1
|
Dakroub A, Dbouk A, Asfour A, Nasser SA, El-Yazbi AF, Sahebkar A, Eid AA, Iratni R, Eid AH. C-peptide in diabetes: A player in a dual hormone disorder? J Cell Physiol 2024; 239:e31212. [PMID: 38308646 DOI: 10.1002/jcp.31212] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 02/05/2024]
Abstract
C-peptide, a byproduct of insulin synthesis believed to be biologically inert, is emerging as a multifunctional molecule. C-peptide serves an anti-inflammatory and anti-atherogenic role in type 1 diabetes mellitus (T1DM) and early T2DM. C-peptide protects endothelial cells by activating AMP-activated protein kinase α, thus suppressing the activity of NAD(P)H oxidase activity and reducing reactive oxygen species (ROS) generation. It also prevents apoptosis by regulating hyperglycemia-induced p53 upregulation and mitochondrial adaptor p66shc overactivation, as well as reducing caspase-3 activity and promoting expression of B-cell lymphoma-2. Additionally, C-peptide suppresses platelet-derived growth factor (PDGF)-beta receptor and p44/p42 mitogen-activated protein (MAP) kinase phosphorylation to inhibit vascular smooth muscle cells (VSMC) proliferation. It also diminishes leukocyte adhesion by virtue of its capacity to abolish nuclear factor kappa B (NF-kB) signaling, a major pro-inflammatory cascade. Consequently, it is envisaged that supplementation of C-peptide in T1DM might ameliorate or even prevent end-organ damage. In marked contrast, C-peptide increases monocyte recruitment and migration through phosphoinositide 3-kinase (PI-3 kinase)-mediated pathways, induces lipid accumulation via peroxisome proliferator-activated receptor γ upregulation, and stimulates VSMC proliferation and CD4+ lymphocyte migration through Src-kinase and PI-3K dependent pathways. Thus, it promotes atherosclerosis and microvascular damage in late T2DM. Indeed, C-peptide is now contemplated as a potential biomarker for insulin resistance in T2DM and linked to increased coronary artery disease risk. This shift in the understanding of the pathophysiology of diabetes from being a single hormone deficiency to a dual hormone disorder warrants a careful consideration of the role of C-peptide as a unique molecule with promising diagnostic, prognostic, and therapeutic applications.
Collapse
Affiliation(s)
- Ali Dakroub
- St. Francis Hospital and Heart Center, Roslyn, New York, USA
| | - Ali Dbouk
- Department of Medicine, Saint-Joseph University Medical School, Hotel-Dieu de France Hospital, Beirut, Lebanon
| | - Aref Asfour
- Leeds Teaching Hospitals NHS Trust, West Yorkshire, United Kingdom
| | | | - Ahmed F El-Yazbi
- Faculty of Pharmacy, Alamein International University (AIU), Alamein City, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Assaad A Eid
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Rabah Iratni
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, UAE
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
2
|
Yang X, Ye Y, Wang Y, Wu P, Lu Q, Liu Y, Yuan J, Song X, Yan S, Qi X, Wang YX, Wen Y, Liu G, Lv C, Yang CX, Pan A, Zhang J, Pan XF. Association between early-pregnancy serum C-peptide and risk of gestational diabetes mellitus: a nested case-control study among Chinese women. Nutr Metab (Lond) 2022; 19:56. [PMID: 35996181 PMCID: PMC9396763 DOI: 10.1186/s12986-022-00691-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/01/2022] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE To examine the association of early-pregnancy serum C-peptide with incident gestational diabetes mellitus (GDM) and the predictive ability of maternal C-peptide for GDM. METHODS A nested case-control study of 332 GDM cases and 664 controls was established based on the Tongji-Shuangliu Birth Cohort. The GDM cases and controls were matched at 1:2 on maternal age (± 3 years) and gestational age (± 4 weeks). Multivariable conditional logistic regression was applied to assess the association of C-peptide with risk of GDM. Partial Spearman's correlation coefficients were estimated for the correlations between C-peptide and multiple metabolic biomarkers. C-statistics were calculated to assess the predictive ability of early-pregnancy C-peptide for GDM. RESULTS Of 996 pregnant women, median maternal age was 28.0 years old and median gestational age was 11.0 weeks. After adjustment for potential confounders, the odds ratio of GDM comparing the extreme quartiles of C-peptide was 2.28 (95% confidence interval, 1.43, 3.62; P for trend < 0.001). Partial correlation coefficients ranged between 0.07 and 0.77 for the correlations of C-peptide with fasting insulin, homeostatic model of insulin resistance, leptin, fasting blood glucose, triglycerides, glycosylated hemoglobin, waist-hip ratio, systolic blood pressure, and low-density lipoprotein cholesterol (P ≤ 0.025), and were - 0.11 and - 0.17 for high-density lipoprotein cholesterol and adiponectin (P < 0.001). Serum C-peptide slightly improved the predictive performance of the model with conventional predictive factors (0.66 vs. 0.63; P = 0.008). CONCLUSION While the predictive value for subsequent GDM should be validated, early-pregnancy serum C-peptide may be positively associated with risk of GDM.
Collapse
Affiliation(s)
- Xue Yang
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.,Non-Communicable Diseases Research Center, West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu, 610041, Sichuan, China.,Wenjiang Institute of Women's and Children's Health, Wenjiang Maternal and Child Health Hospital, Chengdu, 611130, Sichuan, China
| | - Yi Ye
- Department of Epidemiology and Biostatistics, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,Ministry of Education and Ministry of Environmental Protection Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Yi Wang
- Department of Epidemiology and Biostatistics, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,Ministry of Education and Ministry of Environmental Protection Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Ping Wu
- Department of Epidemiology and Biostatistics, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,Ministry of Education and Ministry of Environmental Protection Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Qi Lu
- Department of Epidemiology and Biostatistics, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,Ministry of Education and Ministry of Environmental Protection Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Yan Liu
- Department of Obstetrics and Gynecology, Shuangliu Maternal and Child Health Hospital, Chengdu, 610200, Sichuan, China
| | - Jiaying Yuan
- Department of Science and Education, Shuangliu Maternal and Child Health Hospital, Chengdu, 610200, Sichuan, China
| | - Xingyue Song
- Department of Emergency, Hainan Clinical Research Center for Acute and Critical Diseases, The Second Affiliated Hospital of Hainan Medical University, Haikou, 571199, Hainan, China.,Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, 571199, Hainan, China
| | - Shijiao Yan
- Research Unit of Island Emergency Medicine, Chinese Academy of Medical Sciences, Hainan Medical University, Haikou, 571199, Hainan, China.,School of Public Health, Hainan Medical University, Haikou, 571199, Hainan, China
| | - Xiaorong Qi
- Department of Gynecology and Obstetrics, West China Second Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yi-Xin Wang
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, 02115, USA
| | - Ying Wen
- Department of Communicable Diseases Control and Prevention, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, Guangdong, China
| | - Gang Liu
- Ministry of Education and Ministry of Environmental Protection Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,Department of Nutrition and Food Hygiene, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Chuanzhu Lv
- Department of Emergency, Hainan Clinical Research Center for Acute and Critical Diseases, The Second Affiliated Hospital of Hainan Medical University, Haikou, 571199, Hainan, China.,Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, 571199, Hainan, China.,Research Unit of Island Emergency Medicine, Chinese Academy of Medical Sciences, Hainan Medical University, Haikou, 571199, Hainan, China
| | - Chun-Xia Yang
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.,Non-Communicable Diseases Research Center, West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu, 610041, Sichuan, China
| | - An Pan
- Department of Epidemiology and Biostatistics, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,Ministry of Education and Ministry of Environmental Protection Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Jianli Zhang
- Wenjiang Institute of Women's and Children's Health, Wenjiang Maternal and Child Health Hospital, Chengdu, 611130, Sichuan, China.
| | - Xiong-Fei Pan
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China. .,NMPA Key Laboratory for Technical Research on Drug Products in Vitro and in Vivo Correlation, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China. .,Shuangliu Institute of Women's and Children's Health, Shuangliu Maternal and Child Health Hospital, Chengdu, 610200, Sichuan, China.
| |
Collapse
|
3
|
Kron V, Verner M, Smetana P, Janoutova J, Janout V, Martinik K. Alterations of glycaemia, insulin resistance and body mass index within the C-peptide optimal range in non-diabetic patients. J Appl Biomed 2021; 18:136-142. [PMID: 34907766 DOI: 10.32725/jab.2020.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/28/2020] [Indexed: 11/05/2022] Open
Abstract
The study focused on changes or cut-offs of glycaemia, insulin resistance and body mass index within the C-peptide reference range (260-1730 pmol/l). The metabolic profile of individuals in the Czech Republic without diabetes (n = 3186) was classified by whiskers and quartiles of C-peptide into four groups with the following ranges: 290-510 (n = 694), 511-710 (n = 780), 711-950 (n = 720) and 951-1560 pmol/l (n = 673). Fasting levels of glucose, insulin, HOMA IR (Homeostasis Model Assessment for Insulin Resistance) and BMI (body mass index) were compared by a relevant C-peptide range. Participants taking medication to control glycaemia were excluded. The evaluation involved correlations between C-peptides and the above parameters, F-test and t-test. Changes in glucose levels (from 5.3 to 5.6 mmol/l) between the groups were lower in comparison to insulin, which reached relatively greater changes (from 4.0 to 14.2 mIU/l). HOMA IR increased considerably with growing C-peptide concentrations (0.9, 1.5, 2.2 and 3.5) and BMI values showed a similar trend (28.3, 31.0, 33.6 and 37.4). Considerable changes were observed for insulin (5.2 mIU/l, 57.8%) and HOMA IR (1.3, 61.3%) between groups with C-peptide ranges of 711-950 and 951-1560 pmol/l. Although correlations involving C-peptide, insulin, glucose and BMI seemed to be non-significant (up to rxy = 0.25), the mean values of insulin, HOMA IR and BMI showed statistically significant changes between all groups with various C-peptide concentrations (p ≤ 0.001). Generally, most important differences appeared in glucose metabolism and body mass index between C-peptide ranges of 711-950 and 951-1560 pmol/l. Absolute and relative changes of C-peptide concentrations are possible to use for the assessment of glucose regulatory mechanism. The spectrum of investigated parameters could be a useful tool to prevent the risks linked with the alterations of glycaemia.
