1
|
Hoque MM, Gbadegoye JO, Hassan FO, Raafat A, Lebeche D. Cardiac fibrogenesis: an immuno-metabolic perspective. Front Physiol 2024; 15:1336551. [PMID: 38577624 PMCID: PMC10993884 DOI: 10.3389/fphys.2024.1336551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/07/2024] [Indexed: 04/06/2024] Open
Abstract
Cardiac fibrosis is a major and complex pathophysiological process that ultimately culminates in cardiac dysfunction and heart failure. This phenomenon includes not only the replacement of the damaged tissue by a fibrotic scar produced by activated fibroblasts/myofibroblasts but also a spatiotemporal alteration of the structural, biochemical, and biomechanical parameters in the ventricular wall, eliciting a reactive remodeling process. Though mechanical stress, post-infarct homeostatic imbalances, and neurohormonal activation are classically attributed to cardiac fibrosis, emerging evidence that supports the roles of immune system modulation, inflammation, and metabolic dysregulation in the initiation and progression of cardiac fibrogenesis has been reported. Adaptive changes, immune cell phenoconversions, and metabolic shifts in the cardiac nonmyocyte population provide initial protection, but persistent altered metabolic demand eventually contributes to adverse remodeling of the heart. Altered energy metabolism, mitochondrial dysfunction, various immune cells, immune mediators, and cross-talks between the immune cells and cardiomyocytes play crucial roles in orchestrating the transdifferentiation of fibroblasts and ensuing fibrotic remodeling of the heart. Manipulation of the metabolic plasticity, fibroblast-myofibroblast transition, and modulation of the immune response may hold promise for favorably modulating the fibrotic response following different cardiovascular pathological processes. Although the immunologic and metabolic perspectives of fibrosis in the heart are being reported in the literature, they lack a comprehensive sketch bridging these two arenas and illustrating the synchrony between them. This review aims to provide a comprehensive overview of the intricate relationship between different cardiac immune cells and metabolic pathways as well as summarizes the current understanding of the involvement of immune-metabolic pathways in cardiac fibrosis and attempts to identify some of the previously unaddressed questions that require further investigation. Moreover, the potential therapeutic strategies and emerging pharmacological interventions, including immune and metabolic modulators, that show promise in preventing or attenuating cardiac fibrosis and restoring cardiac function will be discussed.
Collapse
Affiliation(s)
- Md Monirul Hoque
- Departments of Physiology, The University of Tennessee Health Science Center, Memphis, TN, United States
- College of Graduate Health Sciences, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Joy Olaoluwa Gbadegoye
- Departments of Physiology, The University of Tennessee Health Science Center, Memphis, TN, United States
- College of Graduate Health Sciences, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Fasilat Oluwakemi Hassan
- Departments of Physiology, The University of Tennessee Health Science Center, Memphis, TN, United States
- College of Graduate Health Sciences, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Amr Raafat
- Departments of Physiology, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Djamel Lebeche
- Departments of Physiology, The University of Tennessee Health Science Center, Memphis, TN, United States
- College of Graduate Health Sciences, The University of Tennessee Health Science Center, Memphis, TN, United States
- Medicine-Cardiology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, United States
- Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
2
|
Romero-Becera R, Santamans AM, Arcones AC, Sabio G. From Beats to Metabolism: the Heart at the Core of Interorgan Metabolic Cross Talk. Physiology (Bethesda) 2024; 39:98-125. [PMID: 38051123 DOI: 10.1152/physiol.00018.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/26/2023] [Accepted: 12/01/2023] [Indexed: 12/07/2023] Open
Abstract
The heart, once considered a mere blood pump, is now recognized as a multifunctional metabolic and endocrine organ. Its function is tightly regulated by various metabolic processes, at the same time it serves as an endocrine organ, secreting bioactive molecules that impact systemic metabolism. In recent years, research has shed light on the intricate interplay between the heart and other metabolic organs, such as adipose tissue, liver, and skeletal muscle. The metabolic flexibility of the heart and its ability to switch between different energy substrates play a crucial role in maintaining cardiac function and overall metabolic homeostasis. Gaining a comprehensive understanding of how metabolic disorders disrupt cardiac metabolism is crucial, as it plays a pivotal role in the development and progression of cardiac diseases. The emerging understanding of the heart as a metabolic and endocrine organ highlights its essential contribution to whole body metabolic regulation and offers new insights into the pathogenesis of metabolic diseases, such as obesity, diabetes, and cardiovascular disorders. In this review, we provide an in-depth exploration of the heart's metabolic and endocrine functions, emphasizing its role in systemic metabolism and the interplay between the heart and other metabolic organs. Furthermore, emerging evidence suggests a correlation between heart disease and other conditions such as aging and cancer, indicating that the metabolic dysfunction observed in these conditions may share common underlying mechanisms. By unraveling the complex mechanisms underlying cardiac metabolism, we aim to contribute to the development of novel therapeutic strategies for metabolic diseases and improve overall cardiovascular health.
Collapse
Affiliation(s)
| | | | - Alba C Arcones
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - Guadalupe Sabio
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| |
Collapse
|
3
|
Nielsen R, Christensen KH, Gopalasingam N, Berg‐Hansen K, Seefeldt J, Homilius C, Boedtkjer E, Andersen MJ, Wiggers H, Møller N, Bøtker HE, Mellemkjær S. Hemodynamic Effects of Ketone Bodies in Patients With Pulmonary Hypertension. J Am Heart Assoc 2023; 12:e028232. [PMID: 37183871 PMCID: PMC10227291 DOI: 10.1161/jaha.122.028232] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 04/10/2023] [Indexed: 05/16/2023]
Abstract
Background Pulmonary arterial hypertension (PAH) or chronic thromboembolic pulmonary hypertension (CTEPH) are debilitating diseases with a high mortality. Despite emerging treatments, pulmonary vascular resistance frequently remains elevated. However, the ketone body 3-hydroxybutyrate (3-OHB) may reduce pulmonary vascular resistance in these patients. Hence, the aim was to assess the hemodynamic effects of 3-OHB in patients with PAH or CTEPH. Methods and Results We enrolled patients with PAH (n=10) or CTEPH (n=10) and residual pulmonary hypertension. They received 3-OHB infusion and placebo (saline) for 2 hours in a randomized crossover study. Invasive hemodynamic and echocardiography measurements were performed. Furthermore, we investigated the effects of 3-OHB on the right ventricle of isolated hearts and isolated pulmonary arteries from Sprague-Dawley rats. Ketone body infusion increased circulating 3-OHB levels from 0.5±0.5 to 3.4±0.7 mmol/L (P<0.001). Cardiac output improved by 1.2±0.1 L/min (27±3%, P<0.001), and right ventricular annular systolic velocity increased by 1.4±0.4 cm/s (13±4%, P=0.002). Pulmonary vascular resistance decreased by 1.3±0.3 Wood units (18%±4%, P<0.001) with no significant difference in response between patients with PAH and CTEPH. In the rat studies, 3-OHB administration was associated with decreased pulmonary arterial tension compared with saline administration (maximal relative tension difference: 12±2%, P<0.001) and had no effect on right ventricular systolic pressures (P=0.63), whereas pressures rose at a slower pace (dP/dtmax, P=0.02). Conclusions In patients with PAH or CTEPH, ketone body infusion improves cardiac output and decreases pulmonary vascular resistance. Experimental rat studies support that ketone bodies relax pulmonary arteries. Long-term studies are warranted to assess the clinical role of hyperketonemia. Registration URL: https://www.clinicaltrials.gov; Unique identifier: NCT04615754.
Collapse
Affiliation(s)
- Roni Nielsen
- Department of CardiologyAarhus University HospitalAarhusDenmark
- Department of Clinical Medicine, Faculty of HealthAarhus UniversityAarhusDenmark
| | | | - Nigopan Gopalasingam
- Department of Clinical Medicine, Faculty of HealthAarhus UniversityAarhusDenmark
| | | | - Jacob Seefeldt
- Department of Clinical Medicine, Faculty of HealthAarhus UniversityAarhusDenmark
| | - Casper Homilius
- Department of Biomedicine, Faculty of HealthAarhus UniversityAarhusDenmark
| | - Ebbe Boedtkjer
- Department of Biomedicine, Faculty of HealthAarhus UniversityAarhusDenmark
| | | | - Henrik Wiggers
- Department of CardiologyAarhus University HospitalAarhusDenmark
- Department of Clinical Medicine, Faculty of HealthAarhus UniversityAarhusDenmark
| | - Niels Møller
- Medical/Steno Aarhus Research LaboratoryAarhus UniversityAarhusDenmark
| | - Hans Erik Bøtker
- Department of Biomedicine, Faculty of HealthAarhus UniversityAarhusDenmark
| | | |
Collapse
|
4
|
Patel N, Yaqoob MM, Aksentijevic D. Cardiac metabolic remodelling in chronic kidney disease. Nat Rev Nephrol 2022; 18:524-537. [DOI: 10.1038/s41581-022-00576-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2022] [Indexed: 11/09/2022]
|
5
|
Yurista SR, Nguyen CT, Rosenzweig A, de Boer RA, Westenbrink BD. Ketone bodies for the failing heart: fuels that can fix the engine? Trends Endocrinol Metab 2021; 32:814-826. [PMID: 34456121 DOI: 10.1016/j.tem.2021.07.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/20/2021] [Accepted: 07/26/2021] [Indexed: 01/08/2023]
Abstract
Accumulating evidence suggests that the failing heart reverts energy metabolism toward increased utilization of ketone bodies. Despite many discrepancies in the literature, evidence from both bench and clinical research demonstrates beneficial effects of ketone bodies in heart failure. Ketone bodies are readily oxidized by cardiomyocytes and can provide ancillary fuel for the energy-starved failing heart. In addition, ketone bodies may help to restore cardiac function by mitigating inflammation, oxidative stress, and cardiac remodeling. In this review, we hypothesize that a therapeutic approach intended to restore cardiac metabolism through ketone bodies could both refuel and 'repair' the failing heart.
Collapse
Affiliation(s)
- Salva R Yurista
- Cardiovascular Research Center, Cardiology Division, Corrigan Minehan Heart Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Christopher T Nguyen
- Cardiovascular Research Center, Cardiology Division, Corrigan Minehan Heart Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Anthony Rosenzweig
- Cardiovascular Research Center, Cardiology Division, Corrigan Minehan Heart Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Rudolf A de Boer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - B Daan Westenbrink
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
6
|
Abstract
OBJECTIVE The aim of this study was to define the influence of trauma on cardiac glucose and fatty acid transport. The effects were investigated in vivo in a porcine mono- and polytrauma model and in vitro in human cardiomyocytes, which were treated simultaneously with different inflammatory substances, mimicking posttraumatic inflammatory conditions. METHODS AND RESULTS In the porcine fracture- and polytrauma model, blood glucose concentrations were measured by blood gas analysis during an observation period of 72 h. The expression of cardiac glucose and fatty acid transporters in the left ventricle was determined by RT-qPCR and immunofluorescence. Cardiac and hepatic glycogen storage was examined. Furthermore, human cardiomyocytes were exposed to a defined trauma-cocktail and the expression levels of glucose- and fatty acid transporters were determined. Early after polytrauma, hyperglycemia was observed. After 48 and 72 h, pigs with fracture- and polytrauma developed hypoglycemia. The propofol demand significantly increased posttrauma. The hepatic glycogen concentration was reduced 72 h after trauma. Cardiac glucose and fatty acid transporters changed in both trauma models in vivo as well as in vitro in human cardiomyocytes in presence of proinflammatory mediators. CONCLUSIONS Monotrauma as well as polytrauma changed the cardiac energy transport by altering the expression of glucose and fatty acid transporters. In vitro data suggest that human cardiomyocytes shift to a state alike myocardial hibernation preferring glucose as primary energy source to maintain cardiac function.
Collapse
|
7
|
Ho KL, Karwi QG, Wagg C, Zhang L, Vo K, Altamimi T, Uddin GM, Ussher JR, Lopaschuk GD. Ketones can become the major fuel source for the heart but do not increase cardiac efficiency. Cardiovasc Res 2021; 117:1178-1187. [PMID: 32402081 PMCID: PMC7982999 DOI: 10.1093/cvr/cvaa143] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 04/16/2020] [Accepted: 05/07/2020] [Indexed: 12/18/2022] Open
Abstract
AIMS Ketones have been proposed to be a 'thrifty' fuel for the heart and increasing cardiac ketone oxidation can be cardioprotective. However, it is unclear how much ketone oxidation can contribute to energy production in the heart, nor whether increasing ketone oxidation increases cardiac efficiency. Therefore, our goal was to determine to what extent high levels of the ketone body, β-hydroxybutyrate (βOHB), contributes to cardiac energy production, and whether this influences cardiac efficiency. METHODS AND RESULTS Isolated working mice hearts were aerobically perfused with palmitate (0.8 mM or 1.2 mM), glucose (5 mM) and increasing concentrations of βOHB (0, 0.6, 2.0 mM). Subsequently, oxidation of these substrates, cardiac function, and cardiac efficiency were assessed. Increasing βOHB concentrations increased myocardial ketone oxidation rates without affecting glucose or fatty acid oxidation rates where normal physiological levels of glucose (5 mM) and fatty acid (0.8 mM) are present. Notably, ketones became the major fuel source for the heart at 2.0 mM βOHB (at both low or high fatty acid concentrations), with the elevated ketone oxidation rates markedly increasing tricarboxylic acid (TCA) cycle activity, producing a large amount of reducing equivalents and finally, increasing myocardial oxygen consumption. However, the marked increase in ketone oxidation at high concentrations of βOHB was not accompanied by an increase in cardiac work, suggesting that a mismatch between excess reduced equivalents production from ketone oxidation and cardiac adenosine triphosphate production. Consequently, cardiac efficiency decreased when the heart was exposed to higher ketone levels. CONCLUSIONS We demonstrate that while ketones can become the major fuel source for the heart, they do not increase cardiac efficiency, which also underscores the importance of recognizing ketones as a major fuel source for the heart in times of starvation, consumption of a ketogenic diet or poorly controlled diabetes.
