA, Tyler M, Hines KM, Hunter RC. Commensal-derived short-chain fatty acids disrupt lipid membrane homeostasis in Staphylococcus aureus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.12.607382. [PMID: 39185181 PMCID: PMC11343118 DOI: 10.1101/2024.08.12.607382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
The role of commensal anaerobic bacteria in chronic respiratory infections is unclear, yet they can exist in abundances comparable to canonical pathogens in vivo. Their contributions to the metabolic landscape of the host environment may influence pathogen behavior by competing for nutrients and creating inhospitable conditions via toxic metabolites. Here, we reveal a mechanism by which the anaerobe-derived short chain fatty acids (SCFAs) propionate and butyrate negatively affect Staphylococcus aureus physiology by disrupting branched chain fatty acid (BCFA) metabolism. In turn, BCFA impairment results in impaired growth, diminished expression of the agr quorum sensing system, as well as increased sensitivity to membrane-targeting antimicrobials. Altered BCFA metabolism also reduces S. aureus fitness in competition with Pseudomonas aeruginosa, suggesting that airway microbiome composition and the metabolites they produce and exchange directly impact pathogen succession over time. The pleiotropic effects of these SCFAs on S. aureus fitness and their ubiquity as metabolites in animals also suggests that they may be effective as sensitizers to traditional antimicrobial agents when used in combination.
Collapse
Affiliation(s)
- Joshua R. Fletcher
- Department of Microbiology & Immunology, University of Minnesota, Minneapolis, MN 55455
- Department of Population Health and Pathobiology, North Carolina State University College of Veterinary Medicine, Raleigh, NC 27695
| | - Lisa A. Hansen
- Department of Microbiology & Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14203
| | - Richard Martinez
- Department of Microbiology & Immunology, University of Minnesota, Minneapolis, MN 55455
| | | | - Niall Thorns
- Department of Microbiology & Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14203
| | - Alex R. Villareal
- Department of Microbiology & Immunology, University of Minnesota, Minneapolis, MN 55455
| | | | - Grace A. Vogt
- Department of Microbiology & Immunology, University of Minnesota, Minneapolis, MN 55455
| | - Matthew Tyler
- Department of Otolaryngology, University of Minnesota, Minneapolis, MN, 55455
| | - Kelly M. Hines
- Department of Chemistry, University of Georgia, Athens, GA, 30602
| | - Ryan C. Hunter
- Department of Microbiology & Immunology, University of Minnesota, Minneapolis, MN 55455
- Department of Microbiology & Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14203
| |
Collapse
|
5
|
Bejder BS, Monda F, Gless BH, Bojer MS, Ingmer H, Olsen CA. A short-lived peptide signal regulates cell-to-cell communication in Listeria monocytogenes. Commun Biol 2024; 7:942. [PMID: 39097633 PMCID: PMC11297923 DOI: 10.1038/s42003-024-06623-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 07/23/2024] [Indexed: 08/05/2024] Open
Abstract
Quorum sensing (QS) is a mechanism that regulates group behavior in bacteria, and in Gram-positive bacteria, the communication molecules are often cyclic peptides, called autoinducing peptides (AIPs). We recently showed that pentameric thiolactone-containing AIPs from Listeria monocytogenes, and from other species, spontaneously undergo rapid rearrangement to homodetic cyclopeptides, which hampers our ability to study the activity of these short-lived compounds. Here, we developed chemically modified analogues that closely mimic the native AIPs while remaining structurally intact, by introducing N-methylation or thioester-to-thioether substitutions. The stabilized AIP analogues exhibit strong QS agonism in L. monocytogenes and allow structure-activity relationships to be studied. Our data provide evidence to suggest that the most potent AIP is in fact the very short-lived thiolactone-containing pentamer. Further, we find that the QS system in L. monocytogenes is more promiscuous with respect to the structural diversity allowed for agonistic AIPs than reported for the more extensively studied QS systems in Staphylococcus aureus and Staphylococcus epidermidis. The developed compounds will be important for uncovering the biology of L. monocytogenes, and the design principles should be broadly applicable to the study of AIPs in other species.
Collapse
Affiliation(s)
- Benjamin S Bejder
- Center for Biopharmaceuticals and Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Fabrizio Monda
- Center for Biopharmaceuticals and Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Nuevolution A/S, Amgen Research Copenhagen, Copenhagen, Denmark
| | - Bengt H Gless
- Center for Biopharmaceuticals and Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Martin S Bojer
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Hanne Ingmer
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Christian A Olsen
- Center for Biopharmaceuticals and Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
6
|
Pi H, Carlin SM, Beavers WN, Hillebrand GH, Krystofiak ES, Stauff DL, Skaar EP. FapR regulates HssRS-mediated heme homeostasis in Bacillus anthracis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.08.602573. [PMID: 39026866 PMCID: PMC11257595 DOI: 10.1101/2024.07.08.602573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Bacillus anthracis, a Gram-positive facultative anaerobe and the causative agent of anthrax, multiplies to extraordinarily high numbers in vertebrate blood, resulting in considerable heme exposure. Heme is an essential nutrient and the preferred iron source for bacteria during vertebrate colonization, but its high redox potential makes it toxic in excess. To regulate heme homeostasis, many Gram-positive bacteria, including B. anthracis, rely on the two-component signaling system HssRS. HssRS comprises the heme sensing histidine kinase HssS, which modulates the activity of the HssR transcription factor to enable bacteria to circumvent heme toxicity. However, the regulation of the HssRS system remains unclear. Here we identify FapR, the transcriptional regulator of fatty acid biosynthesis, as a key factor in HssRS function. FapR plays an important role in maintaining membrane integrity and the localization of the histidine kinase HssS. Specifically, disruption of fapR leads to increased membrane rigidity, which hinders the penetration of HssRS inducers, resulting in the inactivation of HssRS. Furthermore, deletion of fapR affects the loading of HssS onto the cell membrane, compromising its heme sensing function and subsequently reducing endogenous heme biosynthesis. These findings shed light on the molecular mechanisms governing bacterial adaptation to heme stress and provide potential targets for antimicrobial intervention strategies.
Collapse
Affiliation(s)
- Hualiang Pi
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University, Nashville, TN
- Department of Pathology, Microbiology, & Immunology, Vanderbilt University Medical Center, Nashville, TN
- Current address: Department of Microbial Pathogenesis and Microbial Sciences Institute, Yale University School of Medicine, New Haven, CT
| | - Sophia M. Carlin
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University, Nashville, TN
- Department of Pathology, Microbiology, & Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - William N. Beavers
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University, Nashville, TN
- Department of Pathology, Microbiology, & Immunology, Vanderbilt University Medical Center, Nashville, TN
| | | | - Evan S. Krystofiak
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN
| | | | - Eric P. Skaar
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University, Nashville, TN
- Department of Pathology, Microbiology, & Immunology, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
7
|
Tajer L, Paillart JC, Dib H, Sabatier JM, Fajloun Z, Abi Khattar Z. Molecular Mechanisms of Bacterial Resistance to Antimicrobial Peptides in the Modern Era: An Updated Review. Microorganisms 2024; 12:1259. [PMID: 39065030 PMCID: PMC11279074 DOI: 10.3390/microorganisms12071259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/10/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Antimicrobial resistance (AMR) poses a serious global health concern, resulting in a significant number of deaths annually due to infections that are resistant to treatment. Amidst this crisis, antimicrobial peptides (AMPs) have emerged as promising alternatives to conventional antibiotics (ATBs). These cationic peptides, naturally produced by all kingdoms of life, play a crucial role in the innate immune system of multicellular organisms and in bacterial interspecies competition by exhibiting broad-spectrum activity against bacteria, fungi, viruses, and parasites. AMPs target bacterial pathogens through multiple mechanisms, most importantly by disrupting their membranes, leading to cell lysis. However, bacterial resistance to host AMPs has emerged due to a slow co-evolutionary process between microorganisms and their hosts. Alarmingly, the development of resistance to last-resort AMPs in the treatment of MDR infections, such as colistin, is attributed to the misuse of this peptide and the high rate of horizontal genetic transfer of the corresponding resistance genes. AMP-resistant bacteria employ diverse mechanisms, including but not limited to proteolytic degradation, extracellular trapping and inactivation, active efflux, as well as complex modifications in bacterial cell wall and membrane structures. This review comprehensively examines all constitutive and inducible molecular resistance mechanisms to AMPs supported by experimental evidence described to date in bacterial pathogens. We also explore the specificity of these mechanisms toward structurally diverse AMPs to broaden and enhance their potential in developing and applying them as therapeutics for MDR bacteria. Additionally, we provide insights into the significance of AMP resistance within the context of host-pathogen interactions.
Collapse
Affiliation(s)
- Layla Tajer
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, Department of Cell Culture, EDST, Lebanese University, Tripoli 1300, Lebanon; (L.T.); (Z.F.)
| | - Jean-Christophe Paillart
- CNRS, Architecture et Réactivité de l’ARN, UPR 9002, Université de Strasbourg, 2 Allée Konrad Roentgen, F-67000 Strasbourg, France;
| | - Hanna Dib
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait;
| | - Jean-Marc Sabatier
- CNRS, INP, Inst Neurophysiopathol, Aix-Marseille Université, 13385 Marseille, France
| | - Ziad Fajloun
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, Department of Cell Culture, EDST, Lebanese University, Tripoli 1300, Lebanon; (L.T.); (Z.F.)
- Department of Biology, Faculty of Sciences 3, Lebanese University, Campus Michel Slayman Ras Maska, Tripoli 1352, Lebanon
| | - Ziad Abi Khattar
- Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, P.O. Box 100, Tripoli, Lebanon
| |
Collapse
|
8
|
Lichota A, Gwozdzinski K, Kowalczyk E, Kowalczyk M, Sienkiewicz M. Contribution of staphylococcal virulence factors in the pathogenesis of thrombosis. Microbiol Res 2024; 283:127703. [PMID: 38537329 DOI: 10.1016/j.micres.2024.127703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 03/20/2024] [Accepted: 03/20/2024] [Indexed: 04/17/2024]
Abstract
Staphylococci are responsible for many infections in humans, starting with skin and soft tissue infections and finishing with invasive diseases such as endocarditis, sepsis and pneumonia, which lead to high mortality. Patients with sepsis often demonstrate activated clotting pathways, decreased levels of anticoagulants, decreased fibrinolysis, activated endothelial surfaces and activated platelets. This results in disseminated intravascular coagulation and formation of a microthrombus, which can lead to a multiorgan failure. This review describes various staphylococcal virulence factors that contribute to vascular thrombosis, including deep vein thrombosis in infected patients. The article presents mechanisms of action of different factors released by bacteria in various host defense lines, which in turn can lead to formation of blood clots in the vessels.
Collapse
Affiliation(s)
- Anna Lichota
- Department of Pharmaceutical Microbiology and Microbiological Diagnostics, Medical University of Lodz, Lodz, Poland.
| | | | - Edward Kowalczyk
- Department of Pharmacology and Toxicology, Medical University of Lodz, Lodz, Poland
| | | | - Monika Sienkiewicz
- Department of Pharmaceutical Microbiology and Microbiological Diagnostics, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
9
|
Kerro Dego O, Vidlund J. Staphylococcal mastitis in dairy cows. Front Vet Sci 2024; 11:1356259. [PMID: 38863450 PMCID: PMC11165426 DOI: 10.3389/fvets.2024.1356259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/06/2024] [Indexed: 06/13/2024] Open
Abstract
Bovine mastitis is one of the most common diseases of dairy cattle. Even though different infectious microorganisms and mechanical injury can cause mastitis, bacteria are the most common cause of mastitis in dairy cows. Staphylococci, streptococci, and coliforms are the most frequently diagnosed etiological agents of mastitis in dairy cows. Staphylococci that cause mastitis are broadly divided into Staphylococcus aureus and non-aureus staphylococci (NAS). NAS is mainly comprised of coagulase-negative Staphylococcus species (CNS) and some coagulase-positive and coagulase-variable staphylococci. Current staphylococcal mastitis control measures are ineffective, and dependence on antimicrobial drugs is not sustainable because of the low cure rate with antimicrobial treatment and the development of resistance. Non-antimicrobial effective and sustainable control tools are critically needed. This review describes the current status of S. aureus and NAS mastitis in dairy cows and flags areas of knowledge gaps.
