1
|
Julián C, Villadangos S, Jené L, Pasques O, Pintó-Marijuan M, Munné-Bosch S. Biological outliers: essential elements to understand the causes and consequences of reductions in maximum photochemical efficiency of PSII in plants. PLANTA 2024; 260:32. [PMID: 38896307 PMCID: PMC11186954 DOI: 10.1007/s00425-024-04466-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024]
Abstract
MAIN CONCLUSION By studying Cistus albidus shrubs in their natural habitat, we show that biological outliers can help us to understand the causes and consequences of maximum photochemical efficiency decreases in plants, thus reinforcing the importance of integrating these often-neglected data into scientific practice. Outliers are individuals with exceptional traits that are often excluded of data analysis. However, this may result in very important mistakes not accurately capturing the true trajectory of the population, thereby limiting our understanding of a given biological process. Here, we studied the role of biological outliers in understanding the causes and consequences of maximum photochemical efficiency decreases in plants, using the semi-deciduous shrub C. albidus growing in a Mediterranean-type ecosystem. We assessed interindividual variability in winter, spring and summer maximum PSII photochemical efficiency in a population of C. albidus growing under Mediterranean conditions. A strong correlation was observed between maximum PSII photochemical efficiency (Fv/Fm ratio) and leaf water desiccation. While decreases in maximum PSII photochemical efficiency did not result in any damage at the organ level during winter, reductions in the Fv/Fm ratio were associated to leaf mortality during summer. However, all plants could recover after rainfalls, thus maximum PSII photochemical efficiency decreases did not result in an increased mortality at the organism level, despite extreme water deficit and temperatures exceeding 40ºC during the summer. We conclude that, once methodological outliers are excluded, not only biological outliers must not be excluded from data analysis, but focusing on them is crucial to understand the causes and consequences of maximum PSII photochemical efficiency decreases in plants.
Collapse
Affiliation(s)
- Clara Julián
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, Universitat de Barcelona, Avinguda Diagonal 643, 08028, Barcelona, Spain
| | - Sabina Villadangos
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, Universitat de Barcelona, Avinguda Diagonal 643, 08028, Barcelona, Spain
- Institute of Research in Biodiversity (IRBio-UB), Universitat de Barcelona, Avinguda Diagonal 643, 08028, Barcelona, Spain
| | - Laia Jené
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, Universitat de Barcelona, Avinguda Diagonal 643, 08028, Barcelona, Spain
- Institute of Research in Biodiversity (IRBio-UB), Universitat de Barcelona, Avinguda Diagonal 643, 08028, Barcelona, Spain
| | - Ot Pasques
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, Universitat de Barcelona, Avinguda Diagonal 643, 08028, Barcelona, Spain
- Institute of Research in Biodiversity (IRBio-UB), Universitat de Barcelona, Avinguda Diagonal 643, 08028, Barcelona, Spain
| | - Marta Pintó-Marijuan
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, Universitat de Barcelona, Avinguda Diagonal 643, 08028, Barcelona, Spain
- Institute of Research in Biodiversity (IRBio-UB), Universitat de Barcelona, Avinguda Diagonal 643, 08028, Barcelona, Spain
| | - Sergi Munné-Bosch
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, Universitat de Barcelona, Avinguda Diagonal 643, 08028, Barcelona, Spain.
- Institute of Research in Biodiversity (IRBio-UB), Universitat de Barcelona, Avinguda Diagonal 643, 08028, Barcelona, Spain.
| |
Collapse
|
2
|
Zhu W, Lu S, Jiang H, Wang P, He C, Bian H, Wang J. Interactions between phenanthrene and polystyrene micro/nano plastics: Implications for rice (Oryza sativa L.) toxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122360. [PMID: 37604389 DOI: 10.1016/j.envpol.2023.122360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/23/2023]
Abstract
Micro/nano plastics (MPs/NPs) are widely distributed and are one of the global pollutants of current concern. Micro/nano plastics can adsorb a variety of persistent organic pollutants, and different particle sizes and surface charges affect the biological effects of MPs/NPs. Therefore, how the compound pollution of MPs/NPs with different particle sizes and organic pollutants produces toxic effects on plants needs to be further studied. We investigated the toxic effects of phenanthrene (Phe) and amino-modified PS (PS-NH2) with two particle sizes (50 nm, 5 μm) on rice. The stress mechanism of PS-NH2 was different between the two particle sizes. Moreover, 50 nm PS-NH2 inhibited stomatal conductance and transpiration rate, reduced photosynthetic rate, significantly enriched GO functions such as "DNA repair" and "DNA double-strand break," and caused severe DNA damage in rice. Notably, 5 μm PS-NH2 affected the gene expression of "photosynthetic lighting" and "photosynthetic antenna protein" in rice, decreased chlorophyll content, and inhibited rice growth. The toxicity of 50 nm PS-NH2 was stronger. In addition, we found that Phe reduced the toxicity of PS-NH2 with different particle sizes, and the relief effect of 50 nm PS-NH2+Phe was more evident. Further, 50 nm PS-NH2+Phe alleviated the toxicity by stimulating the activities of antioxidant enzymes, reducing oxidative damage to chloroplasts, and inhibiting photosynthesis. However, 5 μm PS-NH2+Phe can reduce the stress by reducing the degree of membrane lipid peroxidation, activating metabolic pathways related to the cell wall and cell membrane formation, and plant antitoxin biosynthesis. The results contribute to the understanding of the mechanism of toxicity of MPs/NPs and polycyclic aromatic hydrocarbons (PAHs) to crops.
Collapse
Affiliation(s)
- Weize Zhu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, China; Department of Ecology, School of Life Science, Nanjing University, Nanjing, 210023, China
| | - Siyuan Lu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, China
| | - Haibo Jiang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, China
| | - Ping Wang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, China
| | - Chunguang He
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, China
| | - Hongfeng Bian
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, China
| | - Junyuan Wang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, China.
| |
Collapse
|
3
|
Silvestre-Carbonell S, Ogaya R, Fernández-Martínez M, Peñuelas J. Chlorophyll fluorescence variation in two Mediterranean forest species over a 21-year drought treatment period. TREE PHYSIOLOGY 2023; 43:1533-1547. [PMID: 37145498 DOI: 10.1093/treephys/tpad059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 04/20/2023] [Accepted: 05/01/2023] [Indexed: 05/06/2023]
Abstract
The Mediterranean is among the regions predicted to be most affected by climate change due to rising temperatures and increasing frequency as well as intensity of extreme weather events, such as drought. These shifts in climatic conditions might lead to changes in species community composition by enabling the increase of drought-tolerant species at the expense of less tolerant ones. This hypothesis was tested in the current study using chlorophyll fluorescence data from a 21-year precipitation exclusion experiment in a Mediterranean forest for two co-dominant Quercus ilex L. and Phillyrea latifolia L. species with contrasting low and high levels of drought tolerance, respectively. The maximum potential quantum efficiency of photosystem II (PSII) (Fv/Fm), photochemical efficiency of PSII (yield) and non-photochemical quenching (NPQ) varied seasonally. The Fv/Fm and NPQ levels were positively correlated with air temperature and standardized precipitation-evapotranspiration index (SPEI), whereas yield, which was greater under drought treatment, was negatively associated with vapor pressure deficit and SPEI. The Fv/Fm values showed similar increase in the two species over the 21-year study period regardless of treatment and in parallel to progressive warming. By contrast, yield values were higher in Q. ilex than in P. latifolia, while NPQ values were higher in P. latifolia than in Q. ilex. Notably, high yield values were also observed in the drought-treated plots. Throughout the study, plants in the drought-treated plots exhibited decreased basal area, leaf biomass and aerial cover due to high stem mortality. In addition, a continuous increase in temperature was detected in summer and autumn, which might explain the observed increase in Fv/Fm values over the study period. Higher yield and lower NPQ detected in Q. ilex could be attributed to less competition for resources in the drought-treated plots and acclimation of Q. ilex plants over the study period. Our results indicate that reduction in stem density could improve forest resilience to climate change-induced drought conditions.
Collapse
Affiliation(s)
- Susana Silvestre-Carbonell
- CREAF, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Catalonia E081193, Spain
- CREAF, Cerdanyola del Vallès, Catalonia E08193, Spain
- CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Cerdanyola del Vallès, Barcelona, Catalonia E08193, Spain
| | - Romà Ogaya
- CREAF, Cerdanyola del Vallès, Catalonia E08193, Spain
- CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Cerdanyola del Vallès, Barcelona, Catalonia E08193, Spain
| | - Marcos Fernández-Martínez
- CREAF, Cerdanyola del Vallès, Catalonia E08193, Spain
- CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Cerdanyola del Vallès, Barcelona, Catalonia E08193, Spain
- BEECA-UB, Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Catalonia E08028, Spain
| | - Josep Peñuelas
- CREAF, Cerdanyola del Vallès, Catalonia E08193, Spain
- CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Cerdanyola del Vallès, Barcelona, Catalonia E08193, Spain
| |
Collapse
|
4
|
Chen L, Wen DQ, Shi GL, Sun D, Yin Y, Yu M, An WQ, Tang Q, Ai J, Han LJ, Yan CB, Sun YJ, Wang YP, Wang ZX, Fan DY. Different photoprotective strategies for white leaves between two co-occurring Actinidia species. PHYSIOLOGIA PLANTARUM 2023; 175:e13880. [PMID: 36840627 DOI: 10.1111/ppl.13880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 02/06/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
At the outer canopy, the white leaves of Actinidia kolomikta can turn pink but they stay white in A. polygama. We hypothesized that the different leaf colors in the two Actinidia species may represent different photoprotection strategies. To test the hypothesis, leaf optical spectra, anatomy, chlorophyll a fluorescence, superoxide (O2 ˙- ) concentration, photosystem II photo-susceptibility, and expression of anthocyanin-related genes were investigated. On the adaxial side, light reflectance was the highest for white leaves of A. kolomikta, followed by its pink leaves and white leaves of A. polygama, and the absorptance for white leaves of A. kolomikta was the lowest. Chlorophyll and carotenoid content of white and pink leaves in A. kolomikta were significantly lower than those of A. polygama, while the relative anthocyanin content of pink leaves was the highest. Chloroplasts of palisade cells of white leaves in A. kolomikta were not well developed with a lower maximum quantum efficiency of PSII than the other types of leaves (pink leaves of A. kolomikta and white leaves of A. Polygama at the inner/outer canopy). After high light treatment from the abaxial surface, Fv /Fm decreased to a larger extent for white leaves of A. kolomikta than pink leaf and white leaves of A. polygama, and its non-photochemical quenching was also the lowest. White leaves of A. kolomikta showed higher O2 ˙- concentration compared to pink leaves under the same strong irradiance. The expression levels of anthocyanin biosynthetic genes in pink leaves were higher than in white leaves. These results indicate that white leaves of A. kolomikta apply a reflection strategy for photoprotection, while pink leaves resist photoinhibition via anthocyanin accumulation.