Collapse
Affiliation(s)
- Kim L Ho
- Cardiovascular Research Centre Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Qutuba G Karwi
- Cardiovascular Research Centre Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada
- Department of Pharmacology, College of Medicine, University of Diyala, Diyala, Iraq
| | - Cory Wagg
- Cardiovascular Research Centre Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Liyan Zhang
- Cardiovascular Research Centre Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Katherina Vo
- Cardiovascular Research Centre Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Tariq Altamimi
- Diabetes and Obesity Center, University of Louisville, Louisville, KT, USA
| | - Golam M Uddin
- Cardiovascular Research Centre Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - John R Ussher
- Cardiovascular Research Centre Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Gary D Lopaschuk
- Cardiovascular Research Centre Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada
| |
Collapse
|
8
|
Brahma MK, Wende AR, McCommis KS. CrossTalk opposing view: Ketone bodies are not an important metabolic fuel for the heart. J Physiol 2021; 600:1005-1007. [PMID: 33644874 DOI: 10.1113/jp281005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Manoja K Brahma
- Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, Brussels, Belgium
| | - Adam R Wende
- Division of Molecular & Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kyle S McCommis
- Biochemistry & Molecular Biology, Saint Louis University School of Medicine, St Louis, MO, USA
| |
Collapse
|
9
|
Weber B, Lackner I, Gebhard F, Miclau T, Kalbitz M. Trauma, a Matter of the Heart-Molecular Mechanism of Post-Traumatic Cardiac Dysfunction. Int J Mol Sci 2021; 22:E737. [PMID: 33450984 PMCID: PMC7828409 DOI: 10.3390/ijms22020737] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/07/2021] [Accepted: 01/09/2021] [Indexed: 12/18/2022] Open
Abstract
Trauma remains a leading global cause of mortality, particularly in the young population. In the United States, approximately 30,000 patients with blunt cardiac trauma were recorded annually. Cardiac damage is a predictor for poor outcome after multiple trauma, with a poor prognosis and prolonged in-hospitalization. Systemic elevation of cardiac troponins was correlated with survival, injury severity score, and catecholamine consumption of patients after multiple trauma. The clinical features of the so-called "commotio cordis" are dysrhythmias, including ventricular fibrillation and sudden cardiac arrest as well as wall motion disorders. In trauma patients with inappropriate hypotension and inadequate response to fluid resuscitation, cardiac injury should be considered. Therefore, a combination of echocardiography (ECG) measurements, echocardiography, and systemic appearance of cardiomyocyte damage markers such as troponin appears to be an appropriate diagnostic approach to detect cardiac dysfunction after trauma. However, the mechanisms of post-traumatic cardiac dysfunction are still actively being investigated. This review aims to discuss cardiac damage following trauma, focusing on mechanisms of post-traumatic cardiac dysfunction associated with inflammation and complement activation. Herein, a causal relationship of cardiac dysfunction to traumatic brain injury, blunt chest trauma, multiple trauma, burn injury, psychosocial stress, fracture, and hemorrhagic shock are illustrated and therapeutic options are discussed.
Collapse
Affiliation(s)
- Birte Weber
- Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, Center of Surgery, University of Ulm, 86081 Ulm, Germany; (B.W.); (I.L.); (F.G.)
| | - Ina Lackner
- Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, Center of Surgery, University of Ulm, 86081 Ulm, Germany; (B.W.); (I.L.); (F.G.)
| | - Florian Gebhard
- Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, Center of Surgery, University of Ulm, 86081 Ulm, Germany; (B.W.); (I.L.); (F.G.)
| | - Theodore Miclau
- Orthopaedic Trauma Institute, Department of Orthopaedic Surgery, University of California, 2550 23rd Street, San Francisco, CA 94110, USA;
| | - Miriam Kalbitz
- Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, Center of Surgery, University of Ulm, 86081 Ulm, Germany; (B.W.); (I.L.); (F.G.)
| |
Collapse
|
10
|
McCommis KS, Kovacs A, Weinheimer CJ, Shew TM, Koves TR, Ilkayeva OR, Kamm DR, Pyles KD, King MT, Veech RL, DeBosch BJ, Muoio DM, Gross RW, Finck BN. Nutritional modulation of heart failure in mitochondrial pyruvate carrier-deficient mice. Nat Metab 2020; 2:1232-1247. [PMID: 33106690 PMCID: PMC7957960 DOI: 10.1038/s42255-020-00296-1] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 09/10/2020] [Indexed: 01/04/2023]
Abstract
The myocardium is metabolically flexible; however, impaired flexibility is associated with cardiac dysfunction in conditions including diabetes and heart failure. The mitochondrial pyruvate carrier (MPC) complex, composed of MPC1 and MPC2, is required for pyruvate import into the mitochondria. Here we show that MPC1 and MPC2 expression is downregulated in failing human and mouse hearts. Mice with cardiac-specific deletion of Mpc2 (CS-MPC2-/-) exhibited normal cardiac size and function at 6 weeks old, but progressively developed cardiac dilation and contractile dysfunction, which was completely reversed by a high-fat, low-carbohydrate ketogenic diet. Diets with higher fat content, but enough carbohydrate to limit ketosis, also improved heart failure, while direct ketone body provisioning provided only minor improvements in cardiac remodelling in CS-MPC2-/- mice. An acute fast also improved cardiac remodelling. Together, our results reveal a critical role for mitochondrial pyruvate use in cardiac function, and highlight the potential of dietary interventions to enhance cardiac fat metabolism to prevent or reverse cardiac dysfunction and remodelling in the setting of MPC deficiency.
Collapse
Affiliation(s)
- Kyle S McCommis
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Biochemistry & Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA.
| | - Attila Kovacs
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Carla J Weinheimer
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Trevor M Shew
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Timothy R Koves
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - Olga R Ilkayeva
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - Dakota R Kamm
- Department of Biochemistry & Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Kelly D Pyles
- Department of Biochemistry & Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - M Todd King
- Laboratory of Metabolic Control, National Institute on Alcohol Abuse and Alcoholism, National Institute of Health, Bethesda, MD, USA
| | - Richard L Veech
- Laboratory of Metabolic Control, National Institute on Alcohol Abuse and Alcoholism, National Institute of Health, Bethesda, MD, USA
| | - Brian J DeBosch
- Departments of Pediatrics and Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Deborah M Muoio
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - Richard W Gross
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Chemistry, Washington University, St. Louis, MO, USA
| | - Brian N Finck
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
11
|
Short-chain fatty acid, acylation and cardiovascular diseases. Clin Sci (Lond) 2020; 134:657-676. [PMID: 32219347 DOI: 10.1042/cs20200128] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/16/2020] [Accepted: 03/18/2020] [Indexed: 12/16/2022]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of morbidity and mortality worldwide. Metabolic dysfunction is a fundamental core mechanism underlying CVDs. Previous studies generally focused on the roles of long-chain fatty acids (LCFAs) in CVDs. However, a growing body of study has implied that short-chain fatty acids (SCFAs: namely propionate, malonate, butyrate, 2-hydroxyisobutyrate (2-HIBA), β-hydroxybutyrate, crotonate, succinate, and glutarate) and their cognate acylations (propionylation, malonylation, butyrylation, 2-hydroxyisobutyrylation, β-hydroxybutyrylation, crotonylation, succinylation, and glutarylation) participate in CVDs. Here, we attempt to provide an overview landscape of the metabolic pattern of SCFAs in CVDs. Especially, we would focus on the SCFAs and newly identified acylations and their roles in CVDs, including atherosclerosis, hypertension, and heart failure.
Collapse
|
12
|
Cardiac Transcriptome Analysis Reveals Nr4a1 Mediated Glucose Metabolism Dysregulation in Response to High-Fat Diet. Genes (Basel) 2020; 11:genes11070720. [PMID: 32610475 PMCID: PMC7397175 DOI: 10.3390/genes11070720] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 12/23/2022] Open
Abstract
Obesity is associated with an increased risk of developing cardiovascular disease (CVD), with limited alterations in cardiac genomic characteristics known. Cardiac transcriptome analysis was conducted to profile gene signatures in high-fat diet (HFD)-induced obese mice. A total of 184 differentially expressed genes (DEGs) were identified between groups. Based on the gene ontology (GO) term enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of DEGs, the critical role of closely interlocked glucose metabolism was determined in HFD-induced cardiac remodeling DEGs, including Nr4a1, Fgf21, Slc2a3, Pck1, Gck, Hmgcs2, and Bpgm. Subsequently, the expression levels of these DEGs were evaluated in both the myocardium and palmitic acid (PA)-stimulated H9c2 cardiomyocytes using qPCR. Nr4a1 was highlighted according to its overexpression resulting from the HFD. Additionally, inhibition of Nr4a1 by siRNA reversed the PA-induced altered expression of glucose metabolism-related DEGs and hexokinase 2 (HK2), the rate-limiting enzyme in glycolysis, thus indicating that Nr4a1 could modulate glucose metabolism homeostasis by regulating the expression of key enzymes in glycolysis, which may subsequently influence cardiac function in obesity. Overall, we provide a comprehensive understanding of the myocardium transcript molecular framework influenced by HFD and propose Nr4a1 as a key glucose metabolism target in obesity-induced CVD.
Collapse
|
13
|
Selvaraj S, Kelly DP, Margulies KB. Implications of Altered Ketone Metabolism and Therapeutic Ketosis in Heart Failure. Circulation 2020; 141:1800-1812. [PMID: 32479196 DOI: 10.1161/circulationaha.119.045033] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Despite existing therapy, patients with heart failure (HF) experience substantial morbidity and mortality, highlighting the urgent need to identify novel pathophysiological mechanisms and therapies, as well. Traditional models for pharmacological intervention have targeted neurohormonal axes and hemodynamic disturbances in HF. However, several studies have now highlighted the potential for ketone metabolic modulation as a promising treatment paradigm. During the pathophysiological progression of HF, the failing heart reduces fatty acid and glucose oxidation, with associated increases in ketone metabolism. Recent studies indicate that enhanced myocardial ketone use is adaptive in HF, and limited data demonstrate beneficial effects of exogenous ketone therapy in studies of animal models and humans with HF. This review will summarize current evidence supporting a salutary role for ketones in HF including (1) normal myocardial ketone use, (2) alterations in ketone metabolism in the failing heart, (3) effects of therapeutic ketosis in animals and humans with HF, and (4) the potential significance of ketosis associated with sodium-glucose cotransporter 2 inhibitors. Although a number of important questions remain regarding the use of therapeutic ketosis and mechanism of action in HF, current evidence suggests potential benefit, in particular, in HF with reduced ejection fraction, with theoretical rationale for its use in HF with preserved ejection fraction. Although it is early in its study and development, therapeutic ketosis across the spectrum of HF holds significant promise.
Collapse
Affiliation(s)
- Senthil Selvaraj
- Division of Cardiovascular Medicine, Department of Medicine (S.S., K.B.M.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Daniel P Kelly
- Cardiovascular Institute and Department of Medicine (D.P.K., K.B.M.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Kenneth B Margulies
- Division of Cardiovascular Medicine, Department of Medicine (S.S., K.B.M.), Perelman School of Medicine, University of Pennsylvania, Philadelphia.,Cardiovascular Institute and Department of Medicine (D.P.K., K.B.M.), Perelman School of Medicine, University of Pennsylvania, Philadelphia.,Heart Failure and Transplant Program, Smilow Center for Translational Research (K.B.M.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| |
Collapse
|
14
|
Nielsen R, Møller N, Gormsen LC, Tolbod LP, Hansson NH, Sorensen J, Harms HJ, Frøkiær J, Eiskjaer H, Jespersen NR, Mellemkjaer S, Lassen TR, Pryds K, Bøtker HE, Wiggers H. Cardiovascular Effects of Treatment With the Ketone Body 3-Hydroxybutyrate in Chronic Heart Failure Patients. Circulation 2020; 139:2129-2141. [PMID: 30884964 PMCID: PMC6493702 DOI: 10.1161/circulationaha.118.036459] [Citation(s) in RCA: 302] [Impact Index Per Article: 75.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Supplemental Digital Content is available in the text. Background: Myocardial utilization of 3-hydroxybutyrate (3-OHB) is increased in patients with heart failure and reduced ejection fraction (HFrEF). However, the cardiovascular effects of increased circulating plasma-3-OHB levels in these patients are unknown. Consequently, the authors’ aim was to modulate circulating 3-OHB levels in HFrEF patients and evaluate: (1) changes in cardiac output (CO); (2) a potential dose-response relationship between 3-OHB levels and CO; (3) the impact on myocardial external energy efficiency (MEE) and oxygen consumption (MVO2); and (4) whether the cardiovascular response differed between HFrEF patients and age-matched volunteers. Methods: Study 1: 16 chronic HFrEF patients (left ventricular ejection fraction: 37±3%) were randomized in a crossover design to 3-hour of 3-OHB or placebo infusion. Patients were monitored invasively with a Swan-Ganz catheter and with echocardiography. Study 2: In a dose-response study, 8 HFrEF patients were examined at increasing 3-OHB infusion rates. Study 3 to 4: 10 HFrEF patients and 10 age-matched volunteers were randomized in a crossover design to 3-hour 3-OHB or placebo infusion. MEE and MVO2 were evaluated using 11C-acetate positron emission tomography. Results: 3-OHB infusion increased circulating levels of plasma 3-OHB from 0.4±0.3 to 3.3±0.4 mM (P<0.001). CO rose by 2.0±0.2 L/min (P<0.001) because of an increase in stroke volume of 20±2 mL (P<0.001) and heart rate of 7±2 beats per minute (bpm) (P<0.001). Left ventricular ejection fraction increased 8±1% (P<0.001) numerically. There was a dose-response relationship with a significant CO increase of 0.3 L/min already at plasma-3-OHB levels of 0.7 mM (P<0.001). 3-OHB increased MVO2 without altering MEE. The response to 3-OHB infusion in terms of MEE and CO did not differ between HFrEF patents and age-matched volunteers. Conclusions: 3-OHB has beneficial hemodynamic effects in HFrEF patients without impairing MEE. These beneficial effects are detectable in the physiological concentration range of circulating 3-OHB levels. The hemodynamic effects of 3-OHB were observed in both HFrEF patients and age-matched volunteers. 3-OHB may potentially constitute a novel treatment principle in HFrEF patients.
