1
|
Routray D, Ghatak A, Chaturvedi P, Petijová L, Weckwerth W, Ručová D, Bačkor M, Lang I, Goga M. Comparative analysis of geotypic variations in the proteome of Nostoc commune. PLANT SIGNALING & BEHAVIOR 2024; 19:2370719. [PMID: 38913942 PMCID: PMC11197914 DOI: 10.1080/15592324.2024.2370719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 06/02/2024] [Indexed: 06/26/2024]
Abstract
Cyanobacterium Nostoc commune is a filamentous terrestrial prokaryotic organism widely distributed, which suggest its high adaptive potential to environmental or abiotic stress. Physiological parameters and proteomic analysis were performed in two accession of N. commune with the aim to elucidate the differences of physiological trails between distant geotypes, namely Antarctic (AN) and central European (CE). The result obtained clearly showed that the AN geotype demonstrates elevated levels of total phenols, flavonoids, carotenoids, and phycobiliproteins, indicative of its adaptation to environmental stress as referred by comparison to CE sample. Additionally, we employed LC-MS analysis to investigate the proteomes of N. commune from AN and CE geotypes. In total, 1147 proteins were identified, among which 646 proteins expressed significant (up-regulation) changes in both accessions. In the AN geotype, 83 exclusive proteins were identified compared to 25 in the CE geotype. Functional classification of the significant proteins showed a large fraction involved in photosynthesis, amino acid metabolism, carbohydrate metabolism and protein biosynthesis. Further analysis revealed some defense-related proteins such as, superoxide dismutase (SOD) and glutathione reductase, which are rather explicitly expressed in the AN N. commune. The last two proteins suggest a more stressful condition in AN N. commune. In summary, our findings highlight biochemical processes that safeguard the AN geotype of N. commune from extreme environmental challenges, not recorded in CE accession, probably due to less stressful environment in Europe. This study brings the first ever proteomic analysis of N. commune, emphasizing the need for additional investigations into the climate adaptation of this species with rather plastic genome.
Collapse
Affiliation(s)
- Deepti Routray
- Department of Plant Biology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Košice, Slovakia
| | - Arindam Ghatak
- Molecular Systems Biology Lab, Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
- Vienna Metabolomics Center, University of Vienna, Vienna, Austria
| | - Palak Chaturvedi
- Molecular Systems Biology Lab, Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Linda Petijová
- Department of Genetics, Faculty of Science, Pavol Jozef Šafárik University in Košice, Košice, Slovakia
| | - Wolfram Weckwerth
- Molecular Systems Biology Lab, Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
- Vienna Metabolomics Center, University of Vienna, Vienna, Austria
| | - Dajana Ručová
- Department of Plant Biology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Košice, Slovakia
| | - Martin Bačkor
- Department of Plant Biology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Košice, Slovakia
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovakia
| | - Ingeborg Lang
- Molecular Systems Biology Lab, Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Michal Goga
- Department of Plant Biology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Košice, Slovakia
| |
Collapse
|
2
|
Bryant DA, Gisriel CJ. The structural basis for light harvesting in organisms producing phycobiliproteins. THE PLANT CELL 2024; 36:4036-4064. [PMID: 38652697 PMCID: PMC11449063 DOI: 10.1093/plcell/koae126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/13/2024] [Accepted: 03/20/2024] [Indexed: 04/25/2024]
Abstract
Cyanobacteria, red algae, and cryptophytes produce 2 classes of proteins for light harvesting: water-soluble phycobiliproteins (PBP) and membrane-intrinsic proteins that bind chlorophylls (Chls) and carotenoids. In cyanobacteria, red algae, and glaucophytes, phycobilisomes (PBS) are complexes of brightly colored PBP and linker (assembly) proteins. To date, 6 structural classes of PBS have been described: hemiellipsoidal, block-shaped, hemidiscoidal, bundle-shaped, paddle-shaped, and far-red-light bicylindrical. Two additional antenna complexes containing single types of PBP have also been described. Since 2017, structures have been reported for examples of all of these complexes except bundle-shaped PBS by cryogenic electron microscopy. PBS range in size from about 4.6 to 18 mDa and can include ∼900 polypeptides and bind >2000 chromophores. Cyanobacteria additionally produce membrane-associated proteins of the PsbC/CP43 superfamily of Chl a/b/d-binding proteins, including the iron-stress protein IsiA and other paralogous Chl-binding proteins (CBP) that can form antenna complexes with Photosystem I (PSI) and/or Photosystem II (PSII). Red and cryptophyte algae also produce CBP associated with PSI but which belong to the Chl a/b-binding protein superfamily and which are unrelated to the CBP of cyanobacteria. This review describes recent progress in structure determination for PBS and the Chl proteins of cyanobacteria, red algae, and cryptophytan algae.
Collapse
Affiliation(s)
- Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | | |
Collapse
|
3
|
Mondal S, Pandey D, Singh SP. Chromatic acclimation in cyanobacteria renders robust photosynthesis and fitness in dynamic light environment: Recent advances and future perspectives. PHYSIOLOGIA PLANTARUM 2024; 176:e14536. [PMID: 39323055 DOI: 10.1111/ppl.14536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/27/2024]
Abstract
Cyanobacteria are photoautotrophic organisms that use light and water as a source of energy and electrons, respectively, to fix atmospheric carbon dioxide and release oxygen as a by-product during photosynthesis. However, photosynthesis and fitness of organisms are challenged by seasonal and diurnal fluctuations in light environments. Also, the distribution of cyanobacteria in a water column is subject to changes in the light regime. The quality and quantity of light change significantly in low and bright light environments that either limit photochemistry or result in photoinhibition due to an excess amount of light reaching reaction centers. Therefore, cyanobacteria have to adjust their light-harvesting machinery and cell morphology for the optimal harvesting of light. This adjustment of light-harvesting involves remodeling of the light-harvesting complex called phycobilisome or incorporation of chlorophyll molecules such as chlorophyll d and f into their light-harvesting machinery. Thus, photoacclimation responses of cyanobacteria at the level of pigment composition and cell morphology maximize their photosynthetic ability and fitness under a dynamic light environment. Cyanobacteria exhibit different types of photoacclimation responses that are commonly known as chromatic acclimation (CA). In this work, we discuss different types of CA reported in cyanobacteria and present a molecular mechanism of well-known type 3 CA where phycoerythrin and phycocyanin of phycobilisome changes according to light signals. We also include other aspects of type 3 CA that have been recently studied at a molecular level and highlight the importance of morphogenes, cytoskeleton, and carboxysome proteins. In summary, CA gives a unique competitive benefit to cyanobacteria by increasing their resource utilization ability and fitness.
Collapse
Affiliation(s)
- Soumila Mondal
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Deepa Pandey
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Shailendra P Singh
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
4
|
Zhang X, Xiao Y, You X, Sun S, Sui SF. In situ structural determination of cyanobacterial phycobilisome-PSII supercomplex by STAgSPA strategy. Nat Commun 2024; 15:7201. [PMID: 39169020 PMCID: PMC11339077 DOI: 10.1038/s41467-024-51460-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 08/08/2024] [Indexed: 08/23/2024] Open
Abstract
Photosynthesis converting solar energy to chemical energy is one of the most important chemical reactions on earth. In cyanobacteria, light energy is captured by antenna system phycobilisomes (PBSs) and transferred to photosynthetic reaction centers of photosystem II (PSII) and photosystem I (PSI). While most of the protein complexes involved in photosynthesis have been characterized by in vitro structural analyses, how these protein complexes function together in vivo is not well understood. Here we implemented STAgSPA, an in situ structural analysis strategy, to solve the native structure of PBS-PSII supercomplex from the cyanobacteria Arthrospira sp. FACHB439 at resolution of ~3.5 Å. The structure reveals coupling details among adjacent PBSs and PSII dimers, and the collaborative energy transfer mechanism mediated by multiple super-PBS in cyanobacteria. Our results provide insights into the diversity of photosynthesis-related systems between prokaryotic cyanobacteria and eukaryotic red algae but are also a methodological demonstration for high-resolution structural analysis in cellular or tissue samples.
Collapse
Affiliation(s)
- Xing Zhang
- Ministry of Education Key Laboratory of Protein Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Frontier Research Center for Biological Structures, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China.
| | - Yanan Xiao
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Xin You
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structures, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Shan Sun
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structures, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Sen-Fang Sui
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structures, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
5
|
Jaiswal J, Kumari N, Gupta A, Singh AP, Sinha RP. Impacts of ultraviolet and photosynthetically active radiations on photosynthetic efficiency and antioxidant systems of the cyanobacterium Spirulina subsalsa HKAR-19. Folia Microbiol (Praha) 2024; 69:747-765. [PMID: 38041744 DOI: 10.1007/s12223-023-01110-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 11/14/2023] [Indexed: 12/03/2023]
Abstract
This study summarizes the response of cyanobacterium Spirulina subsalsa HKAR-19 under simulated light conditions of photosynthetically active radiation (PAR), PAR+UV-A (PA), and PAR+UV-A+UV-B (PAB). Exposure to UV radiation caused a significant (P < 0.05) decrease in chlorophyll a, phycocyanin, and total protein. In contrast, total carotene content increased significantly (P < 0.05) under PA and PAB with increasing irradiation time. The photosynthetic efficiency of photosystem II also decreased significantly in PA and PAB radiation. We have also recorded a decrease in the fluorescence emission intensity of phycocyanin under PA and PAB exposure. The phycocyanin fluorescence shifted towards shorter wavelengths (blue-shift) after 72 h of PA and PAB exposure. Intracellular reactive oxygen species (ROS) levels increased significantly in PA and PAB. Fluorescence microscopic images showed an increase in green fluorescence, indicating ROS generation in UV radiation. We have also quantified ROS generation using green and red fluorescence ratio represented as G/R ratio. A 2-6-fold increase in antioxidative enzymes activity was observed to overcome the damaging effects caused by UV stress as compared to untreated control cultures. The lipid peroxidation was assessed in terms of malondialdehyde content which increases significantly (P < 0.05) as the duration of exposure increases. These results suggest that a combined effect of PAR, UV-A, and UV-B was more deleterious than an individual one.
Collapse
Affiliation(s)
- Jyoti Jaiswal
- Laboratory of Photobiology and Molecular Microbiology, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Neha Kumari
- Laboratory of Photobiology and Molecular Microbiology, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Amit Gupta
- Laboratory of Photobiology and Molecular Microbiology, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Ashish P Singh
- Laboratory of Photobiology and Molecular Microbiology, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Rajeshwar P Sinha
- Laboratory of Photobiology and Molecular Microbiology, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
6
|
García-Oneto TM, Moyano-Bellido C, Domínguez-Martín MA. Structure and function of the light-protective orange carotenoid protein families. Curr Res Struct Biol 2024; 7:100141. [PMID: 38736459 PMCID: PMC11087925 DOI: 10.1016/j.crstbi.2024.100141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/21/2024] [Accepted: 03/29/2024] [Indexed: 05/14/2024] Open
Abstract
Orange carotenoid proteins (OCPs) are unique photoreceptors that are critical for cyanobacterial photoprotection. Upon exposure to blue-green light, OCPs are activated from a stable orange form, OCPO, to an active red form, OCPR, which binds to phycobilisomes (PBSs) and performs photoprotective non-photochemical quenching (NPQ). OCPs can be divided into three main families: the most abundant and best studied OCP1, and two others, OCP2 and OCP3, which have different activation and quenching properties and are yet underexplored. Crystal structures have been acquired for the three OCP clades, providing a glimpse into the conformational underpinnings of their light-absorption and energy dissipation attributes. Recently, the structure of the PBS-OCPR complex has been obtained allowing for an unprecedented insight into the photoprotective action of OCPs. Here, we review the latest findings in the field that have substantially improved our understanding of how cyanobacteria protect themselves from the toxic consequences of excess light absorption. Furthermore, current research is applying the structure of OCPs to bio-inspired optogenetic tools, to function as carotenoid delivery devices, as well as engineering the NPQ mechanism of cyanobacteria to enhance their photosynthetic biomass production.
