1
|
Cheng J, Hao X, Zhang W, Sun C, Yuan X, Yang Y, Zeng W, Zhu Z. Proteomic and Metabolomic Profiling Reveals Alterations in Boar X and Y Sperm. Animals (Basel) 2024; 14:3672. [PMID: 39765576 PMCID: PMC11727386 DOI: 10.3390/ani14243672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/15/2024] [Accepted: 12/17/2024] [Indexed: 01/15/2025] Open
Abstract
Sex-controlled sperm combined with artificial insemination allows animals to reproduce offspring according to the desired sex, accelerates the process of animal genetics and breeding and promotes the development of animal husbandry. However, the molecular markers for sexual sperm sorting are unusual. To identify the molecular markers of boar sperm sorting, proteomics and metabolomics techniques were applied to analyze the differences in proteins and metabolism between X and Y sperm. Label-free quantitative proteomics identified 254 differentially expressed proteins (DEPs) in the X and Y sperm of boars, including 106 proteins that were highly expressed in X sperm and 148 proteins that were highly expressed in Y sperm. Among the differential proteins, COX6A1, COX1, CYTB, FUT8, GSTK1 and PFK1 were selected as potential biological markers for X and Y sperm sorting. Moreover, 760 metabolites from X and Y sperm were detected. There were 439 positive ion mode metabolites and 321 negative ion mode metabolites identified. The various metabolites were phosphoenolpyruvate, phytosphingosine, L-arginine, N-acetylputrescine, cytidine-5'-diphosphate and deoxyuridine. These metabolites were mainly involved in the TCA cycle, oxidative phosphorylation pathway, glycolysis pathway, lipid metabolism pathway, amino acid metabolism pathway, pentose phosphate pathway and nucleic acid metabolism pathway. The differential proteins and differential metabolites obtained by the combined proteomics and metabolomics analysis were projected simultaneously to the KEGG pathway, and a total of five pathways were enriched, namely oxidative phosphorylation pathway, purine metabolism, unsaturated fatty acid biosynthesis, ABC transporters and peroxisomes. In summary, COX6A1 and CYTB were identified as potential biomarkers for boar X and Y sperm sorting.
Collapse
Affiliation(s)
- Jia Cheng
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (J.C.); (X.H.); (C.S.); (X.Y.); (Y.Y.)
- Qinba Mountain Area Collaborative Innovation Center of Bio-Resources Comprehensive Development, Hanzhong 723001, China
- Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), Hanzhong 723001, China
| | - Xu Hao
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (J.C.); (X.H.); (C.S.); (X.Y.); (Y.Y.)
| | - Weijing Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China;
| | - Chenhao Sun
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (J.C.); (X.H.); (C.S.); (X.Y.); (Y.Y.)
| | - Xiameng Yuan
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (J.C.); (X.H.); (C.S.); (X.Y.); (Y.Y.)
| | - Yiding Yang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (J.C.); (X.H.); (C.S.); (X.Y.); (Y.Y.)
| | - Wenxian Zeng
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (J.C.); (X.H.); (C.S.); (X.Y.); (Y.Y.)
- Qinba Mountain Area Collaborative Innovation Center of Bio-Resources Comprehensive Development, Hanzhong 723001, China
- Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), Hanzhong 723001, China
| | - Zhendong Zhu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China;
| |
Collapse
|
2
|
Xu HN, Morrow RM, Feng M, Zhao H, Wallace D, Li LZ. Optical redox imaging of ANT1-deficient muscles. JOURNAL OF INNOVATIVE OPTICAL HEALTH SCIENCES 2024; 17:2350032. [PMID: 39077370 PMCID: PMC11286258 DOI: 10.1142/s1793545823500323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Adenine nucleotide translocator (ANT) is a mitochondrial protein involved in the exchange of ADP and ATP across the mitochondrial inner membrane. It plays a crucial role in cellular energy metabolism by facilitating the transport of ATP synthesized within the mitochondria to the cytoplasm. The isoform ANT1 predominately expresses in cardiac and skeletal muscles. Mutations or dysregulation in ANT1 have been implicated in various mitochondrial disorders and neuromuscular diseases. We aimed to examine whether ANT1 deletion may affect mitochondrial redox state in our established ANT1-deficient mice. Hearts and quadriceps resected from age-matched wild type (WT) and ANT1-deficient mice were snap-frozen in liquid nitrogen. The Chance redox scanner was utilized to perform 3D optical redox imaging. Each sample underwent scanning across 3-5 sections. Global averaging analysis showed no significant differences in the redox indices (NADH, flavin adenine dinucleotide containing-flavoproteins Fp, and the redox ratio Fp/(NADH+Fp) between WT and ANT1-deficient groups. However, quadriceps had higher Fp than hearts in both groups (p = 0.0004 and 0.01, respectively). Furthermore, the quadriceps were also more oxidized (a higher redox ratio) than hearts in WT group (p = 0.004). NADH levels were similar in all cases. Our data suggest that under non-stressful physical condition, the ANT1-deficient muscle cells were in the same mitochondrial state as WT ones and that the significant difference in the mitochondrial redox state between quadriceps and hearts found in WT might be diminished in ANT1-deficient ones. Redox imaging of muscles under physical stress can be conducted in future.
Collapse
Affiliation(s)
- He N. Xu
- Britton Chance Laboratory of Redox Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ryan M. Morrow
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
| | - Min Feng
- Britton Chance Laboratory of Redox Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Huaqing Zhao
- Center for Biostatistics and Epidemiology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Douglas Wallace
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
| | - Lin Z. Li
- Britton Chance Laboratory of Redox Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
3
|
Rajeev V, Chai YL, Poh L, Selvaraji S, Fann DY, Jo DG, De Silva TM, Drummond GR, Sobey CG, Arumugam TV, Chen CP, Lai MKP. Chronic cerebral hypoperfusion: a critical feature in unravelling the etiology of vascular cognitive impairment. Acta Neuropathol Commun 2023; 11:93. [PMID: 37309012 PMCID: PMC10259064 DOI: 10.1186/s40478-023-01590-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/14/2023] Open
Abstract
Vascular cognitive impairment (VCI) describes a wide spectrum of cognitive deficits related to cerebrovascular diseases. Although the loss of blood flow to cortical regions critically involved in cognitive processes must feature as the main driver of VCI, the underlying mechanisms and interactions with related disease processes remain to be fully elucidated. Recent clinical studies of cerebral blood flow measurements have supported the role of chronic cerebral hypoperfusion (CCH) as a major driver of the vascular pathology and clinical manifestations of VCI. Here we review the pathophysiological mechanisms as well as neuropathological changes of CCH. Potential interventional strategies for VCI are also reviewed. A deeper understanding of how CCH can lead to accumulation of VCI-associated pathology could potentially pave the way for early detection and development of disease-modifying therapies, thus allowing preventive interventions instead of symptomatic treatments.
Collapse
Affiliation(s)
- Vismitha Rajeev
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Memory Aging and Cognition Centre, National University Health System, Singapore, Singapore
| | - Yuek Ling Chai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Memory Aging and Cognition Centre, National University Health System, Singapore, Singapore
| | - Luting Poh
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Memory Aging and Cognition Centre, National University Health System, Singapore, Singapore
| | - Sharmelee Selvaraji
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Memory Aging and Cognition Centre, National University Health System, Singapore, Singapore
- Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore, Singapore, Singapore
| | - David Y Fann
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Dong-Gyu Jo
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - T Michael De Silva
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, Australia
| | - Grant R Drummond
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, Australia
| | - Christopher G Sobey
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, Australia
| | - Thiruma V Arumugam
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, Australia
| | - Christopher P Chen
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Memory Aging and Cognition Centre, National University Health System, Singapore, Singapore
- NUS Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Mitchell K P Lai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Memory Aging and Cognition Centre, National University Health System, Singapore, Singapore.
- NUS Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
4
|
Abstract
Mitochondria play various important roles in energy production, metabolism, and apoptosis. Mitochondrial dysfunction caused by alterations in mitochondrial DNA (mtDNA) can lead to the initiation and progression of cancers and other diseases. These alterations include mutations and copy number variations. Especially, the mutations in D-loop, MT-ND1, and MT-ND5 affect mitochondrial functions and are widely detected in various cancers. Meanwhile, several other mutations have been correlated with muscular and neuronal diseases, especially MT-TL1 is deeply related. These pieces of evidence indicated mtDNA alterations in diseases show potential as a novel therapeutic target. mtDNA repair enzymes are the target for delaying or stalling the mtDNA damage-induced cancer progression and metastasis. Moreover, some mutations reveal a prognosis ability of the drug resistance. Current efforts aim to develop mitochondrial transplantation technique as a direct cure for deregulated mitochondria-associated diseases. This review summarizes the implications of mitochondrial dysfunction in cancers and other pathologies; and discusses the relevance of mitochondria-targeted therapies, along with their contribution as potential biomarkers.
Collapse
Affiliation(s)
- Ngoc Ngo Yen Nguyen
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea.,Biomedical Science Institute, Kyung Hee University, Seoul, Republic of Korea
| | - Sung Soo Kim
- Biomedical Science Institute, Kyung Hee University, Seoul, Republic of Korea.,Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Yong Hwa Jo
- Biomedical Science Institute, Kyung Hee University, Seoul, Republic of Korea.,Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
5
|
Vaught RC, Dowling DK. Maternal inheritance of mitochondria: implications for male fertility? Reproduction 2018; 155:R159-R168. [PMID: 29581388 DOI: 10.1530/rep-17-0600] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 01/18/2018] [Indexed: 12/16/2022]
Abstract
Evolutionary theory predicts maternal inheritance of the mitochondria will lead to the accumulation of mutations in the mitochondrial DNA (mtDNA) that impair male fertility, but leave females unaffected. The hypothesis has been referred to as 'Mother's Curse'. There are many examples of mtDNA mutations or haplotypes, in humans and other metazoans, associated with decreases in sperm performance, but seemingly few reports of associations involving female reproductive traits; an observation that has been used to support the Mother's Curse hypothesis. However, it is unclear whether apparent signatures of male bias in mitochondrial genetic effects on fertility reflect an underlying biological bias or a technical bias resulting from a lack of studies to have screened for female effects. Here, we conduct a systematic literature search of studies reporting mitochondrial genetic effects on fertility-related traits in gonochoristic metazoans (animals with two distinct sexes). Studies of female reproductive outcomes were sparse, reflecting a large technical sex bias across the literature. We were only able to make a valid assessment of sex specificity of mitochondrial genetic effects in 30% of cases. However, in most of these cases, the effects were male biased, including examples of male bias associated with mtDNA mutations in humans. These results are therefore consistent with the hypothesis that maternal inheritance has enriched mtDNA sequences with mutations that specifically impair male fertility. However, future research that redresses the technical imbalance in studies conducted per sex will be key to enabling researchers to fully assess the wider implications of the Mother's Curse hypothesis to male reproductive biology.