Collapse
Affiliation(s)
- Roni Nielsen
- Department of Cardiology (R.N., N.H.H., H.E., N.R.J., S.R., T.R.L., K.P., H.E.B., H.W.), Aarhus University Hospital, Aarhus, Denmark
- Department of Endocrinology and Metabolism (R.N., N.M.), Aarhus University Hospital, Aarhus, Denmark
| | - Niels Møller
- Department of Endocrinology and Metabolism (R.N., N.M.), Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark (N.M., L.C.G., N.R.J., T.R.L., K.P., H.E.B., H.W.)
| | - Lars C. Gormsen
- Department of Nuclear Medicine & PET Centre (L.C.G., L.P.T., J.S., H.J.H., J.F.), Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark (N.M., L.C.G., N.R.J., T.R.L., K.P., H.E.B., H.W.)
| | - Lars Poulsen Tolbod
- Department of Nuclear Medicine & PET Centre (L.C.G., L.P.T., J.S., H.J.H., J.F.), Aarhus University Hospital, Aarhus, Denmark
| | - Nils Henrik Hansson
- Department of Cardiology (R.N., N.H.H., H.E., N.R.J., S.R., T.R.L., K.P., H.E.B., H.W.), Aarhus University Hospital, Aarhus, Denmark
| | - Jens Sorensen
- Department of Nuclear Medicine & PET Centre (L.C.G., L.P.T., J.S., H.J.H., J.F.), Aarhus University Hospital, Aarhus, Denmark
- Department of Radiology and Nuclear Medicine, Uppsala University, Uppsala, Sweden (J.S.)
| | - Hendrik Johannes Harms
- Department of Nuclear Medicine & PET Centre (L.C.G., L.P.T., J.S., H.J.H., J.F.), Aarhus University Hospital, Aarhus, Denmark
| | - Jørgen Frøkiær
- Department of Nuclear Medicine & PET Centre (L.C.G., L.P.T., J.S., H.J.H., J.F.), Aarhus University Hospital, Aarhus, Denmark
| | - Hans Eiskjaer
- Department of Cardiology (R.N., N.H.H., H.E., N.R.J., S.R., T.R.L., K.P., H.E.B., H.W.), Aarhus University Hospital, Aarhus, Denmark
| | - Nichlas Riise Jespersen
- Department of Cardiology (R.N., N.H.H., H.E., N.R.J., S.R., T.R.L., K.P., H.E.B., H.W.), Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark (N.M., L.C.G., N.R.J., T.R.L., K.P., H.E.B., H.W.)
| | - Søren Mellemkjaer
- Department of Cardiology (R.N., N.H.H., H.E., N.R.J., S.R., T.R.L., K.P., H.E.B., H.W.), Aarhus University Hospital, Aarhus, Denmark
| | - Thomas Ravn Lassen
- Department of Cardiology (R.N., N.H.H., H.E., N.R.J., S.R., T.R.L., K.P., H.E.B., H.W.), Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark (N.M., L.C.G., N.R.J., T.R.L., K.P., H.E.B., H.W.)
| | - Kasper Pryds
- Department of Cardiology (R.N., N.H.H., H.E., N.R.J., S.R., T.R.L., K.P., H.E.B., H.W.), Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark (N.M., L.C.G., N.R.J., T.R.L., K.P., H.E.B., H.W.)
| | - Hans Erik Bøtker
- Department of Cardiology (R.N., N.H.H., H.E., N.R.J., S.R., T.R.L., K.P., H.E.B., H.W.), Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark (N.M., L.C.G., N.R.J., T.R.L., K.P., H.E.B., H.W.)
| | - Henrik Wiggers
- Department of Cardiology (R.N., N.H.H., H.E., N.R.J., S.R., T.R.L., K.P., H.E.B., H.W.), Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark (N.M., L.C.G., N.R.J., T.R.L., K.P., H.E.B., H.W.)
| |
Collapse
|
15
|
Turer A, Altamirano F, Schiattarella GG, May H, Gillette TG, Malloy CR, Merritt ME. Remodeling of substrate consumption in the murine sTAC model of heart failure. J Mol Cell Cardiol 2019; 134:144-153. [PMID: 31340162 DOI: 10.1016/j.yjmcc.2019.07.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 07/01/2019] [Accepted: 07/17/2019] [Indexed: 01/07/2023]
Abstract
BACKGROUND Energy metabolism and substrate selection are key aspects of correct myocardial mechanical function. Myocardial preference for oxidizable substrates changes in both hypertrophy and in overt failure. Previous work has shown that glucose oxidation is upregulated in overpressure hypertrophy, but its fate in overt failure is less clear. Anaplerotic flux of pyruvate into the tricarboxylic acid cycle (TCA) has been posited as a secondary fate of glycolysis, aside from pyruvate oxidation or lactate production. METHODS AND RESULTS A model of heart failure that emulates both valvular and hypertensive heart disease, the severe transaortic constriction (sTAC) mouse, was assayed for changes in substrate preference using metabolomic and carbon-13 flux measurements. Quantitative measures of O2 consumption in the Langendorff perfused mouse heart were paired with 13C isotopomer analysis to assess TCA cycle turnover. Since the heart accommodates oxidation of all physiological energy sources, the utilization of carbohydrates, fatty acids, and ketones were measured simultaneously using a triple-tracer NMR method. The fractional contribution of glucose to acetyl-CoA production was upregulated in heart failure, while other sources were not significantly different. A model that includes both pyruvate carboxylation and anaplerosis through succinyl-CoA produced superior fits to the data compared to a model using only pyruvate carboxylation. In the sTAC heart, anaplerosis through succinyl-CoA is elevated, while pyruvate carboxylation was not. Metabolomic data showed depleted TCA cycle intermediate pool sizes versus the control, in agreement with previous results. CONCLUSION In the sTAC heart failure model, the glucose contribution to acetyl-CoA production was significantly higher, with compensatory changes in fatty acid and ketone oxidation not reaching a significant level. Anaplerosis through succinyl-CoA is also upregulated, and is likely used to preserve TCA cycle intermediate pool sizes. The triple tracer method used here is new, and can be used to assess sources of acetyl-CoA production in any oxidative tissue.
Collapse
Affiliation(s)
- Aslan Turer
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, United States of America.
| | - Francisco Altamirano
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, United States of America.
| | - Gabriele G Schiattarella
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, United States of America.
| | - Herman May
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, United States of America.
| | - Thomas G Gillette
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, United States of America.
| | - Craig R Malloy
- Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX 75390, United States of America; Department of Radiology, UT Southwestern Medical Center, Dallas, TX 75390, United States of America; VA North Texas Healthcare System, Lancaster, TX, United States of America.
| | - Matthew E Merritt
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610-0245, United States of America.
| |
Collapse
|
16
|
Chen W, Sharma G, Jiang W, Maptue NR, Malloy CR, Sherry AD, Khemtong C. Metabolism of hyperpolarized 13 C-acetoacetate to β-hydroxybutyrate detects real-time mitochondrial redox state and dysfunction in heart tissue. NMR IN BIOMEDICINE 2019; 32:e4091. [PMID: 30968985 PMCID: PMC6525062 DOI: 10.1002/nbm.4091] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/23/2019] [Accepted: 02/17/2019] [Indexed: 05/05/2023]
Abstract
Mitochondrial dysfunction is considered to be an important component of many metabolic diseases yet there is no reliable imaging biomarker for monitoring mitochondrial damage in vivo. A large prior literature on inter-conversion of β-hydroxybutyrate and acetoacetate indicates that the process is mitochondrial and that the ratio reflects a specifically mitochondrial redox state. Therefore, the conversion of [1,3-13 C]acetoacetate to [1,3-13 C]β-hydroxybutyrate is expected to be sensitive to the abnormal redox state present in dysfunctional mitochondria. In this study, we examined the conversion of hyperpolarized (HP) 13 C-acetoacetate (AcAc) to 13 C-β-hydroxybutyrate (β-HB) as a potential imaging biomarker for mitochondrial redox and dysfunction in perfused rat hearts. Conversion of HP-AcAc to β-HB was investigated using 13 C magnetic resonance spectroscopy in Langendorff-perfused rat hearts in four groups: control, global ischemic reperfusion, low-flow ischemic, and rotenone (mitochondrial complex-I inhibitor)-treated hearts. We observed that more β-HB was produced from AcAc in ischemic hearts and the hearts exposed to complex I inhibitor rotenone compared with controls, consistent with the accumulation of excess mitochondrial NADH. The increase in β-HB, as detected by 13 C MRS, was validated by a direct measure of tissue β-HB by 1 H nuclear magnetic resonance in tissue extracts. The redox ratio, NAD+ /NADH, measured by enzyme assays of homogenized tissue, also paralleled production of β-HB from AcAc. Transmission electron microscopy of tissues provided direct evidence for abnormal mitochondrial structure in each ischemic tissue model. The results suggest that conversion of HP-AcAc to HP-β-HB detected by 13 C-MRS may serve as a useful diagnostic marker of mitochondrial redox and dysfunction in heart tissue in vivo.
Collapse
Affiliation(s)
- Wei Chen
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Gaurav Sharma
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Weina Jiang
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nesmine R. Maptue
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Craig R. Malloy
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- VA North Texas Health Care System, Dallas, TX, USA
| | - A. Dean Sherry
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Chemistry, University of Texas at Dallas, Richardson, TX, USA
| | - Chalermchai Khemtong
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Correspondence: Chalermchai Khemtong, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8568, USA. Phone: +1 (214) 645-2772;
| |
Collapse
|
17
|
Sowton AP, Griffin JL, Murray AJ. Metabolic Profiling of the Diabetic Heart: Toward a Richer Picture. Front Physiol 2019; 10:639. [PMID: 31214041 PMCID: PMC6555155 DOI: 10.3389/fphys.2019.00639] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/06/2019] [Indexed: 01/20/2023] Open
Abstract
The increasing global prevalence of diabetes has been accompanied by a rise in diabetes-related conditions. This includes diabetic cardiomyopathy (DbCM), a progressive form of heart disease that occurs with both insulin-dependent (type-1) and insulin-independent (type-2) diabetes and arises in the absence of hypertension or coronary artery disease. Over time, DbCM can develop into overt heart failure. Like other forms of cardiomyopathy, DbCM is accompanied by alterations in metabolism which could lead to further progression of the pathology, with metabolic derangement postulated to precede functional changes in the diabetic heart. Moreover in the case of type-2 diabetes, underlying insulin resistance is likely to prevent the canonical substrate switch of the failing heart away from fatty acid oxidation toward increased use of glycolysis. Analytical chemistry techniques, collectively known as metabolomics, are useful tools for investigating the condition. In this article, we provide a comprehensive review of those studies that have employed metabolomic techniques, namely chromatography, mass spectrometry and nuclear magnetic resonance spectroscopy, to profile metabolic remodeling in the diabetic heart of human patients and animal models. These studies collectively demonstrate that glycolysis and glucose oxidation are suppressed in the diabetic myocardium and highlight a complex picture regarding lipid metabolism. The diabetic heart typically shows an increased reliance on fatty acid oxidation, yet triacylglycerols and other lipids accumulate in the diabetic myocardium indicating probable lipotoxicity. The application of lipidomic techniques to the diabetic heart has identified specific lipid species that become enriched and which may in turn act as plasma-borne biomarkers for the condition. Metabolomics is proving to be a powerful approach, allowing a much richer analysis of the metabolic alterations that occur in the diabetic heart. Careful physiological interpretation of metabolomic results will now be key in order to establish which aspects of the metabolic derangement are causal to the progression of DbCM and might form the basis for novel therapeutic intervention.