Collapse
Affiliation(s)
| | | | - M. Agustina Domínguez-Martín
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Córdoba, Spain
| |
Collapse
|
7
|
Espinoza-Corral R, Iwai M, Zavřel T, Lechno-Yossef S, Sutter M, Červený J, Niyogi KK, Kerfeld CA. Phycobilisome protein ApcG interacts with PSII and regulates energy transfer in Synechocystis. PLANT PHYSIOLOGY 2024; 194:1383-1396. [PMID: 37972281 PMCID: PMC10904348 DOI: 10.1093/plphys/kiad615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/25/2023] [Accepted: 10/25/2023] [Indexed: 11/19/2023]
Abstract
Photosynthetic organisms harvest light using pigment-protein complexes. In cyanobacteria, these are water-soluble antennae known as phycobilisomes (PBSs). The light absorbed by PBS is transferred to the photosystems in the thylakoid membrane to drive photosynthesis. The energy transfer between these complexes implies that protein-protein interactions allow the association of PBS with the photosystems. However, the specific proteins involved in the interaction of PBS with the photosystems are not fully characterized. Here, we show in Synechocystis sp. PCC 6803 that the recently discovered PBS linker protein ApcG (sll1873) interacts specifically with PSII through its N-terminal region. Growth of cyanobacteria is impaired in apcG deletion strains under light-limiting conditions. Furthermore, complementation of these strains using a phospho-mimicking version of ApcG causes reduced growth under normal growth conditions. Interestingly, the interaction of ApcG with PSII is affected when a phospho-mimicking version of ApcG is used, targeting the positively charged residues interacting with the thylakoid membrane, suggesting a regulatory role mediated by phosphorylation of ApcG. Low-temperature fluorescence measurements showed decreased PSI fluorescence in apcG deletion and complementation strains. The PSI fluorescence was the lowest in the phospho-mimicking complementation strain, while the pull-down experiment showed no interaction of ApcG with PSI under any tested condition. Our results highlight the importance of ApcG for selectively directing energy harvested by the PBS and imply that the phosphorylation status of ApcG plays a role in regulating energy transfer from PSII to PSI.
Collapse
Affiliation(s)
- Roberto Espinoza-Corral
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Masakazu Iwai
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Tomáš Zavřel
- Department of Adaptive Biotechnologies, Global Change Research Institute of the Czech Academy of Sciences, Drásov 470, CZ-66424 Drásov, Czech Republic
| | - Sigal Lechno-Yossef
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Markus Sutter
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jan Červený
- Department of Adaptive Biotechnologies, Global Change Research Institute of the Czech Academy of Sciences, Drásov 470, CZ-66424 Drásov, Czech Republic
| | - Krishna K Niyogi
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | - Cheryl A Kerfeld
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
8
|
Gisriel CJ, Shen G, Brudvig GW, Bryant DA. Structure of the antenna complex expressed during far-red light photoacclimation in Synechococcus sp. PCC 7335. J Biol Chem 2024; 300:105590. [PMID: 38141759 PMCID: PMC10810746 DOI: 10.1016/j.jbc.2023.105590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/28/2023] [Accepted: 12/12/2023] [Indexed: 12/25/2023] Open
Abstract
Far-red light photoacclimation, or FaRLiP, is a facultative response exhibited by some cyanobacteria that allows them to absorb and utilize lower energy light (700-800 nm) than the wavelengths typically used for oxygenic photosynthesis (400-700 nm). During this process, three essential components of the photosynthetic apparatus are altered: photosystem I, photosystem II, and the phycobilisome. In all three cases, at least some of the chromophores found in these pigment-protein complexes are replaced by chromophores that have red-shifted absorbance relative to the analogous complexes produced in visible light. Recent structural and spectroscopic studies have elucidated important features of the two photosystems when altered to absorb and utilize far-red light, but much less is understood about the modified phycobiliproteins made during FaRLiP. We used single-particle, cryo-EM to determine the molecular structure of a phycobiliprotein core complex comprising allophycocyanin variants that absorb far-red light during FaRLiP in the marine cyanobacterium Synechococcus sp. PCC 7335. The structure reveals the arrangement of the numerous red-shifted allophycocyanin variants and the probable locations of the chromophores that serve as the terminal emitters in this complex. It also suggests how energy is transferred to the photosystem II complexes produced during FaRLiP. The structure additionally allows comparisons with other previously studied allophycocyanins to gain insights into how phycocyanobilin chromophores can be tuned to absorb far-red light. These studies provide new insights into how far-red light is harvested and utilized during FaRLiP, a widespread cyanobacterial photoacclimation mechanism.
Collapse
Affiliation(s)
| | - Gaozhong Shen
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Gary W Brudvig
- Department of Chemistry, Yale University, New Haven, Connecticut, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA.
| |
Collapse
|
9
|
Tripathi G, Dubey P, Ahmad S, Farooqui A, Mishra V. Role of Algal-derived Bioactive Compounds in Human Health. Recent Pat Biotechnol 2024; 18:190-209. [PMID: 37537776 DOI: 10.2174/1872208317666230623141740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/21/2023] [Accepted: 05/17/2023] [Indexed: 08/05/2023]
Abstract
Algae is emerging as a bioresource with high biological potential. Various algal strains have been used in traditional medicines and human diets worldwide. They are a rich source of bioactive compounds like ascorbic acid, riboflavin, pantothenate, biotin, folic acid, nicotinic acid, phycocyanins, gamma-linolenic acid (GLA), adrenic acid (ARA), docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), etc. Beta-carotene, astaxanthin, and phycobiliproteins are different classes of pigments that are found in algae. They possess antioxidant, anti-inflammatory and anticancer properties. The sulfur-coated polysaccharides in algae have been used as an anticancer, antibacterial, and antiviral agent. Scientists have exploited algal-derived bioactive compounds for developing lead molecules against several diseases. Due to the surge in research on bioactive molecules from algae, industries have started showing interest in patenting for the large-scale production of bioactive compounds having applications in sectors like pharmaceuticals, food, and beverage. In the food industry, algae are used as a thickening, gelling, and stabilizing agent. Due to their gelling and thickening characteristics, the most valuable algae products are macroalgal polysaccharides such as agar, alginates, and carrageenan. The high protein, lipid, and nutrient content in microalgae makes it a superfood for aquaculture. The present review aims at describing various non-energy-based applications of algae in pharmaceuticals, food and beverage, cosmetics, and nutraceuticals. This review attempts to analyze information on algal-derived drugs that have shown better potential and reached clinical trials.
Collapse
Affiliation(s)
- Gyanendra Tripathi
- Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh, 226026, India
| | - Priyanka Dubey
- Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh, 226026, India
| | - Suhail Ahmad
- Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh, 226026, India
| | - Alvina Farooqui
- Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh, 226026, India
| | - Vishal Mishra
- School of Biochemical Engineering, IIT(BHU), Varanasi 221005, India
| |
Collapse
|
10
|
Liu R, Zhen ZH, Li W, Ge B, Qin S. How can Phycobilisome, the unique light harvesting system in certain algae working highly efficiently: The connection in between structures and functions. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 186:39-52. [PMID: 38030044 DOI: 10.1016/j.pbiomolbio.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/02/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023]
Abstract
Algae, which are ubiquitous in ecosystems, have evolved a variety of light-harvesting complexes to better adapt to diverse habitats. Phycobilisomes/phycobiliproteins, unique to cyanobacteria, red algae, and certain cryptomonads, compensate for the lack of chlorophyll absorption, allowing algae to capture and efficiently transfer light energy in aquatic environments. With the advancement of microscopy and spectroscopy, the structure and energy transfer processes of increasingly complex phycobilisomes have been elucidated, providing us with a vivid portrait of the dynamic adaptation of their structures to the light environment in which algae thrive: 1) Cyanobacteria living on the surface of the water use short, small phycobilisomes to absorb red-orange light and reduce the damage from blue-violet light via multiple methods; 2) Large red algae inhabiting the depths of the ocean have evolved long and dense phycobilisomes containing phycoerythrin to capture the feeble blue-green light; 3) In far-red light environments such as caves, algae use special allophycocyanin cores to optimally utilize the far-red light; 4) When the environment shifts, algae can adjust the length, composition and density of their rods to better adapt; 5) By carefully designing the position of the pigments, phycobilisomes can transfer light energy to the reaction center with nearly 100% efficiency via three energy transfer processes.
Collapse
Affiliation(s)
- Runze Liu
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China; University of Chinese Academy of Sciences, Beijing, 100000, China
| | - Zhang-He Zhen
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wenjun Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| | - Baosheng Ge
- China University of Petroleum (HUADONG), Qingdao, Shandong, 266580, China
| | - Song Qin
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China.
| |
Collapse
|
11
|
Jiang HW, Wu HY, Wang CH, Yang CH, Ko JT, Ho HC, Tsai MD, Bryant DA, Li FW, Ho MC, Ho MY. A structure of the relict phycobilisome from a thylakoid-free cyanobacterium. Nat Commun 2023; 14:8009. [PMID: 38049400 PMCID: PMC10696076 DOI: 10.1038/s41467-023-43646-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 11/15/2023] [Indexed: 12/06/2023] Open
Abstract
Phycobilisomes (PBS) are antenna megacomplexes that transfer energy to photosystems II and I in thylakoids. PBS likely evolved from a basic, inefficient form into the predominant hemidiscoidal shape with radiating peripheral rods. However, it has been challenging to test this hypothesis because ancestral species are generally inaccessible. Here we use spectroscopy and cryo-electron microscopy to reveal a structure of a "paddle-shaped" PBS from a thylakoid-free cyanobacterium that likely retains ancestral traits. This PBS lacks rods and specialized ApcD and ApcF subunits, indicating relict characteristics. Other features include linkers connecting two chains of five phycocyanin hexamers (CpcN) and two core subdomains (ApcH), resulting in a paddle-shaped configuration. Energy transfer calculations demonstrate that chains are less efficient than rods. These features may nevertheless have increased light absorption by elongating PBS before multilayered thylakoids with hemidiscoidal PBS evolved. Our results provide insights into the evolution and diversification of light-harvesting strategies before the origin of thylakoids.
Collapse
Affiliation(s)
- Han-Wei Jiang
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Hsiang-Yi Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Chun-Hsiung Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Cheng-Han Yang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Jui-Tse Ko
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Han-Chen Ho
- Department of Anatomy, Tzu Chi University, Hualien, Taiwan
| | - Ming-Daw Tsai
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Fay-Wei Li
- Boyce Thompson Institute, Ithaca, NY, USA
- Plant Biology Section, Cornell University, Ithaca, NY, USA
| | - Meng-Chiao Ho
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan.
- Graduate Institute of Biochemistry and Molecular Biology, National Taiwan University, Taipei, Taiwan.
| | - Ming-Yang Ho
- Department of Life Science, National Taiwan University, Taipei, Taiwan.
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
12
|
Braslavsky SE. Outstanding women scientists who have broadened the knowledge on biological photoreceptors. Photochem Photobiol Sci 2023; 22:2799-2815. [PMID: 37864671 DOI: 10.1007/s43630-023-00487-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/22/2023] [Indexed: 10/23/2023]
Abstract
Short biographical sketches are given of women born before 1955 who have contributed to our knowledge on the function, structure, and molecular basis of biological photoreceptors, both energy converters and photosensors.
Collapse
Affiliation(s)
- Silvia E Braslavsky
- Max Planck Institute for Chemical Energy Conversion, 45410, Mülheim an der Ruhr, Germany.
| |
Collapse
|
13
|
Wang J, Qin S, Lin J, Wang Q, Li W, Gao Y. Phycobiliproteins from microalgae: research progress in sustainable production and extraction processes. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:170. [PMID: 37941077 PMCID: PMC10634026 DOI: 10.1186/s13068-023-02387-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 08/27/2023] [Indexed: 11/10/2023]
Abstract
Phycobiliproteins (PBPs), one of the functional proteins from algae, are natural pigment-protein complex containing various amino acids and phycobilins. It has various activities, such as anti-inflammatory and antioxidant properties. And are potential for applications in food, cosmetics, and biomedicine. Improving their metabolic yield is of great interest. Microalgaes are one of the important sources of PBPs, with high growth rate and have the potential for large-scale production. The key to large-scale PBPs production depends on accumulation and recovery of massive productive alga in the upstream stage and the efficiency of microalgae cells breakup and extract PBPs in the downstream stage. Therefore, we reviewed the status quo in the research and development of PBPs production, summarized the advances in each stage and the feasibility of scaled-up production, and demonstrated challenges and future directions in this field.
Collapse
Affiliation(s)
- Jinxin Wang
- College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Song Qin
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Jian Lin
- College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Qi Wang
- Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China
| | - Wenjun Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China.
- Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China.
| | - Yonglin Gao
- College of Life Sciences, Yantai University, Yantai, 264005, China.
| |
Collapse
|
14
|
Wang H, Zheng Z, Zheng L, Zhang Z, Dong C, Zhao J. Mutagenic analysis of the bundle-shaped phycobilisome from Gloeobacter violaceus. PHOTOSYNTHESIS RESEARCH 2023; 158:81-90. [PMID: 36847892 DOI: 10.1007/s11120-023-01003-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Gloeobacter violaceus is an ancient cyanobacterium as it branches out from the basal position in the phylogenic tree of cyanobacteria. It lacks thylakoid membranes and its unique bundle-shaped type of phycobilisomes (PBS) for light harvesting in photosynthesis are located on the interior side of cytoplasmic membranes. The PBS from G. violaceus have two large linker proteins that are not present in any other PBS, Glr2806, and Glr1262, which are encoded by the genes glr2806 and glr1262, respectively. The location and functions of the linkers Glr2806 and Glr1262 are currently unclear. Here, we report the studies of mutagenetic analysis of glr2806 and the genes of cpeBA, encoding the β and α subunits of phycoerythrin (PE), respectively. In the mutant lacking glr2806, the length of the PBS rods remains unchanged, but the bundles are less tightly packed as examined by electron microscopy with negative staining. It is also shown that two hexamers are missing in the peripheral area of the PBS core, strongly suggesting that the linker Glr2806 is located in the core area instead of the rods. In the mutant lacking the cpeBA genes, PE is no longer present and the PBS rods have only three layers of phycocyanin hexamers. The construction of deletional mutants in G. violaceus, achieved for the first time, provides critical information for our understanding of its unique PBS and should be useful in studies of other aspects of this interesting organism as well.
Collapse
Affiliation(s)
- Hongrui Wang
- State Key Laboratory of Protein and Plant Genetic Engineering, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Zhenggao Zheng
- State Key Laboratory of Protein and Plant Genetic Engineering, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Lvqin Zheng
- State Key Laboratory of Membranes and Membrane Engineering, PKU-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Zhengdong Zhang
- State Key Laboratory of Protein and Plant Genetic Engineering, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Chunxia Dong
- State Key Laboratory of Protein and Plant Genetic Engineering, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Jindong Zhao
- State Key Laboratory of Protein and Plant Genetic Engineering, School of Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
15
|
Gisriel CJ, Elias E, Shen G, Soulier NT, Brudvig GW, Croce R, Bryant DA. Structural comparison of allophycocyanin variants reveals the molecular basis for their spectral differences. PHOTOSYNTHESIS RESEARCH 2023:10.1007/s11120-023-01048-4. [PMID: 37773575 DOI: 10.1007/s11120-023-01048-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/05/2023] [Indexed: 10/01/2023]
Abstract
Allophycocyanins are phycobiliproteins that absorb red light and transfer the energy to the reaction centers of oxygenic photosynthesis in cyanobacteria and red algae. Recently, it was shown that some allophycocyanins absorb far-red light and that one subset of these allophycocyanins, comprising subunits from the ApcD4 and ApcB3 subfamilies (FRL-AP), form helical nanotubes. The lowest energy absorbance maximum of the oligomeric ApcD4-ApcB3 complexes occurs at 709 nm, which is unlike allophycocyanin (AP; ApcA-ApcB) and allophycocyanin B (AP-B; ApcD-ApcB) trimers that absorb maximally at ~ 650 nm and ~ 670 nm, respectively. The molecular bases of the different spectra of AP variants are presently unclear. To address this, we structurally compared FRL-AP with AP and AP-B, performed spectroscopic analyses on FRL-AP, and leveraged computational approaches. We show that among AP variants, the α-subunit constrains pyrrole ring A of its phycocyanobilin chromophore to different extents, and the coplanarity of ring A with rings B and C sets a baseline for the absorbance maximum of the chromophore. Upon oligomerization, the α-chromophores of all AP variants exhibit a red shift of the absorbance maximum of ~ 25 to 30 nm and band narrowing. We exclude excitonic coupling in FRL-AP as the basis for this red shift and extend the results to discuss AP and AP-B. Instead, we attribute these spectral changes to a conformational alteration of pyrrole ring D, which becomes more coplanar with rings B and C upon oligomerization. This study expands the molecular understanding of light-harvesting attributes of phycobiliproteins and will aid in designing phycobiliproteins for biotechnological applications.
Collapse
Affiliation(s)
| | - Eduard Elias
- Department of Physics and Astronomy and Institute for Lasers, Life and Biophotonics, Faculty of Sciences, VU University Amsterdam, 1081 HV, Amsterdam, Netherlands
| | - Gaozhong Shen
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Nathan T Soulier
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Biology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Gary W Brudvig
- Department of Chemistry, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Roberta Croce
- Department of Physics and Astronomy and Institute for Lasers, Life and Biophotonics, Faculty of Sciences, VU University Amsterdam, 1081 HV, Amsterdam, Netherlands.
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
16
|
Aguilera A, Alegria Zufia J, Bas Conn L, Gurlit L, Śliwińska-Wilczewska S, Budzałek G, Lundin D, Pinhassi J, Legrand C, Farnelid H. Ecophysiological analysis reveals distinct environmental preferences in closely related Baltic Sea picocyanobacteria. Environ Microbiol 2023; 25:1674-1695. [PMID: 37655642 DOI: 10.1111/1462-2920.16384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 03/31/2023] [Indexed: 09/02/2023]
Abstract
Cluster 5 picocyanobacteria significantly contribute to primary productivity in aquatic ecosystems. Estuarine populations are highly diverse and consist of many co-occurring strains, but their physiology remains largely understudied. In this study, we characterized 17 novel estuarine picocyanobacterial strains. Phylogenetic analysis of the 16S rRNA and pigment genes (cpcB and cpeBA) uncovered multiple estuarine and freshwater-related clusters and pigment types. Assays with five representative strains (three phycocyanin rich and two phycoerythrin rich) under temperature (10-30°C), light (10-190 μmol photons m-2 s-1 ), and salinity (2-14 PSU) gradients revealed distinct growth optima and tolerance, indicating that genetic variability was accompanied by physiological diversity. Adaptability to environmental conditions was associated with differential pigment content and photosynthetic performance. Amplicon sequence variants at a coastal and an offshore station linked population dynamics with phylogenetic clusters, supporting that strains isolated in this study represent key ecotypes within the Baltic Sea picocyanobacterial community. The functional diversity found within strains with the same pigment type suggests that understanding estuarine picocyanobacterial ecology requires analysis beyond the phycocyanin and phycoerythrin divide. This new knowledge of the environmental preferences in estuarine picocyanobacteria is important for understanding and evaluating productivity in current and future ecosystems.
Collapse
Affiliation(s)
- Anabella Aguilera
- Department of Biology and Environmental Science, Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Javier Alegria Zufia
- Department of Biology and Environmental Science, Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Laura Bas Conn
- Department of Biology and Environmental Science, Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Leandra Gurlit
- Department of Biology and Environmental Science, Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Sylwia Śliwińska-Wilczewska
- Mount Allison University, Sackville, New Brunswick, Canada
- Laboratory of Marine Plant Ecophysiology, Institute of Oceanography, University of Gdansk, Gdynia, Poland
| | - Gracjana Budzałek
- Laboratory of Marine Plant Ecophysiology, Institute of Oceanography, University of Gdansk, Gdynia, Poland
| | - Daniel Lundin
- Department of Biology and Environmental Science, Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Jarone Pinhassi
- Department of Biology and Environmental Science, Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Catherine Legrand
- Department of Biology and Environmental Science, Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
- School of Business, Innovation and Sustainability, Halmstad University, Halmstad, Sweden
| | - Hanna Farnelid
- Department of Biology and Environmental Science, Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| |
Collapse
|
17
|
Gisriel CJ, Elias E, Shen G, Soulier NT, Flesher DA, Gunner MR, Brudvig GW, Croce R, Bryant DA. Helical allophycocyanin nanotubes absorb far-red light in a thermophilic cyanobacterium. SCIENCE ADVANCES 2023; 9:eadg0251. [PMID: 36961897 PMCID: PMC10038336 DOI: 10.1126/sciadv.adg0251] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
To compete in certain low-light environments, some cyanobacteria express a paralog of the light-harvesting phycobiliprotein, allophycocyanin (AP), that strongly absorbs far-red light (FRL). Using cryo-electron microscopy and time-resolved absorption spectroscopy, we reveal the structure-function relationship of this FRL-absorbing AP complex (FRL-AP) that is expressed during acclimation to low light and that likely associates with chlorophyll a-containing photosystem I. FRL-AP assembles as helical nanotubes rather than typical toroids due to alterations of the domain geometry within each subunit. Spectroscopic characterization suggests that FRL-AP nanotubes are somewhat inefficient antenna; however, the enhanced ability to harvest FRL when visible light is severely attenuated represents a beneficial trade-off. The results expand the known diversity of light-harvesting proteins in nature and exemplify how biological plasticity is achieved by balancing resource accessibility with efficiency.
Collapse
Affiliation(s)
| | - Eduard Elias
- Department of Physics and Astronomy, and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Gaozhong Shen
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Nathan T. Soulier
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - David A. Flesher
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - M. R. Gunner
- Department of Physics, City College of New York, New York, NY 10031, USA
| | - Gary W. Brudvig
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Roberta Croce
- Department of Physics and Astronomy, and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Donald A. Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
18
|
Peña-Medina RL, Fimbres-Olivarría D, Enríquez-Ocaña LF, Martínez-Córdova LR, Del-Toro-Sánchez CL, López-Elías JA, González-Vega RI. Erythroprotective Potential of Phycobiliproteins Extracted from Porphyridium cruentum. Metabolites 2023; 13:metabo13030366. [PMID: 36984806 PMCID: PMC10057957 DOI: 10.3390/metabo13030366] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/22/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
There are multiple associations between the different blood groups (ABO and RhD) and the incidence of oxidative stress-related diseases, such as certain carcinomas and COVID-19. Bioactive compounds represent an alternative to its prevention and treatment. Phycobiliproteins (PBP) are bioactive compounds present in the microalga Porphyridium cruentum and, despite its antioxidant activity, their inhibitory effect on hemolysis has not been reported. The aim of this work was to evaluate the erythroprotective potential of phycobiliproteins from P. cruentum in different blood groups. The microalga was cultured in F/2 medium under controlled laboratory conditions. Day 10 of culture was determined as the harvest point. The microalgal biomass was lyophilized and a methanolic (MetOH), Tris HCl (T-HCl), and a physiological solution (PS) ultrasound-assisted extraction were performed. Extract pigments were quantified by spectrophotometry. The antioxidant activity of the extracts was evaluated with the ABTS+•, DPPH•, and FRAP methods, finding that the main antioxidant mechanism on the aqueous extracts was HAT (hydrogen atom transfer), while for MetOH it was SET (single electron transfer). The results of the AAPH, hypotonicity, and heat-induced hemolysis revealed a probable relationship between the different antigens (ABO and RhD) with the antihemolytic effect, highlighting the importance of bio-directed drugs.
Collapse
Affiliation(s)
- Rubria Lucía Peña-Medina
- Department of Scientific and Technological Research, University of Sonora, Blvd Luis Encinas y Reforma S/N, Col. Centro, Hermosillo 83000, Mexico
| | - Diana Fimbres-Olivarría
- Department of Scientific and Technological Research, University of Sonora, Blvd Luis Encinas y Reforma S/N, Col. Centro, Hermosillo 83000, Mexico
- Correspondence: (D.F.-O.); (R.I.G.-V.)
| | - Luis Fernando Enríquez-Ocaña
- Department of Scientific and Technological Research, University of Sonora, Blvd Luis Encinas y Reforma S/N, Col. Centro, Hermosillo 83000, Mexico
| | - Luis Rafael Martínez-Córdova
- Department of Scientific and Technological Research, University of Sonora, Blvd Luis Encinas y Reforma S/N, Col. Centro, Hermosillo 83000, Mexico
| | - Carmen Lizette Del-Toro-Sánchez
- Department of Research and Postgraduate in Food, University of Sonora, Blvd Luis Encinas y Rosales S/N, Col. Centro, Hermosillo 83000, Mexico
| | - José Antonio López-Elías
- Department of Scientific and Technological Research, University of Sonora, Blvd Luis Encinas y Reforma S/N, Col. Centro, Hermosillo 83000, Mexico
| | - Ricardo Iván González-Vega
- Department of Medical and Life Sciences, Cienega University Center (CUCIÉNEGA), University of Guadalajara, Av. Universidad 1115, Lindavista, Ocotlán 47820, Mexico
- Correspondence: (D.F.-O.); (R.I.G.-V.)
| |
Collapse
|
19
|
Hernández-Martínez I, González-Resendiz L, Sánchez-García L, Vigueras-Ramírez G, Arroyo-Maya IJ, Morales-Ibarría M. C-phycocyanin production with high antioxidant activity of a new thermotolerant freshwater Desertifilum tharense UAM-C/S02 strain. BIORESOURCE TECHNOLOGY 2023; 369:128431. [PMID: 36470497 DOI: 10.1016/j.biortech.2022.128431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
A native cyanobacterial strain, Desertifilum tharense UAM-C/S02, was studied as a possible C-phycocyanin (C-PC) producer. Photosynthetic activity (PA) assays through oxygen production determined the proper temperature and range of irradiances to be tested in a stirred tank photobioreactor. The highest C-PC productivity (97 mg L-1 d-1), with a yield of 86.46 mgC-PC gB-1 was obtained at 730 µmol photons m-2 s-1 with a biomass productivity of 608 mg L-1 d-1 and the CO2 fixation rate was 1,194 mg L-1 d-1. The 1.81 crude extract purity value is the highest reported for this genus, which was improved to biomarker-grade purity after a two-step purification strategy comprising precipitation with ammonium sulfate, followed by dialysis. The purified C-PC was almost entirely radical-free using 1 mg mL-1, which validates its potential use in therapeutic formulations.