Collapse
Affiliation(s)
- Oudessa Kerro Dego
- Department of Animal Science, University of Tennessee, Knoxville, TN, United States
| | - Jessica Vidlund
- Department of Animal Science, University of Tennessee, Knoxville, TN, United States
- East Tennessee AgResearch and Education Center-Little River Animal and Environmental Unit, University of Tennessee, Walland, TN, United States
| |
Collapse
|
10
|
Balogh H, Anthony A, Stempel R, Vossen L, Federico VA, Valenzano GZ, Blackledge MS, Miller HB. Novel Anti-virulence Compounds Disrupt Exotoxin Expression in MRSA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.15.594412. [PMID: 38798408 PMCID: PMC11118326 DOI: 10.1101/2024.05.15.594412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Hemolysins are lytic exotoxins expressed in most strains of S. aureus , but hemolytic activity varies between strains. We have previously reported several novel anti-virulence compounds that disrupt the S. aureus transcriptome, including hemolysin gene expression. This report delves further into our two lead compounds, loratadine and a structurally related brominated carbazole, and their effects on hemolysin production in MRSA. To gain understanding into how these compounds affect hemolysis, we analyzed these exotoxins at the DNA, RNA, and protein level after in vitro treatment. While lysis of red blood cells varied between strains, DNA sequence variation did not account for it. We hypothesized that our compounds would modulate gene expression of multiple hemolysins in a laboratory strain and a clinically relevant hospital-acquired strain of MRSA, both with SCC mec type II. RNA-seq analysis of differential gene expression in untreated and compound-treated cultures revealed hundreds of differentially expressed genes, with a significant enrichment in genes involved in hemolysis. The brominated carbazole and loratadine both displayed the ability to reduce hemolysis in the laboratory strain, but displayed differential activity in a hospital-acquired strain. These results corroborate gene expression studies as well as western blots of alpha hemolysin. Together, this work suggests that small molecules may alter exotoxin production in MRSA, but that the directionality and/or magnitude of the difference is likely strain-dependent.
Collapse
|
11
|
Costa FG, Mills KB, Crosby HA, Horswill AR. The Staphylococcus aureus regulatory program in a human skin-like environment. mBio 2024; 15:e0045324. [PMID: 38546267 PMCID: PMC11077960 DOI: 10.1128/mbio.00453-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 03/04/2024] [Indexed: 04/09/2024] Open
Abstract
Staphylococcus aureus is a Gram-positive pathogen responsible for the majority of skin and soft tissue infections (SSTIs). S. aureus colonizes the anterior nares of approximately 20%-30% of the population and transiently colonizes the skin, thereby increasing the risk of developing SSTIs and more serious infections. Current laboratory models that mimic the skin surface environment are expensive, require substantial infrastructure, and limit the scope of bacterial physiology studies under human skin conditions. To overcome these limitations, we developed a cost-effective, open-source, chemically defined media recipe termed skin-like medium (SLM) that incorporates key aspects of the human skin surface environment and supports growth of several staphylococcal species. We utilized SLM to investigate the transcriptional response of methicillin-resistant Staphylococcus aureus (MRSA) following growth in SLM compared to a commonly used laboratory media. Through RNA-seq analysis, we observed the upregulation of several virulence factors, including genes encoding functions involved in adhesion, proteolysis, and cytotoxicity. To further explore these findings, we conducted quantitative reverse transcription-PCR (qRT-PCR) experiments to determine the influence of media composition, pH, and temperature on the transcriptional response of key factors involved in adhesion and virulence. We also demonstrated that MRSA primed in SLM adhered better to human corneocytes and demonstrated adhesin-specific phenotypes that previously required genetic manipulation. This improved adherence to corneocytes was dependent on both acidic pH and growth in SLM. These results support the potential utility of SLM as an in vitro model for assessing staphylococcal physiology and metabolism on human skin. IMPORTANCE Staphylococcus aureus is the major cause of skin diseases, and its increased prevalence in skin colonization and infections present a need to understand its physiology in this environment. The work presented here outlines S. aureus upregulation of colonization and virulence factors using a newly developed medium that strives to replicate the human skin surface environment and demonstrates roles for adhesins clumping factor A (ClfA), serine-rich repeat glycoprotein adhesin (SraP), and the fibronectin binding proteins (Fnbps) in human corneocyte adherence.
Collapse
Affiliation(s)
- Flavia G. Costa
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Krista B. Mills
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Heidi A. Crosby
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Alexander R. Horswill
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Veterans Affairs, Eastern Colorado Healthcare System, Aurora, Colorado, USA
| |
Collapse
|
12
|
Gong X, Brand CJ, Bertucci MA. Designing and synthesizing peptide-based quorum sensing modulators. Methods Enzymol 2024; 698:263-299. [PMID: 38886035 DOI: 10.1016/bs.mie.2024.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Quorum sensing (QS) is a density-dependent bacterial communication system that uses small molecules as regulatory modulators. Synthetic changes to these molecules can up-or-down-regulate this system, leading to control of phenotypes, like competence and virulence factor production, that have implications in human health. In this chapter, a methodology for library design and screening of synthetic autoinducing peptides (AIPs) to uncover QS SARs is delineated. Additionally, procedures for the synthesis, purification and analysis of linear and cyclic AIPs are detailed. This includes solutions for potential synthetic challenges including diketopiperazine formation when using N-methyl amino acids and cyclization of peptides containing N-terminal cysteine residues. These procedures have and are currently being applied to develop potent QS modulators in Streptococcus pneumoniae, Bacillus cereus, Streptococcus gordonii and Lactiplantibacillus plantarum.
Collapse
Affiliation(s)
- Xiaotian Gong
- Department of Chemistry, Lafayette College, Easton, PA, United States
| | - Carter J Brand
- Department of Chemistry, Lafayette College, Easton, PA, United States
| | | |
Collapse
|
13
|
Jiang JH, Cameron DR, Nethercott C, Aires-de-Sousa M, Peleg AY. Virulence attributes of successful methicillin-resistant Staphylococcus aureus lineages. Clin Microbiol Rev 2023; 36:e0014822. [PMID: 37982596 PMCID: PMC10732075 DOI: 10.1128/cmr.00148-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a leading cause of severe and often fatal infections. MRSA epidemics have occurred in waves, whereby a previously successful lineage has been replaced by a more fit and better adapted lineage. Selection pressures in both hospital and community settings are not uniform across the globe, which has resulted in geographically distinct epidemiology. This review focuses on the mechanisms that trigger the establishment and maintenance of current, dominant MRSA lineages across the globe. While the important role of antibiotic resistance will be mentioned throughout, factors which influence the capacity of S. aureus to colonize and cause disease within a host will be the primary focus of this review. We show that while MRSA possesses a diverse arsenal of toxins including alpha-toxin, the success of a lineage involves more than just producing toxins that damage the host. Success is often attributed to the acquisition or loss of genetic elements involved in colonization and niche adaptation such as the arginine catabolic mobile element, as well as the activity of regulatory systems, and shift metabolism accordingly (e.g., the accessory genome regulator, agr). Understanding exactly how specific MRSA clones cause prolonged epidemics may reveal targets for therapies, whereby both core (e.g., the alpha toxin) and acquired virulence factors (e.g., the Panton-Valentine leukocidin) may be nullified using anti-virulence strategies.
Collapse
Affiliation(s)
- Jhih-Hang Jiang
- Department of Microbiology, Infection Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - David R. Cameron
- Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Cara Nethercott
- Department of Microbiology, Infection Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Marta Aires-de-Sousa
- Laboratory of Molecular Genetics, Institutode Tecnologia Químicae Biológica António Xavier (ITQB-NOVA), Universidade Nova de Lisboa, Oeiras, Portugal
- Escola Superior de Saúde da Cruz Vermelha Portuguesa-Lisboa (ESSCVP-Lisboa), Lisbon, Portugal
| | - Anton Y. Peleg
- Department of Microbiology, Infection Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Centre to Impact Antimicrobial Resistance, Monash University, Clayton, Melbourne, Victoria, Australia
| |
Collapse
|
14
|
Costa FG, Mills KB, Crosby HA, Horswill AR. The Staphylococcus aureus regulatory program in a human skin-like environment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.24.563767. [PMID: 37961268 PMCID: PMC10634794 DOI: 10.1101/2023.10.24.563767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Staphylococcus aureus is a Gram-positive pathogen responsible for the majority of skin and soft tissue infections (SSTIs). S. aureus colonizes the anterior nares of approximately 20-30% of the population and transiently colonizes the skin, thereby increasing the risk of developing SSTIs and more serious infections. Current laboratory models that mimic the skin surface environment are expensive, require substantial infrastructure, and limit the scope of bacterial physiology studies under human skin conditions. To overcome these limitations, we developed a cost-effective, open-source, chemically defined media recipe termed skin-like media (SLM) that incorporates key aspects of the human skin surface environment and supports growth of several Staphylococcal species. We utilized SLM to investigate the transcriptional response of methicillin-resistant S. aureus (MRSA) following growth in SLM compared to a commonly used laboratory media. Through RNA-seq analysis, we observed the upregulation of several virulence factors, including genes encoding functions involved in adhesion, proteolysis, and cytotoxicity. To further explore these findings, we conducted qRT-PCR experiments to determine the influence of media composition, pH, and temperature on the transcriptional response of key factors involved in adhesion and virulence. We also demonstrated that MRSA primed in SLM adhered better to human corneocytes and demonstrated adhesin-specific phenotypes that previously required genetic manipulation. These results support the potential utility of SLM as an in vitro model for assessing Staphylococcal physiology and metabolism on human skin. Importance Staphylococcus aureus is the major cause of skin diseases, and its increased prevalence in skin colonization and infections present a need to understand its physiology in this environment. The work presented here outlines S. aureus upregulation of colonization and virulence factors using a newly developed media that strives to replicate the human skin surface environment, and demonstrates roles for adhesins ClfA, SraP, and Fnbps in human corneocyte adherence.
Collapse
|
15
|
Friberg M, Woeller K, Iberi V, Mancheno PP, Riedeman J, Bohman L, Davis CC. Development of in vitro methods to model the impact of vaginal lactobacilli on Staphylococcus aureus biofilm formation on menstrual cups as well as validation of recommended cleaning directions. FRONTIERS IN REPRODUCTIVE HEALTH 2023; 5:1162746. [PMID: 37671283 PMCID: PMC10475951 DOI: 10.3389/frph.2023.1162746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 07/25/2023] [Indexed: 09/07/2023] Open
Abstract
Introduction Menstrual cups (MC) are a reusable feminine hygiene product. A recent publication suggested that Staphylococcus aureus (S. aureus) biofilms can form on MCs which may lead to increased risk of menstrual Toxic Shock Syndrome (mTSS). Additionally, there is concern that buildup of residual menses may contribute to microbial growth and biofilm formation further increasing mTSS risk. Quantitative and qualitative analysis of in vitro tests were utilized to determine if S. aureus biofilm could form on MC in the presence of the keystone species Lactobacillus after 12 h of incubation. The methodology was based on a modification of an anaerobic in vitro method that harnesses the keystone species hypothesis by including a representative of vaginal lactic acid bacteria. Methods MCs were incubated anaerobically for 12 h in Vaginal Defined Media (VDM) with the two morphologically distinct bacteria, Lactobacillus gasseri (L. gasseri) and S. aureus. Colony Forming Units (CFU) for each organism from the VDM broth and sonicated MC were estimated. In addition, a separate experiment was conducted where S. aureus was grown for 12 h in the absence of L. gasseri. Qualitative analysis for biofilm formation utilized micro-CT (µ-CT) and cryogenic scanning electron microscopy (Cryo-SEM). Results Samples collected from the media control had expected growth of both organisms after 12 h of incubation. Samples collected from VDM broth were similar to media control at the end of the 12-h study. Total S. aureus cell density on MC following sonication/rinsing was minimal. Results when using a monoculture of S. aureus demonstrated that there was a significant growth of the organism in the media control and broth as well as the sonicated cups indicating that the presence of L. gasseri was important for controlling growth and adherence of S. aureus. Few rod-shaped bacteria (L. gasseri) and cocci (S. aureus) could be identified on the MCs when grown in a dual species culture inoculum and no biofilm was noted via µ-CT and cryo-SEM. Additionally, efforts to model and understand the validity of the current labeled recommendations for MC cleaning in-between uses are supported. Discussion The data support continued safe use of the Tampax® cup when used and maintained as recommended.