Collapse
Affiliation(s)
- Alice P. Sowton
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Julian L. Griffin
- Department of Biochemistry and Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom
| | - Andrew J. Murray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
18
|
Cintra R, Moura FA, Carvalho LSFD, Barreto J, Tambascia M, Pecoits-Filho R, Sposito AC. Inhibition of the sodium-glucose co-transporter 2 in the elderly: clinical and mechanistic insights into safety and efficacy. ACTA ACUST UNITED AC 2019; 65:70-86. [PMID: 30758423 DOI: 10.1590/1806-9282.65.1.70] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 10/26/2018] [Indexed: 12/16/2022]
Abstract
The prevalence of type 2 diabetes mellitus (T2DM) in the elderly grew sharply over the last decade. Reduced insulin sensitivity and secretory capacity, weight gain, sarcopenia, and elevated adiposity are all common metabolic and body changes in the aging population that favor an increased risk of hypoglycemia, frailty syndrome, falls, and cognitive dysfunction. First line antidiabetic therapy is frequently not safe in older individuals because of its high risk of hypoglycemia and prevalent co-morbid diseases, such as chronic kidney disease, osteoporosis, cardiovascular disease, and obesity. Sodium-glucose cotransporter 2 inhibitor (SGLT2i) is a new class of antidiabetic therapy that inhibits glucose and sodium reabsorption on renal proximal convoluted tubule. Its effect is well demonstrated in various clinical scenarios in the younger population. This review and metanalysis describe particularities of the SGLT2i on the elderly, with mechanistic insights of the potential benefit and remaining challenges about the use of these drugs in this important age group. Further, we will present a meta-analysis of the main effects of SGLT2i reported in post-hoc studies in which the median age of the subgroups analyzed was over 60 years. Despite the absence of specific clinical trials for this population, our findings suggest that SGLT2i therapy on older individuals is effective to lower glucose and maintain its effect on systolic blood pressure and body weight.
Collapse
Affiliation(s)
- Riobaldo Cintra
- Laboratory of Atherosclerosis and Vascular Biology, Unicamp, Campinas, SP, Brasil
| | - Filipe A Moura
- Laboratory of Atherosclerosis and Vascular Biology, Unicamp, Campinas, SP, Brasil
| | - Luis Sergio F de Carvalho
- Laboratory of Atherosclerosis and Vascular Biology, Unicamp, Campinas, SP, Brasil.,Cardiology Division, State University of Campinas (Unicamp), Campinas, SP, Brasil
| | - Joaquim Barreto
- Laboratory of Atherosclerosis and Vascular Biology, Unicamp, Campinas, SP, Brasil
| | - Marcos Tambascia
- Endocrinology Division, State University of Campinas (Unicamp), Campinas, SP, Brasil
| | | | - Andrei C Sposito
- Laboratory of Atherosclerosis and Vascular Biology, Unicamp, Campinas, SP, Brasil.,Cardiology Division, State University of Campinas (Unicamp), Campinas, SP, Brasil
| |
Collapse
|
19
|
Alger JR, Sherry AD, Malloy CR. tcaSIM: A Simulation Program for Optimal Design of 13C Tracer Experiments for Analysis of Metabolic Flux by NMR and Mass Spectroscopy. ACTA ACUST UNITED AC 2019; 6:176-187. [PMID: 31745452 DOI: 10.2174/2213235x07666181219115856] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Increasingly sophisticated instrumentation for chemical separations and identification has facilitated rapid advancements in our understanding of the metabolome. Since many analyses are performed using either mass spectroscopy (MS) or nuclear magnetic resonance (NMR) spectroscopy, the spin ½ stable 13C isotope is now widely used as a metabolic tracer. There is strong interest in quantitative analysis of metabolic flux through pathways in vivo, particularly in human patients. Although instrumentation advances and scientific interests in metabolism are increasing in parallel, a practical and rational design of a 13C tracer study can be challenging. Prior to planning the details of a tracer experiment, is it important to consider whether the analytical results will be sensitive to flux through the pathways of interest. Here, we briefly summarize the various approaches that have been used to design carbon tracer experiments, outline the sources of complexity, and illustrate the use of a software tool, tcaSIM, to aid in the experimental design of both MS and NMR data in complex systems including patients.
Collapse
Affiliation(s)
- Jeffry R Alger
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas.,NeuroSpectroScopics LLC, Sherman Oaks, California
| | - A Dean Sherry
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Chemistry, University of Texas at Dallas, Richardson, Texas
| | - Craig R Malloy
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas.,Veterans Affairs North Texas Healthcare System, Dallas, Texas
| |
Collapse
|
20
|
Angelini A, Pi X, Xie L. Dioxygen and Metabolism; Dangerous Liaisons in Cardiac Function and Disease. Front Physiol 2017; 8:1044. [PMID: 29311974 PMCID: PMC5732914 DOI: 10.3389/fphys.2017.01044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 11/29/2017] [Indexed: 12/19/2022] Open
Abstract
The heart must consume a significant amount of energy to sustain its contractile activity. Although the fuel demands are huge, the stock remains very low. Thus, in order to supply its daily needs, the heart must have amazing adaptive abilities, which are dependent on dioxygen availability. However, in myriad cardiovascular diseases, “fuel” depletion and hypoxia are common features, leading cardiomyocytes to favor low-dioxygen-consuming glycolysis rather than oxidation of fatty acids. This metabolic switch makes it challenging to distinguish causes from consequences in cardiac pathologies. Finally, despite the progress achieved in the past few decades, medical treatments have not improved substantially, either. In such a situation, it seems clear that much remains to be learned about cardiac diseases. Therefore, in this review, we will discuss how reconciling dioxygen availability and cardiac metabolic adaptations may contribute to develop full and innovative strategies from bench to bedside.
Collapse
Affiliation(s)
- Aude Angelini
- Department of Medicine-Athero and Lipo, Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, United States
| | - Xinchun Pi
- Department of Medicine-Athero and Lipo, Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, United States
| | - Liang Xie
- Department of Medicine-Athero and Lipo, Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
21
|
Abstract
It is thought that at least 6,500 low-molecular-weight metabolites exist in humans, and these metabolites have various important roles in biological systems in addition to proteins and genes. Comprehensive assessment of endogenous metabolites is called metabolomics, and recent advances in this field have enabled us to understand the critical role of previously unknown metabolites or metabolic pathways in the cardiovascular system. In this review, we will focus on heart failure and how metabolomic analysis has contributed to improving our understanding of the pathogenesis of this critical condition.
Collapse
Affiliation(s)
- Ryutaro Ikegami
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences
| | - Ippei Shimizu
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences.,Division of Molecular Aging and Cell Biology, Niigata University Graduate School of Medical and Dental Sciences
| | - Yohko Yoshida
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences.,Division of Molecular Aging and Cell Biology, Niigata University Graduate School of Medical and Dental Sciences
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences
| |
Collapse
|
22
|
Budoff MJ, Wilding JPH. Effects of canagliflozin on cardiovascular risk factors in patients with type 2 diabetes mellitus. Int J Clin Pract 2017; 71:e12948. [PMID: 28508457 PMCID: PMC5488174 DOI: 10.1111/ijcp.12948] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/12/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND AIMS Cardiovascular disease is the most common cause of morbidity and mortality among people with type 2 diabetes mellitus (T2DM). The main contributors to cardiovascular risk in T2DM are chronic hyperglycaemia, reduced insulin sensitivity, hypertension and dyslipidaemia. Other cardiovascular risk factors include obesity and visceral adiposity, increased arterial stiffness and renal dysfunction. Results from clinical trials, including a long-term cardiovascular outcome study, have shown that sodium glucose co-transporter 2 (SGLT2) inhibitors can provide multiple cardiometabolic benefits beyond glycaemic control including inducing mild osmotic diuresis, natriuresis and weight loss. This review article describes the effects of canagliflozin on cardiovascular risk factors based on results from its clinical development programme. METHODS This review is based on structured searches to identify literature related to the effects of canagliflozin on cardiovascular risk factors in patients with T2DM. DISCUSSION AND CONCLUSIONS Canagliflozin treatment has been shown to provide glycaemic improvements as well as reductions in blood pressure and body weight across a broad range of patients with T2DM, including those with elevated cardiovascular risk. Other observed effects of canagliflozin that may contribute to improved cardiometabolic outcomes include reduction in uric acid levels, decreased albuminuria and increases in serum magnesium. Results of ongoing long-term cardiovascular outcomes studies of canagliflozin are expected to provide additional evidence on the cardiometabolic effects of canagliflozin treatment.
Collapse
Affiliation(s)
- Matthew J. Budoff
- Division of CardiologyLos Angeles Biomedical Research InstituteTorranceCAUSA
| | - John P. H. Wilding
- Obesity and Endocrinology Clinical ResearchInstitute of Ageing and Chronic DiseaseUniversity of LiverpoolLiverpoolUK
| |
Collapse
|
23
|
De Jong KA, Lopaschuk GD. Complex Energy Metabolic Changes in Heart Failure With Preserved Ejection Fraction and Heart Failure With Reduced Ejection Fraction. Can J Cardiol 2017; 33:860-871. [PMID: 28579160 DOI: 10.1016/j.cjca.2017.03.009] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 03/14/2017] [Accepted: 03/14/2017] [Indexed: 12/11/2022] Open
Abstract
Alterations in cardiac energy metabolism contribute to the severity of heart failure. However, the energy metabolic changes that occur in heart failure are complex, and are dependent not only on the severity and type of heart failure present, but also on the coexistence of common comorbidities such as obesity and type 2 diabetes. In this article we review the cardiac energy metabolic changes that occur in heart failure. An emphasis is made on distinguishing the differences in cardiac energy metabolism between heart failure with preserved ejection fraction (HFpEF) and heart failure with reduced ejection fraction (HFrEF) and in clarifying the common misconceptions surrounding the fate of fatty acids and glucose in the failing heart. The major key points from this article are: (1) mitochondrial oxidative capacity is reduced in HFpEF and HFrEF; (2) fatty acid oxidation is increased in HFpEF and reduced in HFrEF (however, oxidative metabolism of fatty acids in HFrEF still exceeds that of glucose); (3) glucose oxidation is decreased in HFpEF and HFrEF; (4) there is an uncoupling between glucose uptake and oxidation in HFpEF and HFrEF, resulting in an increased rate of glycolysis; (5) ketone body oxidation is increased in HFrEF, which might further reduce fatty acid and glucose oxidation; and finally, (6) branched chain amino acid oxidation is impaired in HFrEF. The understanding of these changes in cardiac energy metabolism in heart failure are essential to allow the development of metabolic modulators in the treatment of heart failure.
Collapse
Affiliation(s)
- Kirstie A De Jong
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Gary D Lopaschuk
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
24
|
Abstract
Ketone body metabolism is a central node in physiological homeostasis. In this review, we discuss how ketones serve discrete fine-tuning metabolic roles that optimize organ and organism performance in varying nutrient states and protect from inflammation and injury in multiple organ systems. Traditionally viewed as metabolic substrates enlisted only in carbohydrate restriction, observations underscore the importance of ketone bodies as vital metabolic and signaling mediators when carbohydrates are abundant. Complementing a repertoire of known therapeutic options for diseases of the nervous system, prospective roles for ketone bodies in cancer have arisen, as have intriguing protective roles in heart and liver, opening therapeutic options in obesity-related and cardiovascular disease. Controversies in ketone metabolism and signaling are discussed to reconcile classical dogma with contemporary observations.
Collapse
Affiliation(s)
- Patrycja Puchalska
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL 32827, USA
| | - Peter A Crawford
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL 32827, USA.
| |
Collapse
|
25
|
Taegtmeyer H, Young ME, Lopaschuk GD, Abel ED, Brunengraber H, Darley-Usmar V, Des Rosiers C, Gerszten R, Glatz JF, Griffin JL, Gropler RJ, Holzhuetter HG, Kizer JR, Lewandowski ED, Malloy CR, Neubauer S, Peterson LR, Portman MA, Recchia FA, Van Eyk JE, Wang TJ. Assessing Cardiac Metabolism: A Scientific Statement From the American Heart Association. Circ Res 2016; 118:1659-701. [PMID: 27012580 DOI: 10.1161/res.0000000000000097] [Citation(s) in RCA: 185] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In a complex system of interrelated reactions, the heart converts chemical energy to mechanical energy. Energy transfer is achieved through coordinated activation of enzymes, ion channels, and contractile elements, as well as structural and membrane proteins. The heart's needs for energy are difficult to overestimate. At a time when the cardiovascular research community is discovering a plethora of new molecular methods to assess cardiac metabolism, the methods remain scattered in the literature. The present statement on "Assessing Cardiac Metabolism" seeks to provide a collective and curated resource on methods and models used to investigate established and emerging aspects of cardiac metabolism. Some of those methods are refinements of classic biochemical tools, whereas most others are recent additions from the powerful tools of molecular biology. The aim of this statement is to be useful to many and to do justice to a dynamic field of great complexity.