Collapse
Affiliation(s)
- Vladimir Kron
- University of South Bohemia, Faculty of Agriculture, Department of Food Biotechnologies and Agricultural Products Quality, Ceske Budejovice, Czech Republic.,Center for Metabolic Assessment of prof. MUDr. Karel Martinik, DrSc., s.r.o., Hradec Kralove, Czech Republic
| | - Miroslav Verner
- Hospital of Ceske Budejovice, a. s., Central Laboratories, Ceske Budejovice, Czech Republic.,University of South Bohemia, Faculty of Health and Social Sciences, Institute of Laboratory Diagnostics, Ceske Budejovice, Czech Republic
| | - Pavel Smetana
- University of South Bohemia, Faculty of Agriculture, Department of Food Biotechnologies and Agricultural Products Quality, Ceske Budejovice, Czech Republic
| | - Jana Janoutova
- Palacky University Olomouc, Faculty of Health Sciences, Department of Healthcare Management, Olomouc, Czech Republic
| | - Vladimir Janout
- Palacky University Olomouc, Faculty of Health Sciences, Center for Research and Science, Olomouc, Czech Republic
| | - Karel Martinik
- Center for Metabolic Assessment of prof. MUDr. Karel Martinik, DrSc., s.r.o., Hradec Kralove, Czech Republic
| |
Collapse
|
4
|
Rezazadeh H, Sharifi MR, Soltani N. Insulin resistance and the role of gamma-aminobutyric acid. JOURNAL OF RESEARCH IN MEDICAL SCIENCES 2021; 26:39. [PMID: 34484371 PMCID: PMC8384006 DOI: 10.4103/jrms.jrms_374_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 12/09/2020] [Accepted: 02/02/2021] [Indexed: 12/17/2022]
Abstract
Insulin resistance (IR) is mentioned to be a disorder in insulin ability in insulin-target tissues. Skeletal muscle (SkM) and liver function are more affected by IR than other insulin target cells. SkM is the main site for the consumption of ingested glucose. An effective treatment for IR has two properties: An inhibition of β-cell death and a promotion of β-cell replication. Gamma-aminobutyric acid (GABA) can improve beta-cell mass and function. Multiple studies have shown that GABA decreases IR probably via increase in glucose transporter 4 (GLUT4) gene expression and prevention of gluconeogenesis pathway in the liver. This review focused on the general aspects of IR in skeletal muscle (SkM), liver; the cellular mechanism(s) lead to the development of IR in these organs, and the role of GABA to reduce insulin resistance.
Collapse
Affiliation(s)
- Hossein Rezazadeh
- Department of Physiology, School of Medicine, Isfahan University of Medical Science, Isfahan Iran
| | - Mohammad Reza Sharifi
- Department of Physiology, School of Medicine, Isfahan University of Medical Science, Isfahan Iran
| | - Nepton Soltani
- Department of Physiology, School of Medicine, Isfahan University of Medical Science, Isfahan Iran
| |
Collapse
|
5
|
Stevenson MJ, Janisse SE, Tao L, Neil RL, Pham QD, Britt RD, Heffern MC. Elucidation of a Copper Binding Site in Proinsulin C-peptide and Its Implications for Metal-Modulated Activity. Inorg Chem 2020; 59:9339-9349. [PMID: 32510934 PMCID: PMC8023225 DOI: 10.1021/acs.inorgchem.0c01212] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The connecting peptide (C-peptide) is a hormone with promising health benefits in ameliorating diabetes-related complications, yet mechanisms remain elusive. Emerging studies point to a possible dependence of peptide activity on bioavailable metals, particularly Cu(II) and Zn(II). However, little is known about the chemical nature of the interactions, hindering advances in its therapeutic applications. This work uncovers the Cu(II)-binding site in C-peptide that may be key to understanding its metal-dependent function. A combination of spectroscopic studies reveal that Cu(II) and Zn(II) bind to C-peptide at specific residues in the N-terminal region of the peptide and that Cu(II) is able to displace Zn(II) for C-peptide binding. The data point to a Cu(II)-binding site consisting of 1N3O square-planar coordination that is entropically driven. Furthermore, the entire random coil peptide sequence is needed for specific metal binding as mutations and truncations reshuffle the coordinating residues. These results expand our understanding of how metals influence hormone activity and facilitate the discovery and validation of both new and established paradigms in peptide biology.
Collapse
Affiliation(s)
- Michael J Stevenson
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Samuel E Janisse
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Lizhi Tao
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Ryan L Neil
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Quang D Pham
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - R David Britt
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Marie C Heffern
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| |
Collapse
|
6
|
Wang Y, Wan H, Chen Y, Xia F, Zhang W, Wang C, Fang S, Zhang K, Li Q, Wang N, Lu Y. Association of C-peptide with diabetic vascular complications in type 2 diabetes. DIABETES & METABOLISM 2019; 46:33-40. [PMID: 31026551 DOI: 10.1016/j.diabet.2019.04.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 04/01/2019] [Accepted: 04/07/2019] [Indexed: 12/11/2022]
Abstract
AIM Fasting serum C-peptide is a biomarker of insulin production and insulin resistance, but its association with vascular complications in type 2 diabetes mellitus (T2DM) has never been fully elucidated. This study aimed to investigate whether C-peptide is associated with cardiovascular disease (CVD) and diabetic retinopathy (DR). METHODS A total of 4793 diabetes patients were enrolled from seven communities in Shanghai, China, in 2018. CVD was defined as a self-reported combination of previous diagnoses, including coronary heart disease, myocardial infarction and stroke. DR was examined using fundus photographs. Logistic regression analyses were performed, and multiple imputed data were used to obtain stabilized estimates. RESULTS Prevalence of CVD increased with increasing C-peptide levels (Q1, Q2, Q3 and Q4: 33%, 34%, 37% and 44%, respectively; Pfor trend < 0.001), whereas DR prevalence decreased with increasing C-peptide quartiles (Q1, Q2, Q3 and Q4: 21%, 19%, 15% and 12%, respectively; Pfor trend < 0.001). On logistic regression analysis, C-peptide levels were significantly associated with CVD prevalence (1.27, 95% CI: 1.13-1.42; P < 0.001) and C-peptide quartiles (Q1: reference; Q2: 1.31, 95% CI: 1.00-1.70; Q3: 1.53, 95% CI: 1.16-2.01; Q4: 1.76, 95% CI: 1.32-2.34; Pfor trend < 0.001). Given the interaction between C-peptide and BMI and the association between C-peptide and CVD (Pfor interaction = 0.015), study participants were divided into two subgroups based on BMI which revealed that the association persisted despite different BMI statuses. However, DR prevalence decreased with increasing C-peptide levels (0.73, 95% CI: 0.62-0.86; P < 0.001) and quartiles (Q1: reference; Q2: 1.00, 95% CI: 0.76-1.33; Q3: 0.69, 95% CI: 0.50-0.94; Q4: 0.51, 95% CI: 0.36-0.72; Pfor trend < 0.001). CONCLUSION C-peptide was positively associated with CVD, but inversely associated with DR progression. The association between C-peptide and CVD could be due to associated metabolic risk factors.
Collapse
Affiliation(s)
- Y Wang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - H Wan
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Y Chen
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - F Xia
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - W Zhang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - C Wang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - S Fang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - K Zhang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Q Li
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - N Wang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| | - Y Lu
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| |
Collapse
|
7
|
Nazmy WH, Elbassuoni EA, Ali FF, Rifaai RA. Proinsulin C-peptide as an alternative or combined treatment with insulin for management of testicular dysfunction and fertility impairments in streptozotocin-induced type 1 diabetic male rats. J Cell Physiol 2018; 234:9351-9357. [PMID: 30317639 DOI: 10.1002/jcp.27618] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 09/24/2018] [Indexed: 01/23/2023]
Abstract
Diabetes mellitus (DM) is closely associated with male infertility and sexual dysfunction. Recent data indicate that the proinsulin C-peptide (CP) exerts important physiological effects and shows the characteristics of an endogenous peptide hormone. So, this study was done to investigate the effect of C-peptide with or without insulin treatment on testicular function and architecture in diabetic rats. Rats were divided into the following groups: control, diabetic, and diabetic groups treated with either CP alone or combined with insulin. Tested parameters included, estimation of serum follicle-stimulating hormone (FSH), luteinizing hormone (LH), testosterone, and glucose levels, testicular samples for histopathology and estimation of malondialdehyde (MDA), total antioxidant capacity (TAC), and B-cell leukemia/lymphoma-2 (BCL-2) levels as well as sperm count and motility. Results showed that DM caused a severe alteration in hormonal profile and reduced sperm parameters along with increased MDA and decrease in both TAC and BCL-2 levels. CP alone or with insulin treatment efficiently reversed all the negative effects of DM on rat testes, with maximum improvement in the combined regimen. Proposed mechanisms may involve its hypoglycemic, antioxidant, and antiapoptotic properties. Thus, CP could substitute for or better combined with insulin to prevent or retard diabetic-induced testicular dysfunction.