Collapse
Affiliation(s)
- Li Chen
- Laboratory of Wild Fruit Physiology, College of Horticulture, Jilin Agricultural University, Changchun, People's Republic of China
| | - De-Quan Wen
- Laboratory of Wild Fruit Physiology, College of Horticulture, Jilin Agricultural University, Changchun, People's Republic of China
| | - Guang-Li Shi
- Laboratory of Wild Fruit Physiology, College of Horticulture, Jilin Agricultural University, Changchun, People's Republic of China
| | - Dan Sun
- Laboratory of Wild Fruit Physiology, College of Horticulture, Jilin Agricultural University, Changchun, People's Republic of China
| | - Yan Yin
- Plant Science Facility of the Institute of Botany, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Miao Yu
- Laboratory of Wild Fruit Physiology, College of Horticulture, Jilin Agricultural University, Changchun, People's Republic of China
| | - Wen-Qi An
- Laboratory of Wild Fruit Physiology, College of Horticulture, Jilin Agricultural University, Changchun, People's Republic of China
| | - Qian Tang
- Laboratory of Wild Fruit Physiology, College of Horticulture, Jilin Agricultural University, Changchun, People's Republic of China
| | - Jun Ai
- Laboratory of Wild Fruit Physiology, College of Horticulture, Jilin Agricultural University, Changchun, People's Republic of China
| | - Li-Jun Han
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, People's Republic of China
| | - Chao-Bin Yan
- Laboratory of Wild Fruit Physiology, College of Horticulture, Jilin Agricultural University, Changchun, People's Republic of China
| | - Yuan-Jing Sun
- Laboratory of Wild Fruit Physiology, College of Horticulture, Jilin Agricultural University, Changchun, People's Republic of China
| | - Yun-Peng Wang
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, People's Republic of China
| | - Zhen-Xing Wang
- Laboratory of Wild Fruit Physiology, College of Horticulture, Jilin Agricultural University, Changchun, People's Republic of China
| | - Da-Yong Fan
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, People's Republic of China
| |
Collapse
|
5
|
Lu S, Chen J, Wang J, Wu D, Bian H, Jiang H, Sheng L, He C. Toxicological effects and transcriptome mechanisms of rice (Oryza sativa L.) under stress of quinclorac and polystyrene nanoplastics. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114380. [PMID: 36508812 DOI: 10.1016/j.ecoenv.2022.114380] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 11/26/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
The absorption and accumulation of nanoplastics (NPs) by plants is currently attracting considerable attention. NPs also tend to adsorb surrounding organic pollutants, such as pesticides, which can damage plants. However, molecular mechanisms underlying the phytotoxicity of NPs are not sufficiently researched. Therefore, we analyzed the toxicological effects of 50 mg/L polystyrene NPs (PS 50 nm) and 5 mg/L the herbicide quinolinic (QNC) on rice (Oryza sativa L.) using 7-day hydroponic experiments, explaining the corresponding mechanisms by transcriptome analysis. The main conclusion is that all treatments inhibit rice growth and activate the antioxidant level. Compared with CK, the inhibition rates of PS, QNC, and PS+QNC on rice shoot length were 3.95%, 6.68%, and 11.43%, respectively. The gene ontology (GO) term photosynthesis was significantly enriched by QNC, and the combination PS+QNC significantly enriched the GO terms of amino sugar and nucleotide sugar metabolisms. The chemicals QNC and PS+QNC significantly affected the Kyoto Encyclopedia of Genes and Genomes (KEGG) of the MAPK signaling pathway, plant hormone signal transduction, and plant-pathogen interaction. Our findings provide a new understanding of the phytotoxic mechanisms and environmental impacts of the interactions between NPs and pesticides. It also provides insights into the impact of NPs and pesticides on plants in the agricultural system.
Collapse
Affiliation(s)
- Siyuan Lu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130117, China
| | - Jing Chen
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130117, China
| | - Junyuan Wang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130117, China
| | - Donghui Wu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130117, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Hongfeng Bian
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130117, China
| | - Haibo Jiang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130117, China
| | - Lianxi Sheng
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130117, China
| | - Chunguang He
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130117, China.
| |
Collapse
|
6
|
Swoczyna T, Kalaji HM, Bussotti F, Mojski J, Pollastrini M. Environmental stress - what can we learn from chlorophyll a fluorescence analysis in woody plants? A review. FRONTIERS IN PLANT SCIENCE 2022; 13:1048582. [PMID: 36589121 PMCID: PMC9795016 DOI: 10.3389/fpls.2022.1048582] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Chlorophyll a fluorescence (ChF) signal analysis has become a widely used and rapid, non-invasive technique to study the photosynthetic process under stress conditions. It monitors plant responses to various environmental factors affecting plants under experimental and field conditions. Thus, it enables extensive research in ecology and benefits forestry, agriculture, horticulture, and arboriculture. Woody plants, especially trees, as organisms with a considerable life span, have a different life strategy than herbaceous plants and show more complex responses to stress. The range of changes in photosynthetic efficiency of trees depends on their age, ontogeny, species-specific characteristics, and acclimation ability. This review compiles the results of the most commonly used ChF techniques at the foliar scale. We describe the results of experimental studies to identify stress factors that affect photosynthetic efficiency and analyse the experience of assessing tree vigour in natural and human-modified environments. We discuss both the circumstances under which ChF can be successfully used to assess woody plant health and the ChF parameters that can be useful in field research. Finally, we summarise the advantages and limitations of the ChF method in research on trees, shrubs, and woody vines.
Collapse
Affiliation(s)
- Tatiana Swoczyna
- Department of Environment Protection and Dendrology, Institute of Horticultural Sciences, Warsaw University of Life Sciences SGGW, Warsaw, Poland
| | - Hazem M. Kalaji
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences SGGW, Warsaw, Poland
| | - Filippo Bussotti
- Department of Agriculture, Food, Environment and Forestry, University of Florence, Florence, Italy
| | - Jacek Mojski
- Twój Swiat Jacek Mojski, Łukow, Poland
- Fundacja Zielona Infrastruktura, Łukow, Poland
| | - Martina Pollastrini
- Department of Agriculture, Food, Environment and Forestry, University of Florence, Florence, Italy
| |
Collapse
|
7
|
Mapping Canopy Chlorophyll Content in a Temperate Forest Using Airborne Hyperspectral Data. REMOTE SENSING 2020. [DOI: 10.3390/rs12213573] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Chlorophyll content, as the primary pigment driving photosynthesis, is directly affected by many natural and anthropogenic disturbances and stressors. Accurate and timely estimation of canopy chlorophyll content (CCC) is essential for effective ecosystem monitoring to allow for successful management interventions to occur. Hyperspectral remote sensing offers the possibility to accurately estimate and map canopy chlorophyll content. In the past, research has predominantly focused on the use of hyperspectral data on canopy chlorophyll content retrieval of crops and grassland ecosystems. Therefore, in this study, a temperate mixed forest, the Bavarian Forest National Park in Germany, was chosen as the study site. We compared different statistical models (narrowband vegetation indices (VIs), partial least squares regression (PLSR) and random forest (RF)) in their accuracy to predict CCC using airborne hyperspectral data. The airborne hyperspectral imagery was acquired by the AisaFenix sensor (623 bands; 3.5 nm spectral resolution in the visible near-infrared (VNIR) region, and 12 nm spectral resolution in the shortwave infrared (SWIR) region; 3 m spatial resolution) on July 6, 2017. In situ leaf chlorophyll content and leaf area index measurements were sampled from the upper canopy of coniferous, mixed, and deciduous forest stands in July and August 2017. The study yielded the highest retrieval accuracies with PLSR (root mean square error (RMSE) = 0.25 g/m2, R2 = 0.66). It further indicated specific spectral regions within the visible (390–400 nm and 470–540 nm), red edge (680–780 nm), near-infrared (1050–1100 nm) and shortwave infrared regions (2000–2270 nm) that were important for CCC retrieval. The results showed that forest CCC can be mapped with relatively high accuracies using image spectroscopy.