Collapse
|
26
|
Aubert G, Martin OJ, Horton JL, Lai L, Vega RB, Leone TC, Koves T, Gardell SJ, Krüger M, Hoppel CL, Lewandowski ED, Crawford PA, Muoio DM, Kelly DP. The Failing Heart Relies on Ketone Bodies as a Fuel. Circulation 2016; 133:698-705. [PMID: 26819376 PMCID: PMC4766035 DOI: 10.1161/circulationaha.115.017355] [Citation(s) in RCA: 497] [Impact Index Per Article: 62.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 11/20/2015] [Indexed: 12/16/2022]
Abstract
BACKGROUND Significant evidence indicates that the failing heart is energy starved. During the development of heart failure, the capacity of the heart to utilize fatty acids, the chief fuel, is diminished. Identification of alternate pathways for myocardial fuel oxidation could unveil novel strategies to treat heart failure. METHODS AND RESULTS Quantitative mitochondrial proteomics was used to identify energy metabolic derangements that occur during the development of cardiac hypertrophy and heart failure in well-defined mouse models. As expected, the amounts of proteins involved in fatty acid utilization were downregulated in myocardial samples from the failing heart. Conversely, expression of β-hydroxybutyrate dehydrogenase 1, a key enzyme in the ketone oxidation pathway, was increased in the heart failure samples. Studies of relative oxidation in an isolated heart preparation using ex vivo nuclear magnetic resonance combined with targeted quantitative myocardial metabolomic profiling using mass spectrometry revealed that the hypertrophied and failing heart shifts to oxidizing ketone bodies as a fuel source in the context of reduced capacity to oxidize fatty acids. Distinct myocardial metabolomic signatures of ketone oxidation were identified. CONCLUSIONS These results indicate that the hypertrophied and failing heart shifts to ketone bodies as a significant fuel source for oxidative ATP production. Specific metabolite biosignatures of in vivo cardiac ketone utilization were identified. Future studies aimed at determining whether this fuel shift is adaptive or maladaptive could unveil new therapeutic strategies for heart failure.
Collapse
Affiliation(s)
- Gregory Aubert
- From Cardiovascular Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL (G.A., O.J.M., J.L.H., L.L., R.B.V., T.C.L., S.J.G., P.A.C., D.P.K.); Departments of Medicine, Pharmacology, and Cancer Biology, Duke University, Durham, NC (T.K., D.M.M.); CECAD Research Center, Institute for Genetics, University of Cologne, Cologne, Germany (M.K.); Departments of Pharmacology and Medicine, Case Western Reserve University, Cleveland, OH (C.L.H.); College of Medicine, University of Illinois at Chicago, Chicago, IL (E.D.L.); and Department of Medicine, Washington University School of Medicine, St. Louis, MO (P.A.C.)
| | - Ola J Martin
- From Cardiovascular Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL (G.A., O.J.M., J.L.H., L.L., R.B.V., T.C.L., S.J.G., P.A.C., D.P.K.); Departments of Medicine, Pharmacology, and Cancer Biology, Duke University, Durham, NC (T.K., D.M.M.); CECAD Research Center, Institute for Genetics, University of Cologne, Cologne, Germany (M.K.); Departments of Pharmacology and Medicine, Case Western Reserve University, Cleveland, OH (C.L.H.); College of Medicine, University of Illinois at Chicago, Chicago, IL (E.D.L.); and Department of Medicine, Washington University School of Medicine, St. Louis, MO (P.A.C.)
| | - Julie L Horton
- From Cardiovascular Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL (G.A., O.J.M., J.L.H., L.L., R.B.V., T.C.L., S.J.G., P.A.C., D.P.K.); Departments of Medicine, Pharmacology, and Cancer Biology, Duke University, Durham, NC (T.K., D.M.M.); CECAD Research Center, Institute for Genetics, University of Cologne, Cologne, Germany (M.K.); Departments of Pharmacology and Medicine, Case Western Reserve University, Cleveland, OH (C.L.H.); College of Medicine, University of Illinois at Chicago, Chicago, IL (E.D.L.); and Department of Medicine, Washington University School of Medicine, St. Louis, MO (P.A.C.)
| | - Ling Lai
- From Cardiovascular Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL (G.A., O.J.M., J.L.H., L.L., R.B.V., T.C.L., S.J.G., P.A.C., D.P.K.); Departments of Medicine, Pharmacology, and Cancer Biology, Duke University, Durham, NC (T.K., D.M.M.); CECAD Research Center, Institute for Genetics, University of Cologne, Cologne, Germany (M.K.); Departments of Pharmacology and Medicine, Case Western Reserve University, Cleveland, OH (C.L.H.); College of Medicine, University of Illinois at Chicago, Chicago, IL (E.D.L.); and Department of Medicine, Washington University School of Medicine, St. Louis, MO (P.A.C.)
| | - Rick B Vega
- From Cardiovascular Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL (G.A., O.J.M., J.L.H., L.L., R.B.V., T.C.L., S.J.G., P.A.C., D.P.K.); Departments of Medicine, Pharmacology, and Cancer Biology, Duke University, Durham, NC (T.K., D.M.M.); CECAD Research Center, Institute for Genetics, University of Cologne, Cologne, Germany (M.K.); Departments of Pharmacology and Medicine, Case Western Reserve University, Cleveland, OH (C.L.H.); College of Medicine, University of Illinois at Chicago, Chicago, IL (E.D.L.); and Department of Medicine, Washington University School of Medicine, St. Louis, MO (P.A.C.)
| | - Teresa C Leone
- From Cardiovascular Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL (G.A., O.J.M., J.L.H., L.L., R.B.V., T.C.L., S.J.G., P.A.C., D.P.K.); Departments of Medicine, Pharmacology, and Cancer Biology, Duke University, Durham, NC (T.K., D.M.M.); CECAD Research Center, Institute for Genetics, University of Cologne, Cologne, Germany (M.K.); Departments of Pharmacology and Medicine, Case Western Reserve University, Cleveland, OH (C.L.H.); College of Medicine, University of Illinois at Chicago, Chicago, IL (E.D.L.); and Department of Medicine, Washington University School of Medicine, St. Louis, MO (P.A.C.)
| | - Timothy Koves
- From Cardiovascular Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL (G.A., O.J.M., J.L.H., L.L., R.B.V., T.C.L., S.J.G., P.A.C., D.P.K.); Departments of Medicine, Pharmacology, and Cancer Biology, Duke University, Durham, NC (T.K., D.M.M.); CECAD Research Center, Institute for Genetics, University of Cologne, Cologne, Germany (M.K.); Departments of Pharmacology and Medicine, Case Western Reserve University, Cleveland, OH (C.L.H.); College of Medicine, University of Illinois at Chicago, Chicago, IL (E.D.L.); and Department of Medicine, Washington University School of Medicine, St. Louis, MO (P.A.C.)
| | - Stephen J Gardell
- From Cardiovascular Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL (G.A., O.J.M., J.L.H., L.L., R.B.V., T.C.L., S.J.G., P.A.C., D.P.K.); Departments of Medicine, Pharmacology, and Cancer Biology, Duke University, Durham, NC (T.K., D.M.M.); CECAD Research Center, Institute for Genetics, University of Cologne, Cologne, Germany (M.K.); Departments of Pharmacology and Medicine, Case Western Reserve University, Cleveland, OH (C.L.H.); College of Medicine, University of Illinois at Chicago, Chicago, IL (E.D.L.); and Department of Medicine, Washington University School of Medicine, St. Louis, MO (P.A.C.)
| | - Marcus Krüger
- From Cardiovascular Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL (G.A., O.J.M., J.L.H., L.L., R.B.V., T.C.L., S.J.G., P.A.C., D.P.K.); Departments of Medicine, Pharmacology, and Cancer Biology, Duke University, Durham, NC (T.K., D.M.M.); CECAD Research Center, Institute for Genetics, University of Cologne, Cologne, Germany (M.K.); Departments of Pharmacology and Medicine, Case Western Reserve University, Cleveland, OH (C.L.H.); College of Medicine, University of Illinois at Chicago, Chicago, IL (E.D.L.); and Department of Medicine, Washington University School of Medicine, St. Louis, MO (P.A.C.)
| | - Charles L Hoppel
- From Cardiovascular Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL (G.A., O.J.M., J.L.H., L.L., R.B.V., T.C.L., S.J.G., P.A.C., D.P.K.); Departments of Medicine, Pharmacology, and Cancer Biology, Duke University, Durham, NC (T.K., D.M.M.); CECAD Research Center, Institute for Genetics, University of Cologne, Cologne, Germany (M.K.); Departments of Pharmacology and Medicine, Case Western Reserve University, Cleveland, OH (C.L.H.); College of Medicine, University of Illinois at Chicago, Chicago, IL (E.D.L.); and Department of Medicine, Washington University School of Medicine, St. Louis, MO (P.A.C.)
| | - E Douglas Lewandowski
- From Cardiovascular Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL (G.A., O.J.M., J.L.H., L.L., R.B.V., T.C.L., S.J.G., P.A.C., D.P.K.); Departments of Medicine, Pharmacology, and Cancer Biology, Duke University, Durham, NC (T.K., D.M.M.); CECAD Research Center, Institute for Genetics, University of Cologne, Cologne, Germany (M.K.); Departments of Pharmacology and Medicine, Case Western Reserve University, Cleveland, OH (C.L.H.); College of Medicine, University of Illinois at Chicago, Chicago, IL (E.D.L.); and Department of Medicine, Washington University School of Medicine, St. Louis, MO (P.A.C.)
| | - Peter A Crawford
- From Cardiovascular Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL (G.A., O.J.M., J.L.H., L.L., R.B.V., T.C.L., S.J.G., P.A.C., D.P.K.); Departments of Medicine, Pharmacology, and Cancer Biology, Duke University, Durham, NC (T.K., D.M.M.); CECAD Research Center, Institute for Genetics, University of Cologne, Cologne, Germany (M.K.); Departments of Pharmacology and Medicine, Case Western Reserve University, Cleveland, OH (C.L.H.); College of Medicine, University of Illinois at Chicago, Chicago, IL (E.D.L.); and Department of Medicine, Washington University School of Medicine, St. Louis, MO (P.A.C.)
| | - Deborah M Muoio
- From Cardiovascular Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL (G.A., O.J.M., J.L.H., L.L., R.B.V., T.C.L., S.J.G., P.A.C., D.P.K.); Departments of Medicine, Pharmacology, and Cancer Biology, Duke University, Durham, NC (T.K., D.M.M.); CECAD Research Center, Institute for Genetics, University of Cologne, Cologne, Germany (M.K.); Departments of Pharmacology and Medicine, Case Western Reserve University, Cleveland, OH (C.L.H.); College of Medicine, University of Illinois at Chicago, Chicago, IL (E.D.L.); and Department of Medicine, Washington University School of Medicine, St. Louis, MO (P.A.C.)
| | - Daniel P Kelly
- From Cardiovascular Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL (G.A., O.J.M., J.L.H., L.L., R.B.V., T.C.L., S.J.G., P.A.C., D.P.K.); Departments of Medicine, Pharmacology, and Cancer Biology, Duke University, Durham, NC (T.K., D.M.M.); CECAD Research Center, Institute for Genetics, University of Cologne, Cologne, Germany (M.K.); Departments of Pharmacology and Medicine, Case Western Reserve University, Cleveland, OH (C.L.H.); College of Medicine, University of Illinois at Chicago, Chicago, IL (E.D.L.); and Department of Medicine, Washington University School of Medicine, St. Louis, MO (P.A.C.).
| |
Collapse
|
27
|
Gaspar JA, Doss MX, Hengstler JG, Cadenas C, Hescheler J, Sachinidis A. Unique metabolic features of stem cells, cardiomyocytes, and their progenitors. Circ Res 2014; 114:1346-60. [PMID: 24723659 DOI: 10.1161/circresaha.113.302021] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recently, growing attention has been directed toward stem cell metabolism, with the key observation that the plasticity of stem cells also reflects the plasticity of their energy substrate metabolism. There seems to be a clear link between the self-renewal state of stem cells, in which cells proliferate without differentiation, and the activity of specific metabolic pathways. Differentiation is accompanied by a shift from anaerobic glycolysis to mitochondrial respiration. This metabolic switch of differentiating stem cells is required to cover the energy demands of the different organ-specific cell types. Among other metabolic signatures, amino acid and carbohydrate metabolism is most prominent in undifferentiated embryonic stem cells, whereas the fatty acid metabolic signature is unique in cardiomyocytes derived from embryonic stem cells. Identifying the specific metabolic pathways involved in pluripotency and differentiation is critical for further progress in the field of developmental biology and regenerative medicine. The recently generated knowledge on metabolic key processes may help to generate mature stem cell-derived somatic cells for therapeutic applications without the requirement of genetic manipulation. In the present review, the literature about metabolic features of stem cells and their cardiovascular cell derivatives as well as the specific metabolic gene signatures differentiating between stem and differentiated cells are summarized and discussed.