Collapse
Affiliation(s)
- Maria Friberg
- Baby, Feminine and Family Care Microbiology, The Procter & Gamble Company, Mason, OH, United States
| | - Kara Woeller
- Baby, Feminine and Family Care, Global Product Stewardship, The Procter & Gamble Company, Cincinnati, OH, United States
| | - Vighter Iberi
- Corporate Functions Analytical, The Procter & Gamble Company, Mason, OH, United States
| | | | - James Riedeman
- Baby, Family and Feminine Care Analytical Chemistry, The Procter & Gamble Company, Cincinnati, OH, United States
| | - Lisa Bohman
- Data Modeling and Sciences, The Procter & Gamble Company, Mason, OH, United States
| | - Catherine C. Davis
- Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, Omaha, NE, United States
| |
Collapse
|
16
|
Polaske TJ, West KHJ, Zhao K, Widner DL, York JT, Blackwell HE. Chemical and biomolecular insights into the Staphylococcus aureus agr quorum sensing system: Current progress and ongoing challenges. Isr J Chem 2023; 63:e202200096. [PMID: 38765792 PMCID: PMC11101167 DOI: 10.1002/ijch.202200096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Indexed: 03/19/2023]
Abstract
Staphylococcus aureus is a ubiquitous bacterium that has become a major threat to human health due to its extensive toxin production and tremendous capacity for antibiotic resistance (e.g., MRSA "superbug" infections). Amid a worsening antibiotic resistance crisis, new strategies to combat this deadly microbe that remove the selective pressure of traditional approaches are in high demand. S. aureus utilizes an accessory gene regulator (agr) quorum sensing network to monitor its local cellular population and trigger a devastating communal attack, like an invading horde, once a threshold cell density has been reached. The role of the agr system in a range of disease types is still being unraveled. Herein, we discuss the present-day biochemical understanding of agr along with unresolved details, describe its connection to the progression of infection, and review how chemical strategies have been implemented to study and intercept this signaling pathway. This research is illuminating the potential of agr as an anti-virulence target in S. aureus and should inform the study of similar, yet less studied, agr systems in related bacterial pathogens.
Collapse
Affiliation(s)
- Thomas J. Polaske
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Ave., Madison, WI 53706 USA
| | - Korbin H. J. West
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Ave., Madison, WI 53706 USA
| | - Ke Zhao
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Ave., Madison, WI 53706 USA
| | - Danielle L. Widner
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Ave., Madison, WI 53706 USA
| | - Jordan T. York
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Ave., Madison, WI 53706 USA
| | - Helen E. Blackwell
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Ave., Madison, WI 53706 USA
| |
Collapse
|
17
|
Schlievert P, Kilgore S, Leung D. Agr Regulation of Streptococcal Pyrogenic Exotoxin A in Staphylococcus aureus. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000795. [PMID: 37179971 PMCID: PMC10167548 DOI: 10.17912/micropub.biology.000795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/22/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023]
Abstract
Group A streptococcal pyrogenic exotoxins (SPEs A, B, and C) are superantigens. SPE A shares high sequence similarity with Staphylococcus aureus enterotoxins (SEs) B and C. Since SPE A is bacteriophage-encoded, we hypothesized that its gene ( speA ) was acquired from S. aureus . speA , when cloned into S. aureus , was stably expressed, its protein resistant to proteases, and the gene under accessory gene regulator control. speA was acquired by streptococci from cross-species transduction. speB was not expressed in S. aureus. SPE C was degraded by staphylococcal proteases. The genes speB and speC were not recently acquired from S. aureus.
Collapse
|
18
|
Vittorakis E, Vică ML, Zervaki CO, Vittorakis E, Maraki S, Mavromanolaki VE, Schürger ME, Neculicioiu VS, Papadomanolaki E, Sinanis T, Giannoulaki G, Xydaki E, Kastanakis SG, Junie LM. Examining the Prevalence and Antibiotic Susceptibility of S. aureus Strains in Hospitals: An Analysis of the pvl Gene and Its Co-Occurrence with Other Virulence Factors. Microorganisms 2023; 11:microorganisms11040841. [PMID: 37110264 PMCID: PMC10140963 DOI: 10.3390/microorganisms11040841] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/17/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
S. aureus is a pathogenic bacterium that causesinfections. Its virulence is due to surface components, proteins, virulence genes, SCCmec, pvl, agr, and SEs, which are low molecular weight superantigens. SEs are usually encoded by mobile genetic elements, and horizontal gene transfer accounts for their widespread presence in S. aureus. This study analyzed the prevalence of MRSA and MSSA strains of S. aureus in two hospitals in Greece between 2020–2022 and their susceptibility to antibiotics. Specimens collected were tested using the VITEK 2 system and the PCR technique to detect SCCmec types, agr types, pvl genes, and sem and seg genes. Antibiotics from various classes were also tested. This study examined the prevalence and resistance of S. aureus strains in hospitals. It found a high prevalence of MRSA and that the MRSA strains were more resistant to antibiotics. The study also identified the genotypes of the S. aureus isolates and the associated antibiotic resistances. This highlights the need for continued surveillance and effective strategies to combat the spread of MRSA in hospitals. This study examined the prevalence of the pvl gene and its co-occurrence with other genes in S. aureus strains, as well as their antibiotic susceptibility. The results showed that 19.15% of the isolates were pvl-positive and 80.85% were pvl-negative. The pvl gene co-existed with other genes, such as the agr and enterotoxin genes. The results could inform treatment strategies for S. aureus infections.
Collapse
Affiliation(s)
- Eftychios Vittorakis
- Department of Microbiology, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (E.V.)
- Department of Cell and Molecular Biology, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Agios Georgios General Hospital of Chania, 73100 Crete, Greece
| | - Mihaela Laura Vică
- Department of Cell and Molecular Biology, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | | | | | - Sofia Maraki
- Department of Clinical Microbiology and Microbial Pathogenesis, University Hospital of Heraklion, 70013 Crete, Greece
| | - Viktoria Eirini Mavromanolaki
- Department of Clinical Microbiology and Microbial Pathogenesis, University Hospital of Heraklion, 70013 Crete, Greece
| | - Michael Ewald Schürger
- Department of Cell and Molecular Biology, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Vlad Sever Neculicioiu
- Department of Microbiology, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (E.V.)
| | | | | | | | | | | | - Lia Monica Junie
- Department of Microbiology, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (E.V.)
- Correspondence:
| |
Collapse
|
19
|
Schlievert PM, Kilgore SH, Beck LA, Yoshida T, Klingelhutz AJ, Leung DYM. Host Cationic Antimicrobial Molecules Inhibit S. aureus Exotoxin Production. mSphere 2023; 8:e0057622. [PMID: 36598227 PMCID: PMC9942567 DOI: 10.1128/msphere.00576-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 12/02/2022] [Indexed: 01/05/2023] Open
Abstract
Innate immune molecules, including antimicrobial peptides (for example, defensins) and lysozyme, function to delay or prevent bacterial infections. These molecules are commonly found on mucosal and skin surfaces. Staphylococcus aureus is a common pathogen and causes millions of infections annually. It is well known that innate immune molecules, such as defensins and lysozyme, either poorly inhibit or do not inhibit the growth of S. aureus. Our current studies show that the α-defensin human neutrophil α-defensin-1 (HNP-1) and lysozyme inhibit exotoxin production, both hemolysins and superantigens, which are required for S. aureus infection. HNP-1 inhibited exotoxin production at concentrations as low as 0.001 μg/mL. Lysozyme inhibited exotoxin production at 0.05 to 0.5 μg/mL. Both HNP-1 and lysozyme functioned through at least one two-component system (SrrA/B). The β-defensin human β-defensin 1 (HBD-1) inhibited hemolysin but not superantigen production. The cation chelator S100A8/A9 (calprotectin), compared to EDTA, was tested for the ability to inhibit exotoxin production. EDTA at high concentrations inhibited exotoxin production; these were the same concentrations that interfered with staphylococcal growth. S100A8/A9 at the highest concentration tested (10 μg/mL) had no effect on S. aureus growth but enhanced exotoxin production. Lower concentrations had no effect on growth or exotoxin production. Lysostaphin is regularly used to lyse S. aureus. The lytic concentrations of lysostaphin were the only concentrations that also inhibited growth and exotoxin production. Our studies demonstrate that a major activity of innate defensin peptides and lysozyme is inhibition of staphylococcal exotoxin production but not inhibition of growth. IMPORTANCE Staphylococcus aureus causes large numbers of both relatively benign and serious human infections, which are mediated in large part by the organisms' secreted exotoxins. Since 1921, it has been known that lysozyme and, as shown later in the 1900s, other innate immune peptides, including human neutrophil α-defensin-1 (HNP-1) and human β-defensin 1 (HBD-1), are either not antistaphylococcal or are only weakly inhibitory to growth. Our study confirms those findings but, importantly, shows that at subgrowth inhibitory concentrations, these positively charged innate immune peptides inhibit exotoxin production, including both hemolysins and the superantigen toxic shock syndrome toxin-1. The data show that the principal activity of innate immune peptides in the host is likely to be inhibition of exotoxin production required for staphylococcal mucosal or skin colonization rather than growth inhibition.
Collapse
Affiliation(s)
- Patrick M. Schlievert
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Samuel H. Kilgore
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Lisa A. Beck
- Department of Dermatology, University of Rochester Medical Center, Rochester, New York, USA
| | - Takeshi Yoshida
- Department of Dermatology, University of Rochester Medical Center, Rochester, New York, USA
| | - Aloysius J. Klingelhutz
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | | |
Collapse
|
20
|
Staphylococcus lugdunensis Uses the Agr Regulatory System to Resist Killing by Host Innate Immune Effectors. Infect Immun 2022; 90:e0009922. [PMID: 36069592 PMCID: PMC9584346 DOI: 10.1128/iai.00099-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Coagulase-negative staphylococci (CoNS) are frequently commensal bacteria that rarely cause disease in mammals. Staphylococcus lugdunensis is an exceptional CoNS that causes disease in humans similar to virulent Staphylococcus aureus, but the factors that enhance the virulence of this bacterium remain ill defined. Here, we used random transposon insertion mutagenesis to identify the agr quorum sensing system as a regulator of hemolysins in S. lugdunensis. Using RNA sequencing (RNA-seq), we revealed that agr regulates dozens of genes, including hemolytic S. lugdunensis synergistic hemolysins (SLUSH) peptides and the protease lugdulysin. A murine bacteremia model was used to show that mice infected systemically with wild-type S. lugdunensis do not show overt signs of disease despite there being high numbers of bacteria in the livers and kidneys of mice. Moreover, proliferation of the agr mutant in these organs was no different from that of the wild-type strain, leaving the role of the SLUSH peptides and the metalloprotease lugdulysin in pathogenesis still unclear. Nonetheless, the tropism of S. lugdunensis for humans led us to investigate the role of virulence factors in other ways. We show that agr-regulated effectors, but not SLUSH or lugdulysin alone, are important for S. lugdunensis survival in whole human blood. Moreover, we demonstrate that Agr contributes to survival of S. lugdunensis during encounters with murine and primary human macrophages. These findings demonstrate that, in S. lugdunensis, Agr regulates expression of virulence factors and is required for resistance to host innate antimicrobial defenses. This study therefore provides insight into strategies that this Staphylococcus species uses to cause disease.
Collapse
|
21
|
Ongpipattanakul C, Desormeaux EK, DiCaprio A, van der Donk WA, Mitchell DA, Nair SK. Mechanism of Action of Ribosomally Synthesized and Post-Translationally Modified Peptides. Chem Rev 2022; 122:14722-14814. [PMID: 36049139 PMCID: PMC9897510 DOI: 10.1021/acs.chemrev.2c00210] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a natural product class that has undergone significant expansion due to the rapid growth in genome sequencing data and recognition that they are made by biosynthetic pathways that share many characteristic features. Their mode of actions cover a wide range of biological processes and include binding to membranes, receptors, enzymes, lipids, RNA, and metals as well as use as cofactors and signaling molecules. This review covers the currently known modes of action (MOA) of RiPPs. In turn, the mechanisms by which these molecules interact with their natural targets provide a rich set of molecular paradigms that can be used for the design or evolution of new or improved activities given the relative ease of engineering RiPPs. In this review, coverage is limited to RiPPs originating from bacteria.
Collapse
Affiliation(s)
- Chayanid Ongpipattanakul
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Emily K. Desormeaux
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Adam DiCaprio
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Wilfred A. van der Donk
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Departments of Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| | - Douglas A. Mitchell
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Microbiology, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Departments of Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| | - Satish K. Nair
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Departments of Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| |
Collapse
|
22
|
Durand BARN, Pouget C, Magnan C, Molle V, Lavigne JP, Dunyach-Remy C. Bacterial Interactions in the Context of Chronic Wound Biofilm: A Review. Microorganisms 2022; 10:microorganisms10081500. [PMID: 35893558 PMCID: PMC9332326 DOI: 10.3390/microorganisms10081500] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/15/2022] [Accepted: 07/21/2022] [Indexed: 02/04/2023] Open
Abstract
Chronic wounds, defined by their resistance to care after four weeks, are a major concern, affecting millions of patients every year. They can be divided into three types of lesions: diabetic foot ulcers (DFU), pressure ulcers (PU), and venous/arterial ulcers. Once established, the classical treatment for chronic wounds includes tissue debridement at regular intervals to decrease biofilm mass constituted by microorganisms physiologically colonizing the wound. This particular niche hosts a dynamic bacterial population constituting the bed of interaction between the various microorganisms. The temporal reshuffle of biofilm relies on an organized architecture. Microbial community turnover is mainly associated with debridement (allowing transitioning from one major representant to another), but also with microbial competition and/or collaboration within wounds. This complex network of species and interactions has the potential, through diversity in antagonist and/or synergistic crosstalk, to accelerate, delay, or worsen wound healing. Understanding these interactions between microorganisms encountered in this clinical situation is essential to improve the management of chronic wounds.