Collapse
Affiliation(s)
- Walaa Hassan Nazmy
- Physiology Department, Faculty of Medicine, Minia University, Minia, Egypt
| | | | - Fatma Farrag Ali
- Physiology Department, Faculty of Medicine, Minia University, Minia, Egypt
| | - Rehab Ahmed Rifaai
- Histology and Cell Biology Department, Faculty of Medicine, Minia University, Minia, Egypt
| |
Collapse
|
8
|
Ido Y. Diabetic complications within the context of aging: Nicotinamide adenine dinucleotide redox, insulin C-peptide, sirtuin 1-liver kinase B1-adenosine monophosphate-activated protein kinase positive feedback and forkhead box O3. J Diabetes Investig 2016; 7:448-58. [PMID: 27181414 PMCID: PMC4931191 DOI: 10.1111/jdi.12485] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 01/17/2016] [Accepted: 01/18/2016] [Indexed: 12/31/2022] Open
Abstract
Recent research in nutritional control of aging suggests that cytosolic increases in the reduced form of nicotinamide adenine dinucleotide and decreasing nicotinamide adenine dinucleotide metabolism plays a central role in controlling the longevity gene products sirtuin 1 (SIRT1), adenosine monophosphate‐activated protein kinase (AMPK) and forkhead box O3 (FOXO3). High nutrition conditions, such as the diabetic milieu, increase the ratio of reduced to oxidized forms of cytosolic nicotinamide adenine dinucleotide through cascades including the polyol pathway. This redox change is associated with insulin resistance and the development of diabetic complications, and might be counteracted by insulin C‐peptide. My research and others' suggest that the SIRT1–liver kinase B1–AMPK cascade creates positive feedback through nicotinamide adenine dinucleotide synthesis to help cells cope with metabolic stress. SIRT1 and AMPK can upregulate liver kinase B1 and FOXO3, key factors that help residential stem cells cope with oxidative stress. FOXO3 directly changes epigenetics around transcription start sites, maintaining the health of stem cells. ‘Diabetic memory’ is likely a result of epigenetic changes caused by high nutritional conditions, which disturb the quiescent state of residential stem cells and impair tissue repair. This could be prevented by restoring SIRT1–AMPK positive feedback through activating FOXO3.
Collapse
Affiliation(s)
- Yasuo Ido
- Boston University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Chung JO, Cho DH, Chung DJ, Chung MY. Relationship between serum C-peptide level and diabetic retinopathy according to estimated glomerular filtration rate in patients with type 2 diabetes. J Diabetes Complications 2015; 29:350-5. [PMID: 25623633 DOI: 10.1016/j.jdiacomp.2014.12.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 12/22/2014] [Accepted: 12/23/2014] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To test the hypothesis that serum C-peptide level would relate to the risk of diabetic retinopathy (DR) in type 2 diabetic patients independently of estimated glomerular filtration rate (eGFR). DESIGN A total of 2,062 patients with type 2 diabetes were investigated in this cross-sectional study. Fasting C-peptide, 2-hour postprandial C-peptide, and ΔC-peptide (postprandial C-peptide minus fasting C-peptide) levels were measured. The patients were divided into two groups according to eGFR (ml∙min(-1)1.73m(-2)): patients without renal impairment (eGFR ≥60) and those with renal impairment (eGFR <60). RESULTS In subjects both with and without renal impairment, patients with DR showed lower levels of fasting C-peptide, postprandial C-peptide and ΔC-peptide. In multivariate analysis, serum C-peptide levels were significantly associated with DR (odds ratio [OR] of each standard deviation increase in the logarithmic value, 0.85; 95% confidence interval [CI], 0.78-0.92 for fasting C-peptide, P<0.001; OR, 0.87; 95% CI, 0.82-0.92 for postprandial C-peptide, P<0.001; OR, 0.88; 95% CI, 0.82-0.94 for ΔC-peptide, P<0.001) after adjustment for age, gender, and other confounding factors including eGFR. CONCLUSIONS Serum C-peptide levels are inversely associated with the prevalence of DR in type 2 diabetic patients independently of eGFR.
Collapse
Affiliation(s)
- Jin Ook Chung
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chonnam National University Medical School, 8 Hak-Dong, Dong-Gu, Gwangju, 501-757, Republic of Korea
| | - Dong Hyeok Cho
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chonnam National University Medical School, 8 Hak-Dong, Dong-Gu, Gwangju, 501-757, Republic of Korea
| | - Dong Jin Chung
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chonnam National University Medical School, 8 Hak-Dong, Dong-Gu, Gwangju, 501-757, Republic of Korea
| | - Min Young Chung
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chonnam National University Medical School, 8 Hak-Dong, Dong-Gu, Gwangju, 501-757, Republic of Korea.
| |
Collapse
|
10
|
Bhatt MP, Lim YC, Ha KS. C-peptide replacement therapy as an emerging strategy for preventing diabetic vasculopathy. Cardiovasc Res 2014; 104:234-44. [PMID: 25239825 DOI: 10.1093/cvr/cvu211] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Lack of C-peptide, along with insulin, is the main feature of Type 1 diabetes mellitus (DM) and is also observed in progressive β-cell loss in later stage of Type 2 DM. Therapeutic approaches to hyperglycaemic control have been ineffective in preventing diabetic vasculopathy, and alternative therapeutic strategies are necessary to target both hyperglycaemia and diabetic complications. End-stage organ failure in DM seems to develop primarily due to vascular dysfunction and damage, leading to two types of organ-specific diseases, such as micro- and macrovascular complications. Numerous studies in diabetic patients and animals demonstrate that C-peptide treatment alone or in combination with insulin has physiological functions and might be beneficial in preventing diabetic complications. Current evidence suggests that C-peptide replacement therapy might prevent and ameliorate diabetic vasculopathy and organ-specific complications through conservation of vascular function, as well as prevention of endothelial cell death, microvascular permeability, vascular inflammation, and neointima formation. In this review, we describe recent advances on the beneficial role of C-peptide replacement therapy for preventing diabetic complications, such as retinopathy, nephropathy, neuropathy, impaired wound healing, and inflammation, and further discuss potential beneficial effects of combined C-peptide and insulin supplement therapy to control hyperglycaemia and to prevent organ-specific complications.
Collapse
Affiliation(s)
- Mahendra Prasad Bhatt
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Kangwondaehak-gil 1, Chuncheon, Kangwon-do 200-701, Republic of Korea
| | - Young-Cheol Lim
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Kangwondaehak-gil 1, Chuncheon, Kangwon-do 200-701, Republic of Korea
| | - Kwon-Soo Ha
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Kangwondaehak-gil 1, Chuncheon, Kangwon-do 200-701, Republic of Korea
| |
Collapse
|
11
|
Latiri I, Elbey R, Hcini K, Zaoui A, Charfeddine B, Maarouf MR, Tabka Z, Zbidi A, Ben Saad H. Six-minute walk test in non-insulin-dependent diabetes mellitus patients living in Northwest Africa. Diabetes Metab Syndr Obes 2012; 5:227-45. [PMID: 22924002 PMCID: PMC3422904 DOI: 10.2147/dmso.s28642] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
INTRODUCTION International recommendations of the exploration of non-insulin-dependent diabetes mellitus (NIDDM) are focused on deficiency and not incapacity. AIMS (1) To estimate the incapacity of NIDDM patients through the 6-minute walk test (6MWT) data. (2) To determine their 6-minute walk distance (6MWD) influencing factors (3) To compare data of NIDDM patient group (PG; n = 100) with those of two control groups (CG): CG1 (n = 174, healthy nonobese and nonsmoker); CG2 (n = 55, obese nondiabetic free from comorbidities). POPULATION AND METHODS The anthropometric, socioeconomic, clinical, metabolic, and 6MWT data of 100 NIDDM patients (45 females) were collected. RESULTS Total sample means ± standard deviation of age, weight, and height were 54 ± 8 years, 81 ± 14 kg, and 1.64 ± 0.09 m. (1) Measured 6MWD (566 ± 81 m) was significantly lower than the theoretical 6MWD (90% ± 12%). The profile of the PG carrying the 6MWT, was as follows: 23% had an abnormal 6MWD; at the end of the 6MWT, 21% and 12% had, respectively, a low heart rate and a high dyspnea (>5/10), and 4% had desaturation during the walk. The estimated "cardiorespiratory and muscular chain" age (68 ± 16 years) was significantly higher than the chronological age. (2) The factors that significantly influenced the 6MWD (r(2) = 0.58) are included in the following equation: 6MWD (m) = -73.94 × gender (0, male; 1, female) - 3.25 × age (years) + 7.33 × leisure activity score - 35.57 × obesity (0, no; 1, yes) + 32.86 × socioeconomic level (0, low; 1, high) - 27.67 × cigarette use (0, no; 1, yes) + 8.89 × resting oxyhemoglobin saturation - 105.48. (3) Compared to the CGs, the PG had a significantly (P < 0.05) lower 6MWD (100%+9% and 100%+8%, respectively, for the CG1 and CG2). CONCLUSION NIDDM seems to accelerate the decline of the submaximal aerobic capacity evaluated through the 6MWD.