Collapse
Affiliation(s)
- John Antonydas Gaspar
- From the Center of Physiology and Pathophysiology, Institute of Neurophysiology, University of Cologne, Cologne, Germany (J.A.G., M.X.D., J.H., A.S.); and Leibniz Research Centre for Working Environment and Human Factors (IfADo), Technical University of Dortmund, Dortmund, Germany (J.G.H., C.C.)
| | | | | | | | | | | |
Collapse
|
28
|
Schugar RC, Moll AR, André d'Avignon D, Weinheimer CJ, Kovacs A, Crawford PA. Cardiomyocyte-specific deficiency of ketone body metabolism promotes accelerated pathological remodeling. Mol Metab 2014; 3:754-69. [PMID: 25353003 PMCID: PMC4209361 DOI: 10.1016/j.molmet.2014.07.010] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 07/19/2014] [Accepted: 07/23/2014] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE Exploitation of protective metabolic pathways within injured myocardium still remains an unclarified therapeutic target in heart disease. Moreover, while the roles of altered fatty acid and glucose metabolism in the failing heart have been explored, the influence of highly dynamic and nutritionally modifiable ketone body metabolism in the regulation of myocardial substrate utilization, mitochondrial bioenergetics, reactive oxygen species (ROS) generation, and hemodynamic response to injury remains undefined. METHODS Here we use mice that lack the enzyme required for terminal oxidation of ketone bodies, succinyl-CoA:3-oxoacid CoA transferase (SCOT) to determine the role of ketone body oxidation in the myocardial injury response. Tracer delivery in ex vivo perfused hearts coupled to NMR spectroscopy, in vivo high-resolution echocardiographic quantification of cardiac hemodynamics in nutritionally and surgically modified mice, and cellular and molecular measurements of energetic and oxidative stress responses are performed. RESULTS While germline SCOT-knockout (KO) mice die in the early postnatal period, adult mice with cardiomyocyte-specific loss of SCOT (SCOT-Heart-KO) remarkably exhibit no overt metabolic abnormalities, and no differences in left ventricular mass or impairments of systolic function during periods of ketosis, including fasting and adherence to a ketogenic diet. Myocardial fatty acid oxidation is increased when ketones are delivered but cannot be oxidized. To determine the role of ketone body oxidation in the remodeling ventricle, we induced pressure overload injury by performing transverse aortic constriction (TAC) surgery in SCOT-Heart-KO and αMHC-Cre control mice. While TAC increased left ventricular mass equally in both groups, at four weeks post-TAC, myocardial ROS abundance was increased in myocardium of SCOT-Heart-KO mice, and mitochondria and myofilaments were ultrastructurally disordered. Eight weeks post-TAC, left ventricular volume was markedly increased and ejection fraction was decreased in SCOT-Heart-KO mice, while these parameters remained normal in hearts of control animals. CONCLUSIONS These studies demonstrate the ability of myocardial ketone metabolism to coordinate the myocardial response to pressure overload, and suggest that the oxidation of ketone bodies may be an important contributor to free radical homeostasis and hemodynamic preservation in the injured heart.
Collapse
Affiliation(s)
- Rebecca C Schugar
- Department of Medicine, Center for Cardiovascular Research, Washington University, St. Louis, MO, USA
| | - Ashley R Moll
- Department of Medicine, Center for Cardiovascular Research, Washington University, St. Louis, MO, USA
| | | | - Carla J Weinheimer
- Department of Medicine, Center for Cardiovascular Research, Washington University, St. Louis, MO, USA
| | - Attila Kovacs
- Department of Medicine, Center for Cardiovascular Research, Washington University, St. Louis, MO, USA
| | - Peter A Crawford
- Department of Medicine, Center for Cardiovascular Research, Washington University, St. Louis, MO, USA ; Department of Genetics, Washington University, St. Louis, MO, USA
| |
Collapse
|
29
|
Identifying Sources of Hepatic Lipogenic Acetyl-CoA Using Stable Isotope Tracers and NMR. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/109252] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The role of hepatic de novo lipogenesis (DNL) in promoting fatty liver disease and hypertriglyceridemia during excessive nutrient intake is becoming firmly established. Certain nutrients such as fructose promote hepatic DNL activity and this has been at least partly attributed to their efficient conversion to the acetyl-CoA precursors of DNL. However, tracer studies indicate a paradoxically low level of fructose incorporation into lipids, which begs the question of what the actual lipogenic acetyl-CoA sources are under these and other conditions. Here, we describe novel approaches for measuring substrate contributions to lipogenic hepatic acetyl-CoA using 13C-tracers and 13C-NMR analysis of lipids and acetyl-CoA probes. We review and address aspects of hepatic intermediary fluxes and acetyl-CoA compartmentation that can confound the relationship between 13C-precursor substrate and lipogenic 13C-acetyl-CoA enrichments and demonstrate novel methodologies that can provide realistic estimates of 13C-enriched substrate contributions to DNL. The most striking realization is that the principal substrate contributors to lipogenic acetyl-CoA have yet to be identified, but they are probably not the so-called “lipogenic substrates” such as fructose. The proposed methods may improve our insight into the nutrient sources of DNL under various feeding and disease states.
Collapse
|
30
|
Kolwicz SC, Purohit S, Tian R. Cardiac metabolism and its interactions with contraction, growth, and survival of cardiomyocytes. Circ Res 2013; 113:603-16. [PMID: 23948585 DOI: 10.1161/circresaha.113.302095] [Citation(s) in RCA: 532] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The network for cardiac fuel metabolism contains intricate sets of interacting pathways that result in both ATP-producing and non-ATP-producing end points for each class of energy substrates. The most salient feature of the network is the metabolic flexibility demonstrated in response to various stimuli, including developmental changes and nutritional status. The heart is also capable of remodeling the metabolic pathways in chronic pathophysiological conditions, which results in modulations of myocardial energetics and contractile function. In a quest to understand the complexity of the cardiac metabolic network, pharmacological and genetic tools have been engaged to manipulate cardiac metabolism in a variety of research models. In concert, a host of therapeutic interventions have been tested clinically to target substrate preference, insulin sensitivity, and mitochondrial function. In addition, the contribution of cellular metabolism to growth, survival, and other signaling pathways through the production of metabolic intermediates has been increasingly noted. In this review, we provide an overview of the cardiac metabolic network and highlight alterations observed in cardiac pathologies as well as strategies used as metabolic therapies in heart failure. Lastly, the ability of metabolic derivatives to intersect growth and survival are also discussed.
Collapse
Affiliation(s)
- Stephen C Kolwicz
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA
| | | | | |
Collapse
|
31
|
Cotter DG, Schugar RC, Wentz AE, d'Avignon DA, Crawford PA. Successful adaptation to ketosis by mice with tissue-specific deficiency of ketone body oxidation. Am J Physiol Endocrinol Metab 2013; 304:E363-74. [PMID: 23233542 PMCID: PMC3566508 DOI: 10.1152/ajpendo.00547.2012] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
During states of low carbohydrate intake, mammalian ketone body metabolism transfers energy substrates originally derived from fatty acyl chains within the liver to extrahepatic organs. We previously demonstrated that the mitochondrial enzyme coenzyme A (CoA) transferase [succinyl-CoA:3-oxoacid CoA transferase (SCOT), encoded by nuclear Oxct1] is required for oxidation of ketone bodies and that germline SCOT-knockout (KO) mice die within 48 h of birth because of hyperketonemic hypoglycemia. Here, we use novel transgenic and tissue-specific SCOT-KO mice to demonstrate that ketone bodies do not serve an obligate energetic role within highly ketolytic tissues during the ketogenic neonatal period or during starvation in the adult. Although transgene-mediated restoration of myocardial CoA transferase in germline SCOT-KO mice is insufficient to prevent lethal hyperketonemic hypoglycemia in the neonatal period, mice lacking CoA transferase selectively within neurons, cardiomyocytes, or skeletal myocytes are all viable as neonates. Like germline SCOT-KO neonatal mice, neonatal mice with neuronal CoA transferase deficiency exhibit increased cerebral glycolysis and glucose oxidation, and, while these neonatal mice exhibit modest hyperketonemia, they do not develop hypoglycemia. As adults, tissue-specific SCOT-KO mice tolerate starvation, exhibiting only modestly increased hyperketonemia. Finally, metabolic analysis of adult germline Oxct1(+/-) mice demonstrates that global diminution of ketone body oxidation yields hyperketonemia, but hypoglycemia emerges only during a protracted state of low carbohydrate intake. Together, these data suggest that, at the tissue level, ketone bodies are not a required energy substrate in the newborn period or during starvation, but rather that integrated ketone body metabolism mediates adaptation to ketogenic nutrient states.
Collapse
Affiliation(s)
- David G Cotter
- Division of Cardiology, Dept. of Medicine, Washington Univ. School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
32
|
Cotter DG, Schugar RC, Crawford PA. Ketone body metabolism and cardiovascular disease. Am J Physiol Heart Circ Physiol 2013; 304:H1060-76. [PMID: 23396451 DOI: 10.1152/ajpheart.00646.2012] [Citation(s) in RCA: 294] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ketone bodies are metabolized through evolutionarily conserved pathways that support bioenergetic homeostasis, particularly in brain, heart, and skeletal muscle when carbohydrates are in short supply. The metabolism of ketone bodies interfaces with the tricarboxylic acid cycle, β-oxidation of fatty acids, de novo lipogenesis, sterol biosynthesis, glucose metabolism, the mitochondrial electron transport chain, hormonal signaling, intracellular signal transduction pathways, and the microbiome. Here we review the mechanisms through which ketone bodies are metabolized and how their signals are transmitted. We focus on the roles this metabolic pathway may play in cardiovascular disease states, the bioenergetic benefits of myocardial ketone body oxidation, and prospective interactions among ketone body metabolism, obesity, metabolic syndrome, and atherosclerosis. Ketone body metabolism is noninvasively quantifiable in humans and is responsive to nutritional interventions. Therefore, further investigation of this pathway in disease models and in humans may ultimately yield tailored diagnostic strategies and therapies for specific pathological states.
Collapse
Affiliation(s)
- David G Cotter
- Department of Medicine, Center for Cardiovascular Research, Washington University, Saint Louis, Missouri 63110, USA
| | | | | |
Collapse
|
33
|
Alves MG, Oliveira PJ, Carvalho RA. Substrate selection in hearts subjected to ischemia/reperfusion: role of cardioplegic solutions and gender. NMR IN BIOMEDICINE 2011; 24:1029-1037. [PMID: 21274961 DOI: 10.1002/nbm.1640] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 10/07/2010] [Accepted: 10/07/2010] [Indexed: 05/30/2023]
Abstract
In conditions of ischemia/reperfusion (I/R), the relative use of all available substrates by the heart has a significant effect on the recovery of the organ. This substrate preference in perfused hearts is influenced by ischemia. We followed the metabolic fate of [U-(13) C]glucose and [3-(13) C]lactate in hearts preserved in Celsior (Cs) and histidine buffer solution (HBS) for 4 or 6 h and subsequently perfused with a Krebs-Henseleit solution (KH) containing [U-(13) C]glucose and [3-(13) C]lactate. We also assessed gender-specific metabolic modulation in our I/R experimental conditions. Hearts from male and female Wistar rats (6-8 weeks) were subjected to moderate (0-240 min) or prolonged (240-360 min) cold ischemia whilst immersed in Cs and HBS, and perfused for 30 min with KH containing [U-(13) C]glucose and [3-(13) C]lactate. After perfusion, hearts were freeze-clamped and metabolites were extracted for (13) C NMR isotopomer analysis. In control conditions, there were no differences with regard to lactate origin in hearts from males and females. After 6 h of preservation in Cs, lactate origin was mostly from [U-(13) C]glucose in hearts from males and from [3-(13) C]lactate in hearts from females. During the 6 h of organ preservation in HBS, the lactate pool showed a strong contribution from unenriched sources in male hearts and from [U-(13) C]glucose in female hearts. The glutamate C2/C4 ratio was stable or increased in hearts from females after I/R, and the alanine index increased in hearts from both males and females. Octanoate was, as predicted, the preferential substrate during perfusion. Glucose and lactate suffer a distinct metabolic fate in our I/R conditions, which is related to the cardioplegic solution used during organ storage, and the gender. Hearts from females appear to be less sensitive to I/R injury, and heart preservation in HBS proved to be effective in enhancing anaplerosis during perfusion, especially in hearts from females.
Collapse
Affiliation(s)
- Marco G Alves
- Center for Neurosciences and Cell Biology, University of Coimbra, Coimbra, Portugal
| | | | | |
Collapse
|
34
|
Malloy CR, Merritt ME, Sherry AD. Could 13C MRI assist clinical decision-making for patients with heart disease? NMR IN BIOMEDICINE 2011; 24:973-9. [PMID: 21608058 PMCID: PMC3174329 DOI: 10.1002/nbm.1718] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 01/25/2011] [Accepted: 02/22/2011] [Indexed: 05/08/2023]
Abstract
Even at this early stage of development, it is clear that the imaging of hyperpolarized (13)C-enriched molecules and their metabolic products offers a new approach to the study of the physiology and disease of the heart. The technology is practical in humans and, for this reason, we consider whether a role in clinical decision-making should motivate further development. The range of interventions available to treat coronary and valvular heart disease is already extensive, and new options are imminent. Yet the appropriate management of patients with left ventricular dysfunction can be challenging because the mechanism of reduced function may be unclear and the ability of the ventricle to respond to therapy may be difficult to predict. Pyruvate is a promising early target for development as a diagnostic agent because it lies at a critical branch point in cardiac biochemistry. The rate of metabolism of hyperpolarized pyruvate to CO(2) relative to lactate may prove to be a useful indicator of preserved mitochondrial function, and therefore provide a specific signal of viable myocardium. Other species including physiological substrates and nonphysiological molecules may provide additional information. Once suitable technology becomes available, it is likely that clinical research will progress quickly. The ability to monitor directly specific metabolic pathways may lead to an improvement in the selection of patients who will benefit from interventions, pharmacologic or otherwise.