Collapse
Affiliation(s)
- Ingrid Hernández-Martínez
- Doctorado en Ciencias Naturales e Ingeniería, Universidad Autónoma Metropolitana-Cuajimalpa, Av. Vasco de Quiroga 4871, Santa Fe Cuajimalpa C.P. 05348, México
| | - Laura González-Resendiz
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana-Cuajimalpa, Av. Vasco de Quiroga 4871, Santa Fe Cuajimalpa C.P. 05348, México
| | - León Sánchez-García
- Doctorado en Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, C.P. 09340, México
| | - Gabriel Vigueras-Ramírez
- Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana-Cuajimalpa, Av. Vasco de Quiroga 4871, Santa Fe Cuajimalpa C.P. 05348, México
| | - Izlia J Arroyo-Maya
- Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana-Cuajimalpa, Av. Vasco de Quiroga 4871, Santa Fe Cuajimalpa C.P. 05348, México
| | - Marcia Morales-Ibarría
- Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana-Cuajimalpa, Av. Vasco de Quiroga 4871, Santa Fe Cuajimalpa C.P. 05348, México.
| |
Collapse
|
20
|
Srivastava A, Kumar A, Biswas S, Kumar R, Srivastava V, Rajaram H, Mishra Y. Gamma (γ)-radiation stress response of the cyanobacterium Anabaena sp. PCC7120: Regulatory role of LexA and photophysiological changes. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 326:111529. [PMID: 36332765 DOI: 10.1016/j.plantsci.2022.111529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/28/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
High radioresistance of the cyanobacterium, Anabaena sp. PCC7120 has been attributed to efficient DNA repair, protein recycling, and oxidative stress management. However, the regulatory network involved in these batteries of responses remains unexplored. In the present study, the role of a global regulator, LexA in modulating gamma (γ)-radiation stress response of Anabaena was investigated. Comparison of the cytosolic proteome profiles upon γ-radiation in recombinant Anabaena strains, AnpAM (vector-control) and AnlexA+ (LexA-overexpressing), revealed 41 differentially accumulated proteins, corresponding to 29 distinct proteins. LexA was found to be involved in the regulation of 27 of the corresponding genes based on the presence of AnLexA-Box, EMSA, and/or qRT-PCR studies. The majority of the regulated genes were found to be involved in C-assimilation either through photosynthesis or C-catabolism and oxidative stress alleviation. Photosynthesis, measured in terms of PSII photophysiological parameters and thylakoid membrane proteome was found to be affected by γ-radiation in both AnpAM and AnlexA+ cells, with LexA affecting them even under control growth conditions. Thus, LexA functioned as one of the transcriptional regulators involved in modulating γ-radiation stress response in Anabaena. This study could pave the way for a deeper understanding of the regulation of γ-radiation-responsive genes in cyanobacteria at large.
Collapse
Affiliation(s)
- Akanksha Srivastava
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Arvind Kumar
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Subhankar Biswas
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Rajender Kumar
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), AlbaNova University Centre, Stockholm 10691, Sweden
| | - Vaibhav Srivastava
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), AlbaNova University Centre, Stockholm 10691, Sweden
| | - Hema Rajaram
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India.
| | - Yogesh Mishra
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
21
|
Courtecuisse E, Marchetti E, Oxborough K, Hunter PD, Spyrakos E, Tilstone GH, Simis SGH. Optimising Multispectral Active Fluorescence to Distinguish the Photosynthetic Variability of Cyanobacteria and Algae. SENSORS (BASEL, SWITZERLAND) 2023; 23:461. [PMID: 36617057 PMCID: PMC9823434 DOI: 10.3390/s23010461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/20/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
This study assesses the ability of a new active fluorometer, the LabSTAF, to diagnostically assess the physiology of freshwater cyanobacteria in a reservoir exhibiting annual blooms. Specifically, we analyse the correlation of relative cyanobacteria abundance with photosynthetic parameters derived from fluorescence light curves (FLCs) obtained using several combinations of excitation wavebands, photosystem II (PSII) excitation spectra and the emission ratio of 730 over 685 nm (Fo(730/685)) using excitation protocols with varying degrees of sensitivity to cyanobacteria and algae. FLCs using blue excitation (B) and green−orange−red (GOR) excitation wavebands capture physiology parameters of algae and cyanobacteria, respectively. The green−orange (GO) protocol, expected to have the best diagnostic properties for cyanobacteria, did not guarantee PSII saturation. PSII excitation spectra showed distinct response from cyanobacteria and algae, depending on spectral optimisation of the light dose. Fo(730/685), obtained using a combination of GOR excitation wavebands, Fo(GOR, 730/685), showed a significant correlation with the relative abundance of cyanobacteria (linear regression, p-value < 0.01, adjusted R2 = 0.42). We recommend using, in parallel, Fo(GOR, 730/685), PSII excitation spectra (appropriately optimised for cyanobacteria versus algae), and physiological parameters derived from the FLCs obtained with GOR and B protocols to assess the physiology of cyanobacteria and to ultimately predict their growth. Higher intensity LEDs (G and O) should be considered to reach PSII saturation to further increase diagnostic sensitivity to the cyanobacteria component of the community.
Collapse
Affiliation(s)
| | - Elias Marchetti
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - Kevin Oxborough
- Chelsea Technologies Ltd., 55 Central Avenue West Molesey, Surrey KT8 2QZ, UK
| | - Peter D. Hunter
- Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| | - Evangelos Spyrakos
- Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| | | | | |
Collapse
|
22
|
A Review on a Hidden Gem: Phycoerythrin from Blue-Green Algae. Mar Drugs 2022; 21:md21010028. [PMID: 36662201 PMCID: PMC9863059 DOI: 10.3390/md21010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/21/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022] Open
Abstract
Phycoerythrin (PE) is a pink/red-colored pigment found in rhodophytes, cryptophytes, and blue-green algae (cyanobacteria). The interest in PE is emerging from its role in delivering health benefits. Unfortunately, the current cyanobacterial-PE (C-PE) knowledge is still in the infant stage. It is essential to acquire a more comprehensive understanding of C-PE. This study aimed to review the C-PE structure, up and downstream processes of C-PE, application of C-PE, and strategies to enhance its stability and market value. In addition, this study also presented a strengths, weaknesses, opportunities, and threats (SWOT) analysis on C-PE. Cyanobacteria appeared to be the more promising PE producers compared to rhodophytes, cryptophytes, and macroalgae. Green/blue light is preferred to accumulate higher PE content in cyanobacteria. Currently, the prominent C-PE extraction method is repeated freezing-thawing. A combination of precipitation and chromatography approaches is proposed to obtain greater purity of C-PE. C-PE has been widely exploited in various fields, such as nutraceuticals, pharmaceuticals, therapeutics, cosmetics, biotechnology, food, and feed, owing to its bioactivities and fluorescent properties. This review provides insight into the state-of-art nature of C-PE and advances a step further in commercializing this prospective pigment.
Collapse
|
23
|
Allophycocyanin A is a carbon dioxide receptor in the cyanobacterial phycobilisome. Nat Commun 2022; 13:5289. [PMID: 36075935 PMCID: PMC9458709 DOI: 10.1038/s41467-022-32925-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 08/24/2022] [Indexed: 11/10/2022] Open
Abstract
Light harvesting is fundamental for production of ATP and reducing equivalents for CO2 fixation during photosynthesis. However, electronic energy transfer (EET) through a photosystem can harm the photosynthetic apparatus when not balanced with CO2. Here, we show that CO2 binding to the light-harvesting complex modulates EET in photosynthetic cyanobacteria. More specifically, CO2 binding to the allophycocyanin alpha subunit of the light-harvesting complex regulates EET and its fluorescence quantum yield in the cyanobacterium Synechocystis sp. PCC 6803. CO2 binding decreases the inter-chromophore distance in the allophycocyanin trimer. The result is enhanced EET in vitro and in live cells. Our work identifies a direct target for CO2 in the cyanobacterial light-harvesting apparatus and provides insights into photosynthesis regulation. The transfer of electronic energy through a photosystem can harm the photosynthetic apparatus when not balanced with CO2 fixation. Here, the authors show that CO2 modulates electronic energy transfer in cyanobacteria by binding to and enhancing the activity of the light-harvesting complex.
Collapse
|
24
|
Tsoraev GV, Protasova EA, Klimanova EA, Ryzhykau YL, Kuklin AI, Semenov YS, Ge B, Li W, Qin S, Friedrich T, Sluchanko NN, Maksimov EG. Anti-Stokes fluorescence excitation reveals conformational mobility of the C-phycocyanin chromophores. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2022; 9:054701. [PMID: 36065339 PMCID: PMC9440762 DOI: 10.1063/4.0000164] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 08/08/2022] [Indexed: 05/15/2023]
Abstract
The structural organization of natural pigment-protein complexes provides a specific environment for the chromophore groups. Yet, proteins are inherently dynamic and conformationally mobile. In this work, we demonstrate the heterogeneity of chromophores of C-phycocyanin (C-PC) from Arthrospira platensis. Part of the population of trimeric C-PC is subject to spontaneous disturbances of protein-protein interactions resulting in increased conformational mobility of the chromophores. Upon fluorescence excitation in the visible range, the spectral signatures of these poorly populated states are masked by bulk chromophore states, but the former could be clearly discriminated when the fluorescence is excited by near-infrared quanta. Such selective excitation of conformationally mobile C-PC chromophores is due to the structure of their S1 level, which is characterized by a significantly broadened spectral line. We demonstrate that the anti-Stokes C-PC fluorescence is the result of single-photon absorption. By combining spectral and structural methods, we characterize four distinct states of C-PC chromophores emitting at 620, 650, 665, and 720 nm and assigned the fast component in the anti-Stokes fluorescence decay kinetics in the range of 690-750 nm to the chromophores with increased conformational mobility. Our data suggest that the spectral and temporal characteristics of the anti-Stokes fluorescence can be used to study protein dynamics and develop methods to visualize local environment parameters such as temperature.
Collapse
Affiliation(s)
- Georgy V. Tsoraev
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Elena A. Protasova
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | | | | | | | - Yury S. Semenov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russia
| | - Baosheng Ge
- China University of Petroleum (Huadong), College of Chemical Engineering, Qingdao 266580, People's Republic of China
| | - Wenjun Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, People's Republic of China
| | | | - Thomas Friedrich
- Technical University of Berlin, Institute of Chemistry PC 14, D-10623 Berlin, Germany
| | - Nikolai N. Sluchanko
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia
| | - Eugene G. Maksimov
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
- Author to whom correspondence should be addressed:. Tel.: +7 (926) 735–04-37
| |
Collapse
|
25
|
Patel SN, Sonani RR, Roy D, Singh NK, Subudhi S, Pabbi S, Madamwar D. Exploring the structural aspects and therapeutic perspectives of cyanobacterial phycobiliproteins. 3 Biotech 2022; 12:224. [PMID: 35975025 PMCID: PMC9375810 DOI: 10.1007/s13205-022-03284-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/28/2022] [Indexed: 11/01/2022] Open
Abstract
Phycobiliproteins (PBPs) of cyanobacteria and algae possess unique light harvesting capacity which expand the photosynthetically active region (PAR) and allow them to thrive in extreme niches where higher plants cannot. PBPs of cyanobacteria/algae vary in abundance, types, amino acid composition and in structure as a function of species and the habitat that they grow in. In the present review, the key aspects of structure, stability, and spectral properties of PBPs, and their correlation with ecological niche of cyanobacteria are discussed. Besides their role in light-harvesting, PBPs possess antioxidant, anti-aging, neuroprotective, hepatoprotective and anti-inflammatory properties, which can be used in therapeutics. Recent developments in therapeutic applications of PBPs are reviewed with special focus on 'route of PBPs administration' and 'therapeutic potential of PBP-derived peptide and chromophores'.