Collapse
Affiliation(s)
- Benjamin A. R. N. Durand
- Bacterial Virulence and Chronic Infections, UMR 1047, Université Montpellier, INSERM, Service de Microbiologie et Hygiène Hospitalière, CHU Nîmes, 30908 Nîmes, France; (B.A.R.N.D.); (C.P.); (C.M.); (J.-P.L.)
| | - Cassandra Pouget
- Bacterial Virulence and Chronic Infections, UMR 1047, Université Montpellier, INSERM, Service de Microbiologie et Hygiène Hospitalière, CHU Nîmes, 30908 Nîmes, France; (B.A.R.N.D.); (C.P.); (C.M.); (J.-P.L.)
| | - Chloé Magnan
- Bacterial Virulence and Chronic Infections, UMR 1047, Université Montpellier, INSERM, Service de Microbiologie et Hygiène Hospitalière, CHU Nîmes, 30908 Nîmes, France; (B.A.R.N.D.); (C.P.); (C.M.); (J.-P.L.)
| | - Virginie Molle
- Laboratory of Pathogen Host Interactions, Université de Montpellier, CNRS, UMR 5235, 34000 Montpellier, France;
| | - Jean-Philippe Lavigne
- Bacterial Virulence and Chronic Infections, UMR 1047, Université Montpellier, INSERM, Service de Microbiologie et Hygiène Hospitalière, CHU Nîmes, 30908 Nîmes, France; (B.A.R.N.D.); (C.P.); (C.M.); (J.-P.L.)
| | - Catherine Dunyach-Remy
- Bacterial Virulence and Chronic Infections, UMR 1047, Université Montpellier, INSERM, Service de Microbiologie et Hygiène Hospitalière, CHU Nîmes, 30908 Nîmes, France; (B.A.R.N.D.); (C.P.); (C.M.); (J.-P.L.)
- Correspondence: ; Tel.: +33-466-683-202
| |
Collapse
|
23
|
Exploring the Role of Staphylococcus aureus in Inflammatory Diseases. Toxins (Basel) 2022; 14:toxins14070464. [PMID: 35878202 PMCID: PMC9318596 DOI: 10.3390/toxins14070464] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/23/2022] [Accepted: 07/01/2022] [Indexed: 02/04/2023] Open
Abstract
Staphylococcus aureus is a very common Gram-positive bacterium, and S. aureus infections play an extremely important role in a variety of diseases. This paper describes the types of virulence factors involved, the inflammatory cells activated, the process of host cell death, and the associated diseases caused by S. aureus. S. aureus can secrete a variety of enterotoxins and other toxins to trigger inflammatory responses and activate inflammatory cells, such as keratinocytes, helper T cells, innate lymphoid cells, macrophages, dendritic cells, mast cells, neutrophils, eosinophils, and basophils. Activated inflammatory cells can express various cytokines and induce an inflammatory response. S. aureus can also induce host cell death through pyroptosis, apoptosis, necroptosis, autophagy, etc. This article discusses S. aureus and MRSA (methicillin-resistant S. aureus) in atopic dermatitis, psoriasis, pulmonary cystic fibrosis, allergic asthma, food poisoning, sarcoidosis, multiple sclerosis, and osteomyelitis. Summarizing the pathogenic mechanism of Staphylococcus aureus provides a basis for the targeted treatment of Staphylococcus aureus infection.
Collapse
|
24
|
Kinney KJ, Stach JM, Kulhankova K, Brown M, Salgado-Pabón W. Vegetation Formation in Staphylococcus Aureus Endocarditis Inversely Correlates With RNAIII and sarA Expression in Invasive Clonal Complex 5 Isolates. Front Cell Infect Microbiol 2022; 12:925914. [PMID: 35860377 PMCID: PMC9289551 DOI: 10.3389/fcimb.2022.925914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/14/2022] [Indexed: 01/29/2023] Open
Abstract
Infective endocarditis (IE) is one of the most feared and lethal diseases caused by Staphylococcus aureus. Once established, the infection is fast-progressing and tissue destructive. S. aureus of the clonal complex 5 (CC5) commonly cause IE yet are severely understudied. IE results from bacterial colonization and formation of tissue biofilms (known as vegetations) on injured or inflamed cardiac endothelium. S. aureus IE is promoted by adhesins, coagulases, and superantigens, with the exotoxins and exoenzymes likely contributing to tissue destruction and dissemination. Expression of the large repertoire of virulence factors required for IE and sequelae is controlled by complex regulatory networks. We investigated the temporal expression of the global regulators agr (RNAIII), rot, sarS, sarA, sigB, and mgrA in 8 invasive CC5 isolates and established intrinsic expression patterns associated with IE outcomes. We show that vegetation formation, as tested in the rabbit model of IE, inversely correlates with RNAIII and sarA expression during growth in Todd-Hewitt broth (TH). Large vegetations with severe sequelae arise from strains with high-level expression of colonization factors but slower transition towards expression of the exotoxins. Overall, strains proficient in vegetation formation, a hallmark of IE, exhibit lower expression of RNAIII and sarA. Simultaneous high expression of RNAIII, sarA, sigB, and mgrA is the one phenotype assessed in this study that fails to promote IE. Thus, RNAIII and sarA expression that provides for rheostat control of colonization and virulence genes, rather than an on and off switch, promote both vegetation formation and lethal sepsis.
Collapse
Affiliation(s)
- Kyle J. Kinney
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Jessica M. Stach
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Katarina Kulhankova
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Matthew Brown
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Wilmara Salgado-Pabón
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
25
|
Kwiatkowski P, Tabiś A, Fijałkowski K, Masiuk H, Łopusiewicz Ł, Pruss A, Sienkiewicz M, Wardach M, Kurzawski M, Guenther S, Bania J, Dołęgowska B, Wojciechowska-Koszko I. Regulatory and Enterotoxin Gene Expression and Enterotoxins Production in Staphylococcus aureus FRI913 Cultures Exposed to a Rotating Magnetic Field and trans-Anethole. Int J Mol Sci 2022; 23:6327. [PMID: 35683006 PMCID: PMC9181688 DOI: 10.3390/ijms23116327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 11/29/2022] Open
Abstract
The study aimed to examine the influence of a rotating magnetic field (RMF) of two different frequencies (5 and 50 Hz) on the expression of regulatory (agrA, hld, rot) and staphylococcal enterotoxin (SE-sea, sec, sel) genes as well as the production of SEs (SEA, SEC, SEL) by the Staphylococcus aureus FRI913 strain cultured on a medium supplemented with a subinhibitory concentration of trans-anethole (TA). Furthermore, a theoretical model of interactions between the bacterial medium and bacterial cells exposed to RMF was proposed. Gene expression and SEs production were measured using quantitative real-time PCR and ELISA techniques, respectively. Based on the obtained results, it was found that there were no significant differences in the expression of regulatory and SE genes in bacteria simultaneously cultured on a medium supplemented with TA and exposed to RMF at the same time in comparison to the control (unexposed to TA and RMF). In contrast, when the bacteria were cultured on a medium supplemented with TA but were not exposed to RMF or when they were exposed to RMF of 50 Hz (but not to TA), a significant increase in agrA and sea transcripts as compared to the unexposed control was found. Moreover, the decreased level of sec transcripts in bacteria cultured without TA but exposed to RMF of 50 Hz was also revealed. In turn, a significant increase in SEA and decrease in SEC and SEL production was observed in bacteria cultured on a medium supplemented with TA and simultaneously exposed to RMFs. It can be concluded, that depending on SE and regulatory genes expression as well as production of SEs, the effect exerted by the RMF and TA may be positive (i.e., manifests as the increase in SEs and/or regulatory gene expression of SEs production) or negative (i.e., manifests as the reduction in both aforementioned features) or none.
Collapse
Affiliation(s)
- Paweł Kwiatkowski
- Department of Diagnostic Immunology, Pomeranian Medical University in Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland;
| | - Aleksandra Tabiś
- Department of Food Hygiene and Consumer Health Protection, Wroclaw University of Environmental and Life Sciences, C.K. Norwida 31, 50-375 Wroclaw, Poland; (A.T.); (J.B.)
| | - Karol Fijałkowski
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Piastow 45, 70-311 Szczecin, Poland
| | - Helena Masiuk
- Department of Medical Microbiology, Pomeranian Medical University in Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland;
| | - Łukasz Łopusiewicz
- Center of Bioimmobilisation and Innovative Packaging Materials, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology, Janickiego 35, 71-270 Szczecin, Poland;
| | - Agata Pruss
- Department of Laboratory Medicine, Pomeranian Medical University in Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland; (A.P.); (B.D.)
| | - Monika Sienkiewicz
- Department of Pharmaceutical Microbiology and Microbiological Diagnostic, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland;
| | - Marcin Wardach
- Faculty of Electrical Engineering, West Pomeranian University of Technology, Sikorskiego 37, 70-313 Szczecin, Poland;
| | - Mateusz Kurzawski
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University in Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland;
| | - Sebastian Guenther
- Pharmaceutical Biology, Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Straße 17, 17489 Greifswald, Germany;
| | - Jacek Bania
- Department of Food Hygiene and Consumer Health Protection, Wroclaw University of Environmental and Life Sciences, C.K. Norwida 31, 50-375 Wroclaw, Poland; (A.T.); (J.B.)
| | - Barbara Dołęgowska
- Department of Laboratory Medicine, Pomeranian Medical University in Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland; (A.P.); (B.D.)
| | - Iwona Wojciechowska-Koszko
- Department of Diagnostic Immunology, Pomeranian Medical University in Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland;
| |
Collapse
|
26
|
Ong ZX, Kannan B, Becker DL. Exploiting transposons in the study of Staphylococcus aureus pathogenesis and virulence. Crit Rev Microbiol 2022; 49:297-317. [PMID: 35438613 DOI: 10.1080/1040841x.2022.2052794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The opportunistic pathogen Staphylococcus aureus has an extremely complex relationship with humans. While the bacteria can exist as a commensal in many, it can cause a wide range of diseases and infections when turned pathogenic. Its presence is a determinant of chronicity and poor prognosis in numerous diseases, and its genomic plasticity causes S. aureus antimicrobial resistance to be one of the most dire contemporary medical problems to solve. Genetic manipulation of S. aureus has led to numerous findings that are vital in the fight against its pathogenesis. The utilisation of transposon mutant libraries for the systematic inspection of the S. aureus genome led to many landmark discoveries pertaining to the bacteria's pathogenicity, antimicrobial resistance acquisition, and virulence regulation. In this review, we describe mutant libraries, and their significant contributions, from various S. aureus strains created with commonly used transposons. The general workflow for the construction of libraries will be presented, along with a discussion of the challenges of undertaking the task of large-scale library construction. As the accessibility of transposon mutant library construction, screening, and analysis increases, this genetic tool could be further exploited in the study of the S. aureus genome.
Collapse
Affiliation(s)
- Zi Xin Ong
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore.,Skin Research Institute, Singapore.,Nanyang Institute of Technology in Health and Medicine, Interdisciplinary Graduate Programme, Nanyang Technological University, Singapore
| | - Bavani Kannan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore.,Skin Research Institute, Singapore
| | - David L Becker
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore.,Skin Research Institute, Singapore
| |
Collapse
|
27
|
Weiss A, Jackson JK, Shaw LN, Skaar EP. Screening transcriptional connections in Staphylococcus aureus using high-throughput transduction of bioluminescent reporter plasmids. MICROBIOLOGY (READING, ENGLAND) 2022; 168:001174. [PMID: 35446249 PMCID: PMC10233262 DOI: 10.1099/mic.0.001174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/17/2022] [Indexed: 12/14/2022]
Abstract
Characterization of transcriptional networks is one of the main strategies used to understand how bacteria interact with their environment. To reveal novel regulatory elements in the human pathogen Staphylococcus aureus, we adapted a traditional transduction protocol to be used in a high-throughput format in combination with the publicly available S. aureus Nebraska Transposon Mutant Library. Specifically, plasmid transductions are performed in 96-well format, so that a single plasmid can be simultaneously transferred into numerous recipient strains. When used in conjunction with bioluminescent reporter constructs, this strategy enables parallel and continuous monitoring of downstream transcriptional effects of hundreds of defined mutations. Here, we use this workflow in a proof-of-concept study to identify novel regulators of the staphylococcal metalloprotease aureolysin. Importantly, this strategy can be utilized with any other bacterium where plasmid transduction is possible, making it a versatile and efficient tool to probe transcriptional regulatory connections.
