1
|
Yang XY, Chen Z, Tan J, Xue YK, Zheng H. KLF4 Inhibits the Activation of Human Hepatic Stellate Cell In Vitro. Curr Med Sci 2024; 44:512-518. [PMID: 38789819 DOI: 10.1007/s11596-024-2860-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/08/2024] [Indexed: 05/26/2024]
Abstract
OBJECTIVE Hepatic stellate cells (HSCs) play a crucial role in liver fibrosis. Early-stage liver fibrosis is reversible and intimately associated with the state of HSCs. Kruppel-like factor 4 (KLF4) plays a pivotal role in a wide array of physiological and pathological processes. This study aimed to investigate the effect of KLF4 on the proliferation, apoptosis and phenotype of quiescent HSCs METHODS: We designed a KLF4 lentiviral vector and a KLF4 siRNA lentiviral vector, to upregulate and silence KLF4 expression in human HSC LX-2 cells via transfection. Cell proliferation was assessed using the CCK-8 assay. Flow cytometry was used to detect the cell cycle distribution and apoptosis rate. Western blotting was used to determine the levels of some quiescence and activation markers of HSCs RESULTS: Overexpression of KLF4 significantly increased the levels of E-cadherin and ZO-1, which are quiescent HSC markers, while significantly decreased the levels of N-cadherin and a-SMA, known activated HSC markers. In contrast, cell proliferation and apoptosis rates were elevated in LX-2 cells in which KLF4 expression was silenced CONCLUSION: KLF4 inhibits the proliferation and activation of human LX-2 HSCs. It might be a key regulatory protein in the maintenance of HSC quiescence and may serve as a target for the inhibition of hepatic fibrosis.
Collapse
Affiliation(s)
- Xing-Yu Yang
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhe Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jun Tan
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yin-Kai Xue
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Hai Zheng
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
2
|
Gregorio VD, Caparali B, Shojaei A, Ricardo S, Barua M. Alport Syndrome: Clinical Spectrum and Therapeutic Advances. Kidney Med 2023; 5:100631. [PMID: 37122389 PMCID: PMC10131117 DOI: 10.1016/j.xkme.2023.100631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
Abstract
Alport syndrome is a hereditary disorder characterized by kidney disease, ocular abnormalities, and sensorineural hearing loss. Work in understanding the cause of Alport syndrome and the molecular composition of the glomerular basement membrane ultimately led to the identification of COL4A3, COL4A4 (both on chromosome 2q36), and COL4A5 (chromosome Xq22), encoding the α3, α4, and α5 chains of type IV collagen, as the responsible genes. Subsequent studies suggested that autosomal recessive Alport syndrome and males with X-linked Alport syndrome have more severe disease, whereas autosomal dominant Alport syndrome and females with X-linked Alport syndrome have more variability. Variant type is also influential-protein-truncating variants in autosomal recessive Alport syndrome or males with X-linked Alport syndrome often present with severe symptoms, characterized by kidney failure, extrarenal manifestations, and lack of the α3-α4-α5(IV) network. By contrast, mild-moderate forms from missense variants display α3-α4-α5(IV) in the glomerular basement membrane and are associated with protracted kidney involvement without extrarenal manifestations. Regardless of type, therapeutic intervention for kidney involvement is focused on early initiation of angiotensin-converting enzyme inhibitors. There are several therapies under investigation including sodium/glucose cotransporter 2 inhibitors, aminoglycoside analogs, endothelin type A antagonists, lipid-modifying drugs, and hydroxychloroquine, although targeting the underlying defect through gene therapy remains in preclinical stages.