Collapse
|
8
|
Guidi L, Lo Piccolo E, Landi M. Chlorophyll Fluorescence, Photoinhibition and Abiotic Stress: Does it Make Any Difference the Fact to Be a C3 or C4 Species? FRONTIERS IN PLANT SCIENCE 2019; 10:174. [PMID: 30838014 PMCID: PMC6382737 DOI: 10.3389/fpls.2019.00174] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 02/01/2019] [Indexed: 05/06/2023]
Abstract
Chlorophyll fluorescence analysis is one of the most powerful and widely used techniques to study the effect of stresses on the photosynthetic process. From the first utilization, the F v/F m ratio has been largely used as a sensitive indicator of plant photosynthetic performance. Decreases of this index are indicative of the reduction of photosystem II (PSII) efficiency, namely photoinhibition. In the last 20 years, application of chlorophyll fluorescence has been largely improved, and many other informative parameters have been established to detect PSII photochemical efficiency and the partitioning of light energy to alternative dissipative mechanisms (qE, energy-dependent quenching; qZ, zeaxanthin-dependent quenching and qI, photoinhibitory quenching; qH, sustained photoprotective antenna quenching; qM, quenching dependent to chloroplast movement; qT, light harvesting complexes II-I state-transition) such as the recently developed "photoprotective power" of non-photochemical quenching (pNPQ). This review reports a brief description of the main chlorophyll fluorescence parameters and a wide analysis of the current bibliography on the use of different parameters which are useful to detect events of PSII photoinhibition. In addition, in view of the inherent differences in morpho-anatomical, physiological and biochemical features between C3 and C4 metabolism, possible differences in terms of photoinhibition between C3 and C4 plant species under stress conditions are proposed. The attempt is to highlight the limits of their comparison in terms of susceptibility to photoinhibition and to propose direction of future research which, assisted by chlorophyll fluorescence, should improve the knowledge of the different sensitivity of C3 and C4 to abiotic stressors.
Collapse
Affiliation(s)
- Lucia Guidi
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
- Center for Climate Change Impacts, University of Pisa, Pisa, Italy
| | - Ermes Lo Piccolo
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Marco Landi
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| |
Collapse
|
9
|
Izuddin M, Yam TW, Webb EL. Specific niche requirements drive long-term survival and growth of translocated epiphytic orchids in an urbanised tropical landscape. Urban Ecosyst 2018. [DOI: 10.1007/s11252-018-0733-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Chen Y, Li J, Ju W, Ruan H, Qin Z, Huang Y, Jeelani N, Padarian J, Propastin P. Quantitative assessments of water-use efficiency in Temperate Eurasian Steppe along an aridity gradient. PLoS One 2017; 12:e0179875. [PMID: 28686667 PMCID: PMC5501447 DOI: 10.1371/journal.pone.0179875] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 06/05/2017] [Indexed: 12/02/2022] Open
Abstract
Water-use efficiency (WUE), defined as the ratio of net primary productivity (NPP) to evapotranspiration (ET), is an important indicator to represent the trade-off pattern between vegetation productivity and water consumption. Its dynamics under climate change are important to ecohydrology and ecosystem management, especially in the drylands. In this study, we modified and used a late version of Boreal Ecosystem Productivity Simulator (BEPS), to quantify the WUE in the typical dryland ecosystems, Temperate Eurasian Steppe (TES). The Aridity Index (AI) was used to specify the terrestrial water availability condition. The regional results showed that during the period of 1999–2008, the WUE has a clear decreasing trend in the spatial distribution from arid to humid areas. The highest annual average WUE was in dry and semi-humid sub-region (DSH) with 0.88 gC mm-1 and the lowest was in arid sub-region (AR) with 0.22 gC mm-1. A two-stage pattern of WUE was found in TES. That is, WUE would enhance with lower aridity stress, but decline under the humid environment. Over 65% of the region exhibited increasing WUE. This enhancement, however, could not indicate that the grasslands were getting better because the NPP even slightly decreased. It was mainly attributed to the reduction of ET over 70% of the region, which is closely related to the rainfall decrease. The results also suggested a similar negative spatial correlation between the WUE and the mean annual precipitation (MAP) at the driest and the most humid ends. This regional pattern reflected the different roles of water in regulating the terrestrial ecosystems under different aridity levels. This study could facilitate the understanding of the interactions between terrestrial carbon and water cycles, and thus contribute to a sustainable management of nature resources in the dryland ecosystems.
Collapse
Affiliation(s)
- Yizhao Chen
- Joint Innovation Center for Modern Forestry Studies, College of Biology and Environment, Nanjing Forestry University, Nanjing, China
- School of Life Science, Nanjing University, Nanjing, PR China
| | - Jianlong Li
- School of Life Science, Nanjing University, Nanjing, PR China
- * E-mail:
| | - Weimin Ju
- International Institute for Earth System Sciences, Nanjing University, Nanjing, China
| | - Honghua Ruan
- Joint Innovation Center for Modern Forestry Studies, College of Biology and Environment, Nanjing Forestry University, Nanjing, China
| | - Zhihao Qin
- Institute of Agro-Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Yiye Huang
- School of Atmospheric Sciences, Nanjing University, Nanjing, PR China
| | - Nasreen Jeelani
- Department of Ecology, Nanjing University, Nanjing, PR China
| | - José Padarian
- Faculty of Agriculture and Environment, University of Sydney, Sydney, Australia
| | - Pavel Propastin
- Institute of Geography, Georg-August University Göttingen, Göttingen, Germany
- Department of Bioclimatology, Büsgen-Institute, Georg-August University Göttingen, Göttingen, Germany
| |
Collapse
|
11
|
Choong TW, He J, Lee SK, Dodd IC. Growing Different Lactuca Genotypes Aeroponically within a Tropical Greenhouse-Cool Rootzone Temperatures Decreased Rootzone Ethylene Concentrations and Increased Shoot Growth. Front Physiol 2016; 7:405. [PMID: 27679582 PMCID: PMC5020074 DOI: 10.3389/fphys.2016.00405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 08/29/2016] [Indexed: 11/23/2022] Open
Abstract
Temperate crops cannot grow well in the tropics without rootzone cooling. As cooling increased production costs, this experiment aimed to study the growth of various Lactuca genotypes and propose possible ways of reducing these costs, without compromising productivity. A recombinant inbred line (RIL) of lettuce and its parental lines (L. serriola and L. sativa “Salinas”) were grown aeroponically in a tropical greenhouse under 24°C cool (C) or warm fluctuating 30–36°C ambient (A) rootzone temperature (RZT). Their roots were misted with Netherlands standard nutrient solution for 1 min, at intervals of either 5 min (A5, C5) or 10 min (A10, C10) in attempting to reduce electricity consumption and production costs. Lower mortality and higher productivity were observed in all genotypes when grown in C-RZT. Higher shoot fresh weight was observed under C5 than C10, for the RIL and L. serriola. Since “Salinas” had similar shoot fresh weight at both C-RZ treatments, this may indicate it is more sensitive to RZT than water availability. Under A-RZ treatments, higher carotenoid content, with correspondingly higher nonphotochemical quenching, was observed in A10 for the RIL and “Salinas.” Further, total chlorophyll content was also highest at this RZ treatment for the RIL though photochemical quenching was contrastingly the lowest. Cumulatively, productivity was compromised at A10 as the RIL seemed to prioritize photoprotection over efficiency in photosynthesis, under conditions of higher RZT and lower water availability. Generally, higher RZ ethylene concentrations accumulated in A10 and C10 than A5 and C5, respectively—probably due to spray frequency exerting a greater effect on RZ ethylene accumulation than RZT. In the C5 RZ treatment, lowest RZ ethylene concentration corresponded with highest shoot fresh weight. As such, further research on ethylene (in)sensitivity and water use efficiency could be conducted to identify Lactuca cultivars that are better suited for growth in the tropics, so as to allay production costs with reduced cooling and spray intervals.
Collapse
Affiliation(s)
- Tsui-Wei Choong
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University Singapore, Singapore
| | - Jie He
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University Singapore, Singapore
| | - Sing K Lee
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University Singapore, Singapore
| | - Ian C Dodd
- Lancaster Environment Centre, Lancaster University Lancaster, UK
| |
Collapse
|
12
|
Doran K, Ruess RW, Plumley GF, Wurtz TL. Photosynthetic responses of white spruce saplings (Picea glauca) to controlled density gradients of spruce and green alder (Alnus crispa). ECOSCIENCE 2016. [DOI: 10.1080/11956860.2001.11682633] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Hoffmann AM, Noga G, Hunsche M. Acclimations to light quality on plant and leaf level affect the vulnerability of pepper (Capsicum annuum L.) to water deficit. JOURNAL OF PLANT RESEARCH 2015; 128:295-306. [PMID: 25626402 DOI: 10.1007/s10265-014-0698-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 10/31/2014] [Indexed: 06/04/2023]
Abstract
We investigated the influence of light quality on the vulnerability of pepper plants to water deficit. For this purpose plants were cultivated either under compact fluorescence lamps (CFL) or light-emitting diodes (LED) providing similar photon fluence rates (95 µmol m(-2) s(-1)) but distinct light quality. CFL emit a wide-band spectrum with dominant peaks in the green and red spectral region, whereas LEDs offer narrow band spectra with dominant peaks at blue (445 nm) and red (665 nm) regions. After one-week acclimation to light conditions plants were exposed to water deficit by withholding irrigation; this period was followed by a one-week regeneration period and a second water deficit cycle. In general, plants grown under CFL suffered more from water deficit than plants grown under LED modules, as indicated by the impairment of the photosynthetic efficiency of PSII, resulting in less biomass accumulation compared to respective control plants. As affected by water shortage, plants grown under CFL had a stronger decrease in the electron transport rate (ETR) and more pronounced increase in heat dissipation (NPQ). The higher amount of blue light suppressed plant growth and biomass formation, and consequently reduced the water demand of plants grown under LEDs. Moreover, pepper plants exposed to high blue light underwent adjustments at chloroplast level (e.g., higher Chl a/Chl b ratio), increasing the photosynthetic performance under the LED spectrum. Differently than expected, stomatal conductance was comparable for water-deficit and control plants in both light conditions during the stress and recovery phases, indicating only minor adjustments at the stomatal level. Our results highlight the potential of the target-use of light quality to induce structural and functional acclimations improving plant performance under stress situations.