Collapse
Affiliation(s)
- Imed Latiri
- Laboratory of Physiology, University of Sousse, Sousse, Tunisia
| | - Rihab Elbey
- Laboratory of Physiology, University of Sousse, Sousse, Tunisia
| | - Kamel Hcini
- Laboratory of Physiology, University of Sousse, Sousse, Tunisia
| | - Afif Zaoui
- Department of Physical Medicine. Sahloul Hospital, Sousse, Tunisia
| | | | | | - Zouhair Tabka
- Laboratory of Physiology, University of Sousse, Sousse, Tunisia
- Department of Physiology and Functional Exploration, Farhat Hached Hospital, Sousse, Tunisia
| | - Abdelkrim Zbidi
- Laboratory of Physiology, University of Sousse, Sousse, Tunisia
- Department of Physiology and Functional Exploration, Farhat Hached Hospital, Sousse, Tunisia
| | - Helmi Ben Saad
- Laboratory of Physiology, University of Sousse, Sousse, Tunisia
- Department of Physiology and Functional Exploration, Farhat Hached Hospital, Sousse, Tunisia
| |
Collapse
|
12
|
Ishii T, Fukano K, Shimada K, Kamikawa A, Okamatsu-Ogura Y, Terao A, Yoshida T, Saito M, Kimura K. Proinsulin C-peptide activates α-enolase: implications for C-peptide–cell membrane interaction. ACTA ACUST UNITED AC 2012; 152:53-62. [DOI: 10.1093/jb/mvs052] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
13
|
Affiliation(s)
- Patrizia Luppi
- Division of Immunogenetics, Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Rangos Research Center, 530 45th Street, Pittsburgh, PA 15201, USA
| | | | | |
Collapse
|
14
|
Abstract
Although long believed to be inert, C-peptide has now been shown to have definite biological effects both in vitro and in vivo in diabetic animals and in patients with type 1 diabetes. These effects point to a protective action of C-peptide against the development of diabetic microvascular complications. Underpinning these observations is undisputed evidence of C-peptide binding to a variety of cell types at physiologically relevant concentrations, and the downstream stimulation of multiple cell signaling pathways and gene transcription via the activation of numerous transcription factors. These pathways affect such fundamental cellular processes as re-absorptive and/or secretory phenotype, migration, growth, and survival. Whilst the receptor remains to be identified, experimental data points strongly to the existence of a specific G-protein-coupled receptor for C-peptide. Of the cell types studied so far, kidney tubular cells express the highest number of C-peptide binding sites. Accordingly, C-peptide exerts major effects on the function of these cells, and in the context of diabetic nephropathy appears to antagonise the pathophysiological effects of major disease mediators such as TGFbeta1 and TNFalpha. Therefore, based on its cellular activity profile C-peptide appears well positioned for development as a therapeutic tool to treat microvascular complications in type 1 diabetes.
Collapse
Affiliation(s)
- Claire E Hills
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | | |
Collapse
|
15
|
Meyer JA, Subasinghe W, Sima AAF, Keltner Z, Reid GE, Daleke D, Spence DM. Zinc-activated C-peptide resistance to the type 2 diabetic erythrocyte is associated with hyperglycemia-induced phosphatidylserine externalization and reversed by metformin. MOLECULAR BIOSYSTEMS 2009; 5:1157-62. [PMID: 19756305 DOI: 10.1039/b908241g] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Insulin resistance can broadly be defined as the diminished ability of cells to respond to the action of insulin in transporting glucose from the bloodstream into cells and tissues. Here, we report that erythrocytes (ERYs) obtained from type 2 diabetic rats display an apparent resistance to Zn(2+)-activated C-peptide. Thus, the aims of this study were to demonstrate that Zn(2+)-activated C-peptide exerts potentially beneficial effects on healthy ERYs and that these same effects on type 2 diabetic ERYs are enhanced in the presence of metformin. Incubation of ERYs (obtained from type 2 diabetic BBZDR/Wor-rats) with Zn(2+)-activated C-peptide followed by chemiluminescence measurements of ATP resulted in a 31.2 +/- 4.0% increase in ATP release from these ERYs compared to a 78.4 +/- 4.9% increase from control ERYs. Glucose accumulation in diabetic ERYs, measured by scintillation counting of (14)C-labeled glucose, increased by 35.8 +/- 1.3% in the presence of the Zn(2+)-activated C-peptide, a value significantly lower than results obtained from control ERYs (64.3 +/- 5.1%). When Zn(2+)-activated C-peptide was exogenously added to diabetic ERYs, immunoassays revealed a 32.5 +/- 8.2% increase in C-peptide absorbance compared to a 64.4 +/- 10.3% increase in control ERYs. Phosphatidylserine (PS) externalization and metformin sensitization of Zn(2+)-activated C-peptide were examined spectrofluorometrically by measuring the binding of FITC-labeled annexin to PS. The incubation of diabetic ERYs with metformin prior to the addition of Zn(2+)-activated C-peptide resulted in values that were statistically equivalent to those of controls. Summarily, data obtained here demonstrate an apparent resistance to Zn(2+)-activated C-peptide by the ERY that is corrected by metformin.
Collapse
Affiliation(s)
- Jennifer A Meyer
- Department of Chemistry, Michigan State University, 229 Chemistry Building, East Lansing, MI 48824, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
In recent years, accumulating evidence indicates a biological function for proinsulin C-peptide. These results challenge the traditional view that C-peptide is essentially inert and only useful as a surrogate marker of insulin release. Accordingly, it is now clear that C-peptide binds with high affinity to cell membranes, probably to a pertussis-toxin-sensitive G-protein-coupled receptor. Subsequently, multiple signalling pathways are potently and dose-dependently activated in multiple cell types by C-peptide with the resulting activation of gene transcription and altered cell phenotype. In diabetic animals and Type 1 diabetic patients, short-term studies indicate that C-peptide also enhances glucose disposal and metabolic control. Furthermore, results derived from animal models and clinical studies in Type 1 diabetic patients suggest a salutary effect of C-peptide in the prevention and amelioration of diabetic nephropathy and neuropathy. Therefore a picture of Type 1 diabetes as a dual-hormone-deficiency disease is developing, suggesting that the replacement of C-peptide alongside insulin should be considered in its management.
Collapse
|
17
|
Rodacki M, Milech A, Oliveira JEPD. [C-peptide residual secretion makes difference on type 1 diabetes management?]. ACTA ACUST UNITED AC 2009; 52:322-33. [PMID: 18438543 DOI: 10.1590/s0004-27302008000200020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2007] [Accepted: 12/17/2007] [Indexed: 12/22/2022]
Abstract
Type 1 diabetes is a chronic disease characterized by progressive destruction of the pancreatic beta cells, what leads to insulin deficiency and hyperglycemia. However, a significant secretory function may persist for long periods in a few patients, what is clinically evident through the detection of serum C peptide. This phenomenon might reduce the risk of chronic complications, severe hypoglycemias and allow easier metabolic control. It is possible that these advantages are caused, at least partially, by C peptide itself, acting directly in its target tissues.
Collapse
Affiliation(s)
- Melanie Rodacki
- Serviço de Nutrologia e Diabetes, Universidade Federal do Rio de Janeiro RJ, Brasil.
| | | | | |
Collapse
|
18
|
Influence of C-peptide on glucose utilisation. EXPERIMENTAL DIABETES RESEARCH 2008; 2008:769483. [PMID: 18389076 PMCID: PMC2279165 DOI: 10.1155/2008/769483] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Accepted: 01/10/2008] [Indexed: 01/06/2023]
Abstract
During the recent years, multiple studies demonstrated that C-peptide is not an inert peptide, but exerts important physiological effects. C-peptide binds to cell membranes, stimulates the Na,K-ATPase and the endothelial nitric oxide (NO) synthase. Moreover, there is evidence that C-peptide decreases glomerular hyperfiltration and increases glucose utilisation. Nevertheless, there is still limited knowledge concerning mechanisms leading to an increased glucose utilisation either in rats or in humans. The aim of this paper is to give an overview over the published studies regarding C-peptide and glucose metabolism from in vitro studies to longer lasting studies in humans.
Collapse
|
19
|
Intracellular signalling by C-peptide. EXPERIMENTAL DIABETES RESEARCH 2008; 2008:635158. [PMID: 18382618 PMCID: PMC2276616 DOI: 10.1155/2008/635158] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Accepted: 02/06/2008] [Indexed: 12/11/2022]
Abstract
C-peptide, a cleavage product of the proinsulin molecule, has long been regarded as biologically inert, serving merely as a surrogate marker for insulin release. Recent findings demonstrate both a physiological and protective role of C-peptide when administered to individuals with type I diabetes. Data indicate that C-peptide appears to bind in nanomolar concentrations to a cell surface receptor which is most likely to be G-protein coupled. Binding of C-peptide initiates multiple cellular effects, evoking a rise in intracellular calcium, increased PI-3-kinase activity, stimulation of the Na(+)/K(+) ATPase, increased eNOS transcription, and activation of the MAPK signalling pathway. These cell signalling effects have been studied in multiple cell types from multiple tissues. Overall these observations raise the possibility that C-peptide may serve as a potential therapeutic agent for the treatment or prevention of long-term complications associated with diabetes.