Collapse
|
3
|
Zhu BT. Biochemical mechanism underlying the pathogenesis of diabetic retinopathy and other diabetic complications in humans: the methanol-formaldehyde-formic acid hypothesis. Acta Biochim Biophys Sin (Shanghai) 2022; 54:415-451. [PMID: 35607958 PMCID: PMC9828688 DOI: 10.3724/abbs.2022012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/18/2021] [Indexed: 11/25/2022] Open
Abstract
Hyperglycemia in diabetic patients is associated with abnormally-elevated cellular glucose levels. It is hypothesized that increased cellular glucose will lead to increased formation of endogenous methanol and/or formaldehyde, both of which are then metabolically converted to formic acid. These one-carbon metabolites are known to be present naturally in humans, and their levels are increased under diabetic conditions. Mechanistically, while formaldehyde is a cross-linking agent capable of causing extensive cytotoxicity, formic acid is an inhibitor of mitochondrial cytochrome oxidase, capable of inducing histotoxic hypoxia, ATP deficiency and cytotoxicity. Chronic increase in the production and accumulation of these toxic one-carbon metabolites in diabetic patients can drive the pathogenesis of ocular as well as other diabetic complications. This hypothesis is supported by a large body of experimental and clinical observations scattered in the literature. For instance, methanol is known to have organ- and species-selective toxicities, including the characteristic ocular lesions commonly seen in humans and non-human primates, but not in rodents. Similarly, some of the diabetic complications (such as ocular lesions) also have a characteristic species-selective pattern, closely resembling methanol intoxication. Moreover, while alcohol consumption or combined use of folic acid plus vitamin B is beneficial for mitigating acute methanol toxicity in humans, their use also improves the outcomes of diabetic complications. In addition, there is also a large body of evidence from biochemical and cellular studies. Together, there is considerable experimental support for the proposed hypothesis that increased metabolic formation of toxic one-carbon metabolites in diabetic patients contributes importantly to the development of various clinical complications.
Collapse
Affiliation(s)
- Bao Ting Zhu
- Shenzhen Key Laboratory of Steroid Drug Discovery and DevelopmentSchool of MedicineThe Chinese University of Hong KongShenzhen518172China
- Department of PharmacologyToxicology and TherapeuticsSchool of MedicineUniversity of Kansas Medical CenterKansas CityKS66160USA
| |
Collapse
|
4
|
Zhang W, Ge Y, Cheng Q, Zhang Q, Fang L, Zheng J. Decorin is a pivotal effector in the extracellular matrix and tumour microenvironment. Oncotarget 2018; 9:5480-5491. [PMID: 29435195 PMCID: PMC5797066 DOI: 10.18632/oncotarget.23869] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 12/27/2017] [Indexed: 12/02/2022] Open
Abstract
Decorin (DCN), an extracellular matrix (ECM) protein, belongs to the small leucine-rich proteoglycan family. As a pluripotent molecule, DCN regulates the bioactivities of cell growth factors and participates in ECM assembly. Accumulating evidence has shown that DCN acts as a ligand of various cytokines and growth factors by directly or indirectly interacting with the corresponding signalling molecules involved in cell growth, differentiation, proliferation, adhesion and metastasis and that DCN especially plays vital roles in cancer cell proliferation, spread, pro-inflammatory processes and anti-fibrillogenesis. The multifunctional nature of DCN thus enables it to be a potential therapeutic agent for a variety of diseases and shows good prospects for clinical and research applications. DCN, an extracellular matrix (ECM) protein that belongs to the small leucine-rich proteoglycan family, is widely distributed and plays multifunctional roles in the stroma and epithelial cells. Originally, DCN was known as an effective collagen-binding partner for fibrillogenesis [1] and to modulate key biomechanical parameters of tissue integrity in the tendon, skin and cornea [2]; thus, it was named decorin (DCN). Since being initially cloned in 1986, DCN was discovered to be a structural constituent of the ECM [3]. However, the paradigm has been shifted; it has become increasingly evident that in addition to being a matrix structural protein, DCN affects a wide range of biological processes, including cell growth, differentiation, proliferation, adhesion, spread and migration, and regulates inflammation and fibrillogenesis [4–7]. Two main themes for DCN functions have emerged: maintenance of cellular structure and regulation of signal transduction pathways, culminating in anti-tumourigenic effects. Here, we review the interaction network of DCN and emphasize the biological correlations between these interactions, some of which are expected to be therapeutic intervention targets.