Collapse
Affiliation(s)
- Andy Weiss
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jessica K. Jackson
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620, USA
| | - Lindsey N. Shaw
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620, USA
| | - Eric P. Skaar
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
28
|
Montagut EJ, Acosta G, Albericio F, Royo M, Godoy-Tena G, Lacoma A, Prat C, Salvador JP, Marco MP. Direct Quantitative Immunochemical Analysis of Autoinducer Peptide IV for Diagnosing and Stratifying Staphylococcus aureus Infections. ACS Infect Dis 2022; 8:645-656. [PMID: 35175740 PMCID: PMC8922274 DOI: 10.1021/acsinfecdis.1c00670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An immunochemical strategy to detect and quantify AIP-IV, the quorum sensing (QS) signaling molecule produced by Staphylococcus aureus agr type IV, is reported here for the first time. Theoretical calculations and molecular modeling studies have assisted on the design and synthesis of a suitable peptide hapten (AIPIVS), allowing to obtain high avidity and specific antibodies toward this peptide despite its low molecular weight. The ELISA developed achieves an IC50 value of 2.80 ± 0.17 and an LOD of 0.19 ± 0.06 nM in complex media such as 1/2 Tryptic Soy Broth. Recognition of other S. aureus AIPs (I-III) is negligible (cross-reactivity below 0.001%), regardless of the structural similarities. A pilot study with a set of clinical isolates from patients with airways infection or colonization demonstrates the potential of this ELISA to perform biomedical investigations related to the role of QS in pathogenesis and the association between dysfunctional agr or the agr type with unfavorable clinical outcomes. The AIP-IV levels could be quantified in the low nanomolar range in less than 1 h after inoculating agr IV-genotyped isolates in the culture broth, while those genotyped as I-III did not show any immunoreactivity after a 48 h growth, pointing to the possibility to use this technology for phenotyping S. aureus. The research strategy here reported can be extended to the rest of the AIP types of S. aureus, allowing the development of powerful multiplexed chips or point-of-care (PoC) diagnostic devices to unequivocally identify its presence and its agr type on samples from infected patients.
Collapse
Affiliation(s)
- Enrique-J. Montagut
- Nanobiotechnology for Diagnostics (Nb4D), Department of Surfactants and Nanobiotechnology, Institute for Advanced Chemistry of Catalonia (IQAC) of the Spanish Council for Scientific Research (CSIC), 08750 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid Spain
| | - Gerardo Acosta
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid Spain
- Multivalent Systems for Nanomedicine (MS4N), Department of Surfactants and Nanobiotechnology, Institute for Advanced Chemistry of Catalonia (IQAC) of the Spanish Council for Scientific Research (CSIC), 08750 Barcelona, Spain
| | - Fernando Albericio
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid Spain
- Multivalent Systems for Nanomedicine (MS4N), Department of Surfactants and Nanobiotechnology, Institute for Advanced Chemistry of Catalonia (IQAC) of the Spanish Council for Scientific Research (CSIC), 08750 Barcelona, Spain
- Department of Organic Chemistry, Faculty of Chemistry, University of Barcelona, 08028 Barcelona, Spain
- School of Chemistry and Physics, University of KwaZulu-Natal, 4000 Durban, South Africa
| | - Miriam Royo
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid Spain
- Multivalent Systems for Nanomedicine (MS4N), Department of Surfactants and Nanobiotechnology, Institute for Advanced Chemistry of Catalonia (IQAC) of the Spanish Council for Scientific Research (CSIC), 08750 Barcelona, Spain
| | - Gerard Godoy-Tena
- Servei de Microbiologia, Hospital Universitari Germans Trias i Pujol, Institut d’Investigació Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Alicia Lacoma
- Servei de Microbiologia, Hospital Universitari Germans Trias i Pujol, Institut d’Investigació Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - Cristina Prat
- Servei de Microbiologia, Hospital Universitari Germans Trias i Pujol, Institut d’Investigació Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, 3584 Utrecht, the Netherlands
| | - Juan-Pablo Salvador
- Nanobiotechnology for Diagnostics (Nb4D), Department of Surfactants and Nanobiotechnology, Institute for Advanced Chemistry of Catalonia (IQAC) of the Spanish Council for Scientific Research (CSIC), 08750 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid Spain
| | - María-Pilar Marco
- Nanobiotechnology for Diagnostics (Nb4D), Department of Surfactants and Nanobiotechnology, Institute for Advanced Chemistry of Catalonia (IQAC) of the Spanish Council for Scientific Research (CSIC), 08750 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid Spain
| |
Collapse
|
29
|
Aubourg M, Pottier M, Léon A, Bernay B, Dhalluin A, Cacaci M, Torelli R, Ledormand P, Martini C, Sanguinetti M, Auzou M, Gravey F, Giard JC. Inactivation of the Response Regulator AgrA Has a Pleiotropic Effect on Biofilm Formation, Pathogenesis and Stress Response in Staphylococcus lugdunensis. Microbiol Spectr 2022; 10:e0159821. [PMID: 35138170 PMCID: PMC8826819 DOI: 10.1128/spectrum.01598-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 01/07/2022] [Indexed: 12/24/2022] Open
Abstract
Staphylococcus lugdunensis is a coagulase-negative Staphylococcus that emerges as an important opportunistic pathogen. However, little is known about the regulation underlying the transition from commensal to virulent state. Based on knowledge of S. aureus virulence, we suspected that the agr quorum sensing system may be an important determinant for the pathogenicity of S. lugdunensis. We investigated the functions of the transcriptional regulator AgrA using the agrA deletion mutant. AgrA played a role in cell pigmentation: ΔargA mutant colonies were white while the parental strains were slightly yellow. Compared with the wild-type strain, the ΔargA mutant was affected in its ability to form biofilm and was less able to survive in mice macrophages. Moreover, the growth of ΔagrA was significantly reduced by the addition of 10% NaCl or 0.4 mM H2O2 and its survival after 2 h in the presence of 1 mM H2O2 was more than 10-fold reduced. To explore the mechanisms involved beyond these phenotypes, the ΔagrA proteome and transcriptome were characterized by mass spectrometry and RNA-Seq. We found that AgrA controlled several virulence factors as well as stress-response factors, which are well correlated with the reduced resistance of the ΔagrA mutant to osmotic and oxidative stresses. These results were not the consequence of the deregulation of RNAIII of the agr system, since no phenotype or alteration of the proteomic profile has been observed for the ΔRNAIII mutant. Altogether, our results highlighted that the AgrA regulator of S. lugdunensis played a key role in its ability to become pathogenic. IMPORTANCE Although belonging to the natural human skin flora, Staphylococcus lugdunensis is recognized as a particularly aggressive and destructive pathogen. This study aimed to characterize the role of the response regulator AgrA, which is a component of the quorum-sensing agr system and known to be a major element in the regulation of pathogenicity and biofilm formation in Staphylococcus aureus. In the present study, we showed that, contrary to S. aureus, the agrA deletion mutant produced less biofilm. Inactivation of agrA conferred a white colony phenotype and impacted S. lugdunensis in its ability to survive in mice macrophages and to cope with osmotic and oxidative stresses. By global proteomic and transcriptomic approaches, we identified the AgrA regulon, bringing molecular bases underlying the observed phenotypes. Together, our data showed the importance of AgrA in the opportunistic pathogenic behavior of S. lugdunensis allowing it to be considered as an interesting therapeutic target.
Collapse
Affiliation(s)
- Marion Aubourg
- Université de Caen Normandie, Dynamicure, INSERM U1311, CHU de Caen, Caen, France
| | - Marine Pottier
- Université de Caen Normandie, Dynamicure, INSERM U1311, CHU de Caen, Caen, France
- LABÉO Frank Duncombe, Caen, France
| | - Albertine Léon
- Université de Caen Normandie, Dynamicure, INSERM U1311, CHU de Caen, Caen, France
- LABÉO Frank Duncombe, Caen, France
| | - Benoit Bernay
- Plateforme Proteogen SFR ICORE 4206, Université de Caen Normandie, Caen, France
| | - Anne Dhalluin
- Université de Caen Normandie, Dynamicure, INSERM U1311, CHU de Caen, Caen, France
| | - Margherita Cacaci
- Institute of Microbiology, Catholic University of Sacred Heart, L. go F. Vito 1, Rome, Italy
| | - Riccardo Torelli
- Institute of Microbiology, Catholic University of Sacred Heart, L. go F. Vito 1, Rome, Italy
| | | | - Cecilia Martini
- Institute of Microbiology, Catholic University of Sacred Heart, L. go F. Vito 1, Rome, Italy
| | - Maurizio Sanguinetti
- Institute of Microbiology, Catholic University of Sacred Heart, L. go F. Vito 1, Rome, Italy
| | - Michel Auzou
- CHU de Caen, Laboratoire de Microbiologie, Caen, France
| | - François Gravey
- Université de Caen Normandie, Dynamicure, INSERM U1311, CHU de Caen, Caen, France
| | | |
Collapse
|
30
|
Simonetti O, Rizzetto G, Cirioni O, Molinelli E, Morroni G, Giacometti A, Offidani A. New insight into old and new antimicrobial molecules targeting quorum sensing for MRSA wound infection. Future Microbiol 2022; 17:177-183. [PMID: 35040689 DOI: 10.2217/fmb-2021-0120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
MRSA represents one of the largest problems in wound healing as a result of its increasing incidence and the complex therapeutic approach required to treat it. The need for new solutions to overcome antibiotic resistance led to the development of antimicrobial molecules that are effective at blocking quorum sensing. This special report provides an up-to-date review, based on the latest evidence in the literature, of old and new molecules that can positively influence the process of wound healing via their action on MRSA quorum sensing. Quorum sensing-inhibiting molecules, applied topically or injected in situ, have excellent potential to improve both MRSA eradication and quality of wound healing, especially when combined with conventional systemic MRSA therapy. Further human studies are needed to evaluate the efficacy of these molecules.
Collapse
Affiliation(s)
- Oriana Simonetti
- Clinic of Dermatology, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, 60121, Italy
| | - Giulio Rizzetto
- Clinic of Dermatology, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, 60121, Italy
| | - Oscar Cirioni
- Clinic of Infectious Diseases, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, 60121, Italy
| | - Elisa Molinelli
- Clinic of Dermatology, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, 60121, Italy
| | - Gianluca Morroni
- Microbiology, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, 60121, Italy
| | - Andrea Giacometti
- Clinic of Infectious Diseases, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, 60121, Italy
| | - Annamaria Offidani
- Clinic of Dermatology, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, 60121, Italy
| |
Collapse
|
31
|
Cheung GYC, Bae JS, Otto M. Pathogenicity and virulence of Staphylococcus aureus. Virulence 2021; 12:547-569. [PMID: 33522395 PMCID: PMC7872022 DOI: 10.1080/21505594.2021.1878688] [Citation(s) in RCA: 502] [Impact Index Per Article: 167.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 12/15/2022] Open
Abstract
Staphylococcus aureus is one of the most frequent worldwide causes of morbidity and mortality due to an infectious agent. This pathogen can cause a wide variety of diseases, ranging from moderately severe skin infections to fatal pneumonia and sepsis. Treatment of S. aureus infections is complicated by antibiotic resistance and a working vaccine is not available. There has been ongoing and increasing interest in the extraordinarily high number of toxins and other virulence determinants that S. aureus produces and how they impact disease. In this review, we will give an overview of how S. aureus initiates and maintains infection and discuss the main determinants involved. A more in-depth understanding of the function and contribution of S. aureus virulence determinants to S. aureus infection will enable us to develop anti-virulence strategies to counteract the lack of an anti-S. aureus vaccine and the ever-increasing shortage of working antibiotics against this important pathogen.