Collapse
|
20
|
Abstract
Insulin resistance typically reflects multiple defects of insulin receptor and post-receptor signalling that impair a diverse range of metabolic and vascular actions. Many potential intervention targets and compounds with therapeutic activity have been described. Proof of principle for a non-peptide insulin mimetic has been demonstrated by specific activation of the intracellular B-subunit of the insulin receptor. Potentiation of insulin action has been achieved with agents that enhance phosphorylation and prolong the tyrosine kinase activity of the insulin receptor and its protein substrates after activation by insulin. These include inhibitors of phosphatases and serine kinases that normally prevent or terminate tyrosine kinase signalling. Additional approaches involve increasing the activity of phosphatidylinositol 3-kinase and other downstream components of the insulin signalling pathways. Experimental interventions to remove signalling defects caused by cytokines, certain adipocyte hormones, excess fatty acids, glucotoxicity and negative feedback by distal signalling steps have also indicated therapeutic possibilities. Several hormones, metabolic enzymes, minerals, co-factors and transcription co-activators have shown insulin-sensitising potential. Since insulin resistance affects many metabolic and cardiovascular diseases, it provides an opportunity for simultaneous therapeutic attack on a broad front.
Collapse
Affiliation(s)
- Clifford J Bailey
- Deabetes Research Group, School of Life and Health Sciences, Aston University, Birmingham, B4 7ET, UK.
| |
Collapse
|
21
|
Smith JL, Patil PB, Minteer SD, Lipsitz JR, Fisher JS. Possibility of autocrine beta-adrenergic signaling in C2C12 myotubes. Exp Biol Med (Maywood) 2006; 230:845-52. [PMID: 16339749 PMCID: PMC1406256 DOI: 10.1177/153537020523001109] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Levodopa reportedly inhibits insulin action in skeletal muscle. Here we show that C2C12 myotubes produce levodopa and that insulin-stimulated glucose transport is enhanced when endogenous levodopa is depleted. Exogenous levodopa prevented the stimulation of glucose transport by insulin (P < 0.05) and increased cAMP concentrations (P < 0.05). The decrease in insulin-stimulated glucose transport caused by levodopa was attenuated by propranolol (a beta-adrenergic antagonist) and prevented by NSD-1015 (NSD), an inhibitor of DOPA decarboxylase (DDC; converts levodopa to dopamine). Propranolol and NSD both prevented levodopa-related increases in [cAMP]. However, the effects of levodopa were unlikely to be dependent on the conversion of levodopa to catecholamines because we could detect neither DDC in myotubes nor catecholamines in media after incubation of myotubes with levodopa. The data suggest the possibility of novel autocrine beta-adrenergic action in C2C12 myotubes in which levodopa, produced by myotubes, could have hormone-like effects that impinge on glucose metabolism.
Collapse
Affiliation(s)
- Jill L Smith
- Department of Biology, Saint Louis University, St. Louis, MO 63103, USA
| | | | | | | | | |
Collapse
|
22
|
Tsimaratos M. [Physiological effects of the connecting peptide]. Arch Pediatr 2006; 12:442-8. [PMID: 15808437 DOI: 10.1016/j.arcped.2004.06.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2004] [Accepted: 06/21/2004] [Indexed: 11/17/2022]
Abstract
Insulin-dependent diabetic (IDDM) patients present significantly altered Na,K-ATPase activity in several organs, including kidney. Particularly in kidney tubule, Na,K-ATPase alteration occurs together with changes in glomerular filtration rate, the first step of IDDM-induced renal failure. The latter is a major cause of morbidity and mortality in IDDM patients. The C-peptide of proinsulin is important for the biosynthesis of insulin but has for a long time been considered to be biologically inert. Recent studies have demonstrated that replacement of C-peptide to normal physiological concentrations in IDDM patients either on a short-term basis (1-3 hours) or on a prolonged administration (1-3 months) was accompanied by improvements in renal glomerular and tubular function. Animal studies have shown that most of the renal tubular effects of C-peptide may in part be explained by its ability to stimulate Na,K-ATPase activity. In conclusion, these combined findings indicate that C-peptide is a biologically active hormone. The possibility that C-peptide therapy in IDDM patients may be beneficial should be considered. The present review focuses on: 1) Making a point about C-peptide-induced tubular effects on the basis of clinical and experimental experiments, and 2) precising the molecular mechanisms involved in C-peptide-induced tubular Na,K-ATPase effects.
Collapse
Affiliation(s)
- M Tsimaratos
- Service de pédiatrie multidisciplinaire, hôpital d'Enfants de la Timone, 13385 Marseille cedex 05, France.
| |
Collapse
|
23
|
Kamiya H, Zhang W, Sima AAF. C-peptide prevents nociceptive sensory neuropathy in type 1 diabetes. Ann Neurol 2005; 56:827-35. [PMID: 15497155 DOI: 10.1002/ana.20295] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We examined the effects of C-peptide replacement on unmyelinated fiber function in the hind paw, sural nerve C-fiber morphometry, sciatic nerve neurotrophins, and the expression of neurotrophic receptors and content of neuropeptides in dorsal root ganglia in type 1 diabetic BB/Wor-rats. C-peptide replacement from onset of diabetes had no effect on hyperglycemia, but it significantly prevented progressive thermal hyperalgesia and prevented C-fiber atrophy, degeneration, and loss. These findings were associated with preventive effects on impaired availability of nerve growth factor and neurotrophin 3 in the sciatic nerve and significant prevention of perturbed expression of insulin, insulin growth factor-1, nerve growth factor, and neurotrophin 3 receptors in dorsal root ganglion cells. These beneficial effects translated into prevention of the decreased content of dorsal root ganglia nociceptive peptides such as substance P and calcitonin gene-related peptide. From these findings we conclude that replacement of insulinomimetic C-peptide prevents abnormalities of neurotrophins, their receptors, and nociceptive neuropeptides in type 1 BB/Wor-rats, resulting in the prevention of C-fiber pathology and nociceptive sensory nerve dysfunction. The data indicate that perturbed insulin/C-peptide action plays an important pathogenetic role in nociceptive sensory neuropathy and that C-peptide replacement may be of benefit in treating painful diabetic neuropathy in insulin-deficient diabetic conditions.
Collapse
Affiliation(s)
- Hideki Kamiya
- Department of Pathology, Wayne State University, School of Medicine, Detroit, MI, USA
| | | | | |
Collapse
|
24
|
Zhong Z, Davidescu A, Ehrén I, Ekberg K, Jörnvall H, Wahren J, Chibalin AV. C-peptide stimulates ERK1/2 and JNK MAP kinases via activation of protein kinase C in human renal tubular cells. Diabetologia 2005; 48:187-97. [PMID: 15624099 DOI: 10.1007/s00125-004-1602-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2004] [Accepted: 08/13/2004] [Indexed: 12/11/2022]
Abstract
AIMS/HYPOTHESIS Accumulating evidence indicates that replacement of C-peptide in type 1 diabetes ameliorates nerve and kidney dysfunction, but the molecular mechanisms involved are incompletely understood. C-peptide shows specific binding to a G-protein-coupled membrane binding site, resulting in Ca(2+) influx, activation of mitogen-activated protein kinase signalling pathways, and stimulation of Na(+), K(+)-ATPase and endothelial nitric oxide synthase. This study examines the intracellular signalling pathways activated by C-peptide in human renal tubular cells. METHODS Human renal tubular cells were cultured from the outer cortex of renal tissue obtained from patients undergoing elective nephrectomy. Extracellular-signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal kinase (JNK) and Akt/protein kinase B (PKB) activation was determined using phospho-specific antibodies. Protein kinase C (PKC) and RhoA activation was determined by measuring their translocation to the cell membrane fraction using isoform-specific antibodies. RESULTS Human C-peptide increases phosphorylation of ERK1/2 and Akt/PKB in a concentration- and time-dependent manner in renal tubular cells. The C-terminal pentapeptide of C-peptide is equipotent with the full-length C-peptide, whereas scrambled C-peptide has no effect. C-peptide stimulation also results in phosphorylation of JNK, but not of p38 mitogen-activated protein kinase. MEK1/2 inhibitor PD98059 blocks the C-peptide effect on ERK1/2 phosphorylation. C-peptide causes specific translocation of PKC isoforms delta and epsilon to the membrane fraction in tubular cells. All stimulatory effects of C-peptide were abolished by pertussis toxin. The isoform-specific PKC-delta inhibitor rottlerin and the broad-spectrum PKC inhibitor GF109203X both abolish the C-peptide effect on ERK1/2 phosphorylation. C-peptide stimulation also causes translocation of the small GTPase RhoA from the cytosol to the cell membrane. Inhibition of phospholipase C abolished the stimulatory effect of C-peptide on phosphorylation of ERK1/2, JNK and PKC-delta. CONCLUSIONS/INTERPRETATION C-peptide signal transduction in human renal tubular cells involves the activation of phospholipase C and PKC-delta and PKC-epsilon, as well as RhoA, followed by phosphorylation of ERK1/2 and JNK, and a parallel activation of Akt.