Collapse
Affiliation(s)
- Craig R Malloy
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390-8568, USA.
| | | | | |
Collapse
|
35
|
Wentz AE, d'Avignon DA, Weber ML, Cotter DG, Doherty JM, Kerns R, Nagarajan R, Reddy N, Sambandam N, Crawford PA. Adaptation of myocardial substrate metabolism to a ketogenic nutrient environment. J Biol Chem 2010; 285:24447-56. [PMID: 20529848 DOI: 10.1074/jbc.m110.100651] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Heart muscle is metabolically versatile, converting energy stored in fatty acids, glucose, lactate, amino acids, and ketone bodies. Here, we use mouse models in ketotic nutritional states (24 h of fasting and a very low carbohydrate ketogenic diet) to demonstrate that heart muscle engages a metabolic response that limits ketone body utilization. Pathway reconstruction from microarray data sets, gene expression analysis, protein immunoblotting, and immunohistochemical analysis of myocardial tissue from nutritionally modified mouse models reveal that ketotic states promote transcriptional suppression of the key ketolytic enzyme, succinyl-CoA:3-oxoacid CoA transferase (SCOT; encoded by Oxct1), as well as peroxisome proliferator-activated receptor alpha-dependent induction of the key ketogenic enzyme HMGCS2. Consistent with reduction of SCOT, NMR profiling demonstrates that maintenance on a ketogenic diet causes a 25% reduction of myocardial (13)C enrichment of glutamate when (13)C-labeled ketone bodies are delivered in vivo or ex vivo, indicating reduced procession of ketones through oxidative metabolism. Accordingly, unmetabolized substrate concentrations are higher within the hearts of ketogenic diet-fed mice challenged with ketones compared with those of chow-fed controls. Furthermore, reduced ketone body oxidation correlates with failure of ketone bodies to inhibit fatty acid oxidation. These results indicate that ketotic nutrient environments engage mechanisms that curtail ketolytic capacity, controlling the utilization of ketone bodies in ketotic states.
Collapse
Affiliation(s)
- Anna E Wentz
- Department of Medicine, Washington University, St Louis, Missouri 63108, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Moreno KX, Sabelhaus SM, Merritt ME, Sherry AD, Malloy CR. Competition of pyruvate with physiological substrates for oxidation by the heart: implications for studies with hyperpolarized [1-13C]pyruvate. Am J Physiol Heart Circ Physiol 2010; 298:H1556-64. [PMID: 20207817 DOI: 10.1152/ajpheart.00656.2009] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Carbon 13 nuclear magnetic resonance (NMR) isotopomer analysis was used to measure the rates of oxidation of long-chain fatty acids, ketones, and pyruvate to determine the minimum pyruvate concentration ([pyruvate]) needed to suppress oxidation of these alternative substrates. Substrate mixtures were chosen to represent either the fed or fasted state. At physiological [pyruvate], fatty acids and ketones supplied the overwhelming majority of acetyl-CoA. Under conditions mimicking the fed state, 3 mM pyruvate provided approximately 80% of acetyl-CoA, but under fasting conditions 6 mM pyruvate contributed only 33% of acetyl-CoA. Higher [pyruvate], 10-25 mM, was associated with transient reduced cardiac output, but overall hemodynamic performance was unchanged after equilibration. These observations suggested that 3-6 mM pyruvate in the coronary arteries would be an appropriate target for studies with hyperpolarized [1-(13)C]pyruvate. However, the metabolic products of 3 mM hyperpolarized [1-(13)C]pyruvate could not be detected in the isolated heart during perfusion with a physiological mixture of substrates including 3% albumin. In the presence of albumin even at high concentrations of pyruvate, 20 mM, hyperpolarized H(13)CO(3)(-) could be detected only in the absence of competing substrates. Highly purified albumin (but not albumin from plasma) substantially reduced the longitudinal relaxation time of [1-(13)C]pyruvate. In conclusion, studies of cardiac metabolism using hyperpolarized [1-(13)C]pyruvate are sensitive to the effects of competing substrates on pyruvate oxidation.
Collapse
Affiliation(s)
- Karlos X Moreno
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| | | | | | | | | |
Collapse
|
37
|
Regulation of myocardial ketone body metabolism by the gut microbiota during nutrient deprivation. Proc Natl Acad Sci U S A 2009; 106:11276-81. [PMID: 19549860 DOI: 10.1073/pnas.0902366106] [Citation(s) in RCA: 198] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Studies in mice indicate that the gut microbiota promotes energy harvest and storage from components of the diet when these components are plentiful. Here we examine how the microbiota shapes host metabolic and physiologic adaptations to periods of nutrient deprivation. Germ-free (GF) mice and mice who had received a gut microbiota transplant from conventionally raised donors were compared in the fed and fasted states by using functional genomic, biochemical, and physiologic assays. A 24-h fast produces a marked change in gut microbial ecology. Short-chain fatty acids generated from microbial fermentation of available glycans are maintained at higher levels compared with GF controls. During fasting, a microbiota-dependent, Ppar alpha-regulated increase in hepatic ketogenesis occurs, and myocardial metabolism is directed to ketone body utilization. Analyses of heart rate, hydraulic work, and output, mitochondrial morphology, number, and respiration, plus ketone body, fatty acid, and glucose oxidation in isolated perfused working hearts from GF and colonized animals (combined with in vivo assessments of myocardial physiology) revealed that the fasted GF heart is able to sustain its performance by increasing glucose utilization, but heart weight, measured echocardiographically or as wet mass and normalized to tibial length or lean body weight, is significantly reduced in both fasted and fed mice. This myocardial-mass phenotype is completely reversed in GF mice by consumption of a ketogenic diet. Together, these results illustrate benefits provided by the gut microbiota during periods of nutrient deprivation, and emphasize the importance of further exploring the relationship between gut microbes and cardiovascular health.
Collapse
|
38
|
Hyyti OM, Olson AK, Ge M, Ning XH, Buroker NE, Chung Y, Jue T, Portman MA. Cardioselective dominant-negative thyroid hormone receptor (Delta337T) modulates myocardial metabolism and contractile efficiency. Am J Physiol Endocrinol Metab 2008; 295:E420-7. [PMID: 18523124 PMCID: PMC2519753 DOI: 10.1152/ajpendo.90329.2008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dominant-negative thyroid hormone receptors (TRs) show elevated expression relative to ligand-binding TRs during cardiac hypertrophy. We tested the hypothesis that overexpression of a dominant-negative TR alters cardiac metabolism and contractile efficiency (CE). We used mice expressing the cardioselective dominant-negative TRbeta(1) mutation Delta337T. Isolated working Delta337T hearts and nontransgenic control (Con) hearts were perfused with (13)C-labeled free fatty acids (FFA), acetoacetate (ACAC), lactate, and glucose at physiological concentrations for 30 min. (13)C NMR spectroscopy and isotopomer analyses were used to determine substrate flux and fractional contributions (Fc) of acetyl-CoA to the citric acid cycle (CAC). Delta337T hearts exhibited rate depression but higher developed pressure and CE, defined as work per oxygen consumption (MVo(2)). Unlabeled substrate Fc from endogenous sources was higher in Delta337T, but ACAC Fc was lower. Fluxes through CAC, lactate, ACAC, and FFA were reduced in Delta337T. CE and Fc differences were reversed by pacing Delta337T to Con rates, accompanied by an increase in FFA Fc. Delta337T hearts lacked the ability to increase MVo(2). Decreases in protein expression for glucose transporter-4 and hexokinase-2 and increases in pyruvate dehydrogenase kinase-2 and -4 suggest that these hearts are unable to increase carbohydrate oxidation in response to stress. These data show that Delta337T alters the metabolic phenotype in murine heart by reducing substrate flux for multiple pathways. Some of these changes are heart rate dependent, indicating that the substrate shift may represent an accommodation to altered contractile protein kinetics, which can be disrupted by pacing stress.
Collapse
Affiliation(s)
- Outi M Hyyti
- Children's Hospital and Regional Medical Center MSW 4841, 4800 Sand Point Way NE, Seattle, WA 98105, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Larsen TS, Aasum E. Metabolic (In)Flexibility of the Diabetic Heart. Cardiovasc Drugs Ther 2008; 22:91-5. [DOI: 10.1007/s10557-008-6083-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Accepted: 01/17/2008] [Indexed: 10/22/2022]
|
40
|
Pöling J, Rees W, Klaus S, Bahlmann L, Hübner N, Heringlake M, Mantovani V, Warnecke H. Functional Recovery of Chronic Ischemic Myocardium after Surgical Revascularization Correlates with Magnitude of Oxidative Metabolism. Cardiology 2007; 110:174-81. [DOI: 10.1159/000111927] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Accepted: 04/22/2007] [Indexed: 11/19/2022]
|
41
|
Abstract
Although neurohumoral antagonism has successfully reduced heart failure morbidity and mortality, the residual disability and death rate remains unacceptably high. Though abnormalities of myocardial metabolism are associated with heart failure, recent data suggest that heart failure may itself promote metabolic changes such as insulin resistance, in part through neurohumoral activation. A detrimental self-perpetuating cycle (heart failure --> altered metabolism --> heart failure) that promotes the progression of heart failure may thus be postulated. Accordingly, we review the cellular mechanisms and pathophysiology of altered metabolism and insulin resistance in heart failure. It is hypothesized that the ensuing detrimental myocardial energetic perturbations result from neurohumoral activation, increased adverse free fatty acid metabolism, decreased protective glucose metabolism, and in some cases insulin resistance. The result is depletion of myocardial ATP, phosphocreatine, and creatine kinase with decreased efficiency of mechanical work. On the basis of the mechanisms outlined, appropriate therapies to mitigate aberrant metabolism include intense neurohumoral antagonism, limitation of diuretics, correction of hypokalemia, exercise, and diet. We also discuss more novel mechanistic-based therapies to ameliorate metabolism and insulin resistance in heart failure. For example, metabolic modulators may optimize myocardial substrate utilization to improve cardiac function and exercise performance beyond standard care. The ultimate success of metabolic-based therapy will be manifest by its capacity further to lessen the residual mortality in heart failure.
Collapse
Affiliation(s)
- Houman Ashrafian
- Department of Cardiovascular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK.
| | | | | |
Collapse
|
42
|
Pöling J, Rees W, Klaus S, Bahlmann L, Hübner N, Mantovani V, Warnecke H. Myocardial metabolic monitoring with the microdialysis technique during and after open heart surgery. Acta Anaesthesiol Scand 2007; 51:341-6. [PMID: 17257174 DOI: 10.1111/j.1399-6576.2006.01241.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Post-operative ischemia after coronary artery bypass grafting (CABG) is well described but effective intervention requires immediate diagnosis. One possible way of increasing efficacy of peri-operative myocardial monitoring is using the microdialysis technique. METHODS In 30 patients undergoing routine CABG, a microdialysis catheter was inserted in the left heart in an area of abnormal ventricular contraction. A second catheter was placed in normal tissue of the right ventricle. Microdialysis measurements were performed at time intervals before, during and 24 h after cardiopulmonary bypass (CPB) and retrospectively compared with standard clinical monitoring and clinical course. RESULTS During CPB, both ventricles showed signs of poor tissue oxygenation. Glycerol was significantly higher in the left myocardium (146 +/- 67 vs. 72 +/- 36 micromol/l) and the glucose/lactate ratio (GLR), as a marker of nutritional disorder of the right ventricle (41 +/- 15% vs. 67 +/- 17%, P < 0.05), had significantly better values at this time point. Myocardial lactate concentrations were significantly higher in the dyskinetic segments (2.82 +/- 0.81 vs. 1.5 +/- 0.81 microM). During this period, no abnormal clinical standard monitoring results were observed. Post-operative significantly increased lactate/pyruvate ratios of three patients were clinically associated with peri-operative myocardial infarction (108 +/- 67 vs. 38 +/- 9, P < 0.05). The lactate/pyruvate ratio started rising before any other standard monitoring tools showed abnormal values. CONCLUSIONS Peri-operative microdialytic measurements of parameters related to ischemia can be safely performed in a clinical setting, resulting in faster and more reliable detection of ongoing or new ischemia.
Collapse
Affiliation(s)
- J Pöling
- Department of Cardiac Surgery, Schüchtermann-Klinik Bad Rothenfelde, Germany.
| | | | | | | | | | | | | |
Collapse
|
43
|
Onay-Besikci A. Impact of lactate in the perfusate on function and metabolic parameters of isolated working rat heart. Mol Cell Biochem 2006; 296:121-7. [PMID: 16955225 DOI: 10.1007/s11010-006-9305-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Accepted: 08/10/2006] [Indexed: 11/29/2022]
Abstract
The goal of this study was to investigate the effect of 1 mM exogenous lactate on cardiac function, and some metabolic parameters, such as glycolysis, glucose oxidation, lactate oxidation, and fatty acid oxidation, in isolated working rat hearts. Hearts from male Sprague-Dawley rats were isolated and perfused with 5 mM glucose, 1.2 mM palmitate, and 100 microU/ml insulin with or without 1 mM lactate. The rates of glycolysis, glucose, lactate, and fatty acid oxidation were determined by supplementing the buffer with radiolabeled substrates. Cardiac function was similar between lactate+ and lactate- hearts. Glycolysis was not affected by 1 mM lactate. The addition of lactate did not alter glucose oxidation rates. Interestingly, palmitate oxidation rates almost doubled when 1 mM lactate was present in the perfusate. This study suggests that subst rate supply to the heart is crucially important when evaluating the data from metabolic studies.