Collapse
Affiliation(s)
- Anna M Hoffmann
- Institute of Crop Science and Resource Conservation - Horticultural Science, University of Bonn, Auf dem Huegel 6, 53121, Bonn, Germany,
| | | | | |
Collapse
|
14
|
Grant OM, Tronina U, García-Plazaola JI, Esteban R, Pereira JS, Chaves MM. Resilience of a semi-deciduous shrub, Cistus salvifolius, to severe summer drought and heat stress. FUNCTIONAL PLANT BIOLOGY : FPB 2015; 42:219-228. [PMID: 32480667 DOI: 10.1071/fp14081] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 08/26/2014] [Indexed: 06/11/2023]
Abstract
Shrubs often form the understorey in Mediterranean oak woodlands. These shrubs are exposed to recurrent water deficits, but how they will respond to predicted future exacerbation of drought is not yet understood. The ecophysiology of the shrub Cistus salvifolius L. was studied over the summer of 2005, which was during a heat-wave superimposed on the most severe drought in the Iberian Peninsula in the last 140 years. Branch water potential fell drastically during the summer, accompanied by stomatal closure and downregulation of PSII, with a concomitant loss of chlorophyll in the leaves. A parallel increase in the ratio of light-dissipating to light-capturing pigments and the proportion of xanthophyll cycle pigments in the de-epoxidated state, along with alterations in the structure of the light harvesting complex, may have reduced the potential for damage to leaves. Substantial increases in leaf tocopherol content during high radiation may have reduced damage from free radicals. Following autumn rains, leaves of the same shrubs showed physiological recovery, indicating the resilience of this Mediterranean species, for which an extremely dry hydrological year with 45% less rainfall than average, did not prevent healthy leaf functioning in response to renewed soil moisture availability.
Collapse
Affiliation(s)
- Olga M Grant
- Laboratório de Ecofisiologia Molecular, Instituto de Tecnologia Química e Biológica, Quinta do Marquês, 2784-505 Oeiras, Portugal
| | - Ukasz Tronina
- Laboratório de Ecofisiologia Molecular, Instituto de Tecnologia Química e Biológica, Quinta do Marquês, 2784-505 Oeiras, Portugal
| | | | - Raquel Esteban
- ZTF-FTC, Universidad del País Vasco (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa - Bizkaia, Spain
| | - João Santos Pereira
- Instituto Superior de Agronomia, Universidade Técnica de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - M Manuela Chaves
- Laboratório de Ecofisiologia Molecular, Instituto de Tecnologia Química e Biológica, Quinta do Marquês, 2784-505 Oeiras, Portugal
| |
Collapse
|
15
|
Peltier DMP, Ibáñez I. Patterns and variability in seedling carbon assimilation: implications for tree recruitment under climate change. TREE PHYSIOLOGY 2015; 35:71-85. [PMID: 25576758 DOI: 10.1093/treephys/tpu103] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Predicting future forests' structure and functioning is a critical goal for ecologists, thus information on seedling recruitment will be crucial in determining the composition and structure of future forest ecosystems. In particular, seedlings' photosynthetic response to a changing environment will be a key component determining whether particular species establish enough individuals to maintain populations, as growth is a major determinant of survival. We quantified photosynthetic responses of sugar maple (Acer saccharum Marsh.), pignut hickory (Carya glabra Mill.), northern red oak (Quercus rubra L.) and eastern black oak (Quercus velutina Lam.) seedlings to environmental conditions including light habitat, temperature, soil moisture and vapor pressure deficit (VPD) using extensive in situ gas exchange measurements spanning an entire growing season. We estimated the parameters in a hierarchical Bayesian version of the Farquhar model of photosynthesis, additionally informed by soil moisture and VPD, and found that maximum Rubisco carboxylation (V(cmax)) and electron transport (J(max)) rates showed significant seasonal variation, but not the peaked patterns observed in studies of adult trees. Vapor pressure deficit and soil moisture limited J(max) and V(cmax) for all four species. Predictions indicate large declines in summer carbon assimilation rates under a 3 °C increase in mean annual temperature projected by climate models, while spring and fall assimilation rates may increase. Our model predicts decreases in summer assimilation rates in gap habitats with at least 90% probability, and with 20-99.9% probability in understory habitats depending on species. Predictions also show 70% probability of increases in fall and 52% probability in spring in understory habitats. All species were impacted, but our findings suggest that oak species may be favored in northeastern North America under projected increases in temperature due to superior assimilation rates under these conditions, though as growing seasons become longer, the effects of climate change on seedling photosynthesis may be complex.
Collapse
Affiliation(s)
- Drew M P Peltier
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Inés Ibáñez
- School of Natural Resources and Environment, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
16
|
Brown CE, Mickelbart MV, Jacobs DF. Leaf physiology and biomass allocation of backcross hybrid American chestnut (Castanea dentata) seedlings in response to light and water availability. TREE PHYSIOLOGY 2014; 34:1362-1375. [PMID: 25428828 DOI: 10.1093/treephys/tpu094] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Partial canopy cover promotes regeneration of many temperate forest trees, but the consequences of shading on seedling drought resistance are unclear. Reintroduction of blight-resistant American chestnut (Castanea dentata (Marsh.) Borkh.) into eastern North American forests will often occur on water-limited sites and under partial canopy cover. We measured leaf pre-dawn water potential (Ψpd), leaf gas exchange, and growth and biomass allocation of backcross hybrid American chestnut seedlings from three orchard sources grown under different light intensities (76, 26 and 8% full photosynthetically active radiation (PAR)) and subjected to well-watered or mid-season water-stressed conditions. Seedlings in the water-stress treatment were returned to well-watered conditions after wilting to examine recovery. Seedlings growing under medium- and high-light conditions wilted at lower leaf Ψpd than low-light seedlings. Recovery of net photosynthesis (Anet) and stomatal conductance (gs) was greater in low and medium light than in high light. Seed source did not affect the response to water stress or light level in most cases. Between 26 and 8% full PAR, light became limiting to the extent that the effects of water stress had no impact on some growth and morphological traits. We conclude that positive and negative aspects of shading on seedling drought tolerance and recovery are not mutually exclusive. Partial shade may help American chestnut tolerate drought during early establishment through effects on physiological conditioning.
Collapse
Affiliation(s)
- Caleb E Brown
- Department of Forestry and Natural Resources, Hardwood Tree Improvement and Regeneration Center, Purdue University, West Lafayette, IN 47907-2061, USA
| | - Michael V Mickelbart
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907-2061, USA
| | - Douglass F Jacobs
- Department of Forestry and Natural Resources, Hardwood Tree Improvement and Regeneration Center, Purdue University, West Lafayette, IN 47907-2061, USA
| |
Collapse
|
17
|
Paz Esquivias M, Zunzunegui M, Díaz Barradas MC, Álvarez-Cansino L. Competitive effect of a native-invasive species on a threatened shrub in a Mediterranean dune system. Oecologia 2014; 177:133-46. [PMID: 25348574 DOI: 10.1007/s00442-014-3106-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 09/23/2014] [Indexed: 11/29/2022]
Abstract
The canopy shade of the Retama species has been widely reported to ameliorate the environmental conditions in the understory, thus facilitating other species' establishment. The shading effect of the native-invasive leguminous shrub Retama monosperma (L.) Boiss on the endangered Thymus carnosus Boiss was analysed to determine a positive or negative net effect. Data was taken in all four seasons, representing contrasting light and water availability in a Mediterranean coastal dune ecosystem (SW Spain). The morphological and physiological status of sun-exposed T. carnosus plants growing in open areas versus shaded plants growing under R. monosperma were measured seasonally. Leaf mass area, leaf area index and pigment content showed typical sun-shade responses. In contrast, sun-exposed T. carnosus displayed higher stem water potential, transpiration rate and water use efficiency, both intrinsic and integrated, denoting low tolerance to the presence of R. monosperma. Five years after the measurements, canopy cover had decreased and mortality was higher in shaded plants, thus confirming the competitive effect of R. monosperma on T. carnosus. R. monosperma arises as a competitor for endangered T. carnosus communities, consequently reinforcing its invasive behaviour. This species-specific shrub study demonstrates that eventual beneficial effects of Retama canopy may be overridden by competition in the understory, particularly in the case of species well-adapted to high light and low water levels.
Collapse
Affiliation(s)
- M Paz Esquivias
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, PO Box 1095, 41080, Sevilla, Spain,
| | | | | | | |
Collapse
|
18
|
Chen Y, Chen X, Wang H, Bao Y, Zhang W. Examination of the leaf proteome during flooding stress and the induction of programmed cell death in maize. Proteome Sci 2014; 12:33. [PMID: 25028572 PMCID: PMC4099015 DOI: 10.1186/1477-5956-12-33] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 05/30/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Maize is a major economic crop worldwide, with substantial crop loss attributed to flooding. During a stress response, programmed cell death (PCD) can be an effective way for plants better adapt. To identify flooding stress related PCD proteins in maize leaves, proteomic analysis was performed using two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) and mass spectrometry. RESULTS Comparative proteomics was combined with physiological and biochemical analysis of maize leaves under flooding stress. Fv/Fm, qP, qN and relative water content (RWC) were found to be altered in response to flooding stress, with an increase in H2O2 content noted in vivo. Furthermore, DNA ladder detection indicated that PCD had occurred under flooding treatment. The maize leaf proteome was analyzed via 2D-DIGE gel, with a total of 32 differentially expressed spots isolated, 31 spots were successfully identified via MALDI-TOF/TOF MS which represent 28 proteins. The identified proteins were related to energy metabolism and photosynthesis, PCD, phytohormones and polyamines. To better characterize the role of translationally controlled tumor protein (TCTP) in PCD during a stress response, mRNA expression was examined in different plants by stress-induced PCD. These included heat stress induced rice protoplasts, Tobacco Mosaic Virus infected tobacco leaves and dark induced rice and Arabidopsis thaliana leaves, all of which showed active PCD, and TCTP expression was increased in different degrees. Moreover, S-adenosylmethionine synthase 2 (SAMS2) and S-adenosylmethionine decarboxylase (SAMDC) mRNA expression were also increased, but ACC synthase (ACS) and ACC oxidase (ACO) mRNA expression were not found in maize leaves following flooding. Lastly, ethylene and polyamine concentrations were increased in response to flooding treatment in maize leaves. CONCLUSIONS Following flooding stress, the photosynthetic systems were damaged, resulting in a disruption in energy metabolism, with the noted photosynthetic decline also possibly attributed to ROS production. The observed PCD could be regulated by TCTP with a possible role for H2O2 in TCTP induction under flooding stress. Additionally, increased SAMS2 expression was closely associated with an increased polyamine synthesis during flooding treatment.