Collapse
Affiliation(s)
- Z Zhong
- Section of Clinical Physiology, Department of Surgical Sciences, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
25
|
Al-Rasheed NM, Chana RS, Baines RJ, Willars GB, Brunskill NJ. Ligand-independent activation of peroxisome proliferator-activated receptor-gamma by insulin and C-peptide in kidney proximal tubular cells: dependent on phosphatidylinositol 3-kinase activity. J Biol Chem 2004; 279:49747-54. [PMID: 15375153 DOI: 10.1074/jbc.m408268200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Peroxisome proliferator-activated receptor gamma (PPARgamma) has key roles in the regulation of adipogenesis, inflammation, and lipid and glucose metabolism. C-peptide is believed to be inert and without appreciable biological functions. Recent studies suggest that C-peptide possesses multiple functions. The present study investigated the effects of insulin and C-peptide on PPARgamma transcriptional activity in opossum kidney proximal tubular cells. Both insulin and C-peptide induced a concentration-dependent stimulation of PPARgamma transcriptional activity. Both agents substantially augmented thiazolidinedione-stimulated PPARgamma transcriptional activity. Neither insulin nor C-peptide had any effect on the expression levels of PPARgamma. GW9662, a PPARgamma antagonist, blocked PPARgamma activation by thiazolidinediones but had no effect on either insulin- or C-peptide-stimulated PPARgamma transcriptional activity. Co-transfection of opossum kidney cells with dominant negative mitogen-activated protein kinase kinase significantly depressed basal PPARgamma transcriptional activity but had no effect on that induced by either insulin or C-peptide. Both insulin- and C-peptide-stimulated PPARgamma transcriptional activity were attenuated by wortmannin and by expression of a dominant negative phosphatidylinositol (PI) 3-kinase p85 regulatory subunit. In addition PI 3-kinase-dependent phosphorylation of PPARgamma was observed after stimulation by C-peptide or insulin. C-peptide effects but not insulin on PPARgamma transcriptional activity were abolished by pertussis toxin pretreatment. Finally both C-peptide and insulin positively control the expression of the PPARgamma-regulated CD36 scavenger receptor in human THP-1 monocytes. We concluded that insulin and C-peptide can stimulate PPARgamma activity in a ligand-independent fashion and that this effect is mediated by PI 3-kinase. These results support a new and potentially important physiological role for C-peptide in regulation of PPARgamma-related cell functions.
Collapse
Affiliation(s)
- Nawal M Al-Rasheed
- Department of Cell Physiology and Pharmacology, University of Leicester, Leicester LE1 9HN, United Kingdom
| | | | | | | | | |
Collapse
|
26
|
Wallerath T, Kunt T, Forst T, Closs EI, Lehmann R, Flohr T, Gabriel M, Schäfer D, Göpfert A, Pfützner A, Beyer J, Förstermann U. Stimulation of endothelial nitric oxide synthase by proinsulin C-peptide. Nitric Oxide 2004; 9:95-102. [PMID: 14623175 DOI: 10.1016/j.niox.2003.08.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
There is increasing evidence for biological functions of human C-peptide. Recently, we have described that proinsulin C-peptide increases nutritive capillary blood flow and restores erythrocyte deformability in type 1 diabetic patients, whereas it has no such effect in non-diabetic subjects. The aim of the current study was to elucidate cellular mechanisms of this vasodilator effect in vitro by measuring the nitric oxide (NO)-mediated increase of cGMP production in a RFL-6 reporter cell assay and by demonstrating endothelial calcium influx with the Fluo-3 technique. C-peptide increased the release of NO from endothelial NO synthase (eNOS) in bovine aortic endothelial cells in a concentration- and time-dependent manner. At physiological concentrations of C-peptide, endothelial NO production was more than doubled (208+/-12% vs control; p<0.001). The NO release was abolished by the inhibitor of NO synthase N(G)-nitro-L-arginine or when Ca(2+) was removed from the medium superfusing the endothelial cells. C-peptide stimulated the influx of Ca(2+) into endothelial cells. No change in Ser-1179 phosphorylation of eNOS was detected after 6.6nM C-peptide. C-peptide did not change eNOS mRNA levels after 1, 6 or 24h. These data indicate that C-peptide is likely to stimulate the activity of the Ca(2+)-sensitive eNOS by increasing the influx of Ca(2+) into endothelial cells. We suggest that this effect may contribute to the increase in skin and muscle blood flow previously demonstrated in human in vivo.
Collapse
Affiliation(s)
- Thomas Wallerath
- Department of Pharmacology, Johannes Gutenberg University, Mainz, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Sima AAF, Kamiya H, Kamiya H, Li ZG. Insulin, C-peptide, hyperglycemia, and central nervous system complications in diabetes. Eur J Pharmacol 2004; 490:187-97. [PMID: 15094085 DOI: 10.1016/j.ejphar.2004.02.056] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2004] [Indexed: 11/18/2022]
Abstract
Diabetes is an increasingly common disorder which causes and contributes to a variety of central nervous system (CNS) complications which are often associated with cognitive deficits. There appear to be two types of diabetic encephalopathy. Primary diabetic encephalopathy is caused by hyperglycemia and impaired insulin action, which evolves in a diabetes duration-related fashion and is associated with apoptotic neuronal loss and cognitive decline. This appears to be particularly associated with insulin-deficient diabetes. Secondary diabetic encephalopathy appears to arise from hypoxic-ischemic insults due to underlying microvascular disease or as a consequence of hypoglycemia. This type of cerebral diabetic complication is more common in the type 2 diabetic population. Here, we will review the clinical and experimental data supporting this conceptual division of diabetic CNS complications and discuss the underlying metabolic, molecular, and functional aberrations.
Collapse
Affiliation(s)
- Anders A F Sima
- Department of Pathology, Gordon H. Scott Hall of Basic Medical Sciences, Wayne State University, 540 East Canfield Avenue, Detroit, MI 48201, USA.
| | | | | | | |
Collapse
|
28
|
Li ZG, Zhang W, Sima AAF. C-peptide enhances insulin-mediated cell growth and protection against high glucose-induced apoptosis in SH-SY5Y cells. Diabetes Metab Res Rev 2003; 19:375-85. [PMID: 12951645 DOI: 10.1002/dmrr.389] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND We have previously reported that C-peptide exerts preventive and therapeutic effects on diabetic neuropathy in type 1 diabetic BB/Wor-rats and that it prevents duration-dependent hippocampal apoptosis in the same animal model. In the present study, we examined human neuroblastoma SH-SY5Y cells to examine whether C-peptide stimulates cell proliferation/neurite outgrowth and whether it has antiapoptotic effects. METHODS For neurite outgrowth, serum-starved cultures were treated with C-peptide and/or insulin or IGF-1. Neurites were visualized with NF-L antibody and measured morphometrically. Cell numbers were determined using an electronic cell counter. Scrambled C-peptide was used as a negative control. For assessment of apoptosis, SH-SY5Y cells were incubated with 100 mM glucose for 24 h, and the effects of C-peptide and/or insulin or IGF-1 were examined. Apoptosis was demonstrated by transferase-mediated dUTP nick-end labeling (TUNEL)/4,6-diamidino-2-phenylindole (DAPI) stainings, flow cytometry and changes in the expression of Bcl2. Activation of insulin signaling intermediaries was determined by Western blots. Translocation of NF-kappaB was demonstrated immunocytochemically. RESULTS C-peptide but not scrambled C-peptide stimulated cell proliferation and neurite outgrowth. In the presence of 4 nM insulin, 3 nM C-peptide significantly increased autophosphorylation of the insulin receptor (IR) but not that of the insulin-like growth factor 1 receptor (IGF-1R). It stimulated phosphoinositide 3-kinase (PI-3 kinase) and p38 mitogen-activated protein (MAP) kinase activation, enhanced the expression and translocation of nuclear factor-kappaB (NF-kappaB), promoted the expression of Bcl2 and reduced c-jun N-terminal kinase (JNK) phosphorylation in excess of that of insulin alone. CONCLUSIONS C-peptide in the presence of insulin exerts synergistic effects on cell proliferation, neurite outgrowth and has in the presence of insulin an antiapoptotic effect on high glucose-induced apoptosis but less so on hyperosmolar-induced apoptosis. These effects are likely to be mediated via interactions with the insulin signaling pathway.