Collapse
Affiliation(s)
- R C Vaught
- School of Biological SciencesMonash University, Clayton, Victoria, Australia
| | - D K Dowling
- School of Biological SciencesMonash University, Clayton, Victoria, Australia
| |
Collapse
|
6
|
Tranah GJ, Maglione JE, Yaffe K, Katzman SM, Manini TM, Kritchevsky S, Newman AB, Harris TB, Cummings SR. Mitochondrial DNA m.13514G>A heteroplasmy is associated with depressive symptoms in the elderly. Int J Geriatr Psychiatry 2018; 33:1319-1326. [PMID: 29984425 DOI: 10.1002/gps.4928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 05/14/2018] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Mitochondrial DNA (mtDNA) heteroplasmy is a mixture of normal and mutated mtDNA molecules in a cell. High levels of heteroplasmy at several mtDNA sites in complex I lead to inherited neurological neurologic diseases and brain magnetic resonance imaging (MRI) abnormalities. Here, we test the hypothesis that mtDNA heteroplasmy at these complex I sites is associated with depressive symptoms in the elderly. METHODS We examined platelet mtDNA heteroplasmy for associations with depressive symptoms among 137 participants over age 70 from the community-based Health, Aging and Body Composition Study. Depressive symptoms were assessed using the 10-point version of the Center for Epidemiologic Studies Depression Scale (CES-D 10). Complete mtDNA sequencing was performed and heteroplasmy derived for 5 mtDNA sites associated with neurologic mitochondrial diseases and tested for associations with depressive symptoms. RESULTS Of 5 candidate complex I mtDNA mutations examined for effects on depressive symptoms, increased heteroplasmy at m.13514A>G, ND5, was significantly associated with higher CES-D score (P = .01). A statistically significant interaction between m.13514A > G heteroplasmy and sex was detected (P = .04); in sex-stratified analyses, the impact of m.13514A>G heteroplasmy was stronger in male (P = .003) than in female (P = .98) participants. Men in highest tertile of mtDNA heteroplasmy exhibited significantly higher (P = .0001) mean ± SE CES-D 10 scores, 5.37 ± 0.58, when compared with those in the middle, 2.13 ± 0.52, and lowest tertiles, 2.47 ± 0.58. No associations between the 4 other candidate sites and depressive symptoms were observed. CONCLUSIONS Increased mtDNA heteroplasmy at m.13514A>G is associated with depressive symptoms in older men. Heteroplasmy may represent a novel biological risk factor for depression.
Collapse
Affiliation(s)
- Gregory J Tranah
- California Pacific Medical Center Research Institute, San Francisco, San Francisco, CA, USA
| | - Jeanne E Maglione
- University of California, San Diego, Department of Psychiatry, La Jolla, CA, USA
| | - Kristine Yaffe
- University of California, San Francisco, Departments of Psychiatry, Neurology, and Epidemiology, San Francisco, CA, USA.,San Francisco VA Medical Center, San Francisco, CA, USA
| | | | - Todd M Manini
- University of Florida, Department of Aging and Geriatric Research, Gainesville, FL, USA
| | - Stephen Kritchevsky
- Wake Forest School of Medicine, Sticht Center on Aging, Winston-Salem, NC, USA
| | - Anne B Newman
- University of Pittsburgh, Department of Epidemiology, Pittsburgh, PA, USA
| | - Tamara B Harris
- National Institute on Aging, Intramural Research Program, Laboratory of Epidemiology and Population Sciences, Bethesda, MD, USA
| | - Steven R Cummings
- California Pacific Medical Center Research Institute, San Francisco, San Francisco, CA, USA
| | | |
Collapse
|
7
|
Gao Y, Pan L, Sun Y, Zhang T, Dong L, Li J. Resistance to quinclorac caused by the enhanced ability to detoxify cyanide and its molecular mechanism in Echinochloa crus-galli var. zelayensis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2017; 143:231-238. [PMID: 29183597 DOI: 10.1016/j.pestbp.2017.08.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 07/29/2017] [Accepted: 08/07/2017] [Indexed: 06/07/2023]
Abstract
Quinclorac, an auxin-type herbicide, is widely used to control barnyardgrass and some dicotyledon weeds. Echinochloa crus-galli var. zelayensis, a variety of E. crus-galli (L.) Beauv., is widespread in China and some populations have resistance to quinclorac. E. crus-galli var. zelayensis seeds with varying sensitivity to quinclorac were used in the present study. The expression of the ADP/ATP carrier protein (ANT) gene, which plays an important role in the maintenance of cellular energy balance, dramatically rose in the S biotype after exposure to quinclorac, while no change was found in two R biotypes. The activity of β-cyanoalanine synthase (β-CAS), which is the key enzyme for cyanide degradation, was higher in two R biotypes than in the S biotype before and after treatment with quinclorac. One single-nucleotide difference was detected in the EcCAS gene of two R biotypes compared with the S biotype. The nucleotide change, which caused one amino acid substitution, replacing Methionine (Met)-295 with Lysine (Lys)-295 in the two R biotypes, which are same as the rice β-CAS gene at this position. In addition, EcCAS gene expression was higher in the two R biotypes than in the S biotype. In conclusion, β-CAS may play a crucial role in the resistance of E. crus-galli var. zelayensis to quinclorac. EcCAS gene mutation and higher gene expression may enhance the activity of β-CAS to avoid the accumulation of toxic cyanide in resistant populations, thus contributing to the resistance mechanism of E. crus-galli var. zelayensis. to quinclorac.
Collapse
Affiliation(s)
- Yuan Gao
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Ministry of Education, China
| | - Lang Pan
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Ministry of Education, China
| | - Yu Sun
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Ministry of Education, China
| | - Teng Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Ministry of Education, China
| | - Liyao Dong
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Ministry of Education, China.
| | - Jun Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Ministry of Education, China.
| |
Collapse
|
8
|
Sissler M, González-Serrano LE, Westhof E. Recent Advances in Mitochondrial Aminoacyl-tRNA Synthetases and Disease. Trends Mol Med 2017; 23:693-708. [DOI: 10.1016/j.molmed.2017.06.002] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/08/2017] [Accepted: 06/14/2017] [Indexed: 01/02/2023]
|
9
|
Vallabh NA, Romano V, Willoughby CE. Mitochondrial dysfunction and oxidative stress in corneal disease. Mitochondrion 2017; 36:103-113. [PMID: 28549842 DOI: 10.1016/j.mito.2017.05.009] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 01/23/2017] [Accepted: 05/18/2017] [Indexed: 12/13/2022]
Abstract
The cornea is the anterior transparent surface and the main refracting structure of the eye. Mitochondrial dysfunction and oxidative stress are implicated in the pathogenesis of inherited (e.g. Kearns Sayre Syndrome) and acquired corneal diseases (e.g. keratoconus and Fuchs endothelial corneal dystrophy). Both antioxidants and reactive oxygen species are found in the healthy cornea. There is increasing evidence of imbalance in the oxidative balance and mitochondrial function in the cornea in disease states. The cornea is vulnerable to mitochondrial dysfunction and oxidative stress due to its highly exposed position to ultraviolet radiation and high oxygen tension. The corneal endothelium is vulnerable to accumulating mitochondrial DNA (mtDNA) damage due to the post- mitotic nature of endothelial cells, yet their mitochondrial genome is continually replicating and mtDNA mutations can develop and accumulate with age. The unique physiology of the cornea predisposes this structure to oxidative damage, and there is interplay between inherited and acquired mitochondrial dysfunction, oxidative damage and a number of corneal diseases. By targeting mitochondrial dysfunction in corneal disease, emerging treatments may prevent or reduce visual loss.
Collapse
Affiliation(s)
- Neeru A Vallabh
- Corneal and External Eye Service, St. Paul's Eye Unit, Royal Liverpool University Hospital, Liverpool, United Kingdom; Institute of Ageing and Chronic Disease, Department of Eye and Vision Science, University of Liverpool, Liverpool, United Kingdom
| | - Vito Romano
- Corneal and External Eye Service, St. Paul's Eye Unit, Royal Liverpool University Hospital, Liverpool, United Kingdom
| | - Colin E Willoughby
- Corneal and External Eye Service, St. Paul's Eye Unit, Royal Liverpool University Hospital, Liverpool, United Kingdom; Institute of Ageing and Chronic Disease, Department of Eye and Vision Science, University of Liverpool, Liverpool, United Kingdom.
| |
Collapse
|
10
|
Two novel mitochondrial tRNA mutations, A7495G (tRNASer(UCN)) and C5577T (tRNATrp), are associated with seizures and cardiac dysfunction. Mitochondrion 2016; 31:40-44. [DOI: 10.1016/j.mito.2016.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 09/10/2016] [Accepted: 09/20/2016] [Indexed: 11/21/2022]
|
11
|
Zhou R, Wang R, Qin Y, Ji J, Xu M, Wu W, Chen M, Wu D, Song L, Shen H, Sha J, Miao D, Hu Z, Xia Y, Lu C, Wang X. Mitochondria-related miR-151a-5p reduces cellular ATP production by targeting CYTB in asthenozoospermia. Sci Rep 2015; 5:17743. [PMID: 26626315 PMCID: PMC4667214 DOI: 10.1038/srep17743] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 11/04/2015] [Indexed: 12/31/2022] Open
Abstract
Mitochondria, acting as the energy metabolism factory, participate in many key biological processes, including the maintenance of sperm viability. Mitochondria-related microRNA (miRNA), encoded by nuclear genome or mitochondrial genome, may play an important regulatory role in the control of mitochondrial function. To investigate the potential role of mitochondria-related miRNAs in asthenozoospermia, we adopted a strategy consisting of initial screening by TaqMan Low Density Array (TLDA) and further validation with quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). Validation of the profiling results was conducted in two independent phases. Eventually, two seminal plasma miRNAs (sp-miRs) (miR-101-3p, let-7b-5p) were found to be significantly decreased, while sp-miR-151a-5p was significantly increased in severe asthenozoospermia cases compared with healthy controls. To further study their potential roles in asthenozoospermia, we then evaluated mitochondrial function of GC-2 cells transfected with these potentially functional miRNAs. Our results demonstrated that transfection with miR-151a-5p mimics decreased the mitochondrial respiratory activity. Besides, Adenosine Triphosphate (ATP) level was decreased when transfected with miR-151a-5p mimics. In addition, Cytochrome b (Cytb) mRNA and protein levels were also decreased when miR-151a-5p was overexpressed. These results indicate that miR-151a-5p may participate in the regulation of cellular respiration and ATP production through targeting Cytb.
Collapse
Affiliation(s)
- Ran Zhou
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Rong Wang
- Research Center for Bone and Stem Cells, Department of Anatomy, Histology, and Embryology, Nanjing Medical University, Nanjing, China
| | - Yufeng Qin
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Juan Ji
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Miaofei Xu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Wei Wu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Minjian Chen
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Di Wu
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Ling Song
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Hongbing Shen
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China.,Department of Epidemiology and Biostatistics and Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jiahao Sha
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China
| | - Dengshun Miao
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China.,Research Center for Bone and Stem Cells, Department of Anatomy, Histology, and Embryology, Nanjing Medical University, Nanjing, China
| | - Zhibin Hu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China.,Department of Epidemiology and Biostatistics and Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Chuncheng Lu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Xinru Wang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
12
|
Synowiec E, Wójcik KA, Czubatka A, Polakowski P, Izdebska J, Szaflik J, Błasiak J, Szaflik JP. Lack of association between polymorphisms of the DNA base excision repair genes MUTYH and hOGG1 and keratoconus in a Polish subpopulation. Arch Med Sci 2015; 11:1101-10. [PMID: 26528356 PMCID: PMC4624754 DOI: 10.5114/aoms.2015.54867] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 09/28/2013] [Accepted: 10/18/2013] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Keratoconus (KC) is a non-inflammatory thinning of the cornea and a leading indication for corneal transplantation. Oxidative stress plays a role in the pathogenesis of this disease. The products of the hOGG1 and MUTYH genes play an important role in the repair of oxidatively modified DNA in the base excision repair pathway. We hypothesized that variability in these genes may change susceptibility to oxidative stress and predispose individuals to the development of KC. We investigated the possible association between the c.977C>G polymorphism of the hOGG1 gene (rs1052133) and the c.972G>C polymorphism of the MUTYH gene (rs3219489) and KC occurrence as well as the modulation of this association by some KC risk factors. MATERIAL AND METHODS A total of 205 patients with KC and 220 controls were included in this study. The polymorphisms were genotyped with polymerase chain reaction (PCR) restriction fragment length polymorphism and PCR-confronting two-pair primer techniques. Differences in genotype and allele frequency distributions were evaluated using the χ(2) test, and KC risk was estimated with an unconditional multiple logistic regression with and without adjustment for co-occurrence of visual impairment, allergies, sex and family history for KC. RESULTS We did not find any association between the genotypes and combined genotypes of the c.977C>G polymorphism of the hOGG1 gene and the c.972G>C polymorphism of the MUTYH gene and the occurrence of KC. CONCLUSIONS Our findings suggest that the c.977C>G-hOGG1 polymorphism and the c.972G>C-MUTYH polymorphism may not be linked with KC occurrence in this Polish subpopulation.