Collapse
Affiliation(s)
- Stuti N. Patel
- P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Anand, Gujarat 388421 India
- Post-Graduate Department of Biosciences, UGC-Centre of Advanced Study, Sardar Patel University, Satellite Campus, Vadtal Road, Bakrol, Anand, Gujarat 388315 India
- Present Address: Małopolska Centre of Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Ravi R. Sonani
- Present Address: Małopolska Centre of Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908 USA
| | - Diya Roy
- Centre for Conservation and Utilisation of Blue Green Algae (CCUBGA), Division of Microbiology, ICAR - Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Niraj Kumar Singh
- Department of Biotechnology, Shree A. N. Patel PG Institute of Science and Research, Sardar Patel University, Anand, Gujarat 388001 India
- Present Address: Gujarat Biotechnology Research Centre (GBRC), Deaprtment of Science and Technology (DST), Government of Gujarat, Gandhinagar, Gujarat 382011 India
| | - Sanjukta Subudhi
- The Energy and Resources Institute Darbari Seth Block, India Habitat Centre, Lodi Road, New Delhi, 110003 India
| | - Sunil Pabbi
- Centre for Conservation and Utilisation of Blue Green Algae (CCUBGA), Division of Microbiology, ICAR - Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Datta Madamwar
- P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Anand, Gujarat 388421 India
| |
Collapse
|
26
|
Konarzewska Z, Śliwińska-Wilczewska S, Felpeto AB, Latała A. Effects of light intensity, temperature, and salinity in allelopathic interactions between coexisting Synechococcus sp. phenotypes. MARINE ENVIRONMENTAL RESEARCH 2022; 179:105671. [PMID: 35675719 DOI: 10.1016/j.marenvres.2022.105671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 05/27/2022] [Accepted: 05/29/2022] [Indexed: 06/15/2023]
Abstract
Organisms from the Synechococcus genus constitute one of the major contributors to oceanic primary production, broadly distributed in waters with wide range of environmental conditions. This work investigated the influence of abiotic factors (temperature, irradiance, and salinity) on the strength of allelopathic interactions between different phenotypes of picoplanktonic cyanobacteria of the genus Synechococcus sp. (Type 1, Type 2, and Type 3a) employing mixed cultures and cell-free filtrate assays. The response variables studied were population growth and content of photosynthetic pigments: chlorophyll a (Chl a), carotenoids (Car), phycocyanin (PC), phycoerythrin (PE), and allophycocyanin (APC). Temperature was shown to be the most significant abiotic factor impacting the allelopathy of Synechococcus sp. phenotypes, with the Type 2 most significantly impacted. Irradiance also had a significant effect, having the largest effect on allelopathy of Type 3a phenotype. Changes in salinity had the greatest effect on allelopathy of Type 1. Our study has shown the significant influence of temperature, irradiance, and salinity on the strength of allelopathic compounds secreted by Synechococcus sp. phenotypes, with temperature the most significantly affecting allelopathic properties. Moreover, we discovered that the allelopathic response to changing environmental factors is highly phenotype-specific. This differential response of allelopathy could help different phenotypes of Synechococcus sp. to coexist in the water column.
Collapse
Affiliation(s)
- Zofia Konarzewska
- Division of Marine Ecosystems Functioning, Institute of Oceanography, University of Gdańsk, Av. Piłsudskiego 46, 81-378, Gdynia, Poland.
| | - Sylwia Śliwińska-Wilczewska
- Division of Marine Ecosystems Functioning, Institute of Oceanography, University of Gdańsk, Av. Piłsudskiego 46, 81-378, Gdynia, Poland; Mount Allison University, 62 York St, Sackville, NBE4L 1E2, Canada
| | - Aldo Barreiro Felpeto
- Interdisciplinary Center of Marine and Environmental Research-CIMAR/CIIMAR, University of Porto, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| | - Adam Latała
- Division of Marine Ecosystems Functioning, Institute of Oceanography, University of Gdańsk, Av. Piłsudskiego 46, 81-378, Gdynia, Poland
| |
Collapse
|
27
|
Core and rod structures of a thermophilic cyanobacterial light-harvesting phycobilisome. Nat Commun 2022; 13:3389. [PMID: 35715389 PMCID: PMC9205905 DOI: 10.1038/s41467-022-30962-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 05/24/2022] [Indexed: 11/21/2022] Open
Abstract
Cyanobacteria, glaucophytes, and rhodophytes utilize giant, light-harvesting phycobilisomes (PBSs) for capturing solar energy and conveying it to photosynthetic reaction centers. PBSs are compositionally and structurally diverse, and exceedingly complex, all of which pose a challenge for a comprehensive understanding of their function. To date, three detailed architectures of PBSs by cryo-electron microscopy (cryo-EM) have been described: a hemiellipsoidal type, a block-type from rhodophytes, and a cyanobacterial hemidiscoidal-type. Here, we report cryo-EM structures of a pentacylindrical allophycocyanin core and phycocyanin-containing rod of a thermophilic cyanobacterial hemidiscoidal PBS. The structures define the spatial arrangement of protein subunits and chromophores, crucial for deciphering the energy transfer mechanism. They reveal how the pentacylindrical core is formed, identify key interactions between linker proteins and the bilin chromophores, and indicate pathways for unidirectional energy transfer. Phycobilisome (PBS) absorbs solar energy and transfer the energy to photosynthetic membrane proteins. In this study, the structures of the pentacylindrical core and rod in PBS from a thermophilic cyanobacterium by cryo-electron microscopy.
Collapse
|
28
|
Growth and phycocyanin production with Galdieria sulphuraria UTEX 2919 using xylose, glucose, and corn stover hydrolysates under heterotrophy and mixotrophy. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
29
|
Limrujiwat K, Supan S, Khetkorn W. Cyanobacterial biodiversity from Thai karstic caves as a potential source for phycobiliprotein production. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Assessment of novel halo- and thermotolerant desert cyanobacteria for phycobiliprotein production. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
31
|
Tan HT, Yusoff FM, Khaw YS, Ahmad SA, Shaharuddin NA. Uncovering Research Trends of Phycobiliproteins Using Bibliometric Approach. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112358. [PMID: 34834721 PMCID: PMC8622606 DOI: 10.3390/plants10112358] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Phycobiliproteins are gaining popularity as long-term, high-value natural products which can be alternatives to synthetic products. This study analyzed research trends of phycobiliproteins from 1909 to 2020 using a bibliometric approach based on the Scopus database. The current findings showed that phycobiliprotein is a burgeoning field in terms of publications outputs with "biochemistry, genetics, and molecular biology" as the most related and focused subject. The Journal of Applied Phycology was the most productive journal in publishing articles on phycobiliproteins. Although the United States of America (U.S.A.) contributed the most publications on phycobiliproteins, the Chinese Academy of Sciences (China) is the institution with the largest number of publications. The most productive author on phycobiliproteins was Glazer, Alexander N. (U.S.A.). The U.S.A. and Germany were at the forefront of international collaboration in this field. According to the keyword analysis, the most explored theme was the optimization of microalgae culture parameters and phycobiliproteins extraction methods. The bioactivity properties and extraction of phycobiliproteins were identified as future research priorities. Synechococcus and Arthrospira were the most cited genera. This study serves as an initial step in fortifying the phycobiliproteins market, which is expected to exponentially expand in the future. Moreover, further research and global collaboration are necessary to commercialize phycobiliproteins and increase the consumer acceptability of the pigments and their products.
Collapse
Affiliation(s)
- Hui Teng Tan
- Aquatic Animal Health and Therapeutics Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (H.T.T.); (Y.S.K.)
| | - Fatimah Md. Yusoff
- International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, Port Dickson 71050, Negeri Sembilan, Malaysia
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Yam Sim Khaw
- Aquatic Animal Health and Therapeutics Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (H.T.T.); (Y.S.K.)
| | - Siti Aqlima Ahmad
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (S.A.A.); (N.A.S.)
| | - Noor Azmi Shaharuddin
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (S.A.A.); (N.A.S.)
| |
Collapse
|
32
|
Minato T, Teramoto T, Adachi N, Hung NK, Yamada K, Kawasaki M, Akutsu M, Moriya T, Senda T, Ogo S, Kakuta Y, Yoon KS. Non-conventional octameric structure of C-phycocyanin. Commun Biol 2021; 4:1238. [PMID: 34716405 PMCID: PMC8556327 DOI: 10.1038/s42003-021-02767-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 10/05/2021] [Indexed: 11/29/2022] Open
Abstract
C-phycocyanin (CPC), a blue pigment protein, is an indispensable component of giant phycobilisomes, which are light-harvesting antenna complexes in cyanobacteria that transfer energy efficiently to photosystems I and II. X-ray crystallographic and electron microscopy (EM) analyses have revealed the structure of CPC to be a closed toroidal hexamer by assembling two trimers. In this study, the structural characterization of non-conventional octameric CPC is reported for the first time. Analyses of the crystal and cryogenic EM structures of the native CPC from filamentous thermophilic cyanobacterium Thermoleptolyngbya sp. O–77 unexpectedly illustrated the coexistence of conventional hexamer and novel octamer. In addition, an unusual dimeric state, observed via analytical ultracentrifugation, was postulated to be a key intermediate structure in the assemble of the previously unobserved octamer. These observations provide new insights into the assembly processes of CPCs and the mechanism of energy transfer in the light-harvesting complexes. Takuo Minato and colleagues determine the crystal and cryo-EM structures of the native C-phycocyanin (CPC) from the thermophilic cyanobacterium, Thermoleptolyngbya sp. O77, which was found to adopt both a conventional hexameric structure and a novel octameric assembly. These findings provide new insights into the assembly of CPCs and their mechanism of energy transfer.
Collapse
Affiliation(s)
- Takuo Minato
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan.,International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan.,Department of Applied Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8527, Japan
| | - Takamasa Teramoto
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Naruhiko Adachi
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan
| | - Nguyen Khac Hung
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan.,International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Kaho Yamada
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan.,International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Masato Kawasaki
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan.,Department of Materials Structure Science, School of High Energy Accelerator Science, The Graduate University of Advanced Studies (Soken-dai), 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan
| | - Masato Akutsu
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan
| | - Toshio Moriya
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan
| | - Toshiya Senda
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan.,Department of Materials Structure Science, School of High Energy Accelerator Science, The Graduate University of Advanced Studies (Soken-dai), 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan
| | - Seiji Ogo
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan.,International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan.,Center for Small Molecule Energy, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Yoshimitsu Kakuta
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan. .,Laboratory of Structural Biology, Graduate School of System Life Sciences, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan.
| | - Ki-Seok Yoon
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan. .,International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan. .,Center for Small Molecule Energy, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan.
| |
Collapse
|
33
|
Whole-genome characterization and comparative genomics of a novel freshwater cyanobacteria species: Pseudanabaena punensis. Mol Phylogenet Evol 2021; 164:107272. [PMID: 34332035 DOI: 10.1016/j.ympev.2021.107272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 07/21/2021] [Accepted: 07/26/2021] [Indexed: 11/23/2022]
Abstract
Cyanobacteria are emerging as a potential source of novel, beneficial bioactive compounds. However, some cyanobacteria species can harm water quality and public health through the production of toxins. Therefore, surveying the occurrence and generating genomic resources of cyanobacteria producing harmful compounds could help develop the control methods necessary to manage their growth and limit the release contaminants into the water bodies. Here, we describe a novel strain, Pseudanabaena punensis isolated from the open ends of pipelines supplying freshwater. This isolate was characterized morphologically, biochemically and by whole-genome sequence analysis. We also provide genomic information for P. punensis to help understand and highlight the features unique to this isolate. Morphological and genetic (analysis using 16S rRNA and rbcL genes) data were used to assign this novel strain to phylogenetic and taxonomic groups. The isolate was identified as a filamentous and non-heterocystous cyanobacteria. Based on morphological and 16S rRNA phylogeny, this isolate shares characteristics with the Pseudanabaenaceae family, but remains distinct from well-characterized species suggesting its polyphyletic assemblage. The whole-genome sequence analysis suggests greater genomic and phenotypic plasticity. Genome-wide sequence and comparative genomic analyses, comparing against several closely related species, revealed diverse and important genes associated with synthesizing bioactive compounds, multi-drug resistance pathway, heavy metal resistance, and virulence factors. This isolate also produces several important fatty acids with potential industrial applications. The observations described in this study emphasize both industrial applications and risks associated with the freshwater contamination, and therefore genomic resources provided in this study offer an opportunity for further investigations.