Collapse
Affiliation(s)
- Zhen-Guo Li
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | |
Collapse
|
29
|
Kitamura T, Kimura K, Jung BD, Makondo K, Sakane N, Yoshida T, Saito M. Proinsulin C-peptide activates cAMP response element-binding proteins through the p38 mitogen-activated protein kinase pathway in mouse lung capillary endothelial cells. Biochem J 2002; 366:737-44. [PMID: 12059784 PMCID: PMC1222821 DOI: 10.1042/bj20020344] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2002] [Revised: 06/05/2002] [Accepted: 06/11/2002] [Indexed: 11/17/2022]
Abstract
Proinsulin C-peptide has been reported to have some biological activities and to be possibly involved in the development of diabetic microangiopathy. In the present study, we examined the effects of C-peptide on the mitogen-activated protein kinase pathway in LEII mouse lung capillary endothelial cells. Stimulation of the cells with C-peptide increased both p38 mitogen-activated protein kinase (p38MAPK) and extracellular signal-regulated kinase (ERK1/2) activities and activity-related site-specific phosphorylation of the respective kinases in a concentration-dependent manner, but failed to activate c-Jun N-terminal kinase. Stimulation of the cells with C-peptide also induced site-specific phosphorylation of cAMP response element (CRE)-binding protein (CREB)/activating transcription factor 1 (ATF1), and thereby binding of these transcription factors to CRE. Among three CREB kinases tested, phosphorylation of mitogen-activated protein kinase-activated protein kinase 2 (MAPKAP-K2) was induced after stimulation with C-peptide. The phosphorylation of CREB, ATF1 and MAPKAP-K2 were inhibited by SB203580, a p38MAPK inhibitor, but not by PD98059, an ERK kinase inhibitor. These results indicate that C-peptide activates p38MAPK followed by MAPKAP-K2 to enhance DNA-CREB/ATF1 interactions.
Collapse
Affiliation(s)
- Takanori Kitamura
- Laboratory of Biochemistry, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | | | | | | | | | | | | |
Collapse
|
30
|
Johansson J, Ekberg K, Shafqat J, Henriksson M, Chibalin A, Wahren J, Jörnvall H. Molecular effects of proinsulin C-peptide. Biochem Biophys Res Commun 2002; 295:1035-40. [PMID: 12135597 DOI: 10.1016/s0006-291x(02)00721-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The proinsulin C-peptide has been held to be merely a by-product in insulin biosynthesis, but recent reports show that it elicits both molecular and physiological effects, suggesting that it is a hormonally active peptide. Specific binding of C-peptide to the plasma membranes of intact cells and to detergent-solubilised cells has been shown, indicating the existence of a cell surface receptor for C-peptide. C-peptide elicits a number of cellular responses, including Ca(2+) influx, activation of mitogen-activated protein (MAP) kinases, of Na(+),K(+)-ATPase, and of endothelial NO synthase. The pentapeptide EGSLQ, corresponding to the C-terminal five residues of human C-peptide, mimics several of the effects of the full-length peptide. The pentapeptide displaces cell membrane-bound C-peptide, elicits transient increase in intracellular Ca(2+) concentration and stimulates MAP kinase signalling pathways and Na(+),K(+)-ATPase. The Glu residue of the pentapeptide is essential for displacement of the full-length C-peptide, and free Glu can partly displace bound C-peptide, suggesting that charge interactions are important for receptor binding. Many C-peptide effects, such as phosphorylation of MAP-kinases ERK 1 and 2, stimulation of Na(+),K(+)-ATPase and increases in intracellular calcium concentrations are inhibited by pertussis toxin, supporting interaction of C-peptide with a G-protein-coupled receptor. However, all C-peptide effects cannot be explained in this manner, and it is possible that additional interactions are involved. Combined, the available observations show that C-peptide is biologically active and suggest a molecular model for its physiological effects.
Collapse
Affiliation(s)
- Jan Johansson
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
31
|
Forst T, Rave K, Pfuetzner A, Buchholz R, Pohlmann T, Löbig M, Heinemann L. Effect of C-peptide on glucose metabolism in patients with type 1 diabetes. Diabetes Care 2002; 25:1096-7. [PMID: 12032122 DOI: 10.2337/diacare.25.6.1096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
32
|
Pramanik A, Ekberg K, Zhong Z, Shafqat J, Henriksson M, Jansson O, Tibell A, Tally M, Wahren J, Jörnvall H, Rigler R, Johansson J. C-Peptide Binding to Human Cell Membranes: Importance of Glu27. Biochem Biophys Res Commun 2001; 284:94-8. [PMID: 11374876 DOI: 10.1006/bbrc.2001.4917] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In addition to its established role in proinsulin folding, C-peptide has a function in regulation of cellular activity. The 31-residue peptide influences renal, vascular, and metabolic functions in patients with insulin-dependent diabetes mellitus. Binding to cells has been demonstrated for C-peptide, which can be displaced by its C-terminal pentapeptide. We have now used fluorescence correlation spectroscopy to investigate structural requirements on the pentapeptide part for C-peptide binding. All pentapeptide residues, E(27)GSLQ(31), were individually replaced with Ala and the capacity of the resulting peptides to displace rhodamine-labelled full-length human C-peptide from human renal tubular cell membranes was determined. This showed that Glu27 is essential for displacement, while replacement of Gly28 with Ala has little effect, and replacement of any of the three most C-terminal residues had intermediate effects. Morevover, free Glu displaces full-length C-peptide to about 50%, while free Ala, C-peptide(1-26), and the truncated pentapeptide, corresponding to the tetrapeptide G(28)SLG(31), have no displacing capacity. The peptides EVARQ (corresponding to the rat C-terminal pentapeptide) and ELGGGPGAG (corresponding to positions 11-19 of human C-peptide) do not displace human C-peptide. These results indicate that Glu27 of C-peptide is critically involved in binding to cellular targets.
Collapse
Affiliation(s)
- A Pramanik
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, SE-171 77, Sweden
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Kitamura T, Kimura K, Jung BD, Makondo K, Okamoto S, Cañas X, Sakane N, Yoshida T, Saito M. Proinsulin C-peptide rapidly stimulates mitogen-activated protein kinases in Swiss 3T3 fibroblasts: requirement of protein kinase C, phosphoinositide 3-kinase and pertussis toxin-sensitive G-protein. Biochem J 2001; 355:123-9. [PMID: 11256956 PMCID: PMC1221719 DOI: 10.1042/0264-6021:3550123] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
It has been demonstrated that proinsulin C-peptide possesses several biological activities and that its specific binding sites are present on the surface of cell membranes. However, the molecular and cellular mechanisms of C-peptide actions are poorly known. In the present study we examined the possible involvement of the mitogen-activated protein kinase (MAPK) pathway in C-peptide effects. C-peptide induced the phosphorylation of MAPK [p44 extracellular signal-regulated kinase 1 (ERK1) and p42 ERK2] in Swiss 3T3 and 3T3-F442A fibroblasts but not in 3T3-L1 fibroblasts and some other cell lines such as L(6)E(9) muscle cells. In Swiss 3T3 cells, C-peptide-induced phosphorylation of MAPK was dependent on time and concentration, being maximal at 1 min and at 1 nM C-peptide and was accompanied by an increase in MAPK activity and MAPK kinase (MEK) phosphorylation. The MAPK phosphorylation by C-peptide was abolished by treatment with pertussis toxin (PTX) and also with a MEK inhibitor, PD 98059. In addition, MAPK phosphorylation was attenuated by treatment with a phosphoinositide 3-kinase (PI-3K) inhibitor, wortmannin, and with a protein kinase C (PKC) inhibitor, GF109203X, and by down-regulation of PKC by prolonged treatment with PMA. Similar effects of the inhibitors and PTX were found on the MAPK phosphorylation induced by neuropeptide Y. These results suggest that C-peptide activates MAPK through a putative G(i)/G(o)-linked receptor for C-peptide and through PI-3K-dependent and PKC-dependent pathways.
Collapse
Affiliation(s)
- T Kitamura
- Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Li ZG, Qiang X, Sima AA, Grunberger G. C-peptide attenuates protein tyrosine phosphatase activity and enhances glycogen synthesis in L6 myoblasts. Biochem Biophys Res Commun 2001; 280:615-9. [PMID: 11162564 DOI: 10.1006/bbrc.2000.4164] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent studies suggest that C-peptide might play a role in a broad range of biological activities. We have provided evidence that C-peptide stimulates glycogen synthesis in insulin-responsive rat skeletal muscle cells in a dose-related manner. To explore the mechanism by which C-peptide exerts this insulinomimetic effect, here we report the effect of C-peptide on protein tyrosine phosphatase (PTP) activity and phosphorylation of the insulin receptor and insulin receptor substrate-1 (IRS-1). C-peptide inhibited PTP activity in a dose-dependent manner. A reverse bell-shaped dose-response curve was shown with the maximum inhibition of PTP activity at a concentration of 3 nM of C-peptide, which is the same concentration achieving the maximum stimulatory effect on glycogen synthesis. In association with the PTP inhibition by C-peptide, autophosphorylation of the insulin receptor and activation of IRS-1 were enhanced. These results suggest that C-peptide signal transduction may crosstalk with the insulin signaling pathway at the level of the insulin receptor.
Collapse
Affiliation(s)
- Z G Li
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan 48201, USA
| | | | | | | |
Collapse
|
35
|
Wahren J, Ekberg K, Johansson J, Henriksson M, Pramanik A, Johansson BL, Rigler R, Jörnvall H. Role of C-peptide in human physiology. Am J Physiol Endocrinol Metab 2000; 278:E759-68. [PMID: 10780930 DOI: 10.1152/ajpendo.2000.278.5.e759] [Citation(s) in RCA: 184] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The C-peptide of proinsulin is important for the biosynthesis of insulin but has for a long time been considered to be biologically inert. Data now indicate that C-peptide in the nanomolar concentration range binds specifically to cell surfaces, probably to a G protein-coupled surface receptor, with subsequent activation of Ca(2+)-dependent intracellular signaling pathways. The association rate constant, K(ass), for C-peptide binding to endothelial cells, renal tubular cells, and fibroblasts is approximately 3. 10(9) M(-1). The binding is stereospecific, and no cross-reaction is seen with insulin, proinsulin, insulin growth factors I and II, or neuropeptide Y. C-peptide stimulates Na(+)-K(+)-ATPase and endothelial nitric oxide synthase activities. Data also indicate that C-peptide administration is accompanied by augmented blood flow in skeletal muscle and skin, diminished glomerular hyperfiltration, reduced urinary albumin excretion, and improved nerve function, all in patients with type 1 diabetes who lack C-peptide, but not in healthy subjects. The possibility exists that C-peptide replacement, together with insulin administration, may prevent the development or retard the progression of long-term complications in type 1 diabetes.