Collapse
Affiliation(s)
- Ewelina Synowiec
- Department of Molecular Genetics, University of Lodz, Lodz, Poland
| | | | - Anna Czubatka
- Department of Molecular Genetics, University of Lodz, Lodz, Poland
| | - Piotr Polakowski
- Department of Ophthalmology, Medical University of Warsaw, SPKSO Ophthalmic University Hospital, Warsaw, Poland
| | - Justyna Izdebska
- Department of Ophthalmology, Medical University of Warsaw, SPKSO Ophthalmic University Hospital, Warsaw, Poland
| | - Jerzy Szaflik
- Department of Ophthalmology, Medical University of Warsaw, SPKSO Ophthalmic University Hospital, Warsaw, Poland
| | - Janusz Błasiak
- Department of Molecular Genetics, University of Lodz, Lodz, Poland
| | - Jacek P. Szaflik
- Department of Ophthalmology, Medical University of Warsaw, SPKSO Ophthalmic University Hospital, Warsaw, Poland
| |
Collapse
|
13
|
Tranah GJ, Yokoyama JS, Katzman SM, Nalls MA, Newman AB, Harris TB, Cesari M, Manini TM, Schork NJ, Cummings SR, Liu Y, Yaffe K. Mitochondrial DNA sequence associations with dementia and amyloid-β in elderly African Americans. Neurobiol Aging 2014; 35:442.e1-8. [PMID: 24140124 PMCID: PMC4019378 DOI: 10.1016/j.neurobiolaging.2013.05.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 05/25/2013] [Accepted: 05/26/2013] [Indexed: 10/26/2022]
Abstract
Mitochondrial dysfunction occurs early in the course of several neurodegenerative diseases, and is potentially related to increased oxidative damage and amyloid-β (Aβ) formation in Alzheimer's disease. The goals of this study were to assess mtDNA sequence associations with dementia risk, 10-year cognitive change, and markers of oxidative stress and Aβ among 1089 African-Americans in the population-based Health, Aging, and Body Composition Study. Participants were free of dementia at baseline, and incidence was determined in 187 (18%) cases over 10 to 12 follow-up years. Haplogroup L1 participants were at increased risk for developing dementia (odds ratio = 1.88, 95% confidence interval = 1.23-2.88, p = 0.004), lower plasma Aβ42 levels (p = 0.03), and greater 10-year decline on the Digit Symbol Substitution Test (p = 0.04) when compared with common haplogroup L3. The p.V193I, ND2 substitution was associated with significantly higher Aβ42 levels (p = 0.0012), and this association was present in haplogroup L3 (p = 0.018) but not L1 (p = 0.90) participants. All associations were independent of potential confounders, including APOEε4 status and nuclear genetic ancestry. Identification of mtDNA sequence variation associated with dementia risk and cognitive decline may contribute to the development of new treatment targets and diagnostic tests that identify responders to interventions targeting mitochondria.
Collapse
Affiliation(s)
- Gregory J Tranah
- California Pacific Medical Center Research Institute-San Francisco, San Francisco, CA, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Glowacki S, Synowiec E, Blasiak J. The role of mitochondrial DNA damage and repair in the resistance of BCR/ABL-expressing cells to tyrosine kinase inhibitors. Int J Mol Sci 2013; 14:16348-64. [PMID: 23965958 PMCID: PMC3759915 DOI: 10.3390/ijms140816348] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 07/24/2013] [Accepted: 07/26/2013] [Indexed: 12/22/2022] Open
Abstract
Chronic myeloid leukemia (CML) is a hematological malignancy that arises from the transformation of stem hematopoietic cells by the fusion oncogene BCR/ABL and subsequent clonal expansion of BCR/ABL-positive progenitor leukemic cells. The BCR/ABL protein displays a constitutively increased tyrosine kinase activity that alters many regulatory pathways, leading to uncontrolled growth, impaired differentiation and increased resistance to apoptosis featured by leukemic cells. Current CML therapy is based on tyrosine kinase inhibitors (TKIs), primarily imatinib, which induce apoptosis in leukemic cells. However, some patients show primary resistance to TKIs while others develop it in the course of therapy. In both cases, resistance may be underlined by perturbations in apoptotic signaling in leukemic cells. As mitochondria may play an important role in such signaling, alteration in mitochondrial metabolism may change resistance to pro-apoptotic action of TKIs in BCR/ABL-positive cells. Because BCR/ABL may induce reactive oxygen species and unfaithful DNA repair, it may affect the stability of mitochondrial DNA, influencing mitochondrial apoptotic signaling and in this way change the sensitivity of CML cells to TKIs. Moreover, cancer cells, including BCR/ABL-positive cells, show an increased level of glucose metabolism, resulting from the shift from oxidative phosphorylation to glycolysis to supply ATP for extensive proliferation. Enhanced level of glycolysis may be associated with TKI resistance and requires change in the expression of several genes regulated mostly by hypoxia-inducible factor-1α, HIF-1α. Such regulation may be associated with the impaired mitochondrial respiratory system in CML cells. In summary, mitochondria and mitochondria-associated molecules and pathways may be attractive targets to overcome TKI resistance in CML.
Collapse
Affiliation(s)
- Sylwester Glowacki
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, Lodz 90-236, Poland; E-Mails: (S.G.); (E.S.)
| | - Ewelina Synowiec
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, Lodz 90-236, Poland; E-Mails: (S.G.); (E.S.)
| | - Janusz Blasiak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, Lodz 90-236, Poland; E-Mails: (S.G.); (E.S.)
| |
Collapse
|
15
|
A novel MT-CO1 m.6498C>A variation associated with the m.7444G>A mutation in the mitochondrial COI/tRNASer(UCN) genes in a patient with hearing impairment, diabetes and congenital visual loss. Biochem Biophys Res Commun 2013; 430:585-91. [DOI: 10.1016/j.bbrc.2012.11.109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Accepted: 11/19/2012] [Indexed: 11/18/2022]
|
16
|
Holland MM. Molecular analysis of the human mitochondrial DNA control region for forensic identity testing. CURRENT PROTOCOLS IN HUMAN GENETICS 2012; Chapter 14:Unit14.7. [PMID: 22786611 DOI: 10.1002/0471142905.hg1407s74] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This unit highlights methods used to perform PCR amplification and sequence analysis of mitochondrial DNA (mtDNA) on pristine and highly degraded biological material. The focus is on applications to forensic casework, and a number of case examples are provided. Any laboratory working with DNA from old or "ancient" samples will benefit from this information.
Collapse
|
17
|
Tranah GJ, Nalls MA, Katzman SM, Yokoyama JS, Lam ET, Zhao Y, Mooney S, Thomas F, Newman AB, Liu Y, Cummings SR, Harris TB, Yaffe K. Mitochondrial DNA sequence variation associated with dementia and cognitive function in the elderly. J Alzheimers Dis 2012; 32:357-72. [PMID: 22785396 PMCID: PMC4156011 DOI: 10.3233/jad-2012-120466] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mitochondrial dysfunction is a prominent hallmark of Alzheimer's disease (AD). Mitochondrial DNA (mtDNA) damage may be a major cause of abnormal reactive oxidative species production in AD or increased neuronal susceptibility to oxidative injury during aging. The purpose of this study was to assess the influence of mtDNA sequence variation on clinically significant cognitive impairment and dementia risk in the population-based Health, Aging, and Body Composition (Health ABC) Study. We first investigated the role of common mtDNA haplogroups and individual variants on dementia risk and 8-year change on the Modified Mini-Mental State Examination (3MS) and Digit Symbol Substitution Test (DSST) among 1,631 participants of European genetic ancestry. Participants were free of dementia at baseline and incidence was determined in 273 cases from hospital and medication records over 10-12 follow-up years. Participants from haplogroup T had a statistically significant increased risk of developing dementia (OR = 1.86, 95% CI = 1.23, 2.82, p = 0.0008) and haplogroup J participants experienced a statistically significant 8-year decline in 3MS (β = -0.14, 95% CI = -0.27, -0.03, p = 0.0006), both compared with common haplogroup H. The m.15244A>G, p.G166G, CytB variant was associated with a significant decline in DSST score (β = -0.58, 95% CI -0.89, -0.28, p = 0.00019) and the m.14178T>C, p.I166V, ND6 variant was associated with a significant decline in 3MS score (β = -0.87, 95% CI -1.31, -3.86, p = 0.00012). Finally, we sequenced the complete ~16.5 kb mtDNA from 135 Health ABC participants and identified several highly conserved and potentially functional nonsynonymous variants unique to 22 dementia cases and aggregate sequence variation across the hypervariable 2-3 regions that influences 3MS and DSST scores.
Collapse
Affiliation(s)
- Gregory J Tranah
- California Pacific Medical Center Research Institute, San Francisco, CA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Derdak Z, Lang CH, Villegas KA, Tong M, Mark NM, de la Monte SM, Wands JR. Activation of p53 enhances apoptosis and insulin resistance in a rat model of alcoholic liver disease. J Hepatol 2011; 54:164-72. [PMID: 20961644 PMCID: PMC2994971 DOI: 10.1016/j.jhep.2010.08.007] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 07/16/2010] [Accepted: 08/23/2010] [Indexed: 01/26/2023]
Abstract
BACKGROUND & AIMS Chronic ethanol consumption in the Long-Evans (LE) rat has been associated with hepatic p53 activation, and inhibition of the insulin/PI3K/AKT signal transduction cascade due to increased expression of PTEN. We hypothesize that p53 activation and altered insulin signaling may influence the susceptibility of rats to ethanol-induced liver damage. Furthermore, p53 not only activates programmed cell death pathways and suppresses hepatocellular survival signals, but also promotes gluconeogenesis to increase systemic insulin resistance due to a novel metabolic function. METHODS Fischer (F), Sprague-Dawley (SD) and LE rats were fed ethanol-containing or control liquid diet for 8 weeks. Histopathological and biochemical changes were assessed. RESULTS Here, we demonstrate that chronic ethanol feeding in rats promotes p53 activation, hepatic steatosis, oxidative stress, PUMA, and PTEN expression, which contribute to hepatocellular death and diminished insulin signaling in the liver. Such changes are pronounced in the LE, less prominent in SD, and virtually absent in the F rat strain. More importantly, there is activation of Tp53-induced glycolysis and apoptosis regulator (TIGAR) in the ethanol-fed LE rat. This event generates low hepatic fructose-2,6-bisphosphate (Fru-2,6-P₂) levels, reduced lactate/pyruvate ratio and may contribute to increased basal glucose turnover and high residual hepatic glucose production during euglycemic hyperinsulinemic clamp. CONCLUSIONS p53 activation correlates with the susceptibility to ethanol-induced liver damage in different rat strains. p53 not only orchestrates apoptosis and suppresses cell survival, but by activating TIGAR and decreasing hepatic Fru-2,6-P₂) levels it promotes insulin resistance and therefore, contributes to the metabolic abnormalities associated with hepatic steatosis.