Collapse
Affiliation(s)
- Gordon Y. C. Cheung
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, Bethesda, Maryland, USA
| | - Justin S. Bae
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, Bethesda, Maryland, USA
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
32
|
Zhou X, Zheng Y, Lv Q, Kong D, Ji B, Han X, Zhou D, Sun Z, Zhu L, Liu P, Jiang H, Jiang Y. Staphylococcus aureus N-terminus formylated δ-toxin tends to form amyloid fibrils, while the deformylated δ-toxin tends to form functional oligomer complexes. Virulence 2021; 12:1418-1437. [PMID: 34028320 PMCID: PMC8158037 DOI: 10.1080/21505594.2021.1928395] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/04/2021] [Accepted: 05/07/2021] [Indexed: 11/29/2022] Open
Abstract
The community-associated Methicillin-resistant Staphylococcus aureus strain (CA-MRSA) is highly virulent and has become a major focus of public health professionals. Phenol-soluble modulins (PSM) are key factors in its increased virulence. δ-Toxin belongs to PSM family and has copious secretion in many S. aureus strains. In addition, δ-toxin exists in the S. aureus culture supernatant as both N-terminus formylated δ-toxin (fδ-toxin) and deformylated δ-toxin (dfδ-toxin) groups. Although δ-toxin has been studied for more than 70 years, its functions remain unclear. We isolated and purified PSMs from the supernatant of S. aureus MW2, and found fibrils and oligomers aggregates by Size Exclusion Chromatography. After analyzing PSM aggregates and using peptide simulations, we found that the difference in the monomer structure of fδ-toxin and dfδ-toxin might ultimately lead to differences in the aggregation ability: fδ-toxin and dfδ-toxin tend to form fibrils and oligomers respectively. Of note, we found that fδ-toxin fibrils enhanced the stability of biofilms, while dfδ-toxin oligomers promoted their dispersal. Additionally, oligomeric dfδ-toxin combined with PSMα to form a complex with enhanced functionality. Due to the different aggregation capabilities and functions of fδ-toxin and dfδ-toxin, we speculate that they may be involved in the regulation of physiological activities of S. aureus. Moreover, the dfδ-toxin oligomer not only provides a new form of complex in the study of PSMα, but also has significance as a reference in oligomer research pertaining to some human amyloid diseases.
Collapse
Affiliation(s)
- Xinyu Zhou
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | - Yuling Zheng
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | - Qingyu Lv
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | - Decong Kong
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | - Bin Ji
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xuelian Han
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | - Zeyu Sun
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | - Li Zhu
- Beijing Institute of Biotechnology, Beijing, China
| | - Peng Liu
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | - Hua Jiang
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | - Yongqiang Jiang
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|
33
|
Simonetti O, Rizzetto G, Radi G, Molinelli E, Cirioni O, Giacometti A, Offidani A. New Perspectives on Old and New Therapies of Staphylococcal Skin Infections: The Role of Biofilm Targeting in Wound Healing. Antibiotics (Basel) 2021; 10:antibiotics10111377. [PMID: 34827315 PMCID: PMC8615132 DOI: 10.3390/antibiotics10111377] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/06/2021] [Accepted: 11/07/2021] [Indexed: 12/31/2022] Open
Abstract
Among the most common complications of both chronic wound and surgical sites are staphylococcal skin infections, which slow down the wound healing process due to various virulence factors, including the ability to produce biofilms. Furthermore, staphylococcal skin infections are often caused by methicillin-resistant Staphylococcus aureus (MRSA) and become a therapeutic challenge. The aim of this narrative review is to collect the latest evidence on old and new anti-staphylococcal therapies, assessing their anti-biofilm properties and their effect on skin wound healing. We considered antibiotics, quorum sensing inhibitors, antimicrobial peptides, topical dressings, and antimicrobial photo-dynamic therapy. According to our review of the literature, targeting of biofilm is an important therapeutic choice in acute and chronic infected skin wounds both to overcome antibiotic resistance and to achieve better wound healing.
Collapse
Affiliation(s)
- Oriana Simonetti
- Department of Clinical and Molecular Sciences Clinic of Dermatology, Polytechnic University of Marche, 60020 Ancona, Italy; (G.R.); (G.R.); (E.M.); (A.O.)
- Correspondence: ; Tel.: +39-0-715-963-494
| | - Giulio Rizzetto
- Department of Clinical and Molecular Sciences Clinic of Dermatology, Polytechnic University of Marche, 60020 Ancona, Italy; (G.R.); (G.R.); (E.M.); (A.O.)
| | - Giulia Radi
- Department of Clinical and Molecular Sciences Clinic of Dermatology, Polytechnic University of Marche, 60020 Ancona, Italy; (G.R.); (G.R.); (E.M.); (A.O.)
| | - Elisa Molinelli
- Department of Clinical and Molecular Sciences Clinic of Dermatology, Polytechnic University of Marche, 60020 Ancona, Italy; (G.R.); (G.R.); (E.M.); (A.O.)
| | - Oscar Cirioni
- Department of Biomedical Sciences and Public Health Clinic of Infectious Diseases, Polytechnic University of Marche, 60020 Ancona, Italy; (O.C.); (A.G.)
| | - Andrea Giacometti
- Department of Biomedical Sciences and Public Health Clinic of Infectious Diseases, Polytechnic University of Marche, 60020 Ancona, Italy; (O.C.); (A.G.)
| | - Annamaria Offidani
- Department of Clinical and Molecular Sciences Clinic of Dermatology, Polytechnic University of Marche, 60020 Ancona, Italy; (G.R.); (G.R.); (E.M.); (A.O.)
| |
Collapse
|
34
|
Mishra B, Khader R, Felix LO, Frate M, Mylonakis E, Meschwitz S, Fuchs BB. A Substituted Diphenyl Amide Based Novel Scaffold Inhibits Staphylococcus aureus Virulence in a Galleria mellonella Infection Model. Front Microbiol 2021; 12:723133. [PMID: 34675898 PMCID: PMC8524085 DOI: 10.3389/fmicb.2021.723133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/14/2021] [Indexed: 11/23/2022] Open
Abstract
Antimicrobial compounds can combat microbes through modulating host immune defense, inhibiting bacteria survival and growth, or through impeding or inhibiting virulence factors. In the present study, a panel of substituted diphenyl amide compounds previously found to disrupt bacterial quorum sensing were investigated and several were found to promote survival in the Galleria mellonella model when provided therapeutically to treat a Gram-positive bacterial infection from methicillin-resistant Staphylococcus aureus strain MW2. Out of 21 tested compounds, N-4-Methoxyphenyl-3-(4-methoxyphenyl)-propanamide (AMI 82B) was the most potent at disrupting S. aureus virulence and promoted 50% larvae survival at 120 and 96 h when delivered at 0.5 and 5 mg/Kg, respectively, compared to untreated controls (p < 0.0001). AMI 82B did not exhibit G. mellonella toxicity (LC50 > 144 h) at a delivery concentration up to 5 mg/Kg. Further assessment with mammalian cells suggest AMI 82B hemolytic effects against erythrocytes has an HL50 greater than the highest tested concentration of 64 μg/mL. Against HepG2 hepatic cells, AMI 82B demonstrated an LD50 greater than 64 μg/mL. AMI 82B lacked direct bacteria inhibition with a minimal inhibitory concentration that exceeds 64 μg/mL and no significant reduction in S. aureus growth curve at the same concentration. Assessment via qPCR revealed that AMI 82B significantly depressed quorum sensing genes agr, spa, and icaA (p < 0.05). Thus, AMI 82B therapeutic effect against S. aureus in the G. mellonella infection model is likely an influence on bacterial quorum sensing driven virulence factors and provides an interesting hit compound for this medically important pathogen.
Collapse
Affiliation(s)
- Biswajit Mishra
- Division of Infectious Diseases, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI, United States
| | - Rajamohammed Khader
- Division of Infectious Diseases, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI, United States
| | - Lewis Oscar Felix
- Division of Infectious Diseases, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI, United States
| | - Marissa Frate
- Department of Chemistry, Salve Regina University, Newport, RI, United States
| | - Eleftherios Mylonakis
- Division of Infectious Diseases, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI, United States
| | - Susan Meschwitz
- Department of Chemistry, Salve Regina University, Newport, RI, United States
| | - Beth Burgwyn Fuchs
- Division of Infectious Diseases, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI, United States
| |
Collapse
|
35
|
Rumpf C, Lange J, Schwartbeck B, Kahl BC. Staphylococcus aureus and Cystic Fibrosis-A Close Relationship. What Can We Learn from Sequencing Studies? Pathogens 2021; 10:1177. [PMID: 34578208 PMCID: PMC8466686 DOI: 10.3390/pathogens10091177] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 01/13/2023] Open
Abstract
Staphylococcus aureus is next to Pseudomonas aeruginosa the most isolated pathogen from the airways of cystic fibrosis (CF) patients, who are often infected by a dominant S. aureus clone for extended periods. To be able to persist, the pathogen has to adapt to the hostile niche of the airways to counteract host defence, antibiotic therapy and the competition with coinfecting pathogens. S. aureus is equipped with many virulence factors including adhesins, toxins that are localized on the chromosome, on plasmids or are phage-related. S. aureus is especially versatile and adaptation and evolution of the pathogen occurs by the acquisition of new genes by horizontal gene transfer (HGT), changes in nucleotides (single nucleotide variations, SNVs) that can cause a selective advantage for the bacteria and become fixed in subpopulations. Methicillin-resistant S. aureus are a special threat to CF patients due to the more severe lung disease occurring in infected patients. Today, with decreasing costs for sequencing, more and more studies using S. aureus isolates cultured from CF patients are being published, which use whole genome sequencing (WGS), multilocus sequence typing (MLST) or spa-sequence typing (spa-typing) to follow the population dynamics of S. aureus, elucidate the underlying mechanisms of phenotypic variants, newly acquired resistance or adaptation to the host response in this particular niche. In the first part of this review, an introduction to the genetic make-up and the pathogenesis of S. aureus with respect to CF is provided. The second part presents an overview of recent studies and their findings using genotypic methods such as single or multilocus sequencing and whole genome sequencing, which identify factors contributing to the adaptation of S. aureus and its evolution in the airways of individuals with CF.
Collapse
Affiliation(s)
| | | | | | - Barbara C. Kahl
- Institute of Medical Microbiology, University Hospital Münster, 48149 Münster, Germany; (C.R.); (J.L.); (B.S.)
| |
Collapse
|
36
|
Lindsay RJ, Jepson A, Butt L, Holder PJ, Smug BJ, Gudelj I. Would that it were so simple: Interactions between multiple traits undermine classical single-trait-based predictions of microbial community function and evolution. Ecol Lett 2021; 24:2775-2795. [PMID: 34453399 DOI: 10.1111/ele.13861] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/11/2021] [Accepted: 07/27/2021] [Indexed: 12/15/2022]
Abstract
Understanding how microbial traits affect the evolution and functioning of microbial communities is fundamental for improving the management of harmful microorganisms, while promoting those that are beneficial. Decades of evolutionary ecology research has focused on examining microbial cooperation, diversity, productivity and virulence but with one crucial limitation. The traits under consideration, such as public good production and resistance to antibiotics or predation, are often assumed to act in isolation. Yet, in reality, multiple traits frequently interact, which can lead to unexpected and undesired outcomes for the health of macroorganisms and ecosystem functioning. This is because many predictions generated in a single-trait context aimed at promoting diversity, reducing virulence or controlling antibiotic resistance can fail for systems where multiple traits interact. Here, we provide a much needed discussion and synthesis of the most recent research to reveal the widespread and diverse nature of multi-trait interactions and their consequences for predicting and controlling microbial community dynamics. Importantly, we argue that synthetic microbial communities and multi-trait mathematical models are powerful tools for managing the beneficial and detrimental impacts of microbial communities, such that past mistakes, like those made regarding the stewardship of antimicrobials, are not repeated.
Collapse
Affiliation(s)
- Richard J Lindsay
- Biosciences and Living Systems Institute, University of Exeter, Exeter, UK
| | - Alys Jepson
- Biosciences and Living Systems Institute, University of Exeter, Exeter, UK
| | - Lisa Butt
- Biosciences and Living Systems Institute, University of Exeter, Exeter, UK
| | - Philippa J Holder
- Biosciences and Living Systems Institute, University of Exeter, Exeter, UK
| | - Bogna J Smug
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Ivana Gudelj
- Biosciences and Living Systems Institute, University of Exeter, Exeter, UK
| |
Collapse
|
37
|
Mutations in a Membrane Permease or hpt Lead to 6-Thioguanine Resistance in Staphylococcus aureus. Antimicrob Agents Chemother 2021; 65:e0076021. [PMID: 34125595 DOI: 10.1128/aac.00760-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We recently discovered that 6-thioguanine (6-TG) is an antivirulence compound that is produced by a number of coagulase-negative staphylococci. In Staphylococcus aureus, it inhibits de novo purine biosynthesis and ribosomal protein expression, thus inhibiting growth and abrogating toxin production. Mechanisms by which S. aureus may develop resistance to this compound are currently unknown. Here, we show that 6-TG-resistant S. aureus mutants emerge spontaneously when the bacteria are subjected to high concentrations of 6-TG in vitro. Whole-genome sequencing of these mutants revealed frameshift and missense mutations in a xanthine-uracil permease family protein (stgP [six thioguanine permease]) and single nucleotide polymorphisms in hypoxanthine phosphoribosyltransferase (hpt). These mutations engender S. aureus the ability to resist both the growth inhibitory and toxin downregulation effects of 6-TG. While prophylactic administration of 6-TG ameliorates necrotic lesions in subcutaneous infection of mice with methicillin-resistant S. aureus (MRSA) strain USA300 LAC, the drug did not reduce lesion size formed by the 6-TG-resistant strains. These findings identify mechanisms of 6-TG resistance, and this information can be leveraged to inform strategies to slow the evolution of resistance.