Collapse
|
34
|
Abstract
Phycobilisomes (PBSs) are extremely large chromophore-protein complexes on the stromal side of the thylakoid membrane in cyanobacteria and red algae. The main function of PBSs is light harvesting, and they serve as antennas and transfer the absorbed energy to the reaction centers of two photosynthetic systems (photosystems I and II). PBSs are composed of phycobiliproteins and linker proteins. How phycobiliproteins and linkers are organized in PBSs and how light energy is efficiently harvested and transferred in PBSs are the fundamental questions in the study of photosynthesis. In this review, the structures of the red algae Griffithsia pacifica and Porphyridium purpureum are discussed in detail, along with the functions of linker proteins in phycobiliprotein assembly and in fine-tuning the energy state of chromophores.
Collapse
Affiliation(s)
- Sen-Fang Sui
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology and Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China;
| |
Collapse
|
35
|
Rahmatpour N, Hauser DA, Nelson JM, Chen PY, Villarreal A JC, Ho MY, Li FW. A novel thylakoid-less isolate fills a billion-year gap in the evolution of Cyanobacteria. Curr Biol 2021; 31:2857-2867.e4. [PMID: 33989529 DOI: 10.1016/j.cub.2021.04.042] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/02/2021] [Accepted: 04/16/2021] [Indexed: 12/31/2022]
Abstract
Cyanobacteria have played pivotal roles in Earth's geological history, especially during the rise of atmospheric oxygen. However, our ability to infer the early transitions in Cyanobacteria evolution has been limited by their extremely lopsided tree of life-the vast majority of extant diversity belongs to Phycobacteria (or "crown Cyanobacteria"), while its sister lineage, Gloeobacteria, is depauperate and contains only two closely related species of Gloeobacter and a metagenome-assembled genome. Here, we describe a new cultured member of Gloeobacteria, Anthocerotibacter panamensis, isolated from a tropical hornwort. Anthocerotibacter diverged from Gloeobacter over 1.4 Ga ago and has low 16S rDNA identities with environmental samples. Our ultrastructural, physiological, and genomic analyses revealed that this species possesses a unique combination of traits that are exclusively shared with either Gloeobacteria or Phycobacteria. For example, similar to Gloeobacter, it lacks thylakoids and circadian clock genes, but the carotenoid biosynthesis pathway is typical of Phycobacteria. Furthermore, Anthocerotibacter has one of the most reduced gene sets for photosystems and phycobilisomes among Cyanobacteria. Despite this, Anthocerotibacter is capable of oxygenic photosynthesis under a wide range of light intensities, albeit with much less efficiency. Given its key phylogenetic position, distinct trait combination, and availability as a culture, Anthocerotibacter opens a new window to further illuminate the dawn of oxygenic photosynthesis.
Collapse
Affiliation(s)
| | | | | | - Pa Yu Chen
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Juan Carlos Villarreal A
- Department of Biology, Laval University, Quebec City, QC, Canada; Smithsonian Tropical Research Institute, Panama City, Panama
| | - Ming-Yang Ho
- Department of Life Science, National Taiwan University, Taipei, Taiwan; Institute of Plant Biology, National Taiwan University, Taipei, Taiwan.
| | - Fay-Wei Li
- Boyce Thompson Institute, Ithaca, NY, USA; Plant Biology Section, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
36
|
Isolation of Industrial Important Bioactive Compounds from Microalgae. Molecules 2021; 26:molecules26040943. [PMID: 33579001 PMCID: PMC7916812 DOI: 10.3390/molecules26040943] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/24/2020] [Accepted: 01/05/2021] [Indexed: 12/24/2022] Open
Abstract
Microalgae are known as a rich source of bioactive compounds which exhibit different biological activities. Increased demand for sustainable biomass for production of important bioactive components with various potential especially therapeutic applications has resulted in noticeable interest in algae. Utilisation of microalgae in multiple scopes has been growing in various industries ranging from harnessing renewable energy to exploitation of high-value products. The focuses of this review are on production and the use of value-added components obtained from microalgae with current and potential application in the pharmaceutical, nutraceutical, cosmeceutical, energy and agri-food industries, as well as for bioremediation. Moreover, this work discusses the advantage, potential new beneficial strains, applications, limitations, research gaps and future prospect of microalgae in industry.
Collapse
|
37
|
Soulier N, Bryant DA. The structural basis of far-red light absorbance by allophycocyanins. PHOTOSYNTHESIS RESEARCH 2021; 147:11-26. [PMID: 33058014 DOI: 10.1007/s11120-020-00787-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/02/2020] [Indexed: 06/11/2023]
Abstract
Phycobilisomes (PBS), the major light-harvesting antenna in cyanobacteria, are supramolecular complexes of colorless linkers and heterodimeric, pigment-binding phycobiliproteins. Phycocyanin and phycoerythrin commonly comprise peripheral rods, and a multi-cylindrical core is principally assembled from allophycocyanin (AP). Each AP subunit binds one phycocyanobilin (PCB) chromophore, a linear tetrapyrrole that predominantly absorbs in the orange-red region of the visible spectrum (600-700 nm). AP facilitates excitation energy transfer from PBS peripheral rods or from directly absorbed red light to accessory chlorophylls in the photosystems. Paralogous forms of AP that bind PCB and are capable of absorbing far-red light (FRL; 700-800 nm) have recently been identified in organisms performing two types of photoacclimation: FRL photoacclimation (FaRLiP) and low-light photoacclimation (LoLiP). The FRL-absorbing AP (FRL-AP) from the thermophilic LoLiP strain Synechococcus sp. A1463 was chosen as a platform for site-specific mutagenesis to probe the structural differences between APs that absorb in the visible region and FRL-APs and to identify residues essential for the FRL absorbance phenotype. Conversely, red light-absorbing allophycocyanin-B (AP-B; ~ 670 nm) from the same organism was used as a platform for creating a FRL-AP. We demonstrate that the protein environment immediately surrounding pyrrole ring A of PCB on the alpha subunit is mostly responsible for the FRL absorbance of FRL-APs. We also show that interactions between PCBs bound to alpha and beta subunits of adjacent protomers in trimeric AP complexes are responsible for a large bathochromic shift of about ~ 20 nm and notable sharpening of the long-wavelength absorbance band.
Collapse
Affiliation(s)
- Nathan Soulier
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA.
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA.
- S-002 Frear Laboratory, Dept. of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
38
|
Liu H, Zhang MM, Weisz DA, Cheng M, Pakrasi HB, Blankenship RE. Structure of cyanobacterial phycobilisome core revealed by structural modeling and chemical cross-linking. SCIENCE ADVANCES 2021; 7:7/2/eaba5743. [PMID: 33523959 PMCID: PMC7787483 DOI: 10.1126/sciadv.aba5743] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 11/16/2020] [Indexed: 05/28/2023]
Abstract
In cyanobacteria and red algae, the structural basis dictating efficient excitation energy transfer from the phycobilisome (PBS) antenna complex to the reaction centers remains unclear. The PBS has several peripheral rods and a central core that binds to the thylakoid membrane, allowing energy coupling with photosystem II (PSII) and PSI. Here, we have combined chemical cross-linking mass spectrometry with homology modeling to propose a tricylindrical cyanobacterial PBS core structure. Our model reveals a side-view crossover configuration of the two basal cylinders, consolidating the essential roles of the anchoring domains composed of the ApcE PB loop and ApcD, which facilitate the energy transfer to PSII and PSI, respectively. The uneven bottom surface of the PBS core contrasts with the flat reducing side of PSII. The extra space between two basal cylinders and PSII provides increased accessibility for regulatory elements, e.g., orange carotenoid protein, which are required for modulating photochemical activity.
Collapse
Affiliation(s)
- Haijun Liu
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA.
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
- Photosynthetic Antenna Research Center (PARC), Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Mengru M Zhang
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Daniel A Weisz
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
- Photosynthetic Antenna Research Center (PARC), Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Ming Cheng
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Himadri B Pakrasi
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
- Photosynthetic Antenna Research Center (PARC), Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Robert E Blankenship
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
- Photosynthetic Antenna Research Center (PARC), Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
39
|
Śliwińska-Wilczewska S, Konarzewska Z, Wiśniewska K, Konik M. Photosynthetic Pigments Changes of Three Phenotypes of Picocyanobacteria Synechococcus sp. under Different Light and Temperature Conditions. Cells 2020; 9:cells9092030. [PMID: 32899279 PMCID: PMC7563753 DOI: 10.3390/cells9092030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 08/26/2020] [Accepted: 09/01/2020] [Indexed: 11/30/2022] Open
Abstract
It is estimated that the genus Synechococcus is responsible for about 17% of net primary production in the Global Ocean. Blooms of these organisms are observed in tropical, subtropical and even temperate zones, and they have been recorded recently even beyond the polar circle. The long-term scenarios forecast a growing expansion of Synechococcus sp. and its area of dominance. This is, among others, due to their high physiological plasticity in relation to changing environmental conditions. Three phenotypes of the genus Synechococcus sp. (Type 1, Type 2, and Type 3a) were tested in controlled laboratory conditions in order to identify their response to various irradiance (10, 55, 100 and 145 µmol photons m−2 s−1) and temperature (15, 22.5 and 30 °C) conditions. The highest total pigment content per cell was recorded at 10 μmol photons m−2 s−1 at all temperature variants with the clear dominance of phycobilins among all the pigments. In almost every variant the highest growth rate was recorded for the Type 1. The lowest growth rates were observed, in general, for the Type 3a. However, it was recognized to be less temperature sensitive in comparison to the other two types and rather light-driven with the highest plasticity and adaptation potential. The highest amounts of carotenoids were produced by Type 2 which also showed signs of the cell stress even around 55 μmol photons m−2 s−1 at 15 °C and 22.5 °C. This may imply that the Type 2 is the most susceptible to higher irradiances. Picocyanobacteria Synechococcus sp. require less light intensity to achieve the maximum rate of photosynthesis than larger algae. They also tolerate a wide range of temperatures which combined together make them gain a powerful competitive advantage. Our results will provide key information for the ecohydrodynamical model development. Thus, this work would be an important link in forecasting future changes in the occurrence of these organisms in the context of global warming.
Collapse
Affiliation(s)
- Sylwia Śliwińska-Wilczewska
- Division of Marine Ecosystems Functioning, Institute of Oceanography, University of Gdansk, Avenue Piłsudskiego 46, P-81-378 Gdynia, Poland;
- Correspondence: ; Tel.: +48-58-523-68-92
| | - Zofia Konarzewska
- Division of Marine Ecosystems Functioning, Institute of Oceanography, University of Gdansk, Avenue Piłsudskiego 46, P-81-378 Gdynia, Poland;
| | - Kinga Wiśniewska
- Division of Marine Chemistry and Environmental Protection, Institute of Oceanography, University of Gdansk, Avenue Piłsudskiego 46, P-81-378 Gdynia, Poland;
| | - Marta Konik
- Department of Marine Physics, Institute of Oceanology Polish Academy of Sciences, P-81-779 Sopot, Poland;
| |
Collapse
|
40
|
Soulier N, Laremore TN, Bryant DA. Characterization of cyanobacterial allophycocyanins absorbing far-red light. PHOTOSYNTHESIS RESEARCH 2020; 145:189-207. [PMID: 32710194 DOI: 10.1007/s11120-020-00775-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
Phycobiliproteins (PBPs) are pigment proteins that comprise phycobilisomes (PBS), major light-harvesting antenna complexes of cyanobacteria and red algae. PBS core substructures are made up of allophycocyanins (APs), a subfamily of PBPs. Five paralogous AP subunits are encoded by the Far-Red Light Photoacclimation (FaRLiP) gene cluster, which is transcriptionally activated in cells grown in far-red light (FRL; λ = 700 to 800 nm). FaRLiP gene expression enables some terrestrial cyanobacteria to remodel their PBS and photosystems and perform oxygenic photosynthesis in far-red light (FRL). Paralogous AP genes encoding a putative, FRL-absorbing AP (FRL-AP) are also found in an operon associated with improved low-light growth (LL; < 50 μmol photons m-2 s-1) in some thermophilic Synechococcus spp., a phenomenon termed low-light photoacclimation (LoLiP). In this study, apc genes from FaRLiP and LoLiP gene clusters were heterologously expressed individually and in combinations in Escherichia coli. The resulting novel FRL-APs were characterized and identified as major contributors to the FRL absorbance observed in whole cells after FaRLiP and potentially LoLiP. Post-translational modifications of native FRL-APs from FaRLiP cyanobacterium, Leptolyngbya sp. strain JSC-1, were analyzed by mass spectrometry. The PBP complexes made in two FaRLiP organisms were compared, revealing strain-specific diversity in the FaRLiP responses of cyanobacteria. Through analyses of native and recombinant proteins, we improved our understanding of how different cyanobacterial strains utilize specialized APs to acclimate to FRL and LL. We discuss some insights into structural changes that may allow these APs to absorb longer light wavelengths than their visible-light-absorbing paralogs.