Collapse
Affiliation(s)
- Zoltan Derdak
- Division of Gastroenterology and Liver Research Center, Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI 02903, USA.
| | - Charles H. Lang
- Pennsylvania State University College of Medicine, Department of Cellular and Molecular Physiology, Hershey, PA 17033
| | - Kristine A. Villegas
- Division of Gastroenterology & Liver Research Center, Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, 02903, USA
| | - Ming Tong
- Division of Gastroenterology & Liver Research Center, Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, 02903, USA
| | - Nicholas M. Mark
- Division of Gastroenterology & Liver Research Center, Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, 02903, USA
| | - Suzanne M. de la Monte
- Department of Pathology, Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, 02903, USA
| | - Jack R. Wands
- Division of Gastroenterology & Liver Research Center, Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, 02903, USA
| |
Collapse
|
19
|
Abstract
Hereditary optic neuropathies are caused by mutations either in the nuclear or mitochondrial genome and lead to retinal ganglion cell death mediated by reduced oxidative phosphorylation, fragmentation of the mitochondrial network, and increased sensitivity to apoptosis. Nuclear mutations result in autosomal dominant optic atrophy, autosomal recessive optic atrophy, or X-linked recessive optic atrophy, whereas mitochondrial mutations result in Leber's hereditary optic neuropathy, which is maternally inherited. A tentative diagnosis of a hereditary optic neuropathy can usually be made on the grounds of a thorough patient and family history, visual field and color vision tests, and a detailed assessment of the optic nerve head. The rarity of hereditary optic neuropathies makes it difficult to include these disorders in the differential diagnosis. Molecular genetic testing of a blood DNA sample should be performed on every patient, with implications for future genetic counseling and prediction of the disease course.
Collapse
|
20
|
Cadmium and mitochondria. Mitochondrion 2009; 9:377-84. [PMID: 19706341 DOI: 10.1016/j.mito.2009.08.009] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 08/18/2009] [Accepted: 08/19/2009] [Indexed: 11/20/2022]
Abstract
The heavy metal cadmium (Cd) a pollutant associated with several modern industrial processes, is absorbed in significant quantities from cigarette smoke, water, food and air contaminations. It is known to have numerous undesirable effects on health in both experimental animals and humans, targeting kidney, liver and vascular system. The molecular mechanism accounting for most of the biological effects of Cd are not well-understood and the toxicity targets are largely unidentified. The present review focuses on important recent advances about the effects of cadmium on mitochondria of mammalian cells. Mitochondria are the proverbial powerhouses of the cell, running the fundamental biochemical processes that produce energy from nutrients using oxygen. They are among the key intracellular targets for different stressors including Cd. This review provides new additional informations on the cellular and molecular aspects of the interaction between Cd and cells, emphasizing alterations of mitochondria as important events in Cd cytotoxicity, thus representing an important basis for understanding the mechanisms of cadmium effect on the cells.
Collapse
|
21
|
Abstract
PURPOSE To study the effects of hydrogen peroxide exposure on mitochondrial DNA (mtDNA) in cultured human corneal epithelial cells. In addition, we compared the integrity of mtDNA found in epithelial cells isolated from keratoconus (KC) and normal (NL) corneas. METHODS Telomerase immortalized human corneal epithelial cell line (hTCEpi) were cultured at pH 7.0 or pH 5.0 with or without 200 microM hydrogen peroxide (H2O2). Immunohistochemistry with a marker for oxidative damage, 8-hydroxy-2'-deoxyguanosine (8-OH-dG), was performed on KC and NL corneas (n = 10). Epithelial cells were isolated from KC corneas (n = 5) and NL corneas (n = 7). Total DNA was extracted, and the mtDNA was analyzed by long extension polymerase chain reaction (LX-PCR). The ratios of mtDNA to nuclear DNA were measured by PCR. The mtDNA control regions were PCR amplified and sequenced. RESULTS In the epithelial cell cultures, the full-length LX-PCR mtDNA decreased 54% and 44% in the H2O2 + pH7 cultures and H2O2 + pH5 cultures, respectively. 8-OH-dG was present in all layers of KC epithelial cells but only in superficial layers of NL epithelial cells. The isolated KC and NL epithelial cells had comparable levels of full-length LX-PCR mtDNA (16.2 kb) and smaller sized mtDNA bands (4.3 +/- 0.99 vs 4.0 +/- 0.83 bands per individual, respectively). There were no significant differences in the control region nucleotide sequences in KC and NL epithelia. CONCLUSIONS Hydrogen peroxide can significantly degrade LX-PCR mtDNA in vitro. Although the KC epithelium showed a higher degree of oxidative damage, the levels of mtDNA damage in NL and KC epithelial cells were similar to each other.
Collapse
|
22
|
Lee J, Schriner SE, Wallace DC. Adenine nucleotide translocator 1 deficiency increases resistance of mouse brain and neurons to excitotoxic insults. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:364-70. [PMID: 19366611 DOI: 10.1016/j.bbabio.2009.01.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 01/19/2009] [Accepted: 01/22/2009] [Indexed: 10/21/2022]
Abstract
The mitochondrial adenine nucleotide translocators (Ant) are bi-functional proteins that transport ADP and ATP across the mitochondrial inner membrane, and regulate the mitochondrial permeability transition pore (mtPTP) which initiates apoptosis. The mouse has three Ant isoforms: Ant1 expressed in heart, muscle, and brain; Ant2 expressed in all tissues but muscle; and Ant4 expressed primarily in testis. Ant1-deficient mice manifest muscle and heart but not brain pathology. Brain Ant1 is induced by stress, while Ant2 is not. Ant1-deficient mice are resistant to death induced by systemic exposure to the brain excitotoxin, kainic acid (KA), and their hippocampal and cortical neurons are significantly more resistant to neuronal death induced by glutamate, KA, and etoposide. The mitochondrial membrane potential of Ant1-deficient brain mitochondria is increased and the mtPTP is more resistance to Ca(++) induced permeability transition. Hence, Ant1-deficiency may protect the brain from excitotoxicity by desensitizing the mtPTP and by blocking the pro-apoptotic induction of Ant1 by stress.
Collapse
Affiliation(s)
- Jaewon Lee
- Center for Molecular and Mitochondrial Medicine and Genetics, University of California, Irvine, CA 92697-3940, USA
| | | | | |
Collapse
|
23
|
Holland MM, Huffine EF. Molecular analysis of the human mitochondrial DNA control region for forensic identity testing. ACTA ACUST UNITED AC 2008; Chapter 14:Unit 14.7. [PMID: 18428264 DOI: 10.1002/0471142905.hg1407s26] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This unit on mitochondrial DNA (mtDNA) highlights methods used to perform mtDNA sequence analysis on highly degraded biological material. The focus is on applications to forensic casework, and a number of case examples are provided. However, the laboratory working with ancient DNA, or any basic research laboratory, will benefit from this information.
Collapse
Affiliation(s)
- M M Holland
- The Armed Forces DNA Identification Laboratory, Rockville, Maryland, USA
| | | |
Collapse
|
24
|
Piantadosi CA, Suliman HB. Transcriptional Regulation of SDHa flavoprotein by nuclear respiratory factor-1 prevents pseudo-hypoxia in aerobic cardiac cells. J Biol Chem 2008; 283:10967-77. [PMID: 18252725 DOI: 10.1074/jbc.m709741200] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Nuclear respiratory factor-1 (NRF-1) is integral to the transcriptional regulation of mitochondrial biogenesis, but its control over various respiratory genes overlaps other regulatory elements including those involved in O(2) sensing. Aerobic metabolism generally suppresses hypoxia-sensitive genes, e.g. via hypoxia-inducible factor-1 (HIF-1), but mutations in Complex II-succinate dehydrogenase (SDH), a tumor suppressor, stabilize HIF-1, producing pseudo-hypoxia. In aerobic cardiomyocytes, which rely on oxidative phosphorylation, we tested the hypothesis that NRF-1 regulates Complex II expression and opposes hypoxia-inducible factor-1. NRF-1 gene silencing blocked aerobic succinate oxidation, increasing nuclear HIF-1alpha protein prior to the loss of Complex I function. We postulated that NRF-1 suppression either specifically decreases the expression of one or more SDH subunits and increases succinate availability to regulate HIF-1 prolyl hydroxylases, or stimulates mitochondrial reactive oxygen production, which interferes with HIF-1alpha degradation. Using promoter analysis, gene silencing, and chromatin immunoprecipitation, NRF-1 was found to bind to the gene promoters of two of four nuclear-encoded Complex II subunits: SDHa and SDHd, but the enzyme activity was dynamically regulated through the catalytic SDHa flavoprotein. Complex II was inactivated by SDHa silencing, which led to aerobic HIF-1alpha stabilization, nuclear translocation, and enhanced expression of glucose transporters and heme oxygenase-1. This was unrelated to mitochondrial ROS production, reversible by high alpha-ketoglutarate concentrations, and coherent with regulation of HIF-1 by succinate reported in tumor cells. These findings disclose a novel role for NRF-1 in the transcriptional control of Complex II and prevention of pseudo-hypoxic gene expression in aerobic cardiac cells.
Collapse
Affiliation(s)
- Claude A Piantadosi
- Department of Medicine, Duke University School of Medicine and the Durham Veteran's Administration Medical Center, Durham, North Carolina 27710, USA.
| | | |
Collapse
|
25
|
Weglewska-Jurkiewicz A, Jakóbkiewicz-Banecka J, Pronicka E, Wegrzyn G. False Positive Results of Mitochondrial DNA Depletion/Deletion due to Single Nucleotide Substitutions Causing Appearance of Additional PvuII Restriction Sites. ACTA ACUST UNITED AC 2007; 16:116-20. [PMID: 17525683 DOI: 10.1097/pdm.0b013e3180336271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Human mitochondrial diseases are usually caused by dysfunction of mitochondrial DNA (mtDNA), particularly by point mutations, deletions, or depletions. In commonly used procedures for molecular diagnostics of mitochondrial dysfunction, one of the first steps is linearization of circular mitochondrial genomes with either BamHI or PvuII restriction endonulease, which cuts human mtDNA at a unique site. Here, we describe a case of false positive results, which suggested mtDNA depletion or a large deletion in a patient's tissue sample. More detailed analysis (mtDNA sequencing) revealed that these false positive results were caused by the presence of the 12753A>G substitution in the gene coding for NADH dehydrogenase subunit 5 (ND5). This substitution results in no change in amino acid sequence of the gene product but creates an additional PvuII site. Investigating a population of 200 patients not affected by mitochondrial diseases, we found an additional case of 12753A>G, and also another substitution, 12804T>C, which also results in no change in amino acid sequence of ND5 but creates an additional PvuII site. A few cases of 12753A>G and 12804T>C substitutions were found previously in Asian, American, African, and European populations (though they were not reported to date in the MITOMAP), but those samples were used in population studies and not tested for mtDNA deletion or depletion. Therefore, we present a cautionary report indicating that these mtDNA polymorphisms exist in various human populations (and thus, they are panethnic) and may cause false positive results of standard molecular analyses, including molecular diagnostics, of human mtDNA.