Collapse
|
38
|
Five major two components systems of Staphylococcus aureus for adaptation in diverse hostile environment. Microb Pathog 2021; 159:105119. [PMID: 34339796 DOI: 10.1016/j.micpath.2021.105119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 05/21/2021] [Accepted: 07/28/2021] [Indexed: 11/21/2022]
Abstract
Staphylococcus aureus is an eminent and opportunistic human pathogen that can colonize in the intestines, skin tissue and perineal regions of the host and cause severe infectious diseases. The presence of complex regulatory network and existence of virulent gene expression along with tuning metabolism enables the S. aureus to adopt the diversity of environments. Two component system (TCS) is a widely distributed mechanism in S. aureus that permit it for changing gene expression profile in response of environment stimuli. TCS usually consist of transmembrane histidine kinase (HK) and cytosolic response regulator. S. aureus contains totally 16 conserved pairs of two component systems, involving in different signaling mechanisms. There is a connection among these regulatory circuits and they can easily have effect on each other's expression. This review has discussed five major types of TCS in S. aureus and covers the recent knowledge of their virulence gene expression. We can get more understanding towards staphylococcal pathogenicity by getting insights about gene regulatory pathways via TCS, which can further provide implications in vaccine formation and new ways for drug design to combat serious infections caused by S. aureus in humans.
Collapse
|
39
|
Sánchez-Romero MA, Casadesús J. Waddington's Landscapes in the Bacterial World. Front Microbiol 2021; 12:685080. [PMID: 34149674 PMCID: PMC8212987 DOI: 10.3389/fmicb.2021.685080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 04/20/2021] [Indexed: 11/24/2022] Open
Abstract
Conrad Waddington’s epigenetic landscape, a visual metaphor for the development of multicellular organisms, is appropriate to depict the formation of phenotypic variants of bacterial cells. Examples of bacterial differentiation that result in morphological change have been known for decades. In addition, bacterial populations contain phenotypic cell variants that lack morphological change, and the advent of fluorescent protein technology and single-cell analysis has unveiled scores of examples. Cell-specific gene expression patterns can have a random origin or arise as a programmed event. When phenotypic cell-to-cell differences are heritable, bacterial lineages are formed. The mechanisms that transmit epigenetic states to daughter cells can have strikingly different levels of complexity, from the propagation of simple feedback loops to the formation of complex DNA methylation patterns. Game theory predicts that phenotypic heterogeneity can facilitate bacterial adaptation to hostile or unpredictable environments, serving either as a division of labor or as a bet hedging that anticipates future challenges. Experimental observation confirms the existence of both types of strategies in the bacterial world.
Collapse
Affiliation(s)
| | - Josep Casadesús
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
40
|
Sivaraman GK, Sivam V, Ganesh B, Elangovan R, Vijayan A, Mothadaka MP. Whole genome sequence analysis of multi drug resistant community associated methicillin resistant Staphylococcus aureus from food fish: detection of clonal lineage ST 28 and its antimicrobial resistance and virulence genes. PeerJ 2021; 9:e11224. [PMID: 34113482 PMCID: PMC8158172 DOI: 10.7717/peerj.11224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 03/15/2021] [Indexed: 11/20/2022] Open
Abstract
Methicillin-resistant staphylococcus aureus (MRSA) sequence type 28 (ST 28) and spa type t021 is a CC30, prototype of ST-30, Community Associated-MRSA (CA-MRSA) (lukS-lukF +). It is a multi-drug resistant strain harbouring staphylococcal endotoxins, haemolysins, ureolysin, serine protease, and antimicrobial resistance genes. In this study, we report the draft genome sequence of this MRSA isolated from the most commonly used food fish, ribbon fish (Trichiurus lepturus). The total number of assembled paired-end high-quality reads was 7,731,542 with a total length of 2.8Mb of 2797 predicted genes. The unique ST28/ t021 CA- MRSA in fish is the first report from India, and in addition to antibiotic resistance is known to co-harbour virulence genes, haemolysins, aureolysins and endotoxins. Comprehensive comparative genomic analysis of CA-MRSA strain7 can help further understand their diversity, genetic structure, diversity and a high degree of virulence to aid in fisheries management.
Collapse
Affiliation(s)
- Gopalan Krishnan Sivaraman
- Microbiology, Fermentation & Biotechnology, ICAR- Central Institute of Fisheries Technology, Cochin, Kerala, India
| | - Visnuvinayagam Sivam
- Microbiology, Fermentation & Biotechnology, ICAR- Central Institute of Fisheries Technology, Cochin, Kerala, India
| | - Balasubramanian Ganesh
- Division of Laoratory, ICMR- National Institute of Epidemiology, Chennai, Tamil Nadu, India
| | | | - Ardhra Vijayan
- Microbiology, Fermentation & Biotechnology, ICAR- Central Institute of Fisheries Technology, Cochin, Kerala, India
| | - Mukteswar Prasad Mothadaka
- Microbiology, Fermentation & Biotechnology, ICAR- Central Institute of Fisheries Technology, Cochin, Kerala, India
| |
Collapse
|
41
|
Avberšek J, Papić B, Kušar D, Erjavec V, Seme K, Golob M, Zdovc I. Feline Otitis Externa Caused by Methicillin-Resistant Staphylococcus aureus with Mixed Hemolytic Phenotype and Overview of Possible Genetic Backgrounds. Antibiotics (Basel) 2021; 10:antibiotics10050599. [PMID: 34070191 PMCID: PMC8158496 DOI: 10.3390/antibiotics10050599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/14/2021] [Accepted: 05/16/2021] [Indexed: 11/18/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is an important cause of nosocomial infections in humans, but its importance in small animal practice is increasing. Here, we present a case of feline otitis externa (OE) caused by MRSA; both hemolytic and nonhemolytic variants with a stable phenotype were recovered from the external auditory canal after infection was detected by routine otoscopy. One isolate per variant underwent antimicrobial susceptibility testing (AST) by broth microdilution method, conventional spa typing and whole-genome sequencing (WGS). The results showed that both variants were genetically related and were of sequence type (ST) 1327, SCCmec type IV and spa type t005. AST and WGS showed that both isolates were resistant to β-lactams and sensitive to all tested non-β-lactam antibiotics. Both isolates were pvl-negative, but encoded several other virulence genes (aur, hlgABC, sak, scn, seg, sei, sem, sen, seo and seu). Genetic background of the mixed hemolytic phenotype was not identified; no differences in the agr locus or other regulatory regions were detected. Three single-nucleotide polymorphisms were identified but could not be associated with hemolysis. This well-documented case of MRSA infection in companion animals adds to the reports of MRSA infections with a mixed hemolytic phenotype.
Collapse
Affiliation(s)
- Jana Avberšek
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, SI-1000 Ljubljana, Slovenia; (J.A.); (B.P.); (D.K.); (M.G.)
| | - Bojan Papić
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, SI-1000 Ljubljana, Slovenia; (J.A.); (B.P.); (D.K.); (M.G.)
| | - Darja Kušar
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, SI-1000 Ljubljana, Slovenia; (J.A.); (B.P.); (D.K.); (M.G.)
| | - Vladimira Erjavec
- Small Animal Clinic, Veterinary Faculty, University of Ljubljana, Cesta v Mestni log 47, SI-1000 Ljubljana, Slovenia;
| | - Katja Seme
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška 4, SI-1000 Ljubljana, Slovenia;
| | - Majda Golob
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, SI-1000 Ljubljana, Slovenia; (J.A.); (B.P.); (D.K.); (M.G.)
| | - Irena Zdovc
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, SI-1000 Ljubljana, Slovenia; (J.A.); (B.P.); (D.K.); (M.G.)
- Correspondence: ; Tel.: +386-1-4779-158
| |
Collapse
|
42
|
Rapacka-Zdończyk A, Woźniak A, Michalska K, Pierański M, Ogonowska P, Grinholc M, Nakonieczna J. Factors Determining the Susceptibility of Bacteria to Antibacterial Photodynamic Inactivation. Front Med (Lausanne) 2021; 8:642609. [PMID: 34055830 PMCID: PMC8149737 DOI: 10.3389/fmed.2021.642609] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/12/2021] [Indexed: 01/23/2023] Open
Abstract
Photodynamic inactivation of microorganisms (aPDI) is an excellent method to destroy antibiotic-resistant microbial isolates. The use of an exogenous photosensitizer or irradiation of microbial cells already equipped with endogenous photosensitizers makes aPDI a convenient tool for treating the infections whenever technical light delivery is possible. Currently, aPDI research carried out on a vast repertoire of depending on the photosensitizer used, the target microorganism, and the light delivery system shows efficacy mostly on in vitro models. The search for mechanisms underlying different responses to photodynamic inactivation of microorganisms is an essential issue in aPDI because one niche (e.g., infection site in a human body) may have bacterial subpopulations that will exhibit different susceptibility. Rapidly growing bacteria are probably more susceptible to aPDI than persister cells. Some subpopulations can produce more antioxidant enzymes or have better performance due to efficient efflux pumps. The ultimate goal was and still is to identify and characterize molecular features that drive the efficacy of antimicrobial photodynamic inactivation. To this end, we examined several genetic and biochemical characteristics, including the presence of individual genetic elements, protein activity, cell membrane content and its physical properties, the localization of the photosensitizer, with the result that some of them are important and others do not appear to play a crucial role in the process of aPDI. In the review, we would like to provide an overview of the factors studied so far in our group and others that contributed to the aPDI process at the cellular level. We want to challenge the question, is there a general pattern of molecular characterization of aPDI effectiveness? Or is it more likely that a photosensitizer-specific pattern of molecular characteristics of aPDI efficacy will occur?
Collapse
Affiliation(s)
| | - Agata Woźniak
- Laboratory of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Klaudia Michalska
- Laboratory of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Michał Pierański
- Laboratory of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Patrycja Ogonowska
- Laboratory of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Mariusz Grinholc
- Laboratory of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Joanna Nakonieczna
- Laboratory of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
43
|
Wächter H, Yörük E, Becker K, Görlich D, Kahl BC. Correlations of Host and Bacterial Characteristics with Clinical Parameters and Survival in Staphylococcus aureus Bacteremia. J Clin Med 2021; 10:1371. [PMID: 33800644 PMCID: PMC8037130 DOI: 10.3390/jcm10071371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/19/2021] [Accepted: 03/24/2021] [Indexed: 01/14/2023] Open
Abstract
Staphylococcus aureus bacteremia (SAB) is a frequent, severe condition that occurs in patients of all age groups and affects clinical departments of all medical fields. It is associated with a high mortality rate of 20-30%. In this study, we analyzed patient mortality associated with SAB at our tertiary care university hospital, assessed the clinical management in terms of administered antimicrobial therapy, and determined which factors have an impact on the clinical course and outcome of patients with this disease. We collected clinical data and blood culture isolates of 178 patients diagnosed with SAB between May 2013 and July 2015. For this study, bacteria were cultured and analyzed concerning their phenotype, hemolysis activity, biofilm formation, nuclease activity, prevalence of toxin genes, spa and agr type. Overall mortality was 24.2% and 30-day mortality was 14.6%. Inadequate initial therapy was administered to 26.2% of patients and was associated with decreased survival (p = 0.041). Other factors associated with poor survival were patient age (p = 0.003), agr type 4 (p ≤ 0.001) and pathological leukocyte counts (p = 0.029 if elevated and p = 0.003 if lowered). The type of infection focus, spa clonal complex and enterotoxin genes seg and sei had an impact on severity of inflammation. Our results indicate that mortality and burden of disease posed by SAB are high at our university hospital.
Collapse
Affiliation(s)
- Hannah Wächter
- Institute of Medical Microbiology, University Hospital Münster, 48149 Münster, Germany; (H.W.); (E.Y.); (K.B.)
| | - Erdal Yörük
- Institute of Medical Microbiology, University Hospital Münster, 48149 Münster, Germany; (H.W.); (E.Y.); (K.B.)
| | - Karsten Becker
- Institute of Medical Microbiology, University Hospital Münster, 48149 Münster, Germany; (H.W.); (E.Y.); (K.B.)