Collapse
Affiliation(s)
- Yu Chen
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing, Jiangsu, PR, China
| | - Xi Chen
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing, Jiangsu, PR, China
| | - Hongjuan Wang
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing, Jiangsu, PR, China
| | - Yiqun Bao
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing, Jiangsu, PR, China
| | - Wei Zhang
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing, Jiangsu, PR, China
| |
Collapse
|
19
|
Zlatev Z. Drought-Induced Changes in Chlorophyll Fluorescence of Young Wheat Plants. BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.1080/13102818.2009.10818458] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
20
|
Herppich M, Herppich WB, VON Willert DJ. Influence of Drought, Rain and Artificial Irrigation on Photosynthesis, Gas Exchange and Water Relations of the Fynbos PlantProtea acaulos(L.) Reich at the End of the Dry Season. ACTA ACUST UNITED AC 2014. [DOI: 10.1111/j.1438-8677.1994.tb00819.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
21
|
Xyländer M, Hagen C, Braune W. Mercury Increases Light Susceptibility in the Green AlgaHaematococcus lacustris. ACTA ACUST UNITED AC 2014. [DOI: 10.1111/j.1438-8677.1996.tb00567.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Seasonality and facilitation drive tree establishment in a semi-arid floodplain savanna. Oecologia 2014; 175:261-71. [PMID: 24469341 DOI: 10.1007/s00442-014-2886-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 01/10/2014] [Indexed: 10/25/2022]
Abstract
A popular hypothesis for tree and grass coexistence in savannas is that tree seedlings are limited by competition from grasses. However, competition may be important in favourable climatic conditions when abiotic stress is low, whereas facilitation may be more important under stressful conditions. Seasonal and inter-annual fluctuations in abiotic conditions may alter the outcome of tree-grass interactions in savanna systems and contribute to coexistence. We investigated interactions between coolibah (Eucalyptus coolabah) tree seedlings and perennial C4 grasses in semi-arid savannas in eastern Australia in contrasting seasonal conditions. In glasshouse and field experiments, we measured survival and growth of tree seedlings with different densities of C4 grasses across seasons. In warm glasshouse conditions, where water was not limiting, competition from grasses reduced tree seedling growth but did not affect tree survival. In the field, all tree seedlings died in hot dry summer conditions irrespective of grass or shade cover, whereas in winter, facilitation from grasses significantly increased tree seedling survival by ameliorating heat stress and protecting seedlings from herbivory. We demonstrated that interactions between tree seedlings and perennial grasses vary seasonally, and timing of tree germination may determine the importance of facilitation or competition in structuring savanna vegetation because of fluctuations in abiotic stress. Our finding that trees can grow and survive in a dense C4 grass sward contrasts with the common perception that grass competition limits woody plant recruitment in savannas.
Collapse
|
23
|
Adams WW, Demmig-Adams B. Lessons from Nature: A Personal Perspective. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2014. [DOI: 10.1007/978-94-017-9032-1_2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
24
|
Zivcak M, Brestic M, Balatova Z, Drevenakova P, Olsovska K, Kalaji HM, Yang X, Allakhverdiev SI. Photosynthetic electron transport and specific photoprotective responses in wheat leaves under drought stress. PHOTOSYNTHESIS RESEARCH 2013; 117:529-46. [PMID: 23860828 DOI: 10.1007/s11120-013-9885-3] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 07/03/2013] [Indexed: 05/19/2023]
Abstract
The photosynthetic responses of wheat (Triticum aestivum L.) leaves to different levels of drought stress were analyzed in potted plants cultivated in growth chamber under moderate light. Low-to-medium drought stress was induced by limiting irrigation, maintaining 20 % of soil water holding capacity for 14 days followed by 3 days without water supply to induce severe stress. Measurements of CO2 exchange and photosystem II (PSII) yield (by chlorophyll fluorescence) were followed by simultaneous measurements of yield of PSI (by P700 absorbance changes) and that of PSII. Drought stress gradually decreased PSII electron transport, but the capacity for nonphotochemical quenching increased more slowly until there was a large decrease in leaf relative water content (where the photosynthetic rate had decreased by half or more). We identified a substantial part of PSII electron transport, which was not used by carbon assimilation or by photorespiration, which clearly indicates activities of alternative electron sinks. Decreasing the fraction of light absorbed by PSII and increasing the fraction absorbed by PSI with increasing drought stress (rather than assuming equal absorption by the two photosystems) support a proposed function of PSI cyclic electron flow to generate a proton-motive force to activate nonphotochemical dissipation of energy, and it is consistent with the observed accumulation of oxidized P700 which causes a decrease in PSI electron acceptors. Our results support the roles of alternative electron sinks (either from PSII or PSI) and cyclic electron flow in photoprotection of PSII and PSI in drought stress conditions. In future studies on plant stress, analyses of the partitioning of absorbed energy between photosystems are needed for interpreting flux through linear electron flow, PSI cyclic electron flow, along with alternative electron sinks.
Collapse
Affiliation(s)
- Marek Zivcak
- Department of Plant Physiology, Slovak Agricultural University, Tr. A. Hlinku 2, 949 76, Nitra, Slovak Republic,
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Tozzi ES, Easlon HM, Richards JH. Interactive effects of water, light and heat stress on photosynthesis in Fremont cottonwood. PLANT, CELL & ENVIRONMENT 2013; 36:1423-34. [PMID: 23336343 DOI: 10.1111/pce.12070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Revised: 12/21/2012] [Accepted: 12/26/2012] [Indexed: 05/03/2023]
Abstract
Fremont cottonwood seedlings are vulnerable to water stress from rapid water-table decline during river recession in spring. Water stress is usually cited as the reason for reduced establishment, but interactions of water stress with microclimate extremes are more likely the causes of mortality. We assessed photosynthetic responses of Fremont cottonwood seedlings to water, light and heat stresses, which commonly co-occur in habitats where seedlings establish. Under moderate temperature and light conditions, water stress did not affect photosynthetic function. However, stomatal closure during water stress predisposed Fremont cottonwood leaves to light and heat stress, resulting in greatly reduced photosynthesis beginning at 31 °C versus at 41 °C for well-watered plants. Ontogenetic shifts in leaf orientation from horizontal to vertical, which occur as seedlings mature, reduce heat and light stress, especially during water stress. When compared with naturally occurring microclimate extremes, seedling stress responses suggest that reduced assimilation and photoprotection are common for Fremont cottonwood seedlings on exposed point bars where they establish. These reductions in photosynthesis likely have negative impacts on growth and may predispose young (<90-day-old) seedlings to early mortality during rapid water-table declines. Interactions with heat and light stress are more important in these effects than water stress alone.
Collapse
Affiliation(s)
- Emily S Tozzi
- Department of Land, Air and Water Resources, University of California, Davis, Davis, CA 95616-8627, USA
| | | | | |
Collapse
|
26
|
Photosynthetic Responses of Plants to Excess Light: Mechanisms and Conditions for Photoinhibition, Excess Energy Dissipation and Repair. PHOTOSYNTHESIS 2012. [DOI: 10.1007/978-94-007-1579-0_13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
27
|
Coopman RE, Briceño VF, Corcuera LJ, Reyes-Díaz M, Alvarez D, Sáez K, García-Plazaola JI, Alberdi M, Bravo LA. Tree size and light availability increase photochemical instead of non-photochemical capacities of Nothofagus nitida trees growing in an evergreen temperate rain forest. TREE PHYSIOLOGY 2011; 31:1128-41. [PMID: 21990025 DOI: 10.1093/treephys/tpr094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Nothofagus nitida (Phil.) Krasser (Nothofagaceae) regenerates under the canopy in microsites protected from high light. Nonetheless, it is common to find older saplings in clear areas and adults as emergent trees of the Chilean evergreen forest. We hypothesized that this shade to sun transition in N. nitida is supported by an increase in photochemical and non-photochemical energy dissipation capacities of both photosystems in parallel with the increase in plant size and light availability. To dissect the relative contribution of light environment and plant developmental stage to these physiological responses, the photosynthetic performance of both photosystems was studied from the morpho-anatomical to the biochemical level in current-year leaves of N. nitida plants of different heights (ranging from 0.1 to 7 m) growing under contrasting light environments (integrated quantum flux (IQF) 5-40 mol m(-2). Tree height (TH) and light environment (IQF) independently increased the saturated electron transport rates of both photosystems, as well as leaf and palisade thickness, but non-photochemical energy flux, photoinhibition susceptibility, state transition capacity, and the contents of D1 and PsbS proteins were not affected by IQF and TH. Spongy mesophyll thickness and palisade cell diameter decreased with IQF and TH. A(max), light compensation and saturation points, Rubisco and nitrogen content (area basis) only increased with light environment (IQF), whereas dark respiration (R(d)) decreased slightly and relative chlorophyll content was higher in taller trees. Overall, the independent effects of more illuminated environment and tree height mainly increased the photochemical instead of the non-photochemical energy flux. Regardless of the photochemical increase with TH, carbon assimilation only significantly improved with higher IQF. Therefore it seems that mainly acclimation to the light environment supports the phenotypic transition of N. nitida from shade to sun.