Collapse
|
26
|
Kim HS, Lim HS, Lee SH, Lee JW, Nam SW, Park WS, Lee YS, Lee JY, Yoo NJ. Mitochondrial microsatellite instability of colorectal cancer stroma. Int J Cancer 2006; 119:2607-11. [PMID: 16991127 DOI: 10.1002/ijc.22244] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Mitochondrial microsatellite instability (mtMSI) and mutations of mitochondrial DNA has been reported in cancer epithelia of carcinomas. However, mtMSI in cancer stroma has not yet been identified in human cancers. In this study, we attempted to determine if mtMSI occurs in the cancer stroma of sporadic colorectal cancers, and if the stromal mtMSI has any correlations with stromal nuclear MSI (nMSI) and cancer epithelial mtMSI. Nine microsatellite sequences within the D-loop and 5 coding genes for mtMSI, and 9 microsatellites for nMSI were analyzed in the microdissected cancer epithelia and adjacent stromas of 48 sporadic colorectal cancers. Overall, 23 somatic mitochondrial DNA alterations were detected in 15 cancer epithelia (31.2%) and 5 stromas (10.4%). The mutations consisted of 19 D-loop mtMSI alterations, and 1 missense and 3 framshift mutations of repeat sequences within the coding genes. All of the 5 stromal genetic alterations showed D-loop mtMSI. In regards to other MSI status, the stromal mtMSI had no association with stromal nMSI or epithelial mtMSI, either. These findings indicate that in addition to the cancer epithelia the cancer stroma harbor mtMSI, and suggest a possible role of stromal mtMSI in the pathogenesis of colorectal cancers. Furthermore, the data suggest that stromal mtMSI may occur independently of stromal nMSI and epithelial mtMSI in sporadic colorectal cancers.
Collapse
Affiliation(s)
- Hong Sug Kim
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Grazina M, Pratas J, Silva F, Oliveira S, Santana I, Oliveira C. Genetic basis of Alzheimer's dementia: role of mtDNA mutations. GENES BRAIN AND BEHAVIOR 2006; 5 Suppl 2:92-107. [PMID: 16681804 DOI: 10.1111/j.1601-183x.2006.00225.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder associated to dementia in late adulthood. Amyloid precursor protein, presenilin 1 and presenilin 2 genes have been identified as causative genes for familial AD, whereas apolipoprotein E epsilon4 allele has been associated to the risk for late onset AD. However, mutations on these genes do not explain the majority of cases. Mitochondrial respiratory chain (MRC) impairment has been detected in brain, muscle, fibroblasts and platelets of Alzheimer's patients, indicating a possible involvement of mitochondrial DNA (mtDNA) in the aetiology of the disease. Several reports have identified mtDNA mutations in Alzheimer's patients, suggesting the existence of related causal factors probably of mtDNA origin, thus pointing to the involvement of mtDNA in the risk contributing to dementia, but there is no consensual opinion in finding the cause for impairment. However, mtDNA mutations might modify age of onset, contributing to the neurodegenerative process, probably due to an impairment of MRC and/or translation mechanisms.
Collapse
Affiliation(s)
- M Grazina
- Biochemistry Institute, Faculty of Medicine, University of Coimbra, Rua Larga, Coimbra, Portugal
| | | | | | | | | | | |
Collapse
|
28
|
Maassen JA, Jahangir Tafrechi RS, Janssen GMC, Raap AK, Lemkes HH, 't Hart LM. New insights in the molecular pathogenesis of the maternally inherited diabetes and deafness syndrome. Endocrinol Metab Clin North Am 2006; 35:385-96, x-xi. [PMID: 16632100 DOI: 10.1016/j.ecl.2006.02.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The 3243A>G mutation in mitochondrial DNA (mtDNA) is a genetic variant that is associated with a high risk of developing diabetes during life. Enhanced aging of pancreatic beta-cells, a reduced capacity of these cells to synthesize large amounts of insulin,and a resetting of the ATP/ADP-regulated K-channel seem to be the pathogenic factors involved.
Collapse
Affiliation(s)
- Johannes A Maassen
- Department of Molecular Cell Biology, Leiden University Medical Centre, Albinusdreef 2, 2333ZA Leiden, The Netherlands.
| | | | | | | | | | | |
Collapse
|
29
|
Rawson PD, Burton RS. Molecular Evolution at the Cytochrome Oxidase Subunit 2 Gene Among Divergent Populations of the Intertidal Copepod, Tigriopus californicus. J Mol Evol 2006; 62:753-64. [PMID: 16752213 DOI: 10.1007/s00239-005-0074-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2005] [Accepted: 01/23/2006] [Indexed: 11/28/2022]
Abstract
The cytochrome c oxidase subunit 2 gene (COII) encodes a highly conserved protein that is directly responsible for the initial transfer of electrons from cytochrome c to cytochrome c oxidase (COX) crucial to the production of ATP during cellular respiration. Despite its integral role in electron transport, we have observed extensive intraspecific nucleotide and amino acid variation among 26 full-length COII sequences sampled from seven populations of the marine copepod, Tigriopus californicus. Although intrapopulation divergence was virtually nonexistent, interpopulation divergence at the COII locus was nearly 20% at the nucleotide level, including 38 nonsynonymous substitutions. Given the high degree of interaction between the cytochrome c oxidase subunit 2 protein (COX2) and the nuclear-encoded subunits of COX and cytochrome c (CYC), we hypothesized that some codons in the COII gene are likely to be under positive selection in order to compensate for amino acid substitutions in other subunits. Estimates of the ratio of nonsynonymous to synonymous substitution (omega), obtained using a series of maximum likelihood models of codon substitution, indicated that the majority of codons in T. californicus COII are under strong purifying selection (omega << 1), while approximately 4% of the sites in this gene appear to evolve under relaxed selective constraint (omega = 1). A branch-site maximum likelihood model identified three sites that may have experienced positive selection within the central California sequence clade in our COII phylogeny; these results are consistent with previous studies showing functional and fitness consequences among interpopulation hybrids between central and northern California populations.
Collapse
Affiliation(s)
- Paul D Rawson
- School of Marine Sciences, University of Maine, Orono, ME 04469, USA.
| | | |
Collapse
|
30
|
Kin T, Sugie K, Hirano M, Goto YI, Nishino I, Ueno S. Humanin expression in skeletal muscles of patients with chronic progressive external ophthalmoplegia. J Hum Genet 2006; 51:555-558. [PMID: 16639504 DOI: 10.1007/s10038-006-0397-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2005] [Accepted: 02/20/2006] [Indexed: 10/24/2022]
Abstract
We showed that humanin (HN), an endogenous peptide against Alzheimer disease-related insults, was expressed in muscles of patients with chronic progressive external ophthalmoplegia (CPEO), a major mitochondrial disease. Because HN was recently found to block proapoptotic Bax function and exert its versatile cytoprotective effects in association with an increase in ATP levels, HN expression may thus reflect a physiological response against degenerative changes in the muscles of patients with CPEO. We found HN expression in all four patients examined, each of whom had different mitochondrial DNA mutations including two different single DNA deletions, multiple deletions, and no major mutations detected. We also found that HN expression was not linked to focal cytochrome c deficiency, strongly associated with the subtype of CPEO with single deletions. These results suggest that HN expression is more closely related to degenerative changes in all types of CPEO. Notably, HN was also expressed in non-degenerative muscle fibers of patients with CPEO or Leigh syndrome, who had the 8993T>G mutation in the mitochondrial ATPase 6 gene known to be associated with impaired ATP synthesis. Collectively, our findings suggest that HN may be specifically expressed in response to defects in energy production in muscles with mitochondrial abnormalities.
Collapse
Affiliation(s)
- Tesseki Kin
- Department of Neurology, Nara Medical University School of Medicine, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan
| | - Kazuma Sugie
- Department of Neurology, Nara Medical University School of Medicine, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan
| | - Makito Hirano
- Department of Neurology, Nara Medical University School of Medicine, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan.
| | - Yu-Ichi Goto
- Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Satoshi Ueno
- Department of Neurology, Nara Medical University School of Medicine, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan
| |
Collapse
|
31
|
Máximo V, Lima J, Soares P, Botelho T, Gomes L, Sobrinho-Simões M. Mitochondrial D-Loop instability in thyroid tumours is not a marker of malignancy. Mitochondrion 2006; 5:333-40. [PMID: 16183030 DOI: 10.1016/j.mito.2005.06.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2005] [Revised: 05/20/2005] [Accepted: 06/01/2005] [Indexed: 11/25/2022]
Abstract
Despite the numerous studies describing a high frequency of mitochondrial DNA (mtDNA) somatic mutations in many types of human primary tumors the mechanisms that generate such mutations and the role of mtDNA mutations in tumor development remain unclear. We present the results obtained in the study of mtDNA displacement-loop (D-Loop) region in a series of 66 thyroid tumors, and respective adjacent parenchyma, including benign (adenomas, n=30) and malignant tumors (follicular carcinomas, n=17 and papillary carcinomas, n=19). Three repetitive regions were analyzed [two mononucleotide repetitive (D310 and D568) and one dinucleotide repetitive (D514)]. Thirty-two (48.5%) of the 66 tumors [15/30 (50.0%) adenomas, 8/17 (47.1%) follicular carcinomas and 9/19 (47.4%) papillary carcinomas] harbored somatic insertions in D-Loop repetitive regions. Twenty (30.3%) of the 66 tumors [12/30 (40%) adenomas, 3/17 (17.6%) follicular carcinomas and 5/19 (26.3%) papillary carcinomas] harbored somatic insertions at the D310 mononucleotide repeat. Three (4.6%) of the 66 tumors [1/30 (3.3%) adenomas and 2/17 (11.8%) follicular carcinomas] harbored somatic insertions at the D568 mononucleotide repeat. Fifteen (22.7%) of the 66 tumors [3/30 (10.0%) adenomas, 5/17 (29.4%) follicular carcinomas and 7/19 (36.8%) papillary carcinomas] harbored somatic insertions at the D514 dinucleotide repeat. Five (7.6%) of the 66 tumors [1/30 (3.3%) adenomas, 1/17 (5.9%) follicular carcinomas and 2/19 (10.5%) papillary carcinomas] harbored somatic insertions in more than one region, and in one of them (a carcinoma) alterations were detected in the three regions. We conclude that mutations in the mtDNA D-Loop region are frequent in benign and malignant thyroid tumors and cannot be considered a marker of malignancy. Our study shows, furthermore, two repetitive regions (D310 and D514) that appear to be susceptible to mutation in thyroid tumors.
Collapse
Affiliation(s)
- Valdemar Máximo
- Institute of Molecular Pathology and Immunology of the University of Porto IPATIMUP, Porto, Portugal
| | | | | | | | | | | |
Collapse
|
32
|
Kariya S, Hirano M, Furiya Y, Sugie K, Ueno S. Humanin detected in skeletal muscles of MELAS patients: a possible new therapeutic agent. Acta Neuropathol 2005; 109:367-72. [PMID: 15759134 DOI: 10.1007/s00401-004-0965-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2004] [Revised: 11/15/2004] [Accepted: 11/16/2004] [Indexed: 11/30/2022]
Abstract
Humanin (HN) was originally identified as an endogenous peptide that protects neuronal cells from apoptosis induced by various types of Alzheimer's disease-related insults. We have previously indicated that HN increases cellular ATP levels and speculated that this peptide may rescue energy-deficient cells in mitochondrial disorders. Here, we report, for the first time, increased HN expression in skeletal muscles from patients with mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes (MELAS). HN was strongly positive in all ragged-red fibers (RRFs) and some non-RRFs, and most of them were type 1 fibers generally requiring higher energy than type 2 fibers. HN in these fibers was localized in mitochondria. HN expression was also increased in small arteries that strongly reacted for succinate dehydrogenase. Our experiments on muscular TE671 cells indicated the possibility that synthesized HN increases cellular ATP levels by directly acting on mitochondria. From these in vivo and in vitro findings, we propose that HN expression might be induced in response to the energy crisis within affected fibers and vessels in MELAS muscles and further be a possible therapeutic candidate for MELAS.