- Friedrich Loeffler-Institute of Medical Microbiology, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Dennis Görlich
- Institute of Biostatistics and Clinical Research, University Hospital Münster, 48149 Münster, Germany;
| | - Barbara C. Kahl
- Institute of Medical Microbiology, University Hospital Münster, 48149 Münster, Germany; (H.W.); (E.Y.); (K.B.)
| |
Collapse
|
44
|
Potential role of probiotics in reducing Clostridioides difficile virulence: Interference with quorum sensing systems. Microb Pathog 2021; 153:104798. [PMID: 33609647 DOI: 10.1016/j.micpath.2021.104798] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 12/23/2022]
Abstract
Opportunistic pathogenic bacteria may cause disease after the normally protective microbiome is disrupted (typically by antibiotic exposure). Clostridioides difficile is one such pathogen having a severe impact on healthcare facilities and increasing costs of medical care. The search for new therapeutic strategies that are not reliant on additional antibiotic exposures are currently being explored. One such strategy is to disrupt the production of C. difficile virulence factors by interfering with quorum sensing (QS) systems. QS has been well studied in other bacteria, but our understanding in C. difficile is not so well understood. Some probiotic strains or combinations of strains have been shown to be effective in the treatment or primary prevention of C. difficile infections and may possess multiple mechanisms of action. One mechanism of probiotics might be the inhibition of QS, but their role has not been clearly defined yet. A literature search was conducted using standard databases (PubMed, Google Scholar) from database inception to August 2020. The objective of this paper is to update our understanding of how QS leads to toxin production by C. difficile, which is important in pathogenesis, and how QS inhibitors or probiotics may disrupt this pathway. We found two main QS systems for C. difficile (Agr and Lux systems) that are involved in C. difficile pathogenesis by regulating toxin production, motility and adherence. Probiotics and other QS inhibitors targeting QS systems may represent important new directions of therapy and prevention of CDI.
Collapse
|
45
|
Pi H, Chu ML, Ivan SJ, Latario CJ, Toth AM, Carlin SM, Hillebrand GH, Lin HK, Reppart JD, Stauff DL, Skaar EP. Directed evolution reveals the mechanism of HitRS signaling transduction in Bacillus anthracis. PLoS Pathog 2020; 16:e1009148. [PMID: 33362282 PMCID: PMC7790381 DOI: 10.1371/journal.ppat.1009148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 01/07/2021] [Accepted: 11/11/2020] [Indexed: 12/03/2022] Open
Abstract
Two component systems (TCSs) are a primary mechanism of signal sensing and response in bacteria. Systematic characterization of an entire TCS could provide a mechanistic understanding of these important signal transduction systems. Here, genetic selections were employed to dissect the molecular basis of signal transduction by the HitRS system that detects cell envelope stress in the pathogen Bacillus anthracis. Numerous point mutations were isolated within HitRS, 17 of which were in a 50-residue HAMP domain. Mutational analysis revealed the importance of hydrophobic interactions within the HAMP domain and highlighted its essentiality in TCS signaling. In addition, these data defined residues critical for activities intrinsic to HitRS, uncovered specific interactions among individual domains and between the two signaling proteins, and revealed that phosphotransfer is the rate-limiting step for signal transduction. Furthermore, this study establishes the use of unbiased genetic selections to study TCS signaling and provides a comprehensive mechanistic understanding of an entire TCS. Bacterial TCSs are a primary strategy for stress sensing and niche adaptation. Although individual domains and proteins of these systems have been extensively studied, systematic characterization of an entire TCS is rare. In this study, through unbiased genetic selections and rigorous biochemical analysis, we provide a detailed characterization and structure-function analysis of an entire TCS and extend our understanding of the molecular basis of signal transduction through TCSs. Moreover, this study provides a comprehensive map of point-mutations in these well-conserved signaling proteins, which will be broadly useful for studying other TCSs. The described genetic selection strategies are applicable to any TCS, providing a powerful tool for researchers interested in microbial signal transduction.
Collapse
Affiliation(s)
- Hualiang Pi
- Department of Pathology, Microbiology, & Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Institute for Infection, Immunology, & Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Michelle L. Chu
- Department of Biology, Grove City College, Grove City, Pennsylvania, United States of America
| | - Samuel J. Ivan
- Department of Biology, Grove City College, Grove City, Pennsylvania, United States of America
| | - Casey J. Latario
- Department of Biology, Grove City College, Grove City, Pennsylvania, United States of America
| | - Allen M. Toth
- Department of Biology, Grove City College, Grove City, Pennsylvania, United States of America
| | - Sophia M. Carlin
- Department of Biology, Grove City College, Grove City, Pennsylvania, United States of America
| | - Gideon H. Hillebrand
- Department of Biology, Grove City College, Grove City, Pennsylvania, United States of America
| | - Hannah K. Lin
- Department of Biology, Grove City College, Grove City, Pennsylvania, United States of America
| | - Jared D. Reppart
- Department of Biology, Grove City College, Grove City, Pennsylvania, United States of America
| | - Devin L. Stauff
- Department of Biology, Grove City College, Grove City, Pennsylvania, United States of America
| | - Eric P. Skaar
- Department of Pathology, Microbiology, & Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Institute for Infection, Immunology, & Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
46
|
Combined and Distinct Roles of Agr Proteins in Clostridioides difficile 630 Sporulation, Motility, and Toxin Production. mBio 2020; 11:mBio.03190-20. [PMID: 33443122 PMCID: PMC8534292 DOI: 10.1128/mbio.03190-20] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Clostridioides difficile accessory gene regulator 1 (agr1) locus consists of two genes, agrB1 and agrD1, that presumably constitute an autoinducing peptide (AIP) system. Typically, AIP systems function through the AgrB-mediated processing of AgrD to generate a processed form of the AIP that provides a concentration-dependent extracellular signal. Here, we show that the C. difficile 630 Agr1 system has multiple functions, not all of which depend on AgrB1. CRISPR-Cas9n deletion of agrB1, agrD1, or the entire locus resulted in changes in transcription of sporulation-related factors and an overall loss in spore formation. Sporulation was recovered in the mutants by providing supernatant from stationary-phase cultures of the parental strain. In contrast, C. difficile motility was reduced only when both AgrB1 and AgrD1 were disrupted. Finally, in the absence of AgrB1, the AgrD1 peptide accumulated within the cytoplasm and this correlated with increased expression of tcdR (15-fold), as well as tcdA (20-fold) and tcdB (5-fold), which encode the two major C. difficile toxins. The combined deletion of agrB1/agrD1 or deletion of only agrD1 did not significantly alter expression of tcdR or tcdB but did show a minor effect on tcdA expression. Overall, these data indicate that the Agr1-based system in C. difficile 630 carries out multiple functions, some of which are associated with prototypical AIP signaling and others of which involve previously undescribed mechanisms of action.IMPORTANCE C. difficile is a spore-forming, toxigenic, anaerobic bacterium that causes severe gastrointestinal illness. Understanding the ways in which C. difficile senses growth conditions to regulate toxin expression and sporulation is essential to advancing our understanding of this pathogen. The Agr1 system in C. difficile has been thought to function by generating an extracellular autoinducing peptide that accumulates and exogenously activates two-component signaling. The absence of the peptide or protease should, in theory, result in similar phenotypes. However, in contrast to longstanding assumptions about Agr, we found that mutants of individual agr1 genes exhibit distinct phenotypes in C. difficile These findings suggest that the Agr1 system may have other regulatory mechanisms independent of the typical Agr quorum sensing system. These data not only challenge models for Agr's mechanism of action in C. difficile but also may expand our conceptions of how this system works in other Gram-positive pathogens.
Collapse
|
47
|
Three-Dimensional In Vitro Staphylococcus aureus Abscess Communities Display Antibiotic Tolerance and Protection from Neutrophil Clearance. Infect Immun 2020; 88:IAI.00293-20. [PMID: 32817328 DOI: 10.1128/iai.00293-20] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/06/2020] [Indexed: 12/22/2022] Open
Abstract
Staphylococcus aureus is a prominent human pathogen in bone and soft-tissue infections. Pathophysiology involves abscess formation, which consists of central staphylococcal abscess communities (SACs), surrounded by a fibrin pseudocapsule and infiltrating immune cells. Protection against the ingress of immune cells such as neutrophils, or tolerance to antibiotics, remains largely unknown for SACs and is limited by the lack of availability of in vitro models. We describe a three-dimensional in vitro model of SACs grown in a human plasma-supplemented collagen gel. The in vitro SACs reached their maximum size by 24 h and elaborated a fibrin pseudocapsule, as confirmed by electron and immunofluorescence microscopy. The in vitro SACs tolerated 100× the MIC of gentamicin alone and in combination with rifampin, while planktonic controls and mechanically dispersed SACs were efficiently killed. To simulate a host response, SACs were exposed to differentiated PLB-985 neutrophil-like (dPLB) cells and to primary human neutrophils at an early stage of SAC formation or after maturation at 24 h. Both cell types were unable to clear mature in vitro SACs, but dPLB cells prevented SAC growth upon early exposure before pseudocapsule maturation. Neutrophil exposure after plasmin pretreatment of the SACs resulted in a significant decrease in the number of bacteria within the SACs. The in vitro SAC model mimics key in vivo features, offers a new tool to study host-pathogen interactions and drug efficacy assessment, and has revealed the functionality of the S. aureus pseudocapsule in protecting the bacteria from host phagocytic responses and antibiotics.
Collapse
|
48
|
Silence as a way of niche adaptation: mecC-MRSA with variations in the accessory gene regulator (agr) functionality express kaleidoscopic phenotypes. Sci Rep 2020; 10:14787. [PMID: 32901059 PMCID: PMC7479134 DOI: 10.1038/s41598-020-71640-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 08/19/2020] [Indexed: 11/09/2022] Open
Abstract
Functionality of the accessory gene regulator (agr) quorum sensing system is an important factor promoting either acute or chronic infections by the notorious opportunistic human and veterinary pathogen Staphylococcus aureus. Spontaneous alterations of the agr system are known to frequently occur in human healthcare-associated S. aureus lineages. However, data on agr integrity and function are sparse regarding other major clonal lineages. Here we report on the agr system functionality and activity level in mecC-carrying methicillin resistant S. aureus (MRSA) of various animal origins (n = 33) obtained in Europe as well as in closely related human isolates (n = 12). Whole genome analysis assigned all isolates to four clonal complexes (CC) with distinct agr types (CC599 agr I, CC49 agr II, CC130 agr III and CC1943 agr IV). Agr functionality was assessed by a combination of phenotypic assays and proteome analysis. In each CC, isolates with varying agr activity levels were detected, including the presence of completely non-functional variants. Genomic comparison of the agr I-IV encoding regions associated these phenotypic differences with variations in the agrA and agrC genes. The genomic changes were detected independently in divergent lineages, suggesting that agr variation might foster viability and adaptation of emerging MRSA lineages to distinct ecological niches.
Collapse
|
49
|
Quorum Sensing-Linked agrA Expression by Ethno-Synthesized Gold Nanoparticles in Tilapia Streptococcus agalactiae Biofilm Formation. BIONANOSCIENCE 2020. [DOI: 10.1007/s12668-020-00758-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
50
|
Schelin J, Cohn MT, Frisk B, Frees D. A Functional ClpXP Protease is Required for Induction of the Accessory Toxin Genes, tst, sed, and sec. Toxins (Basel) 2020; 12:E553. [PMID: 32872362 PMCID: PMC7551677 DOI: 10.3390/toxins12090553] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/21/2020] [Accepted: 08/26/2020] [Indexed: 01/09/2023] Open
Abstract
Staphylococcal toxic shock syndrome is a potentially lethal illness attributed to superantigens produced by Staphylococcus aureus, in particular toxic shock syndrome toxin 1 (TSST-1), but staphylococcal enterotoxins (SEs) are also implicated. The genes encoding these important toxins are carried on mobile genetic elements, and the regulatory networks controlling expression of these toxins remain relatively unexplored. We show here that the highly conserved ClpXP protease stimulates transcription of tst (TSST-1), sec (SEC), and sed (SED) genes in the prototypical strains, SA564 and RN4282. In the wild-type cells, the post-exponential upregulation of toxin gene transcription was proposed to occur via RNAIII-mediated downregulation of the Rot repressor. Contradictive to this model, we showed that the post-exponential induction of tst, sed, and sec transcription did not occur in cells devoid of ClpXP activity, despite the Rot level being diminished. To identify transcriptional regulators with a changed expression in cells devoid of ClpXP activity, RNA sequencing was performed. The RNAseq analysis revealed a number of global virulence regulators that might act downstream of ClpXP, to control expression of tst and other virulence genes. Collectively, the results extend our understanding of the complex transcriptional regulation of the tst, sed, and sec genes.
Collapse
Affiliation(s)
- Jenny Schelin
- Division of Applied Microbiology, Department of Chemistry, Lund University, SE-221 00 Lund, Sweden; (J.S.); (B.F.)
| | - Marianne Thorup Cohn
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederikberg C, Denmark;
| | - Barbro Frisk
- Division of Applied Microbiology, Department of Chemistry, Lund University, SE-221 00 Lund, Sweden; (J.S.); (B.F.)
| | - Dorte Frees
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederikberg C, Denmark;
| |
Collapse
|