Collapse
Affiliation(s)
- Wen Zhang
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Yan Ge
- Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Qian Cheng
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Qi Zhang
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Lin Fang
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Junnian Zheng
- Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Jiangsu Center for The Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
5
|
Baricos WH, Reed JC, Cortez SL. Extracellular Matrix Degradation by Cultured Mesangial Cells: Mediators and Modulators. Exp Biol Med (Maywood) 2016; 228:1018-22. [PMID: 14530509 DOI: 10.1177/153537020322800905] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Decreased degradation of the glomerular extracellular matrix (ECM) is thought to contribute to the accumulation of glomerular ECM that occurs in diabetic nephropathy and other chronic renal diseases. Several lines of evidence indicate a key role for the plasminogen activator/plasminogen/plasmin system in glomerular ECM degradation. However, which of the two plasminogen activators (PAs) present in renal tissue, tissue plasminogen activator (tPA) or urokinase-type plasminogen activator (uPA), is responsible for plasmin generation and those factors that modulate the activity of this system remain unclear. This study utilized mesangial cells isolated from mice with gene deletions for tPA, uPA, and plasminogen activator inhibitor 1 (PAI-1) to further delineate the role of the PA/plasminogen/plasmin system in ECM accumulation. ECM degradation by uPA-null mesangial cells was not significantly different from controls (92% ± 1%, n = 12). In contrast, ECM degradation by tPA-null mesangial cells was markedly reduced (–78 ± 1%, n = 12, P < 0.05) compared with controls, whereas tPA/uPA double-null mesangial cells degraded virtually no ECM. Previous studies from this laboratory have established that transforming growth factor-β1 (TGFβ1) inhibits ECM degradation by cultured mesangial cells by increasing the production of PAI-1, the major physiological PA inhibitor. In keeping with this observation, TGFβ1 (1 ng/ml) had no effect on ECM degradation by PAI-1-null MC. High glucose levels (30 m M) in the presence or absence of insulin (0.1 m M) caused a moderate increase in ECM degradation by normal human mesangial cells. In contrast, glycated albumin, whose concentration is known to increase in diabetes, produced a dose-dependent (0.2–0.5 mg/ml) inhibition of ECM degradation by normal human mesangial cells. Taken together, these results document the importance of tPA versus uPA in renal plasmin production and indicate that in contrast to elevated glucose, glycated albumin may contribute to ECM accumulation in diabetic nephropathy.
Collapse
Affiliation(s)
- William H Baricos
- Department of Biochemistry, Tulane University Health Sciences Center, New Orleans, Louisiana 70112-2699, USA.
| | | | | |
Collapse
|
6
|
Cell biology of mesangial cells: the third cell that maintains the glomerular capillary. Anat Sci Int 2016; 92:173-186. [PMID: 26910209 DOI: 10.1007/s12565-016-0334-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 02/14/2016] [Indexed: 10/22/2022]
Abstract
The renal glomerulus consists of glomerular endothelial cells, podocytes, and mesangial cells, which cooperate with each other for glomerular filtration. We have produced monoclonal antibodies against glomerular cells in order to identify different types of glomerular cells. Among these antibodies, the E30 clone specifically recognizes the Thy1.1 molecule expressed on mesangial cells. An injection of this antibody into rats resulted in mesangial cell-specific injury within 15 min, and induced mesangial proliferative glomerulonephritis in a reproducible manner. We examined the role of mesangial cells in glomerular function using several experimental tools, including an E30-induced nephritis model, mesangial cell culture, and the deletion of specific genes. Herein, we describe the characterization of E30-induced nephritis, formation of the glomerular capillary network, mesangial matrix turnover, and intercellular signaling between glomerular cells. New molecules that are involved in a wide variety of mesangial cell functions are also introduced.
Collapse
|
7
|
Ma Q, Zhang L, Yao L, Chen HP, Wang BE. Effects of herbal compound 861 on collagen synthesis and degradation in rat mesangial cells exposed to high glucose. Chin J Integr Med 2014; 20:209-15. [PMID: 24615213 DOI: 10.1007/s11655-014-1741-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To investigate the effects of Herbal Compound 861 (Cpd 861) on collagen synthesis and degradation in rat mesangial cells exposed to high glucose. METHODS The third to fifth passage of rat mesangial cells were exposed to high glucose and Cpd 861 at a concentration of 0.25-4.00 g/L for 24, 48 and 72 h, respectively. Benazepril (10(-7)-10(-3) mmol/L) was selected as positive control. The methyl thiazolyl tetrazolium colorimetric assay was used to evaluate the effect of Cpd 861 on cell proliferation. After incubation with Cpd 861 at a concentration of 2.00 g/L for 48 h, the protein secretions of collagen type IV, matrix metallopeptidase 9 (MMP-9), tissue inhibitor of metalloproteinase-1 (TIMP-1), transforming growth factor beta 1 (TGF-β1), and hepatocyte growth factor (HGF) were detected by enzyme-linked immunosorbent assay method. And rat mesangial cells were harvested to determine MMP-9, TIMP-1, TGF-β1 and HGF mRNA expression by reverse transcription polymerase chain reaction. RESULTS Cpd 861 inhibited cell proliferation induced by high glucose in a dose- and time-dependent manner. Compared with high glucose, collagen type IV production was decreased significantly by Cpd 861 (P<0.01). Cpd 861 increased the protein secretions and mRNA expressions of MMP-9 and HGF, whereas the protein secretions and mRNA expressions of TIMP-1 and TGF-β1 were reduced markedly (P<0.05). The ratio of MMP-9 to TIMP-1 was enhanced by Cpd 861 significantly. There was no significant difference in all above-mentioned effects between Cpd 861 (2.00 g/L) and benazepril (10(-5) mmol/L). CONCLUSION The anti-glomerulosclerosis mechanisms of Cpd 861 were partly attributed to its effects of inhibiting mesangial cell proliferation, decreasing collagen synthesis and enhancing collagen degradation.