Collapse
Affiliation(s)
- Shingo Kariya
- Department of Neurology, Nara Medical University, 840 Shijo-cho, Kashihara, 634-8522 Nara, Japan
| | | | | | | | | |
Collapse
|
33
|
Kariya S, Hirano M, Furiya Y, Ueno S. Effect of humanin on decreased ATP levels of human lymphocytes harboring A3243G mutant mitochondrial DNA. Neuropeptides 2005; 39:97-101. [PMID: 15752543 DOI: 10.1016/j.npep.2004.11.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2004] [Revised: 11/16/2004] [Accepted: 11/20/2004] [Indexed: 11/20/2022]
Abstract
Humanin (HN) was originally identified as an endogenous peptide that protects neuronal cells from apoptosis by mutant Alzheimer's disease genes. This 24-residue peptide has been recently shown to suppress apoptosis by interfering with activation of Bcl-2-associated X protein (Bax) in cytosol. In the present study, we showed that HN increases ATP levels in human lymphocytes, muscular TE671 cells, and neural SKN-MC cells, and protects these cells from serum deprivation-induced apoptosis. The suppressed apoptotic death of serum-deprived cells would be explained by the anti-Bax effect of HN; however, HN also increased ATP levels of serum-supplemented cells (non-apoptotic cells), in which Bax is likely to be inactive. This result suggests the presence of a certain mechanism independent of Bax inactivation to increase ATP levels of cells under non-apoptotic condition. By treatment with HN, the ATP levels of lymphocytes from patients with mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes (MELAS) associated with A3243G mutant mtDNA were increased as well, suggesting that HN is able to prevent cells in MELAS from falling into ATP deficiency. Our quantitative PCR findings indicated that the HN-induced increase in ATP may not be a consequence of mitochondrial proliferation, because HN rather suppressed mtDNA replication. This suppression may be important in the treatment of affected cells in MELAS, since the mutant mtDNAs that increase during compensatory mtDNA replication for ATP deficiency cause excessive formation of reactive oxygen species, leading to further energy crisis. We thus propose that HN, which increases cellular ATP levels without inducing mtDNA replication, may be suited for the treatment of MELAS.
Collapse
Affiliation(s)
- Shingo Kariya
- Department of Neurology, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | | | | | | |
Collapse
|
34
|
Poetsch M, Dittberner T, Petersmann A, Woenckhaus C. Mitochondrial DNA instability in malignant melanoma of the skin is mostly restricted to nodular and metastatic stages. Melanoma Res 2004; 14:501-8. [PMID: 15577321 DOI: 10.1097/00008390-200412000-00010] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Ultraviolet (UV) radiation is thought to be a major contributor to the development of sporadic malignant melanoma of the skin. It may induce alterations in genomic or mitochondrial DNA (mtDNA), especially C to T or CC to TT changes. Mutations or other alterations in mtDNA have been reported in a variety of human cancers and may be due to different mechanisms. In this study, we have attempted to elucidate whether aberrations in the mtDNA of melanoma are due to UV radiation or other factors by investigating two parts of the mitochondrial D-loop and two mitochondrial genes, as well as looking for the delta4977 mtDNA deletion and mtDNA duplications, in 61 primary malignant melanomas and neighbouring normal skin tissue (in 70% of primary tumours; otherwise, corresponding blood samples). Point mutations were a rare feature, occurring in only seven tumour samples and never as a C to T change, whereas mtDNA instability in the D-loop (mtMSI) was found in 13% of primary nodular tumours and 20% of metastases. A de novo delta4977 mtDNA deletion was demonstrated in 10% of melanomas; in 20% of patients, mtDNA duplications and/or the delta4977 mtDNA deletion was detectable. Our data indicate that mtDNA alterations in malignant melanoma are not induced by UV radiation. In addition, point mutations and mtMSI were mostly a feature of nodular and metastatic melanoma samples.
Collapse
Affiliation(s)
- Micaela Poetsch
- Institute of Forensic Medicine, University of Greifswald, Germany.
| | | | | | | |
Collapse
|
35
|
Poetsch M, Petersmann A, Lignitz E, Kleist B. Relationship between mitochondrial DNA instability, mitochondrial DNA large deletions, and nuclear microsatellite instability in head and neck squamous cell carcinomas. ACTA ACUST UNITED AC 2004; 13:26-32. [PMID: 15163006 DOI: 10.1097/00019606-200403000-00005] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Mitochondrial DNA (mtDNA) mutations in coding and noncoding regions have been reported in a variety of human cancers. Despite a greater number of studies, the relationship between such alterations and nuclear microsatellite instability (nMSI) of the tumor cells remains controversial. To contribute new data to this discussion, we investigated head and neck squamous cell carcinomas (HNSCC) for mutations and mitochondrial microsatellite instability (mtMSI) in 2 parts of the mitochondrial D-loop as well as mutations in 2 mitochondrial genes and for the delta4977 mtDNA deletion. These results were compared with data of an analysis for microsatellite instability at IGFIIR, hMSH3, hMSH6, and 5 dinucleotide repeats. We found mtMSI, low nMSI, and high nMSI in 42%, 36%, and 13% of HNSCC primary tumors, respectively. A de novo delta4977 mtDNA deletion could be demonstrated in 25% of HNSCCs. A correlation between mtMSI and nMSI or between a de novo occurrence of the delta4977 mtDNA deletion and nMSI could not be detected in our HNSCC samples (P values 0.527 and 0.078, respectively). Nevertheless, the high rate of mtMSI suggests an involvement of mtDNA alterations in the tumorigenesis of this head and neck cancer and supports the proposal that this aberration may be a new tumor marker.
Collapse
Affiliation(s)
- Micaela Poetsch
- Institute of Forensic Medicine, University of Greifswald, Germany.
| | | | | | | |
Collapse
|
36
|
Uusimaa J, Finnilä S, Remes AM, Rantala H, Vainionpää L, Hassinen IE, Majamaa K. Molecular epidemiology of childhood mitochondrial encephalomyopathies in a Finnish population: sequence analysis of entire mtDNA of 17 children reveals heteroplasmic mutations in tRNAArg, tRNAGlu, and tRNALeu(UUR) genes. Pediatrics 2004; 114:443-50. [PMID: 15286228 DOI: 10.1542/peds.114.2.443] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVES Many heteroplasmic point mutations in tRNA genes of mitochondrial DNA (mtDNA) have been associated with human diseases. We recently reported on a prospective 7-year study in which we enrolled 116 consecutive children with undefined encephalomyopathy. Seventeen of them were found to have both a defect in the mitochondrial respiratory chain and abnormal ultrastructure of muscle mitochondria, suggesting a clinically probable mitochondrial encephalopathy. METHODS We determined the frequency of mtDNA mutations in these 17 children by analyzing the entire sequence of mtDNA by conformation-sensitive gel electrophoresis and sequencing. RESULTS Three heteroplasmic tRNA mutations that were considered to be pathogenic were detected. Two of the mutations were novel transitions, 10438A>G in the tRNA(Arg) gene and 14696A>G in the tRNA(Glu) gene, whereas the third one was 3243A>G, the common MELAS mutation. The mutant load was very high in the blood and skeletal muscle of the patients and markedly lower in the blood of asymptomatic maternal relatives. The 10438A>G mutation changes the nucleotide flanking the anticodon, whereas 14696A>G changes a nucleotide in the stem of the pseudouridine loop, creating a novel base pair and reducing the wobble. CONCLUSIONS Our results emphasize that the analysis of the entire sequence of mtDNA is worthwhile in the diagnostic evaluation of patients with clinically probable mitochondrial encephalomyopathy. The frequency of pathogenic mtDNA mutations was found to be 18% among children with biochemically and histologically defined mitochondrial disease, suggesting that the likelihood of nuclear DNA mutations in such a group is several times higher than that of mtDNA mutations.
Collapse
Affiliation(s)
- Johanna Uusimaa
- Department of Departments of Pediatrics, University of Oulu, Oulu, Finland
| | | | | | | | | | | | | |
Collapse
|
37
|
Houshmand M, Sharifpanah F, Tabasi A, Sanati MH, Vakilian M, Lavasani SH, Joughehdoust S. Leber's hereditary optic neuropathy: the spectrum of mitochondrial DNA mutations in Iranian patients. Ann N Y Acad Sci 2004; 1011:345-9. [PMID: 15126312 DOI: 10.1007/978-3-662-41088-2_35] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023]
Abstract
We studied 14 patients with Leber's hereditary optic neuropathy (LHON) to investigate the mtDNA haplotypes associated with the primary mutation(s). Eleven patients carried the mitochondrial DNA (mtDNA) G11778A mutation, while one had the T14484C mutation; one patient had the G3460A mutation and one the G14459A mutation. The Iranian G11778A LHON mutation was not associated with two mtDNA haplogroups-M (0.0% compared with 3.2% in healthy controls) and J (7.7% compared with 10% in healthy controls). Our results showed a similarity in the pattern of LHON primary point mutations between Iranian families with LHON and those of Russian, European, and North American origin. Our results also do not support an association between mtDNA haplogroups J and M with LHON primary point mutations.
Collapse
Affiliation(s)
- M Houshmand
- National Research Center for Genetic Engineering and Biotechnology, Tehran, Iran.
| | | | | | | | | | | | | |
Collapse
|
38
|
HOUSHMAND M, SHARIFPANAH F, TABASI A, SANATI MH, VAKILIAN M, LAVASANI SH, JOUGHEHDOUST S. Leber's Hereditary Optic Neuropathy: The Spectrum of Mitochondrial DNA Mutations in Iranian Patients. Ann N Y Acad Sci 2004. [DOI: 10.1196/annals.1293.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
39
|
Máximo V, Preto A, Crespo A, Rocha AS, Machado JC, Soares P, Sobrinho-Simões M. Core I gene is overexpressed in Hürthle and non-Hürthle cell microfollicular adenomas and follicular carcinomas of the thyroid. BMC Cancer 2004; 4:12. [PMID: 15043758 PMCID: PMC404464 DOI: 10.1186/1471-2407-4-12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2003] [Accepted: 03/25/2004] [Indexed: 11/10/2022] Open
Abstract
Background Most of the steps involved in the initiation and progression of Hürthle (oncocytic, oxyphilic) cell carcinomas of the thyroid remain unknown. Methods Using differential display and semiquantitative RT-PCR we found, among other alterations, overexpression of the gene encoding the Core I subunit of the complex III of the mitochondrial respiratory chain in a follicular carcinoma composed of Hürthle cells. Results Similar high levels of Core I gene expression were detected in nine follicular carcinomas (seven with Hürthle cell features), in seven microfollicular adenomas (one with Hürthle cell features) and in one micro/macrofollicular adenoma, in contrast to a lower/normal expression in nine papillary carcinomas (three with Hürthle cell features) and five macrofollicular adenomas (one of which displaying Hürthle cell features). No significative correlation was found between Core I overexpression and the proliferative activity of the lesions. Conclusions We conclude that Core I overexpression in thyroid tumours is not associated with malignancy, Hürthle cells or proliferative activity. The pathogenetic mechanism linking Core I overexpression to the microfollicular pattern of growth of thyroid tumours remains to be clarified.