Collapse
Affiliation(s)
- Nathan Soulier
- S-002 Frear Laboratory, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Tatiana N Laremore
- Proteomics and Mass Spectrometry Core Facility, Huck Institute for the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Donald A Bryant
- S-002 Frear Laboratory, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA.
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA.
| |
Collapse
|
41
|
Korteerakul C, Honda M, Ngoennet S, Hibino T, Waditee-Sirisattha R, Kageyama H. Antioxidative and Antiglycative Properties of Mycosporine-Like Amino Acids-Containing Aqueous Extracts Derived from Edible Terrestrial Cyanobacteria. J Nutr Sci Vitaminol (Tokyo) 2020; 66:339-346. [PMID: 32863307 DOI: 10.3177/jnsv.66.339] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The terrestrial filamentous cyanobacterium, Nostoc commune, has been used as a food source in many countries, especially countries in Asia. In this study, N. commune-derived aqueous extracts were evaluated with regard to their antioxidative and antiglycative properties. The antioxidative activity was significantly higher in N. commune colonies isolated from the field than in extracts from colonies cultured in the laboratory. The antioxidative compound content of extracts, including phenolic compounds and phycobiliproteins, was correlated with their antioxidative power. In addition, two mycosporine-like amino acids (MAAs), specifically detected in colonies isolated from the field, were purified. In addition to assessing their antioxidative properties, the antiglycative activity of these MAAs was also assessed. Their inhibitory effects on glycation-dependent protein cross-linking might contribute to the antiglycative power of the extract prepared from field colonies. Taken together, the results from this study revealed that N. commune may have beneficial properties for functional food applications, both by preventing oxidative stress and suppressing the formation of advanced glycation end-products.
Collapse
Affiliation(s)
| | - Masaki Honda
- Department of Chemistry, Faculty of Science and Technology, Meijo University
| | - Siripat Ngoennet
- Department of Microbiology, Faculty of Science, Chulalongkorn University
| | - Takashi Hibino
- Department of Chemistry, Faculty of Science and Technology, Meijo University.,Graduate School of Environmental and Human Sciences, Meijo University
| | | | - Hakuto Kageyama
- Department of Chemistry, Faculty of Science and Technology, Meijo University.,Graduate School of Environmental and Human Sciences, Meijo University
| |
Collapse
|
42
|
Walter JM, Coutinho FH, Leomil L, Hargreaves PI, Campeão ME, Vieira VV, Silva BS, Fistarol GO, Salomon PS, Sawabe T, Mino S, Hosokawa M, Miyashita H, Maruyama F, van Verk MC, Dutilh BE, Thompson CC, Thompson FL. Ecogenomics of the Marine Benthic Filamentous Cyanobacterium Adonisia. MICROBIAL ECOLOGY 2020; 80:249-265. [PMID: 32060621 DOI: 10.1007/s00248-019-01480-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 12/22/2019] [Indexed: 06/10/2023]
Abstract
Turfs are among the major benthic components of reef systems worldwide. The nearly complete genome sequences, basic physiological characteristics, and phylogenomic reconstruction of two phycobiliprotein-rich filamentous cyanobacteria strains isolated from turf assemblages from the Abrolhos Bank (Brazil) are investigated. Both Adonisia turfae CCMR0081T (= CBAS 745T) and CCMR0082 contain approximately 8 Mbp in genome size and experiments identified that both strains exhibit chromatic acclimation. Whereas CCMR0081T exhibits chromatic acclimation type 3 (CA3) regulating both phycocyanin (PC) and phycoerythrin (PE), CCMR0082 strain exhibits chromatic acclimation type 2 (CA2), in correspondence with genes encoding specific photosensors and regulators for PC and PE. Furthermore, a high number and diversity of secondary metabolite synthesis gene clusters were identified in both genomes, and they were able to grow at high temperatures (28 °C, with scant growth at 30 °C). These characteristics provide insights into their widespread distribution in reef systems.
Collapse
Affiliation(s)
- Juline M Walter
- Laboratory of Microbiology, Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Radboud Institute for Molecular Life Sciences, Centre for Molecular and Biomolecular Informatics (CMBI), Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Felipe H Coutinho
- Laboratory of Microbiology, Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Radboud Institute for Molecular Life Sciences, Centre for Molecular and Biomolecular Informatics (CMBI), Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Luciana Leomil
- Laboratory of Microbiology, Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Paulo I Hargreaves
- Laboratory of Microbiology, Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Mariana E Campeão
- Laboratory of Microbiology, Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | | | - Beatriz S Silva
- Marine Phytoplankton Laboratory, Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Giovana O Fistarol
- Marine Phytoplankton Laboratory, Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Paulo S Salomon
- Marine Phytoplankton Laboratory, Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Tomoo Sawabe
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Sayaka Mino
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Masashi Hosokawa
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Hideaki Miyashita
- Office of Academic Research and Industry-Government Collaboration, Hiroshima University, 739-8530, Hiroshima, Japan
| | - Fumito Maruyama
- Office of Academic Research and Industry-Government Collaboration, Hiroshima University, 739-8530, Hiroshima, Japan
| | - Marcel C van Verk
- Plant-Microbe Interactions, Bioinformatics, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Bas E Dutilh
- Radboud Institute for Molecular Life Sciences, Centre for Molecular and Biomolecular Informatics (CMBI), Radboud University Medical Centre, Nijmegen, The Netherlands
- Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, The Netherlands
| | - Cristiane C Thompson
- Laboratory of Microbiology, Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Fabiano L Thompson
- Laboratory of Microbiology, Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.
- Center of Technology-CT2, SAGE-COPPE, Federal University of Rio de Janeiro (UFRJ), Av. Carlos Chagas Filho, 373, CCS-IB-Biomar, Lab. de Microbiologia, Bloco A3, (Anexo), sl. 102, Cidade Universitária, Rio de Janeiro, RJ, CEP 21941-599, Brazil.
| |
Collapse
|
43
|
Chittora D, Meena M, Barupal T, Swapnil P. Cyanobacteria as a source of biofertilizers for sustainable agriculture. Biochem Biophys Rep 2020; 22:100737. [PMID: 32083191 PMCID: PMC7021550 DOI: 10.1016/j.bbrep.2020.100737] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/04/2020] [Accepted: 01/24/2020] [Indexed: 12/29/2022] Open
Abstract
Continuous increase in global human population and depletion of natural resources of energy posing threat to environment needs, sustainable supply of food and energy. The most ecofriendly approach 'green technology' has been exploited for biofertilizer preparation. Cyanobacteria are the most successful and sustained prokaryotic organism during the course of evolution. They are considered as one of the primitive life forms found on our planet. Cyanobacteria are emerging candidates for efficiently conversion of radiant energy into chemical energy. This biological system produces oxygen as a by-product. Cyanobacterial biomass can also be used for the large scale production of food, energy, biofertilizers, secondary metabolites, cosmetics and medicines. Therefore, cyanobacteria are used in ecofriendly sustainable agricultural practice for production of biomass of very high value and decreasing the level of CO2. This review article describes the methods of mass production of cyanobacterial biofertilizers and their applications in agriculture and industrial level.
Collapse
Affiliation(s)
- Deepali Chittora
- Department of Botany, Mohanlal Sukhadia University, Udaipur, 313001, Rajasthan, India
| | - Mukesh Meena
- Department of Botany, Mohanlal Sukhadia University, Udaipur, 313001, Rajasthan, India
| | - Tansukh Barupal
- Department of Botany, Mohanlal Sukhadia University, Udaipur, 313001, Rajasthan, India
| | - Prashant Swapnil
- International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| |
Collapse
|
44
|
Werlang CC, De Souza MS, Fonseca Costa LD, Céspedes Campos MC, Yunes JS. Toxigenic phytoplankton groups and neurotoxin levels related to two contrasting environmental conditions at the coastal area of Rio de Janeiro (west of South Atlantic). Toxicon 2020; 184:215-228. [PMID: 32593754 DOI: 10.1016/j.toxicon.2020.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 06/18/2020] [Accepted: 06/21/2020] [Indexed: 10/24/2022]
Abstract
An assessment of the major pigments and neurotoxins and a description of the phytoplankton community were carried out within the coastal region of Rio de Janeiro State (Brazil), during winter and the following spring of 2018. Overall, six stations were investigated for oceanographic conditions (with CTD casts). Filtered water samples were used to estimate the chlorophyll a (CHL-a), carotenoids (CAR), and phycobiliproteins (PHY) using UV-Vis spectrophotometry, as well as the quantification of saxitoxins (STX) and domoic acid (DA), through High Performance Liquid Chromatography (HPLC). Planktonic organisms were counted using sedimentation chambers of different volumes and an inverted microscope. A cluster analysis, SIMPER, and ANOSIM were applied to the phytoplankton data along with diversity indexes, and non-parametric statistics to phycotoxins and pigments. There was a significant difference between the winter and spring phytoplankton community, associated with the mixed layer depth (r2 = -0.626, p < 0.05) and temperature (r2 = 0.641, p < 0.05). Phytoplankton biomass and C:CHL-a indicated a higher production during the winter than in spring, with the potentially toxic genus Pseudo-nitzschia responsible for 12.79% of autotrophic abundance (SIMPER output). Pigments showed a slight increase in CAR during spring, while PHY remained at trace concentrations. Both the DA and STX were quantified in winter and spring, but with significant differences only for STX between the sampling periods. Among the 71 taxa, 11 were identified as potentially toxic with an emphasis on STX-producing dinoflagellates and cyanobacteria, such as Alexandrium sp., Gymnodinium spp. along with Trichodesmium spp. Season-related environmental variability may be the major driving force modulating the mixed assemblage of species that support different levels of phycotoxins.