Collapse
Affiliation(s)
- J Wahren
- Department of Surgical Sciences, Section of Clinical Physiology, Karolinska Hospital, SE-171 76 Stockholm, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Guan X, Matte JJ, Ku PK, Snow JL, Burton JL, Trottier NL. High chromium yeast supplementation improves glucose tolerance in pigs by decreasing hepatic extraction of insulin. J Nutr 2000; 130:1274-9. [PMID: 10801929 DOI: 10.1093/jn/130.5.1274] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Twenty Landrace x Yorkshire cross pigs (body wt, 47.9+/-2.9 kg) were used to evaluate effects of dietary high chromium (Cr) yeast supplementation on plasma kinetics of glucose, insulin and C-peptide. Pigs were provided free access to either a control diet (C) containing 204 microg Cr/kg or a diet supplemented with an additional 200 microg Cr/kg as high Cr yeast (CR) for between 23 and 30 d. After overnight food deprivation, dextrose (500 g/L) was infused through a jugular vein catheter at a dose of 0.5 g glucose/kg body weight with an infusion rate of 10 g glucose/min within 6 min. High Cr yeast supplementation did not affect body weight gain or food intake. There were no differences in fasting plasma concentrations of either glucose or C-peptide, although basal plasma concentration of insulin tended to be higher in pigs fed CR (P<0.10). Plasma glucose concentrations were lower (P<0.01) at postinfusion times 5, 10, 15 and 20 min in pigs fed CR. Plasma insulin concentrations in pigs fed CR were higher (P<0.05) at 2 and 0 min before the completion of dextrose infusion. However, the increase in plasma insulin concentrations was not accompanied by a comparable elevation in plasma C-peptide concentrations. The 30-min (postinfusion) area of plasma glucose concentrations tended to be lower (P<0.10) in pigs fed CR, but there were no differences in 30-min areas of either plasma insulin or plasma C-peptide concentrations between treatments. Plasma clearance rates of glucose, insulin and C-peptide were higher and their half-lives shorter (P<0.05) in pigs fed CR. In conclusion, dietary high Cr yeast supplementation improved glucose tolerance, possibly through a decrease in hepatic extraction of insulin.
Collapse
Affiliation(s)
- X Guan
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | | | | | |
Collapse
|
37
|
Rigler R, Pramanik A, Jonasson P, Kratz G, Jansson OT, Nygren P, Stâhl S, Ekberg K, Johansson B, Uhlén S, Uhlén M, Jörnvall H, Wahren J. Specific binding of proinsulin C-peptide to human cell membranes. Proc Natl Acad Sci U S A 1999; 96:13318-23. [PMID: 10557318 PMCID: PMC23945 DOI: 10.1073/pnas.96.23.13318] [Citation(s) in RCA: 231] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Recent reports have demonstrated beneficial effects of proinsulin C-peptide in the diabetic state, including improvements of kidney and nerve function. To examine the background to these effects, C-peptide binding to cell membranes has been studied by using fluorescence correlation spectroscopy. Measurements of ligand-membrane interactions at single-molecule detection sensitivity in 0.2-fl confocal volume elements show specific binding of fluorescently labeled C-peptide to several human cell types. Full saturation of the C-peptide binding to the cell surface is obtained at low nanomolar concentrations. Scatchard analysis of binding to renal tubular cells indicates the existence of a high-affinity binding process with K(ass) > 3.3 x 10(9) M(-1). Addition of excess unlabeled C-peptide is accompanied by competitive displacement, yielding a dissociation rate constant of 4.5 x 10(-4) s(-1). The C-terminal pentapeptide also displaces C-peptide bound to cell membranes, indicating that the binding occurs at this segment of the ligand. Nonnative D-C-peptide and a randomly scrambled C-peptide do not compete for binding with the labeled C-peptide, nor were crossreactions observed with insulin, insulin-like growth factor (IGF)-I, IGF-II, or proinsulin. Pretreatment of cells with pertussis toxin, known to modify receptor-coupled G proteins, abolishes the binding. It is concluded that C-peptide binds to specific G protein-coupled receptors on human cell membranes, thus providing a molecular basis for its biological effects.
Collapse
Affiliation(s)
- R Rigler
- Department of Medical Biochemistry, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Shepherd PR, Kahn BB. Glucose transporters and insulin action--implications for insulin resistance and diabetes mellitus. N Engl J Med 1999; 341:248-57. [PMID: 10413738 DOI: 10.1056/nejm199907223410406] [Citation(s) in RCA: 849] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- P R Shepherd
- Department of Biochemistry and Molecular Biology, University College London
| | | |
Collapse
|
39
|
Jensen ME, Messina EJ. C-peptide induces a concentration-dependent dilation of skeletal muscle arterioles only in presence of insulin. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:H1223-8. [PMID: 10199846 DOI: 10.1152/ajpheart.1999.276.4.h1223] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study we tested the hypothesis that C-peptide alone or in conjunction with insulin may cause a dilation of skeletal muscle arterioles. First-order arterioles (88 microm) isolated from rat cremaster muscles were pressurized (65 mmHg), equilibrated in a Krebs bicarbonate-buffered solution (pH 7.4), gassed with 10% O2 (balance 5% CO2, 85% N2), and studied in a no-flow state. C-peptide administered at concentrations of 0.3, 1, 3, 10, 100, 300, and 1,000 ng/ml evoked arteriolar dilation that was not concentration dependent. In contrast, the administration of the four lower physiological concentrations of C-peptide to arterioles exposed to a nondilating concentration of insulin evoked a significant concentration-dependent increase in arteriolar diameter from 8.6 to 42.3% above control. The arteriolar dilation to C-peptide in the presence of insulin was completely inhibited by administration of NG-nitro-L-arginine (10(-4) M). Responses to ACh and adenosine were not enhanced when these drugs were administered in the presence of insulin. These results indicate that C-peptide has the capacity to evoke arteriolar dilation in skeletal muscle via a nitric oxide-mediated mechanism that appears to be enhanced by an interaction with insulin. Furthermore, the effects of insulin appear to be specific for C-peptide and are not the result of a general enhancement of endothelium-dependent or endothelium-independent dilation.
Collapse
Affiliation(s)
- M E Jensen
- Department of Physiology, New York Medical College, Valhalla, New York 10595, USA.
| | | |
Collapse
|
40
|
Kunt T, Forst T, Pfützner A, Beyer J, Wahren J. The physiological impact of proinsulin C-peptide. PATHOPHYSIOLOGY 1999. [DOI: 10.1016/s0928-4680(98)00028-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
41
|
Ido Y, Vindigni A, Chang K, Stramm L, Chance R, Heath WF, DiMarchi RD, Di Cera E, Williamson JR. Prevention of vascular and neural dysfunction in diabetic rats by C-peptide. Science 1997; 277:563-6. [PMID: 9228006 DOI: 10.1126/science.277.5325.563] [Citation(s) in RCA: 224] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
C-peptide, a cleavage product from the processing of proinsulin to insulin, has been considered to possess little if any biological activity other than its participation in insulin synthesis. Injection of human C-peptide prevented or attenuated vascular and neural (electrophysiological) dysfunction and impaired Na+- and K+-dependent adenosine triphosphate activity in tissues of diabetic rats. Nonpolar amino acids in the midportion of the peptide were required for these biological effects. Synthetic reverse sequence (retro) and all-D-amino acid (enantio) C-peptides were equipotent to native C-peptide, which indicates that the effects of C-peptide on diabetic vascular and neural dysfunction were mediated by nonchiral interactions instead of stereospecific receptors or binding sites.
Collapse
Affiliation(s)
- Y Ido
- Department of Pathology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Shashkin PN, Jiao Y, Westerblad H, Katz A. C-peptide does not alter carbohydrate metabolism in isolated mouse muscle. THE AMERICAN JOURNAL OF PHYSIOLOGY 1997; 272:E245-7. [PMID: 9124330 DOI: 10.1152/ajpendo.1997.272.2.e245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The effects of C-peptide on carbohydrate metabolism in isolated mouse soleus muscle were studied. C-peptide, at concentrations up to 1,000 nM, had no effect on [14C]glucose incorporation into glycogen, glycogen synthase activity, or 2-deoxyglucose uptake. These data demonstrate that C-peptide has no direct effect on the measured parameters of carbohydrate metabolism in isolated mouse muscle.
Collapse
Affiliation(s)
- P N Shashkin
- Division of Clinical Physiology, Department of Surgical Sciences, Karolinska Institute, Karolinska Hospital, Stockholm, Sweden
| | | | | | | |
Collapse
|