Collapse
Affiliation(s)
- Rafael E Coopman
- Forest Ecophysiology Laboratory, Facultad de Ciencias Forestales y Recursos Naturales, Universidad Austral de Chile, Independencia 641, Casilla 567, Valdivia, Chile.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Sarlikioti V, de Visser PHB, Marcelis LFM. Exploring the spatial distribution of light interception and photosynthesis of canopies by means of a functional-structural plant model. ANNALS OF BOTANY 2011; 107:875-83. [PMID: 21355008 PMCID: PMC3077986 DOI: 10.1093/aob/mcr006] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 09/28/2010] [Accepted: 12/06/2010] [Indexed: 05/18/2023]
Abstract
BACKGROUND AND AIMS At present most process-based models and the majority of three-dimensional models include simplifications of plant architecture that can compromise the accuracy of light interception simulations and, accordingly, canopy photosynthesis. The aim of this paper is to analyse canopy heterogeneity of an explicitly described tomato canopy in relation to temporal dynamics of horizontal and vertical light distribution and photosynthesis under direct- and diffuse-light conditions. METHODS Detailed measurements of canopy architecture, light interception and leaf photosynthesis were carried out on a tomato crop. These data were used for the development and calibration of a functional-structural tomato model. The model consisted of an architectural static virtual plant coupled with a nested radiosity model for light calculations and a leaf photosynthesis module. Different scenarios of horizontal and vertical distribution of light interception, incident light and photosynthesis were investigated under diffuse and direct light conditions. KEY RESULTS Simulated light interception showed a good correspondence to the measured values. Explicitly described leaf angles resulted in higher light interception in the middle of the plant canopy compared with fixed and ellipsoidal leaf-angle distribution models, although the total light interception remained the same. The fraction of light intercepted at a north-south orientation of rows differed from east-west orientation by 10 % on winter and 23 % on summer days. The horizontal distribution of photosynthesis differed significantly between the top, middle and lower canopy layer. Taking into account the vertical variation of leaf photosynthetic parameters in the canopy, led to approx. 8 % increase on simulated canopy photosynthesis. CONCLUSIONS Leaf angles of heterogeneous canopies should be explicitly described as they have a big impact both on light distribution and photosynthesis. Especially, the vertical variation of photosynthesis in canopy is such that the experimental approach of photosynthesis measurements for model parameterization should be revised.
Collapse
Affiliation(s)
- V. Sarlikioti
- Wageningen UR Greenhouse Horticulture, PO Box 644, 6700 AP Wageningen, The Netherlands
| | - P. H. B. de Visser
- Wageningen UR Greenhouse Horticulture, PO Box 644, 6700 AP Wageningen, The Netherlands
| | - L. F. M. Marcelis
- Wageningen UR Greenhouse Horticulture, PO Box 644, 6700 AP Wageningen, The Netherlands
- Horticultural Supply Chains, Wageningen University, PO Box 630, 6700AP Wageningen, The Netherlands
| |
Collapse
|
29
|
Reduced growth and survival of vascular epiphytes on isolated remnant trees in a recent tropical montane forest clear-cut. Basic Appl Ecol 2011. [DOI: 10.1016/j.baae.2010.11.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
30
|
Abdolzadeh A, Shima K, Lambers H, Chiba K. Change in uptake, transport and accumulation of ions in Nerium oleander (rosebay) as affected by different nitrogen sources and salinity. ANNALS OF BOTANY 2008; 102:735-46. [PMID: 18772147 PMCID: PMC2712379 DOI: 10.1093/aob/mcn156] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2008] [Revised: 06/23/2008] [Accepted: 07/22/2008] [Indexed: 05/25/2023]
Abstract
BACKGROUND AND AIMS The source of nitrogen plays an important role in salt tolerance of plants. In this study, the effects of NaCl on net uptake, accumulation and transport of ions were investigated in Nerium oleander with ammonium or nitrate as the nitrogen source in order to analyse differences in uptake and cycling of ions within plants. METHODS Plants were grown in a greenhouse in hydroponics under different salt treatments (control vs. 100 mm NaCl) with ammonium or nitrate as the nitrogen source, and changes in ion concentration in plants, xylem sap exuded from roots and stems, and phloem sap were determined. KEY RESULTS Plant weight, leaf area and photosynthetic rate showed a higher salt tolerance of nitrate-fed plants compared with that of ammonium-fed plants. The total amount of Na+ transported in the xylem in roots, accumulated in the shoot and retranslocated in the phloem of ammonium-fed plants under salt treatment was 1.8, 1.9 and 2.7 times more, respectively, than that of nitrate-treated plants. However, the amount of Na+ accumulated in roots in nitrate-fed plants was about 1.5 times higher than that in ammonium-fed plants. Similarly, Cl- transport via the xylem to the shoot and its retranslocation via the phloem (Cl- cycling) were far greater with ammonium treatment than with nitrate treatment under conditions of salinity. The uptake and accumulation of K+ in shoots decreased more due to salinity in ammonium-fed plants compared with nitrate-fed plants. In contrast, K+ cycling in shoots increased due to salinity, with higher rates in the ammonium-treated plants. CONCLUSIONS The faster growth of nitrate-fed plants under conditions of salinity was associated with a lower transport and accumulation of Na+ and Cl- in the shoot, whereas in ammonium-fed plants accumulation and cycling of Na+ and Cl- in shoots probably caused harmful effects and reduced growth of plants.
Collapse
Affiliation(s)
- Ahmad Abdolzadeh
- Gorgan University of Agricultural Sciences and Natural Resources, POB 49175-386, Gorgan, Iran
- School of Plant Biology, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Australia
| | - Kazuto Shima
- Laboratory of Applied Plant Ecology, Graduate School of Natural Sciences and Technology, Okayama University, Tsushima-naka, Okayama 700, Japan
| | - Hans Lambers
- School of Plant Biology, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Australia
| | - Kyozo Chiba
- Laboratory of Applied Plant Ecology, Graduate School of Natural Sciences and Technology, Okayama University, Tsushima-naka, Okayama 700, Japan
| |
Collapse
|
31
|
Richter T, Fukshansky L. Optics of a Bifacial Leaf: 3. Implications for Photosynthetic Performance. Photochem Photobiol 2008. [DOI: 10.1111/j.1751-1097.1998.tb09691.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
Nishiyama Y, Allakhverdiev SI, Murata N. Regulation by Environmental Conditions of the Repair of Photosystem II in Cyanobacteria. PHOTOPROTECTION, PHOTOINHIBITION, GENE REGULATION, AND ENVIRONMENT 2008. [DOI: 10.1007/1-4020-3579-9_13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
33
|
Hopkins R, Schmitt J, Stinchcombe JR. A latitudinal cline and response to vernalization in leaf angle and morphology in Arabidopsis thaliana (Brassicaceae). THE NEW PHYTOLOGIST 2008; 179:155-164. [PMID: 18422898 DOI: 10.1111/j.1469-8137.2008.02447.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Adaptation to latitudinal patterns of environmental variation is predicted to result in clinal variation in leaf traits. Therefore, this study tested for geographic differentiation and plastic responses to vernalization in leaf angle and leaf morphology in Arabidopsis thaliana. Twenty-one European ecotypes were grown in a common growth chamber environment. Replicates of each ecotype were exposed to one of four treatments: 0, 10, 20 or 30 d of vernalization. Ecotypes from lower latitudes had more erect leaves, as predicted from functional arguments about selection to maximize photosynthesis. Lower-latitude ecotypes also had more elongated petioles as predicted by a biomechanical constraint hypothesis. In addition, extended vernalization resulted in shorter and more erect leaves. As predicted by functional and adaptive hypotheses, our results show genetically based clinal variation as well as environmentally induced variation in leaf traits.
Collapse
Affiliation(s)
- Robin Hopkins
- Ecology and Evolutionary Biology, Brown University, Providence, RI, USA
- Present address: Biology, Duke University, Durham, NC, USA
| | - Johanna Schmitt
- Ecology and Evolutionary Biology, Brown University, Providence, RI, USA
| | - John R Stinchcombe
- Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| |
Collapse
|
34
|
Huseynova IM, Suleymanov SY, Aliyev JA. Structural-functional state of thylakoid membranes of wheat genotypes under water stress. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1767:869-75. [PMID: 17321491 DOI: 10.1016/j.bbabio.2007.01.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2006] [Revised: 12/21/2006] [Accepted: 01/22/2007] [Indexed: 11/29/2022]
Abstract
Plants were grown in field conditions in the wide area under normal water supply and severe water deficit. Two wheat (Triticum aestivum L.) genotypes contrasting by architectonics and differing in drought-resistance were used: Giymatli-2/17, short stature, with broad and drooping leaves, drought-sensitive, and Azamatli-95, short stature, with vertically oriented small leaves, drought-tolerant). It was found out that Giymatli-2/17 was characterized by relatively low content of Chl a-protein of PS I (CP I) and beta-subunit of ATP-synthase complex, the high content of proteins in the 33-30.5 kDa region and LHC polypeptides (28-24.5 kDa), the intensive fluorescence at 740 nm and more high photochemical activity of PS II under normal irrigation compared with Azamatli-95. However, the content of CP I (M(r) 115 kDa) and apoprotein of P700 with M(r) 63 kDa insignificantly increases in the drought-resistant genotype Azamatli-95 under extreme water supply condition while their content decreases in drought-sensitive cv Giymatli-2/17. Intensity of synthesis alpha- and beta-subunits of CF(1) (55 and 53.5 kDa) also decreases in Giymatli-2/17. The levels of the core antenna polypeptides of FS II with M(r) 46 and 44.5 kDa (CP47 and CP43) remains stable both in normal, and stressful conditions. At the same time the significant reduction is observed in the content of polypeptides in the 33-30.5 kDa region in the more sensitive genotype Giymatli-2/17. There is an increase in the LHC II polypeptides level in tolerant genotype Azamatli-95 in contrast to Giymatli-2/17 (where the content of these subunits is observed decreasing). The intensity of short wavelength peaks at 687 and 695 nm sharply increases in the fluorescence spectra (77 K) of chloroplasts from sensitive genotype Giymatli-2/17 under water deficiency and there is a stimulation of the ratio of fluorescence band intensity F687/F740. After exposure to drought, cv Giymatli-2/17 shows a larger reduction in the actual PS II photochemical efficiency of chloroplasts than cv Azamatli-95.