Collapse
Affiliation(s)
- Arzu Onay-Besikci
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, Tandogan 06100, Ankara, Turkey.
| |
Collapse
|
44
|
Stowe KA, Burgess SC, Merritt M, Sherry AD, Malloy CR. Storage and oxidation of long-chain fatty acids in the C57/BL6 mouse heart as measured by NMR spectroscopy. FEBS Lett 2006; 580:4282-7. [PMID: 16831433 DOI: 10.1016/j.febslet.2006.06.068] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Revised: 06/16/2006] [Accepted: 06/23/2006] [Indexed: 11/16/2022]
Abstract
Triglyceride turnover in the isolated C57/BL6 mouse heart was measured by dynamic 13C edit-(1)H observe NMR and the rate of fatty acid oxidation was determined by 13C NMR isotopomer analysis. In the presence of a physiological mixture of substrates, energy was produced in the citric acid cycle by oxidation of long-chain fatty acids (18%), ketones (34%), lactate (24%), pyruvate (7%), and other sources (17%). Exogenous fatty acids appeared in the triglyceride pool at 0.24 micromol/g dry wt/min, similar to the rate of oxidation of long-chain fatty acids, 0.16 micromol/g dry wt/min. Isoproterenol decreased the rate of de novo triglyceride synthesis and increased the rate of fatty acid oxidation.
Collapse
Affiliation(s)
- Kimberly A Stowe
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | |
Collapse
|
45
|
An D, Rodrigues B. Role of changes in cardiac metabolism in development of diabetic cardiomyopathy. Am J Physiol Heart Circ Physiol 2006; 291:H1489-506. [PMID: 16751293 DOI: 10.1152/ajpheart.00278.2006] [Citation(s) in RCA: 333] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In patients with diabetes, an increased risk of symptomatic heart failure usually develops in the presence of hypertension or ischemic heart disease. However, a predisposition to heart failure might also reflect the effects of underlying abnormalities in diastolic function that can occur in asymptomatic patients with diabetes alone (termed diabetic cardiomyopathy). Evidence of cardiomyopathy has also been demonstrated in animal models of both Type 1 (streptozotocin-induced diabetes) and Type 2 diabetes (Zucker diabetic fatty rats and ob/ob or db/db mice). During insulin resistance or diabetes, the heart rapidly modifies its energy metabolism, resulting in augmented fatty acid and decreased glucose consumption. Accumulating evidence suggests that this alteration of cardiac metabolism plays an important role in the development of cardiomyopathy. Hence, a better understanding of this dysregulation in cardiac substrate utilization during insulin resistance and diabetes could provide information as to potential targets for the treatment of cardiomyopathy. This review is focused on evaluating the acute and chronic regulation and dysregulation of cardiac metabolism in normal and insulin-resistant/diabetic hearts and how these changes could contribute toward the development of cardiomyopathy.
Collapse
MESH Headings
- Animals
- Cardiomyopathies/etiology
- Cardiomyopathies/metabolism
- Cardiomyopathies/pathology
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Type 1/complications
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/pathology
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Disease Models, Animal
- Energy Metabolism/physiology
- Fatty Acids/metabolism
- Glucose/metabolism
- Humans
- Insulin Resistance/physiology
- Mice
- Mice, Obese
- Myocardium/metabolism
- Myocardium/pathology
- Rats
- Rats, Zucker
Collapse
Affiliation(s)
- Ding An
- Div. of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, The Univ. of British Columbia, 2146 East Mall, Vancouver, BC, Canada
| | | |
Collapse
|
46
|
Hafstad AD, Solevåg GH, Severson DL, Larsen TS, Aasum E. Perfused hearts from Type 2 diabetic (db/db) mice show metabolic responsiveness to insulin. Am J Physiol Heart Circ Physiol 2006; 290:H1763-9. [PMID: 16327015 DOI: 10.1152/ajpheart.01063.2005] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Diabetic ( db/db) mice provide an animal model of Type 2 diabetes characterized by marked in vivo insulin resistance. The effect of insulin on myocardial metabolism has not been fully elucidated in this diabetic model. In the present study we tested the hypothesis that the metabolic response to insulin in db/db hearts will be diminished due to cardiac insulin resistance. Insulin-induced changes in glucose oxidation (GLUox) and fatty acid (FA) oxidation (FAox) were measured in isolated hearts from control and diabetic mice, perfused with both low as well as high concentration of glucose and FA: 10 mM glucose/0.5 mM palmitate and 28 mM glucose/1.1 mM palmitate. Both in the absence and presence of insulin, diabetic hearts showed decreased rates of GLUox and elevated rates of FAox. However, the insulin-induced increment in GLUox, as well as the insulin-induced decrement in FAox, was similar or even more pronounced in diabetic that in control hearts. During elevated FA and glucose supply, however, the effect of insulin was blunted in db/db hearts with respect to both FAox and GLUox. Finally, insulin-stimulated deoxyglucose uptake was markedly reduced in isolated cardiomyocytes from db/db mice, whereas glucose uptake in isolated perfused db/db hearts was clearly responsive to insulin. These results show that, despite reduced insulin-stimulated glucose uptake in isolated cardiomyocytes, isolated perfused db/db hearts are responsive to metabolic actions of insulin. These results should advocate the use of insulin therapy (glucose-insulin-potassium) in diabetic patients undergoing cardiac surgery or during reperfusion after an ischemic insult.
Collapse
Affiliation(s)
- Anne Dragøy Hafstad
- Department of Medical Physiology, Institute of Medical Biology, Faculty of Medicine, University of Tromsø, N-9037 Tromsø, Norway
| | | | | | | | | |
Collapse
|
47
|
Penna C, Mancardi D, Gattullo D, Pagliaro P. Myocardial protection from ischemic preconditioning is not blocked by sub-chronic inhibition of carnitine palmitoyltransferase I. Life Sci 2005; 77:2004-17. [PMID: 15919095 DOI: 10.1016/j.lfs.2005.03.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2004] [Accepted: 03/21/2005] [Indexed: 01/08/2023]
Abstract
Ischemic preconditioning (IP) triggers cardioprotection via a signaling pathway that converges on mitochondria. The effects of the inhibition of carnitine palmitoyltransferase I (CPT-I), a key enzyme for transport of long chain fatty acids (LCFA) into the mitochondria, on ischemia/reperfusion (I/R) injury are unknown. Here we investigated, in isolated perfused rat hearts, whether sub-chronic CPT-I inhibition (5 days i.p. injection of 25 mg/kg/day of Etomoxir) affects I/R-induced damages and whether cardioprotection by IP can be induced after this inhibition. Effects of global ischemia (30 min) and reperfusion (120 min) were examined in hearts harvested from Control (untreated), Vehicle- or Etomoxir-treated animals. In subsets of hearts from the three treated groups, IP was induced by three cycles of 3 min ischemia followed by 10 min reperfusion prior to I/R. The extent of I/R injury under each condition was assessed by changes in infarct size as well as in myocardial contractility. Postischemic contractility, as indexed by developed pressure and dP/dt(max), was similarly affected by I/R, and was similarly improved with IP in Control, Vehicle or Etomoxir treated animals. Infarct size was also similar in the three subsets without IP, and was significantly reduced by IP regardless of CPT-I inhibition. We conclude that CPT-I inhibition does not affect I/R damages. Our data also show that IP affords myocardial protection in CPT-I inhibited hearts to a degree similar to untreated animals, suggesting that a long-term treatment with the metabolic anti-ischemic agent Etomoxir does not impede the possibility to afford cardioprotection by ischemic preconditioning.
Collapse
Affiliation(s)
- Claudia Penna
- Dipartimento di Scienze Cliniche e Biologiche dell'Università degli Studi di Torino, Orbassano (TO), Italy
| | | | | | | |
Collapse
|
48
|
Hernández-Esquivel L, Marín-Hernández A, Pavón N, Carvajal K, Moreno-Sánchez R. Cardiotoxicity of copper-based antineoplastic drugs casiopeinas is related to inhibition of energy metabolism. Toxicol Appl Pharmacol 2005; 212:79-88. [PMID: 16051288 DOI: 10.1016/j.taap.2005.06.023] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Revised: 06/17/2005] [Accepted: 06/23/2005] [Indexed: 11/19/2022]
Abstract
Isolated rat hearts were perfused with glucose, octanoate or glucose + octanoate and different concentrations of the copper-based antineoplastic drugs casiopeina II-gly (CSII) or casiopeina III-i-a (CSIII). In isolated perfused hearts with glucose + octanoate, both casiopeinas induced diminution in cardiac work and O2 consumption with half-maximal inhibitory concentrations (IC50) of 4 (CSII) and 4.6 (CSIII) microM, after 1 h of perfusion. Strong inhibition of the pyruvate and 2-oxoglutarate dehydrogenases as well as total creatine kinase by casiopeinas suggested that ATP generation by oxidative phosphorylation and its transfer towards myofibrils were targets for these drugs. In consequence, the cellular contents of ATP and phosphocreatine were also lowered by casiopeinas. Remarkably, casiopeinas were less toxic than adriamycin (IC50 = 2.6 microM), a well-known potent cardiotoxic and antineoplastic drug, which has a wide clinical use. In an open-chest animal, which is a more physiological model than the isolated heart, femoral administration of 1 microM drug revealed that CSII was innocuous very likely due to strong binding to serum albumin, whereas adriamycin induced again a potent cardiotoxic effect (diminution in heart rate and severe depression of systolic blood pressure). Thus, it seems that casiopeinas are a group of new antineoplastic drugs with milder secondary toxic effects than proven drugs such as adriamycin.
Collapse
Affiliation(s)
- Luz Hernández-Esquivel
- Instituto Nacional de Cardiología, Departamento de Bioquímica, Juan Badiano No. 1, Col. Sección XVI, 14080 Tlalpan DF, México
| | | | | | | | | |
Collapse
|
49
|
Ala-Rämi A, Ylihautala M, Ingman P, Hassinen IE. Influence of calcium-induced workload transitions and fatty acid supply on myocardial substrate selection. Metabolism 2005; 54:410-20. [PMID: 15736122 DOI: 10.1016/j.metabol.2004.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Because of differences in energy yield and oxygen demand, the selection of oxidative fuels is important in the hypoxic or ischemic heart muscle. The aim of the present study was to clarify the contradictions observed in the effects of workload and fatty acid supply on myocardial fuel preference in isolated perfused rat hearts. Nuclear magnetic resonance spectroscopy combined with the administration of substrates labeled with the stable isotope carbon 13 and isotopomer analysis of glutamate labeling offers an opportunity to simultaneously measure metabolic fluxes in pathways feeding into the tricarboxylic acid (TCA) cycle. The work output was modulated by changes in extracellular calcium. In the presence of 5 mmol/L glucose, 0.5 mmol/L octanoate in the perfusate dominated the oxidative metabolism, and workload had little effect on the ratio of glucose to fatty acid utilization. This was the case even when the octanoate concentration was lowered to 50 micromol/L. The relative rate of replenishment of the TCA cycle intermediates was higher at a low workload. The redox state of flavoproteins in the intact heart was monitored fluorometrically to obtain an estimate of the mitochondrial reduced/oxidized nicotinamide-adenine dinucleotide ratio (NADH/NAD ratio) for assessment of the dominant level of regulation of cell respiration, and the myoglobin spectrum was simultaneously monitored to evaluate the oxygenation status of the myocardium. Commencement of octanoate infusion (50 micromol/L or 0.5 mmol/L) caused a large but transient reduction of mitochondrial NAD and, conversely, its cessation elicited NADH oxidation and rebound reduction. During glucose oxidation, an increase in workload led to oxidation of the mitochondrial NADH, but this effect was much smaller in the presence of 50 micromol/L octanoate and absent in the presence of 0.5 mmol/L. This indicates that strong control of oxygen consumption during glucose oxidation is exerted in the mitochondrial respiratory chain, whereas equal control during fatty acid oxidation is exerted within the metabolic pathway upstream from the respiratory chain. It is concluded that when a medium-chain fatty acid is available, myocardial workload and energy consumption have little influence on fuel preference and glucose oxidation remains suppressed.
Collapse
Affiliation(s)
- Antti Ala-Rämi
- Department of Medical Biochemistry and Molecular Biology, University of Oulu, FIN-90014 Oulu, Finland
| | | | | | | |
Collapse
|
50
|
Yu X, Burgess SC, Ge H, Wong KK, Nassem RH, Garry DJ, Sherry AD, Malloy CR, Berger JP, Li C. Inhibition of cardiac lipoprotein utilization by transgenic overexpression of Angptl4 in the heart. Proc Natl Acad Sci U S A 2005; 102:1767-72. [PMID: 15659544 PMCID: PMC547881 DOI: 10.1073/pnas.0409564102] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To investigate the role of Angptl4, an inhibitor of lipoprotein lipase that is induced by >3-fold in the heart after rosiglitazone treatment, we generated transgenic mice that overexpress Angptl4 in the heart (MHC-Angptl4). We show that MHC-Angptl4 mice exhibit cardiac-restricted expression of the transgene and inhibition of cardiac lipoprotein lipase (LPL) activity. However, LPL activities in other tissues or that released into plasma by heparin are not affected. In addition, MHC-Angptl4 mice also exhibit hypertriglyceridemia after 6 h of fasting. We use echocardiography to show that MHC-Angptl4 mice develop left-ventricular dysfunction. Comparison of the metabolic profiles of isolated working hearts demonstrates that cardiac impairment in MHC-Angptl4 mice is positively associated with decreased triglyceride (TG) utilization. When bred to transgenic mice that overexpress acyl-CoA synthetase in the heart, a strain that exhibits elevated cardiac TG accumulation, cardiac TG content in double transgenic mice is reversed to that of wild-type mice. Taken together, our data support the hypothesis that induction of Angptl4 in the heart inhibits lipoprotein-derived fatty acid delivery. This mouse model will be useful to elucidate the role of reduced fatty acid supply in the pathogenesis of heart failure and related disorders.
Collapse
Affiliation(s)
- Xinxin Yu
- Department of Physiology, Touchstone Center for Diabetes Research, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|