Collapse
Affiliation(s)
- Valdemar Máximo
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Ana Preto
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Ana Crespo
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- Infection and Immunity Group, Gulbenkian Institute of Science, Oeiras, Portugal
| | - Ana Sofia Rocha
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - José Carlos Machado
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- Department of Pathology, Medical Faculty of Porto, Porto, Portugal
| | - Paula Soares
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- Department of Pathology, Medical Faculty of Porto, Porto, Portugal
| | - Manuel Sobrinho-Simões
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- Department of Pathology, Medical Faculty of Porto, Porto, Portugal
- Department of Pathology, São João Hospital, Porto, Portugal
| |
Collapse
|
40
|
Abstract
We report a novel imaging technology for real time comprehensive analysis of molecular alterations in cells and tissues appropriate for automation and adaptation to high-throughput applications. With these techniques it should eventually be possible to perform simultaneous analysis of the entire contents of individual biological cells with a sensitivity and selectivity sufficient to determine the presence or absence of a single copy of a targeted analyte (e.g., DNA region, RNA region, protein), and to do so at a relatively low cost. The technology is suitable for DNA and RNA through sizing or through fluorescent hybridization probes, and for proteins and small molecules through fluorescence immunoassays. This combination of the lowest possible detection limit and the broadest applicability to biomolecules represents the final frontier in bioanalysis. The general scheme is based on novel concepts for single molecule detection (SMD) and characterization recently demonstrated in our laboratory. Since minimal manipulation is involved, it should be possible to screen large numbers of cells in a short time to facilitate practical applications. This opens up the possibility of finding single copies of DNA or proteins within single biological cells for disease markers without performing polymerase chain reaction or other biological amplification.
Collapse
Affiliation(s)
- E S Yeung
- Ames Laboratory-USDOE and Department of Chemistry, Iowa State University, 50011, USA.
| |
Collapse
|
41
|
Liolitsa D, Hanna MG. Models of mitochondrial disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2003; 53:429-66. [PMID: 12512349 DOI: 10.1016/s0074-7742(02)53016-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Danae Liolitsa
- Centre for Neuromuscular Disease, Institute of Neurology, Queen Square, London, WC1N 3BG, United Kingdom
| | | |
Collapse
|
42
|
Hansrote S, Croul S, Selak M, Kalman B, Schwartzman RJ. External ophthalmoplegia with severe progressive multiorgan involvement associated with the mtDNA A3243G mutation. J Neurol Sci 2002; 197:63-7. [PMID: 11997068 DOI: 10.1016/s0022-510x(02)00048-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
BACKGROUND Chronic progressive external ophthalmoplegia (CPEO) may be related to primary nuclear DNA or mitochondrial (mt)DNA mutations. The A3243G mtDNA point mutation most frequently causes mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome, but also has been associated with other phenotypes including CPEO, migraine, seizure, diabetes, and sensorineural hearing loss. CASE DESCRIPTION We report a 38-year-old white man with seizures and progressive difficulties of infantile origin including CPEO, sensorineural hearing loss, cataracts, migraines, multiple endocrinopathy, myopathy, and cardiomyopathy. Moderate hearing loss in association with CPEO, diabetes mellitus, or migraines were noted in the proband's maternal grandmother, great aunt, mother, and three sisters, suggesting either an autosomal dominant or maternal inheritance. Detailed histological and biochemical analysis of the proband's biopsied muscle specimen revealed severe abnormalities compatible with a mitochondrial disease. MtDNA analysis excluded large-scale deletions, but revealed a heteroplasmic A to G transition at nt3243 in 56.4% and 27.4% of molecules in muscle and white blood cells, respectively. CONCLUSION We discuss possible causes of this intrafamilial heterogeneity of phenotypes associated with the A3243G mtDNA mutation.
Collapse
Affiliation(s)
- Sun Hansrote
- Department of Neurology, MCP Hahnemann University, MS 423, 245 North 15th Street, Philadelphia, PA 19102, USA
| | | | | | | | | |
Collapse
|
43
|
Abstract
This review discusses the current insight by which mutations in mitochondrial DNA (mtDNA) contribute to the development of particular disease states with emphasis on diabetes mellitus. Mitochondria are the power factories of the cells and produce ATP by oxidizing reducing equivalents via the respiratory chain. These reducing equivalents originate mainly from the citric acid cycle that also occurs within the mitochondria. Human mitochondria contain their own genetic material in the form of circular DNA that encodes for only a fraction of the mitochondrial components. The other mitochondrial components are nuclear encoded. Pathogenic mutations in mtDNA can affect the activity of the respiratory chain, thereby leading to the reduced generation of ATP. However, mitochondria not only produce ATP but they also regulate cytosolic concentrations of signaling molecules such as calcium and iron ions. The metabolic processes within mitochondria such as the citric acid cycle determine the concentration of metabolites that can also act as signalling molecules. Furthermore, the respiratory chain and mitochondrion-associated monoamine oxidase are major producers of reactive oxygen radicals. As a result, mutations in mtDNA can deregulate multiple processes within cells and the balance of this deregulation may contribute to the clinical phenotype.
Collapse
Affiliation(s)
- J A Maassen
- Department of Molecular Cell Biology, Leiden University Medical Center, The Netherlands.
| | | | | |
Collapse
|
44
|
Bai Y, Hájek P, Chomyn A, Chan E, Seo BB, Matsuno-Yagi A, Yagi T, Attardi G. Lack of complex I activity in human cells carrying a mutation in MtDNA-encoded ND4 subunit is corrected by the Saccharomyces cerevisiae NADH-quinone oxidoreductase (NDI1) gene. J Biol Chem 2001; 276:38808-13. [PMID: 11479321 DOI: 10.1074/jbc.m106363200] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The gene for the single subunit, rotenone-insensitive, and flavone-sensitive internal NADH-quinone oxidoreductase of Saccharomyces cerevisiae (NDI1) can completely restore the NADH dehydrogenase activity in mutant human cells that lack the essential mitochondrial DNA (mtDNA)-encoded subunit ND4. In particular, the NDI1 gene was introduced into the nuclear genome of the human 143B.TK(-) cell line derivative C4T, which carries a homoplasmic frameshift mutation in the ND4 gene. Two transformants with a low or high level of expression of the exogenous gene were chosen for a detailed analysis. In these cells the corresponding protein is localized in mitochondria, its NADH-binding site faces the matrix compartment as in yeast mitochondria, and in perfect correlation with its abundance restores partially or fully NADH-dependent respiration that is rotenone-insensitive, flavone-sensitive, and antimycin A-sensitive. Thus the yeast enzyme has become coupled to the downstream portion of the human respiratory chain. Furthermore, the P:O ratio with malate/glutamate-dependent respiration in the transformants is approximately two-thirds of that of the wild-type 143B.TK(-) cells, as expected from the lack of proton pumping activity in the yeast enzyme. Finally, whereas the original mutant cell line C4T fails to grow in medium containing galactose instead of glucose, the high NDI1-expressing transformant has a fully restored capacity to grow in galactose medium. The present observations substantially expand the potential of the yeast NDI1 gene for the therapy of mitochondrial diseases involving complex I deficiency.
Collapse
Affiliation(s)
- Y Bai
- Division of Biology 156-29, California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Máximo V, Soares P, Seruca R, Rocha AS, Castro P, Sobrinho-Simões M. Microsatellite instability, mitochondrial DNA large deletions, and mitochondrial DNA mutations in gastric carcinoma. Genes Chromosomes Cancer 2001; 32:136-43. [PMID: 11550281 DOI: 10.1002/gcc.1175] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mitochondrial DNA (mtDNA) large deletions and mtDNA mutations have been demonstrated in various types of human cancer. The relationship between the occurrence of such alterations and the nuclear microsatellite instability (MSI) status of the neoplastic cells remains controversial. In an attempt to clarify the situation in gastric carcinoma, we studied, by PCR/SSCP and sequencing, five mitochondrial genes and two D-loop regions in 32 gastric carcinomas that had been previously screened for MSI and mitochondrial common deletion. MtDNA alterations were detected in 26 carcinomas (81%). All the mtDNA mutations, which occurred mainly in the D-loop and ND1 and ND5 genes, were transitions. D-loop alterations (insertions and/or deletions) were not significantly associated with mutations in the coding regions. There was a trend towards an inverse relationship between the occurrence of mitochondrial common deletion and mtDNA mutations. No significant relationship was observed between MSI status and mtDNA mutations, whereas the mitochondrial common deletion appeared to be almost exclusively restricted to MSI-negative tumors. The latter finding--almost no gastric carcinoma with MSI-positive phenotype has large deletions of mtDNA--needs to be confirmed in a larger series and in tumors from other organs.
Collapse
Affiliation(s)
- V Máximo
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Dr. Roberto Frias s/n, 4200 Porto, Portugal.
| | | | | | | | | | | |
Collapse
|
46
|
Chen H, Hu CJ, He YY, Yang DI, Xu J, Hsu CY. Reduction and restoration of mitochondrial dna content after focal cerebral ischemia/reperfusion. Stroke 2001; 32:2382-7. [PMID: 11588330 DOI: 10.1161/hs1001.097099] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND PURPOSE Oxidative damage of mitochondrial DNA (mtDNA) in the ischemic brain is expected after ischemia/reperfusion injury. A recent study demonstrated limited patterns of mtDNA deletion in the brain after ischemia/reperfusion. We studied the ischemia/reperfusion-induced global changes of mtDNA integrity and its restoration in a rat model of transient focal ischemia in vivo. METHODS Changes in mtDNA content in the ischemic brain were assessed with the use of a rat stroke model featuring transient severe ischemia confined to the cerebral cortex of the right middle cerebral artery territory for 30 or 90 minutes. A new long polymerase chain reaction method, using mouse DNA as an internal standard, was applied to measure the relative content of intact rat mtDNA. Southern hybridization following alkaline gel electrophoresis was conducted in a parallel study to confirm long polymerase chain reaction results. RESULTS A reduction in mtDNA content was found after ischemia for 30 and 90 minutes. The mtDNA was restored to near nonischemic levels 24 hours after 30- but not 90-minute ischemia. CONCLUSIONS These results confirm that ischemia/reperfusion causes mtDNA damages. Restoration of the mtDNA content to nonischemic levels after 30-minute ischemia raises the possibility that mtDNA repair or repletion occurs after brief ischemia.
Collapse
Affiliation(s)
- H Chen
- Center for the Study of Nervous System Injury and Department of Neurology, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
47
|
Affiliation(s)
- L A Tully
- Biotechnology Division, National Institute of Standards and Technology, 100 Bureau Drive, Stop 8311, Gaithersburg, MD 20899-8311, USA
| | | |
Collapse
|
48
|
Seyda A, Newbold RF, Hudson TJ, Verner A, MacKay N, Winter S, Feigenbaum A, Malaney S, Gonzalez-Halphen D, Cuthbert AP, Robinson BH. A novel syndrome affecting multiple mitochondrial functions, located by microcell-mediated transfer to chromosome 2p14-2p13. Am J Hum Genet 2001; 68:386-96. [PMID: 11156534 PMCID: PMC1235272 DOI: 10.1086/318196] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2000] [Accepted: 11/28/2000] [Indexed: 11/03/2022] Open
Abstract
We have studied cultured skin fibroblasts from three siblings and one unrelated individual, all of whom had fatal mitochondrial disease manifesting soon after birth. After incubation with 1 mM glucose, these four cell strains exhibited lactate/pyruvate ratios that were six times greater than those of controls. On further analysis, enzymatic activities of the pyruvate dehydrogenase complex, the 2-oxoglutarate dehydrogenase complex, NADH cytochrome c reductase, succinate dehydrogenase, and succinate cytochrome c reductase were severely deficient. In two of the siblings the enzymatic activity of cytochrome oxidase was mildly decreased (by approximately 50%). Metabolite analysis performed on urine samples taken from these patients revealed high levels of glycine, leucine, valine, and isoleucine, indicating abnormalities of both the glycine-cleavage system and branched-chain alpha-ketoacid dehydrogenase. In contrast, the activities of fibroblast pyruvate carboxylase, mitochondrial aconitase, and citrate synthase were normal. Immunoblot analysis of selected complex III subunits (core 1, cyt c(1), and iron-sulfur protein) and of the pyruvate dehydrogenase complex subunits revealed no visible changes in the levels of all examined proteins, decreasing the possibility that an import and/or assembly factor is involved. To elucidate the underlying molecular defect, analysis of microcell-mediated chromosome-fusion was performed between the present study's fibroblasts (recipients) and a panel of A9 mouse:human hybrids (donors) developed by Cuthbert et al. (1995). Complementation was observed between the recipient cells from both families and the mouse:human hybrid clone carrying human chromosome 2. These results indicate that the underlying defect in our patients is under the control of a nuclear gene, the locus of which is on chromosome 2. A 5-cM interval has been identified as potentially containing the critical region for the unknown gene. This interval maps to region 2p14-2p13.