Collapse
Affiliation(s)
- Irada M Huseynova
- Institute of Botany, Azerbaijan National Academy of Sciences, Patamdar Shosse 40, Baku AZ 1073, Azerbaijan
| | | | | |
Collapse
|
35
|
Murata N, Takahashi S, Nishiyama Y, Allakhverdiev SI. Photoinhibition of photosystem II under environmental stress. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1767:414-21. [PMID: 17207454 DOI: 10.1016/j.bbabio.2006.11.019] [Citation(s) in RCA: 782] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2006] [Revised: 11/14/2006] [Accepted: 11/21/2006] [Indexed: 11/28/2022]
Abstract
Inhibition of the activity of photosystem II (PSII) under strong light is referred to as photoinhibition. This phenomenon is due to an imbalance between the rate of photodamage to PSII and the rate of the repair of damaged PSII. In the "classical" scheme for the mechanism of photoinhibition, strong light induces the production of reactive oxygen species (ROS), which directly inactivate the photochemical reaction center of PSII. By contrast, in a new scheme, we propose that photodamage is initiated by the direct effect of light on the oxygen-evolving complex and that ROS inhibit the repair of photodamaged PSII by suppressing primarily the synthesis of proteins de novo. The activity of PSII is restricted by a variety of environmental stresses. The effects of environmental stress on damage to and repair of PSII can be examined separately and it appears that environmental stresses, with the exception of strong light, act primarily by inhibiting the repair of PSII. Studies have demonstrated that repair-inhibitory stresses include CO(2) limitation, moderate heat, high concentrations of NaCl, and low temperature, each of which suppresses the synthesis of proteins de novo, which is required for the repair of PSII. We postulate that most types of environmental stress inhibit the fixation of CO(2) with the resultant generation of ROS, which, in turn, inhibit protein synthesis.
Collapse
Affiliation(s)
- Norio Murata
- National Institute for Basic Biology, Okazaki 444-8585, Japan.
| | | | | | | |
Collapse
|
36
|
Correia MJ, Osório ML, Osório J, Barrote I, Martins M, David MM. Influence of transient shade periods on the effects of drought on photosynthesis, carbohydrate accumulation and lipid peroxidation in sunflower leaves. ENVIRONMENTAL AND EXPERIMENTAL BOTANY 2006. [PMID: 0 DOI: 10.1016/j.envexpbot.2005.06.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
|
37
|
Grant OM, Incoll LD, McNeilly T. Variation in growth responses to availability of water in Cistus albidus populations from different habitats. FUNCTIONAL PLANT BIOLOGY : FPB 2005; 32:817-829. [PMID: 32689179 DOI: 10.1071/fp05020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2005] [Accepted: 05/06/2005] [Indexed: 06/11/2023]
Abstract
Seeds of Cistus albidus L. plants from three populations that are exposed to differing temperature and precipitation in Almería province of south-east Spain, were collected and grown together in a factorial experiment with two irrigation treatments. The aim was to determine whether populations from different habitats differed when exposed to common conditions, or differed in the plasticity of their response to availability of water. Significant differences in growth of branches and in leaf dimensions were found between treatments, indicating phenotypic plasticity. There was also significant variation between populations in growth of branches and leaf dimensions, with a population from a location that is intermediate in terms of precipitation and temperature showing the greatest growth of branches and production of leaves under the well-watered treatment. This population is from a semi-arid climate, where precipitation is unpredictable, and selection may have occurred to favour rapid growth when water is available. This population had the narrowest leaves under both treatments, and the lowest leaf mass in the well-watered treatment. It also maintained the same mass per leaf under the two treatments, whereas the others showed an increased mass of leaves with increased availability of water. Thus, populations differed both in their manner of allocating resources and their response to availability of water.
Collapse
Affiliation(s)
- Olga M Grant
- School of Biology, University of Leeds, Leeds LS2 9JT, UK
| | | | - Tom McNeilly
- School of Biological Sciences, University of Liverpool, Liverpool L69 7ZB, UK
| |
Collapse
|
38
|
Peeva V, Maslenkova L. Thermoluminescence study of photosystem II activity in Haberlea rhodopensis and spinach leaves during desiccation. PLANT BIOLOGY (STUTTGART, GERMANY) 2004; 6:319-324. [PMID: 15143440 DOI: 10.1055/s-2004-820873] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Thermoluminescence glow curve parameters were used to access the functional features of PS II in the Balkan endemic Haberlea rhodopensis. This representative of the higher desiccation-tolerant plants is unique for the European flora. An unusual high temperature of TL emission from Haberlea leaves after excitation by one flash at 5 degrees C was observed. The position of the main TL B band (S (2)Q (B)(-)) was at 45 - 47 degrees C, while this temperature was 30 - 32 degrees C in drought-sensitive mesophytic spinach. Consistent with the up-shift in TL emission, the lifetime of the S (2) state was also increased, showing a stabilization of charge storage in PS II complex in this resurrection plant. In addition, a part of PS II centres was less susceptible to DCMU. We consider the observed unusual TL characteristics of Haberlea rhodopensis reflect some structural modifications in PS II (especially in D1 protein), which could be related to the desiccation tolerance of this plant. This suggestion was supported by the different manner in which dehydration affected the TL properties in desiccation-tolerant Haberlea and desiccation-sensitive spinach plants.
Collapse
Affiliation(s)
- V Peeva
- Acad. M. Popov Institute of Plant Physiology, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| | | |
Collapse
|
39
|
Prider JN, Facelli JM. Interactive effects of drought and shade on three arid zone chenopod shrubs with contrasting distributions in relation to tree canopies. Funct Ecol 2004. [DOI: 10.1046/j.0269-8463.2004.00810.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
40
|
Llorens L, Peñuelas J, Filella I. Diurnal and seasonal variations in the photosynthetic performance and water relations of two co-occurring Mediterranean shrubs, Erica multiflora and Globularia alypum. PHYSIOLOGIA PLANTARUM 2003; 118:84-95. [PMID: 12702017 DOI: 10.1034/j.1399-3054.2003.00174.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Diurnal and seasonal fluctuations in the photosynthetic performance and water relations of two co-occurring Mediterranean shrubs, Erica multiflora and Globularia alypum were monitored throughout two consecutive years at Garraf Natural Park in north-east Spain. Leaf gas exchange rates, chlorophyll fluorescence and shoot water potentials were measured once each season. Leaf nitrogen and carbon concentrations, leaf delta13C and delta15N and specific leaf area (SLA) were also measured once a year (August) on well developed mature leaves. Globularia alypum experienced seasonal fluctuations in their water potential, with the lowest values recorded in summer, whereas E. multiflora did not show significant differences in water potential among seasons. Moreover, lower water potentials were found in G. alypum than in E. multiflora throughout the entire study, suggesting that the latter behaved as a drought-avoiding species, whereas the former tolerated lower water potentials. In both species, maximum leaf gas exchange rates were observed in autumn and secondarily in spring; in contrast, photosynthetic and transpiration rates reached absolute minima in summer. The stronger fluctuations in water potential and leaf gas exchange rates found in G. alypum compared to E. multiflora, suggest that G. alypum is, sensu Levitt (1980), a water spender, whereas E. multiflora is a water conservative. This hypothesis is further supported by a higher integrated water-use efficiency (higher delta13C values) and a higher degree of sclerophylly (lower SLA) in E. multiflora in comparison with G. alypum. Globularia alypum showed higher leaf gas exchange rates and higher predawn potential photochemical efficiency (Fv/Fm) than E. multiflora during most of the study. In spring and autumn, predawn Fv/Fm values were within the optimal range, whereas chronic photoinhibition in summer and winter was detected in both species. However, whereas both species could maintain positive photosynthetic rates in winter, frequent negative values were found in summer, suggesting higher levels of stress during the drought period. These results together with the high correlations that were found between the net photosynthetic rates and several parameters of water availability (accumulated rainfall, soil moisture or midday water potential) provided further evidence of the key role of water availability in the regulation of the photosynthetic rates in these Mediterranean species. Warmer and drier conditions in future decades, as a consequence of climate change, may alter the present, slight competitive advantage of G. alypum and the fitness of both shrub species within semi-arid Mediterranean environments.
Collapse
Affiliation(s)
- Laura Llorens
- Unitat d'Ecofisiologia CSIC-CEAB-CREAF, CREAF, Edifici C, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain
| | | | | |
Collapse
|
41
|
|
42
|
Synková H, Valcke R. Response to mild water stress in transgenic Pssu-ipt tobacco. PHYSIOLOGIA PLANTARUM 2001; 112:513-523. [PMID: 11473711 DOI: 10.1034/j.1399-3054.2001.1120408.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The response of antioxidant enzymes to cyclic drought was studied in control non-transformed tobacco (Nicotiana tabacum L. cv. Petit Havana SR1) and two types of transgenic Pssu-ipt tobacco (grafted on wild rootstock and poorly rooted progeny of F1 generation) grown under different conditions of irradiation (greenhouse, referred as high light, versus growth chamber, referred as low light). Water stress cycles started with plants at two contrasting developmental stages, i.e., at the stage of vegetative growth (young) and at the onset of flowering (old). Drought reduced the growth of SR1 plants compared with transgenic ones, particularly, when treatment started in earlier stage of plant development. Relative leaf water content was significantly lower (below 70%) in all transgenic grafts and plants compared with the wild type, irrespective of age, drought, and growth conditions. The response of antioxidant enzymes was significantly dependent on plant type and plant age; nevertheless, growth conditions and water stress also affected enzyme activities. Contrary to non-transgenic tobacco, where about half of glutathione reductase activity was found in older plants, both transgenic types exhibited unchanged activities throughout plant development and stress treatment. No differences were found in catalase activity, although the growth in the greenhouse caused a moderate increase in all older plants. In contrast to non-transgenic and Pssu-ipt rooted plants, peroxidase activities (ascorbate, guaiacol, and syringaldazine peroxidase) in older Pssu-ipt grafts were up to four times higher, irrespective of growth and stress, nevertheless, the effect seemed to be age-dependent. Superoxide dismutase (SOD) activity was affected particularly by plant age but also by growth conditions. Unlike in older plants, water stress caused an increase of SOD activities in all younger plants. The differences observed in activities of enzymes of intermediary metabolism (i.e., malic enzyme and glucose-6-phosphate dehydrogenase) revealed that transgenic grafts probably compensated differently for a decrease of ATP and NADPH than control and transgenic rooted plants under stress.