Collapse
Affiliation(s)
- Chariane Camila Werlang
- Laboratory of Cyanobacteria and Phycotoxins, Institute of Oceanography, Federal University of Rio Grande, Av. Italia, km 8, Rio Grande, RS, 96203-900, Brazil; Postgraduate Program in Oceanology, Institute of Oceanography, Federal University of Rio Grande, Av. Italia, km 8, Rio Grande, RS, 96203-900, Brazil.
| | - Márcio Silva De Souza
- Laboratory of Cyanobacteria and Phycotoxins, Institute of Oceanography, Federal University of Rio Grande, Av. Italia, km 8, Rio Grande, RS, 96203-900, Brazil; Postgraduate Program in Biological Oceanography, Institute of Oceanography, Federal University of Rio Grande, Av. Italia, km 8, Rio Grande, RS, 96203-900, Brazil
| | - Luiza Dy Fonseca Costa
- Laboratory of Cyanobacteria and Phycotoxins, Institute of Oceanography, Federal University of Rio Grande, Av. Italia, km 8, Rio Grande, RS, 96203-900, Brazil
| | - Murillo César Céspedes Campos
- Fisheries Technology and Hydroacoustic Laboratory, Institute of Oceanography, Federal University of Rio Grande, Av. Italia, km 8, Rio Grande, RS, 96203-900, Brazil
| | - João Sarkis Yunes
- Laboratory of Cyanobacteria and Phycotoxins, Institute of Oceanography, Federal University of Rio Grande, Av. Italia, km 8, Rio Grande, RS, 96203-900, Brazil; Postgraduate Program in Oceanology, Institute of Oceanography, Federal University of Rio Grande, Av. Italia, km 8, Rio Grande, RS, 96203-900, Brazil; Postgraduate Program in Biological Oceanography, Institute of Oceanography, Federal University of Rio Grande, Av. Italia, km 8, Rio Grande, RS, 96203-900, Brazil
| |
Collapse
|
45
|
Pigments Content (Chlorophylls, Fucoxanthin and Phycobiliproteins) of Different Commercial Dried Algae. SEPARATIONS 2020. [DOI: 10.3390/separations7020033] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Algae are a complex, polyphyletic group of organisms, affordable and naturally rich in nutrients, but also valuable sources of structurally diverse bioactive substances such as natural pigments. The aim of this work was to evaluate the polar and non-polar pigment contents of different commercial dried algae (brown: Himanthalia elongata, Undaria pinnatifida, Laminaria ochroleuca; red: Porphyra spp.; and a blue-green microalga: Spirulina spp.). The pigment extraction was carried out using different solvents (100% methanol, 100% methanol acid free, 100% ethanol, 90% acetone, N,N-dimethylformamide, dimethyl sulfoxide-water (4:1, v/v) and pH 6.8 phosphate buffer), selected according to their affinity for each class of pigments. Acetone proved to be an efficient solvent to extract chlorophylls from brown and red algae, but not from Spirulina spp. Porphyra spp. presented considerably higher levels of all pigments compared to brown algae, although Spirulina spp. presented significantly higher (p < 0.05) levels of chlorophylls, carotenoids and phycobiliproteins, compared to all macroalgae. The content of fucoxanthin extracted from the three brown algae was highly correlated to the carotenoid content. Within this group, Himanthalia elongata presented the highest fucoxanthin/total carotenoids ratio. Although the yield of extraction depended on the solvent used, the algae studied herein are an interesting source of pigments of great value for a wide range of applications.
Collapse
|
46
|
Fuad Hossain M, Ratnayake R, Mahbub S, Kumara KW, Magana-Arachchi D. Identification and culturing of cyanobacteria isolated from freshwater bodies of Sri Lanka for biodiesel production. Saudi J Biol Sci 2020; 27:1514-1520. [PMID: 32489288 PMCID: PMC7253897 DOI: 10.1016/j.sjbs.2020.03.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 03/23/2020] [Accepted: 03/23/2020] [Indexed: 11/23/2022] Open
Abstract
The present study was carried out to investigate cyanobacteria as a potential source for biodiesel production isolated from fresh water bodies of Sri Lanka. Semi mass culturing and mass culturing were carried out to obtain biomass for extracting total lipids. Fatty acid methyl ester (FAME) or biodiesel was produced from extracted lipid by trans-esterification reaction. FAME component was identified using gas chromatography (GC). Atotal of 74 uni-algal cultures were obtained from Biofuel and Bioenergy laboratory of the National Institute of Fundamental Studies (NIFS), Kandy, Sri Lanka. The total lipid content was recorded highest in Oscillatoria sp. (31.9 ± 2.01% of dry biomass) followed by Synechococcus sp. (30.6 ± 2.87%), Croococcidiopsis sp. (22.7 ± 1.36%), Leptolyngbya sp. (21.15 ± 1.99%), Limnothrixsp. (20.73 ± 3.26%), Calothrix sp. (18.15 ± 4.11%) and Nostoc sp. (15.43 ± 3.89%), Cephalothrixsp. (13.95 ± 4.27%), Cephalothrix Komarekiana (13.8 ± 3.56%) and Westiellopsisprolifica (12.80 ± 1.97%). FAME analysis showed cyanobacteria contain Methyl palmitoleate, Linolelaidic acid methyl ester, Cis-8,11,14-eicosatrienoic acid methyl ester, Cis-10-heptadecanoic acid methyl ester, Methyl myristate, Methyl pentadecanoate, Methyl octanoate, Methyl decanoate, Methyl laurate, Methyl tridecanoate, Methyl palmitoleate, Methyl pentadeconoate, Methyl heptadeconoate, Linolaidic acid methyl ester, Methyl erucate, Methyl myristate, Myristoloeic acid, Methyl palmitate, Cis-9-oleic acid methyl ester, Methyl arachidate and Cis-8,11,14-ecosatrieconoic acid methyl ester. The present study revealed that cyanobacteria isolated from Sri Lanka are potential source for biodiesel industry because of their high fatty acid content. Further studies are required to optimize the mass culture conditions to increase thelipid content from cyanobacterial biomass along with the research in the value addition to the remaining biomass.
Collapse
Affiliation(s)
- Md. Fuad Hossain
- Department of Biochemistry & Molecular Biology, Gono Bishwabidyalay, Savar, Dhaka 1344, Bangladesh
- National Institute of Fundamental Studies, Kandy, Sri Lanka
- Faculty of Agriculture, University of Ruhuna, Sri Lanka
| | - R.R. Ratnayake
- National Institute of Fundamental Studies, Kandy, Sri Lanka
| | - Shamim Mahbub
- Department of Chemistry & Physics, Gono Bishwabidyalay, Savar, Dhaka 1344, Bangladesh
| | | | | |
Collapse
|
47
|
Structural basis of energy transfer in Porphyridium purpureum phycobilisome. Nature 2020; 579:146-151. [DOI: 10.1038/s41586-020-2020-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 12/19/2019] [Indexed: 12/28/2022]
|
48
|
Syrpas M, Bukauskaitė J, Ramanauskienė K, Karosienė JR, Majienė D, Bašinskienė L, Venskutonis PR. Ultrasound-Assisted Extraction and Assessment of Biological Activity of Phycobiliprotein-Rich Aqueous Extracts from Wild Cyanobacteria ( Aphanizomenon flos-aquae). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:1896-1909. [PMID: 31589437 DOI: 10.1021/acs.jafc.9b05483] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cyanobacteria are photosynthetic microorganisms that are considered as an important source of bioactive metabolites, among which phycobiliproteins (PBPs) are a class of water-soluble macromolecules of cyanobacteria with a wide range of applications. Massive proliferation of cyanobacteria can lead to excessive surface water blooms, of which removal, as a management measure, should be prioritized. In this study, the utilization of wild cyanobacteria biomass (Aphanizomenon flos-aquae) for extraction of phycobiliproteins is reported. Extraction of phycobiliproteins by conventional methods, such as homogenization, freeze-thaw cycles, and solid-liquid extraction, were optimized prior to ultrasound-assisted extraction. Standardization of ultrasonication for different parameters, such as ultrasonication amplitude (38, 114, and 190 μm) and ultrasonication time (1, 5.5, and 10 min), was carried out using a central composite design and response surface methodology for each of the primary techniques. A substantial increase on the individual and total phycobiliprotein yields was observed after ultrasonic treatment. The highest total PBP yield (115.37 mg/g of dry weight) was observed with samples treated with a homogenizer (30 min, 30 °C, and 1 cycle) combined with ultrasound treatment (8.7 min at 179 μm). Moreover, in vitro antioxidant capacity was observed for the obtained extracts in the Folin-Ciocalteu and ABTS* + assays. In addition, a cytotoxic effect against C6 glioma cells was observed for A. flos-aquae PBPs. Conclusively, wild cyanobacteria could be considered as an alternative feedstock for recovery of PBPs.
Collapse
Affiliation(s)
- Michail Syrpas
- Department of Food Science & Technology , Kaunas University of Technology , Radvilėnų plentas 19 , LT-50254 Kaunas , Lithuania
| | - Jolita Bukauskaitė
- Department of Food Science & Technology , Kaunas University of Technology , Radvilėnų plentas 19 , LT-50254 Kaunas , Lithuania
| | | | - Ju Ratė Karosienė
- Laboratory of Algology and Microbial Ecology , Nature Research Centre , Akademijos gatvė 2 , LT-08412 Vilnius , Lithuania
| | | | - Loreta Bašinskienė
- Department of Food Science & Technology , Kaunas University of Technology , Radvilėnų plentas 19 , LT-50254 Kaunas , Lithuania
| | - Petras Rimantas Venskutonis
- Department of Food Science & Technology , Kaunas University of Technology , Radvilėnų plentas 19 , LT-50254 Kaunas , Lithuania
| |
Collapse
|
49
|
Coutinho P, Ferreira M, Freire I, Otero A. Enriching Rotifers with "Premium" Microalgae: Rhodomonas lens. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2020; 22:118-129. [PMID: 31845015 DOI: 10.1007/s10126-019-09936-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 11/20/2019] [Indexed: 06/10/2023]
Abstract
The nutritional value of the marine cryptophyte Rhodomonas lens for the filter feeder Brachionus plicatilis as well as its biotechnological potential as a source of phycoerythrin (PE) and polyunsaturated fatty acids (PUFA) were evaluated in semi-continuous cultures maintained with different daily renewal rates (RR), from 10% (R10) to 50% (R50) of the total volume. Steady-state cell density decreased from 22 to 7 × 106 cells mL-1 with increasing RR, with the maximum cell productivity, nearly 0.4 g L-1 day-1, observed with R40. PE cell content attained the highest values with the highest RR (circa 9 pg cell-1). All treatments of R. lens maintained under nitrate-saturated conditions (R20-R50) showed a similar high content of PUFAs, > 60% of total fatty acids (FA), with linolenic acid (18:3n-3) and 18:4n-3, representing 12 and 29% of total FA respectively. The PUFA level in the nitrogen-limited R10 cultures was significantly lower (37%). R. lens promoted higher weight gain in the rotifer B. plicatilis than Tisochrysis lutea (T-ISO), a species commonly used for rotifer culture and enrichment. Significant differences were found in the protein content and in the ratio n-3/n-6 fatty acids among rotifers fed with R. lens from different RRs, with higher values being found in those fed with R. lens from higher RRs. The enrichment of the rotifers for short periods of 3 h was sufficient to modify the biochemical composition of the rotifers, but it was evidenced as too short for the accumulation of PUFAs, when compared to long-term (24 h) enrichment. The rotifers reflected the higher protein and PUFA content of R. lens cultivated with nutrient sufficient microalgae (R40) after only 3 h of enrichment. These results demonstrate that semi-continuous culture of R. lens under appropriate conditions can strongly enhance the nutritional value of this species, being reflected in the growth and biochemical composition of the filter feeder, even in short exposure periods.
Collapse
Affiliation(s)
- Paula Coutinho
- Instituto de Acuicultura and Dpto. de Microbiología y Parasitología, Fac. Biología/CIBUS, Campus Vida, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, A Coruña, Spain
- CPIRN-IPG - Center of Potential and Innovation of Natural Resources, Polytechnic Institute of Guarda, 6300-559, Guarda, Portugal
| | - Martiña Ferreira
- Instituto de Acuicultura and Dpto. de Microbiología y Parasitología, Fac. Biología/CIBUS, Campus Vida, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, A Coruña, Spain
- Department of Aquaculture, ANFACO-CECOPESCA, Ctra. Colegio Universitario 16, 36310, Vigo, Spain
| | - Isabel Freire
- Instituto de Acuicultura and Dpto. de Microbiología y Parasitología, Fac. Biología/CIBUS, Campus Vida, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, A Coruña, Spain
| | - Ana Otero
- Instituto de Acuicultura and Dpto. de Microbiología y Parasitología, Fac. Biología/CIBUS, Campus Vida, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, A Coruña, Spain.
| |
Collapse
|
50
|
On the interface of light-harvesting antenna complexes and reaction centers in oxygenic photosynthesis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:148079. [PMID: 31518567 DOI: 10.1016/j.bbabio.2019.148079] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 07/30/2019] [Accepted: 09/01/2019] [Indexed: 02/07/2023]
Abstract
Photosynthetic pigment-protein complexes (PPCs) accomplish light-energy capture and photochemistry in natural photosynthesis. In this review, we examine three pigment protein complexes in oxygenic photosynthesis: light-harvesting antenna complexes and two reaction centers: Photosystem II (PSII), and Photosystem I (PSI). Recent technological developments promise unprecedented insights into how these multi-component protein complexes are assembled into higher order structures and thereby execute their function. Furthermore, the interfacial domain between light-harvesting antenna complexes and PSII, especially the potential roles of the structural loops from CP29 and the PB-loop of ApcE in higher plant and cyanobacteria, respectively, are discussed. It is emphasized that the structural nuances are required for the structural dynamics and consequently for functional regulation in response to an ever-changing and challenging environment.
Collapse
|