Collapse
Affiliation(s)
- Agnieszka Seyda
- Metabolism Research Programme, Research Institute and Division of Clinical Genetics, Hospital for Sick Children, and Departments of Biochemistry and Paediatrics, University of Toronto, Toronto; Department of Biology and Biochemistry, Brunel University, Uxbridge, UK, Montréal General Hospital, Montréal; Medical Genetics/Metabolism, Valley Children’s Hospital, Fresno, CA; Garvin Institute of Medical Research, Darlinghurst, Australia; Departamento de Bioenergetica, Universidad Nacional Autonoma de Mexico, Mexico City; and Division of Medical and Molecular Genetics, Guy’s, King’s and St. Thomas’ School of Medicine, Guy’s Hospital, London
| | - Robert F. Newbold
- Metabolism Research Programme, Research Institute and Division of Clinical Genetics, Hospital for Sick Children, and Departments of Biochemistry and Paediatrics, University of Toronto, Toronto; Department of Biology and Biochemistry, Brunel University, Uxbridge, UK, Montréal General Hospital, Montréal; Medical Genetics/Metabolism, Valley Children’s Hospital, Fresno, CA; Garvin Institute of Medical Research, Darlinghurst, Australia; Departamento de Bioenergetica, Universidad Nacional Autonoma de Mexico, Mexico City; and Division of Medical and Molecular Genetics, Guy’s, King’s and St. Thomas’ School of Medicine, Guy’s Hospital, London
| | - Thomas J. Hudson
- Metabolism Research Programme, Research Institute and Division of Clinical Genetics, Hospital for Sick Children, and Departments of Biochemistry and Paediatrics, University of Toronto, Toronto; Department of Biology and Biochemistry, Brunel University, Uxbridge, UK, Montréal General Hospital, Montréal; Medical Genetics/Metabolism, Valley Children’s Hospital, Fresno, CA; Garvin Institute of Medical Research, Darlinghurst, Australia; Departamento de Bioenergetica, Universidad Nacional Autonoma de Mexico, Mexico City; and Division of Medical and Molecular Genetics, Guy’s, King’s and St. Thomas’ School of Medicine, Guy’s Hospital, London
| | - Andrei Verner
- Metabolism Research Programme, Research Institute and Division of Clinical Genetics, Hospital for Sick Children, and Departments of Biochemistry and Paediatrics, University of Toronto, Toronto; Department of Biology and Biochemistry, Brunel University, Uxbridge, UK, Montréal General Hospital, Montréal; Medical Genetics/Metabolism, Valley Children’s Hospital, Fresno, CA; Garvin Institute of Medical Research, Darlinghurst, Australia; Departamento de Bioenergetica, Universidad Nacional Autonoma de Mexico, Mexico City; and Division of Medical and Molecular Genetics, Guy’s, King’s and St. Thomas’ School of Medicine, Guy’s Hospital, London
| | - Neviana MacKay
- Metabolism Research Programme, Research Institute and Division of Clinical Genetics, Hospital for Sick Children, and Departments of Biochemistry and Paediatrics, University of Toronto, Toronto; Department of Biology and Biochemistry, Brunel University, Uxbridge, UK, Montréal General Hospital, Montréal; Medical Genetics/Metabolism, Valley Children’s Hospital, Fresno, CA; Garvin Institute of Medical Research, Darlinghurst, Australia; Departamento de Bioenergetica, Universidad Nacional Autonoma de Mexico, Mexico City; and Division of Medical and Molecular Genetics, Guy’s, King’s and St. Thomas’ School of Medicine, Guy’s Hospital, London
| | - Susan Winter
- Metabolism Research Programme, Research Institute and Division of Clinical Genetics, Hospital for Sick Children, and Departments of Biochemistry and Paediatrics, University of Toronto, Toronto; Department of Biology and Biochemistry, Brunel University, Uxbridge, UK, Montréal General Hospital, Montréal; Medical Genetics/Metabolism, Valley Children’s Hospital, Fresno, CA; Garvin Institute of Medical Research, Darlinghurst, Australia; Departamento de Bioenergetica, Universidad Nacional Autonoma de Mexico, Mexico City; and Division of Medical and Molecular Genetics, Guy’s, King’s and St. Thomas’ School of Medicine, Guy’s Hospital, London
| | - Annette Feigenbaum
- Metabolism Research Programme, Research Institute and Division of Clinical Genetics, Hospital for Sick Children, and Departments of Biochemistry and Paediatrics, University of Toronto, Toronto; Department of Biology and Biochemistry, Brunel University, Uxbridge, UK, Montréal General Hospital, Montréal; Medical Genetics/Metabolism, Valley Children’s Hospital, Fresno, CA; Garvin Institute of Medical Research, Darlinghurst, Australia; Departamento de Bioenergetica, Universidad Nacional Autonoma de Mexico, Mexico City; and Division of Medical and Molecular Genetics, Guy’s, King’s and St. Thomas’ School of Medicine, Guy’s Hospital, London
| | - Suzann Malaney
- Metabolism Research Programme, Research Institute and Division of Clinical Genetics, Hospital for Sick Children, and Departments of Biochemistry and Paediatrics, University of Toronto, Toronto; Department of Biology and Biochemistry, Brunel University, Uxbridge, UK, Montréal General Hospital, Montréal; Medical Genetics/Metabolism, Valley Children’s Hospital, Fresno, CA; Garvin Institute of Medical Research, Darlinghurst, Australia; Departamento de Bioenergetica, Universidad Nacional Autonoma de Mexico, Mexico City; and Division of Medical and Molecular Genetics, Guy’s, King’s and St. Thomas’ School of Medicine, Guy’s Hospital, London
| | - Diego Gonzalez-Halphen
- Metabolism Research Programme, Research Institute and Division of Clinical Genetics, Hospital for Sick Children, and Departments of Biochemistry and Paediatrics, University of Toronto, Toronto; Department of Biology and Biochemistry, Brunel University, Uxbridge, UK, Montréal General Hospital, Montréal; Medical Genetics/Metabolism, Valley Children’s Hospital, Fresno, CA; Garvin Institute of Medical Research, Darlinghurst, Australia; Departamento de Bioenergetica, Universidad Nacional Autonoma de Mexico, Mexico City; and Division of Medical and Molecular Genetics, Guy’s, King’s and St. Thomas’ School of Medicine, Guy’s Hospital, London
| | - Andrew P. Cuthbert
- Metabolism Research Programme, Research Institute and Division of Clinical Genetics, Hospital for Sick Children, and Departments of Biochemistry and Paediatrics, University of Toronto, Toronto; Department of Biology and Biochemistry, Brunel University, Uxbridge, UK, Montréal General Hospital, Montréal; Medical Genetics/Metabolism, Valley Children’s Hospital, Fresno, CA; Garvin Institute of Medical Research, Darlinghurst, Australia; Departamento de Bioenergetica, Universidad Nacional Autonoma de Mexico, Mexico City; and Division of Medical and Molecular Genetics, Guy’s, King’s and St. Thomas’ School of Medicine, Guy’s Hospital, London
| | - Brian H. Robinson
- Metabolism Research Programme, Research Institute and Division of Clinical Genetics, Hospital for Sick Children, and Departments of Biochemistry and Paediatrics, University of Toronto, Toronto; Department of Biology and Biochemistry, Brunel University, Uxbridge, UK, Montréal General Hospital, Montréal; Medical Genetics/Metabolism, Valley Children’s Hospital, Fresno, CA; Garvin Institute of Medical Research, Darlinghurst, Australia; Departamento de Bioenergetica, Universidad Nacional Autonoma de Mexico, Mexico City; and Division of Medical and Molecular Genetics, Guy’s, King’s and St. Thomas’ School of Medicine, Guy’s Hospital, London
| |
Collapse
|
49
|
Abstract
Many assays relevant to disease diagnosis are based on electrophoresis, where the migration velocity is used for distinguishing molecules of different size or charge. However, standard gel electrophoresis is not only slow but also insensitive. We describe a single-molecule imaging procedure to measure the electrophoretic mobilities of up to 100000 distinct molecules every second. The results correlate well with capillary electrophoresis (CE) experiments and afford confident discrimination between normal (16.5 kbp) and abnormal (6.1 kbp) mitochondrial DNA fragments, or beta-phycoerythrin-labeled digoxigenin (BP-D) and its immunocomplex (anti-D-BP-D). This demonstrates that virtually all electrophoresis diagnostic protocols from slab gels to CE should be adaptable to single-molecule detection. This opens up the prossibility of screening single copies of DNA or proteins within single biological cells for disease markers without performing polymerase chain reaction (PCR) or other biological amplification.
Collapse
Affiliation(s)
- Y Ma
- Department of Chemistry, Iowa State University, Ames 50011, USA
| | | | | | | | | |
Collapse
|
50
|
Kurki S, Zickermann V, Kervinen M, Hassinen I, Finel M. Mutagenesis of three conserved Glu residues in a bacterial homologue of the ND1 subunit of complex I affects ubiquinone reduction kinetics but not inhibition by dicyclohexylcarbodiimide. Biochemistry 2000; 39:13496-502. [PMID: 11063586 DOI: 10.1021/bi001134s] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Steady-state kinetics of the H(+)-translocating NADH:ubiquinone reductase (complex I) were analyzed in membrane samples from bovine mitochondria and the soil bacterium Paracoccus denitrificans. In both enzymes the calculated K(m) values, in the membrane lipid phase, for four different ubiquinone analogues were in the millimolar range. Both the structure and size of the hydrophobic side chain of the acceptor affected its affinity for complex I. The ND1 subunit of bovine complex I is a mitochondrially encoded protein that binds the inhibitor dicyclohexylcarbodiimide (DCCD) covalently [Yagi and Hatefi (1988) J. Biol. Chem. 263, 16150-16155]. The NQO8 subunit of P. denitrificans complex I is a homologue of ND1, and within it three conserved Glu residues that could bind DCCD, E158, E212, and E247, were changed to either Asp or Gln and in the case of E212 also to Val. The DCCD sensitivity of the resulting mutants was, however, unaffected by the mutations. On the other hand, the ubiquinone reductase activity of the mutants was altered, and the mutations changed the interactions of complex I with short-chain ubiquinones. The implications of the results for the location of the ubiquinone reduction site in this enzyme are discussed.
Collapse
Affiliation(s)
- S Kurki
- Helsinki Bioenergetics Group, Department of Medical Chemistry, Institute of Biomedical Sciences and Biocentrum Helsinki, University of Helsinki, Helsinki, Finland
| | | | | | | | | |
Collapse
|