Collapse
Affiliation(s)
- Helena Synková
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Na Karlovce 1a, CZ-16000 Praha 6, Czech Republic; Limburgs Universitair Centrum, Dept S.B.G., Universitair Campus, B-3590 Diepenbeek, Belgium
| | | |
Collapse
|
43
|
He J, Lee SK, Dodd IC. Limitations to photosynthesis of lettuce grown under tropical conditions: alleviation by root-zone cooling. JOURNAL OF EXPERIMENTAL BOTANY 2001; 52:1323-1330. [PMID: 11432951 DOI: 10.1093/jexbot/52.359.1323] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Aerial parts of lettuce plants were grown under natural tropical fluctuating ambient temperatures, but with their roots exposed to two different root-zone temperatures (RZTs): a constant 20 degrees C-RZT and a fluctuating ambient (A-) RZT from 23-40 degrees C. Plants grown at A-RZT showed lower photosynthetic CO2 assimilation (A), stomatal conductance (gs), midday leaf relative water content (RWC), and chlorophyll fluorescence ratio Fv/Fm than 20 degrees C-RZT plants on both sunny and cloudy days. Substantial midday depression of A and g(s) occurred on both sunny and cloudy days in both RZT treatments, although Fv/Fm did not vary diurnally on cloudy days. Reciprocal temperature transfer experiments investigated the occurrence and possible causes of stomatal and non-stomatal limitations of photosynthesis. For both temperature transfers, light-saturated stomatal conductance (gs sat) and photosynthetic CO2 assimilation (A(sat)) were highly correlated with each other and with midday RWC, suggesting that A was limited by water stress-mediated stomatal closure. However, prolonged growth at A-RZT reduced light- and CO2-saturated photosynthetic O2 evolution (Pmax), indicating non-stomatal limitation of photosynthesis. Tight temporal coupling of leaf nitrogen content and P(max) during both temperature transfers suggested that decreased nutrient status caused this non-stomatal limitation of photosynthesis.
Collapse
Affiliation(s)
- J He
- Natural Sciences Academic Group, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616.
| | | | | |
Collapse
|
44
|
Deo PM, Biswal B. Response of senescing cotyledons of clusterbean to water stress in moderate and low light: Possible photoprotective role of beta-carotene. PHYSIOLOGIA PLANTARUM 2001; 112:47-54. [PMID: 11319014 DOI: 10.1034/j.1399-3054.2001.1120107.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Senescence of clusterbean (Cyamopsis tetragonoloba L.) cotyledons in moderate light (12 W m-2) brings about a loss in the pigments, enhanced lipid peroxidation and a decline in PS II photochemical activity without any loss either in Dl protein or in the level of beta-carotene. The senescence syndrome is aggravated in the cotyledons of water-stressed seedlings with an increase in thylakoid lipid peroxidation, a decline in the level of beta-carotene and a quantitative loss in the Dl protein. Loss of the protein, however, is arrested in the seedlings experiencing water stress at low light (3 W m-2) intensity that correlates with the stability in the level of beta-carotene and a slow rate of lipid peroxidation. Loss of the protein in moderate light is attributed to water-stress sensitized photoinhibitory damage. The data on changes in the components of xanthophyll cycle suggest the low activity of the cycle both during senescence and water stress. It is, therefore, concluded that beta-carotene may contribute to the assembly and stability of the Dl protein during senescence and water stress in clusterbean cotyledons.
Collapse
Affiliation(s)
- Prativa M. Deo
- Department of Botany, GM Autonomous College, Sambalpur - 768 004, Orissa, India; Biochemistry Laboratory School of Life Sciences, Sambalpur University, Jyoti Vihar - 768019, Orissa, India
| | | |
Collapse
|
45
|
|
46
|
Werner C, Correia O, Beyschlag W. Two different strategies of Mediterranean macchia plants to avoid photoinhibitory damage by excessive radiation levels during summer drought. ACTA OECOLOGICA-INTERNATIONAL JOURNAL OF ECOLOGY 1999. [DOI: 10.1016/s1146-609x(99)80011-3] [Citation(s) in RCA: 147] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
47
|
Antioxidative protection in the inducible CAM plant Sedum album L. following the imposition of severe water stress and recovery. Oecologia 1996; 107:469-477. [DOI: 10.1007/bf00333937] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/1995] [Accepted: 03/13/1996] [Indexed: 11/26/2022]
|
48
|
Dwivedi U, Sharma M, Bhardwaj R. Down regulation of photosynthesis in Artabotrys hexapetatus by high light. PHOTOSYNTHESIS RESEARCH 1995; 46:393-397. [PMID: 24301633 DOI: 10.1007/bf00032293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/1995] [Accepted: 09/04/1995] [Indexed: 06/02/2023]
Abstract
Using variable to maximum fluorescence (Fv/Fm) as the criterion, the down regulation of photosynthesis by high light stress was characterized in the detached leaves of Artabotrys hexapetatus. The decrease in Fv/Fm was corelated with the decrease in oxygen evolution by thylakoids isolated from high light exposed leaves. The decrease in Fv/Fm was linear with increasing time of exposure to high light. A comparison of recovery measured as Fv/Fm, in low light versus dark, revealed that the recovery in darkness was as significant as in low light. Since the relaxation of fluorescence was a rapid response after exposure to high light and the fact that the recovery occurs in total darkness, it is concluded that photoinhibition and down regulation of photosynthesis by high light are independent events.
Collapse
Affiliation(s)
- U Dwivedi
- School of Biochemistry, D. A. University, Khandwa Road, 452 001, Indore, India
| | | | | |
Collapse
|
49
|
Mikkelsen TN, Ro-Poulsen H. Exposure of Norway spruce to ozone increases the sensitivity of current year needles to photoinhibition and desiccation. THE NEW PHYTOLOGIST 1994; 128:153-163. [PMID: 33874532 DOI: 10.1111/j.1469-8137.1994.tb03998.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Physiological effects of ozone exposure over three consecutive growing seasons on current year needles of Norway spruce were studied in open-top chambers, during daily Fumigation cycles in the summer, and after the termination of ozone fumigation in autumn 1990. The trees were exposed to two levels of ozone: charcoal filtered air and non-filtered air to which 30 nl I-1 of ozone was added in three consecutive years from 1988 to 1990, daily from May to September (8 hours a day). Photosynthesis, stomatal conductance, transpiration and chlorophyll fluorescence were studied on selected days. Significant decreases in net photosynthesis and chlorophyll fluorescence (FN /FM ) were found during periods with co-occurrence of high ozone concentrations And high light intensities, indicating interactions between effects of ozone and photoinhibition. After termination of fumigation enhanced rates of photosynthesis were seen in the trees which had been exposed to ozone. A significant decrease in FN /FM was found for twigs from ozone treated trees when exposed to severe desiccation.
Collapse
Affiliation(s)
- T N Mikkelsen
- Department of Plant Ecology, Botanical Institute, University of Copenhagen, Øuter Farimagsgade 2D, 1353 Copenhagen, Denmark
| | - H Ro-Poulsen
- Department of Plant Ecology, Botanical Institute, University of Copenhagen, Øuter Farimagsgade 2D, 1353 Copenhagen, Denmark
| |
Collapse
|
50
|
Lovelock CE, Osmond CB, Jebb M. Photoinhibition and recovery in tropical plant species: response to disturbance. Oecologia 1994; 97:297-307. [PMID: 28313623 DOI: 10.1007/bf00317318] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/1993] [Accepted: 09/30/1993] [Indexed: 10/24/2022]
Abstract
Disturbance or rainforest is often followed by mass mortality of understorey seedlings. Transitions of shade grown plants to full sunlight can cause reductions in the efficiency with which light is used in photosynthesis, called photoinhibition. In order to assess the influence of photoinhibition on mortality and growth after rainforest disturbance this study examined photoinhibition in both simulated and real forest disturbances in northern Papua New Guinea. In an experiment simulating rainforest disturbance, exposure of shade-grown plants to full sunlight resulted in abrupt decreases in the chlorophyll fluorescence parameter F v/F m that is characteristic of photoinhibition. However, in the well-watered plants used in these experiments there were no fatalities during 3 weeks after exposure to full sunlight. Thus, it is unlikely that photoinhibition, alone, is responsible for seedling fatalities after rainforest disturbances, but more likely that fatalities are due to photoinhibition in conjunction with other environmental stress. There were differences between the response of species to the simulated disturbance that concurred with their preferred habitats. For example, species form the genus Barringtonia, which is commonly found in shaded understorey environments, underwent greater reductions in F v/F m and were slower to recover than species that usually inhabit high solar radiation environments. The extent of photoinhibition and the rate of recovery appeared to be dependent on avoidance of direct solar radiation by altering leaf angles and on increasing maximum photosynthetic rates. A field survey of photoinhibition in man-made rainforest gaps corroborated the findings of the simulated disturbance experiment showing that plant species commonly found in shaded environments showed a greater degree of photoinhibition in forest gaps at midday than those species which are classified as species that benefit from gaps or specialist gap inhabitors.
Collapse
Affiliation(s)
- C E Lovelock
- Research School of Biological Science, Australian National University, GPO Box 475, 2601, Canberra, A.C.T., Australia
| | - C B Osmond
- Research School of Biological Science, Australian National University, GPO Box 475, 2601, Canberra, A.C.T., Australia
| | - M Jebb
- Christensen Research Institute, PO Box 305, Madang, Papua New Guinea
| |
Collapse
|