Collapse
Affiliation(s)
- Qing Ma
- Department of Gerontology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | | | | | | | | |
Collapse
|
8
|
Kawazu T, Nishino T, Obata Y, Furusu A, Miyazaki M, Abe K, Koji T, Kohno S. Production and degradation of extracellular matrix in reversible glomerular lesions in rat model of habu snake venom-induced glomerulonephritis. Med Mol Morphol 2012; 45:190-8. [DOI: 10.1007/s00795-011-0559-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 07/28/2011] [Indexed: 12/11/2022]
|
9
|
Kuroda T, Masui M, Notoya M, Ito M, Tamura Y, Okamoto H, Kanaoka E, Shinosaki T. Renoprotective action of a matrix metalloproteinase inhibitor in progressive mesangioproliferative nephritis. NEPHRON EXTRA 2012; 2:133-46. [PMID: 22739248 PMCID: PMC3383302 DOI: 10.1159/000338801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background/Aim Matrix metalloproteinases (MMPs) play pivotal roles in extracellular matrix turnover and are involved in chronic kidney disease. The renoprotective action of a synthetic MMP inhibitor, compound A, was investigated in chronic nephritis. Methods Nephritis was induced by a single injection of anti-Thy1.1 antibody to unilaterally nephrectomized rats. The effects of compound A on proteinuria, blood urea nitrogen, and matrix-related gene expressions were evaluated. Collagen accumulation, as assessed by periodic acid-Schiff staining and hydroxyproline content, was determined. The integrity of glomerular epithelial cells and glomerular basement membrane was evaluated with desmin immunohistochemistry and electron microscopic detection of anionic charge sites, respectively. Results Treatment with compound A notably attenuated proteinuria, ameliorated blood urea nitrogen, and prevented glomerulosclerosis. Gene upregulation of collagen and transforming growth factor β1 in the cortex was prevented in the treated animals. Glomerular epithelial cell injury was milder, and glomerular basement membrane anionic sites were protected with the treatment. Conclusion A novel MMP inhibitor, compound A, exerts protective effects in progressive glomerulonephritis. Compound A ameliorates various aspects of renal injuries and may have therapeutic potential toward kidney diseases.
Collapse
|
10
|
Expression of matrix metalloproteinases 2 and 9 and tissue inhibitors of matrix metalloproteinases 2 and 1 in the glomeruli of human glomerular diseases: the results of studies using immunofluorescence, in situ hybridization, and immunoelectron microscopy. Clin Exp Nephrol 2012; 16:863-74. [PMID: 22614167 DOI: 10.1007/s10157-012-0633-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Accepted: 04/01/2012] [Indexed: 01/22/2023]
Abstract
BACKGROUND It has been reported matrix metalloproteinases (MMPs) and their inhibitors, tissue inhibitors of matrix metalloproteinases (TIMPs), play important roles in the decomposition of the extracellular matrices of the glomerulus during the pathological processes in various glomerular diseases. Although the activity of these enzymes in cases of experimental glomerulonephritis has been described, the expression sites in the glomeruli of human renal diseases have been identified in only a few articles and remain controversial. METHODS The expression of the gelatinase group of MMPs (MMP-2 and MMP-9) and their inhibitors (TIMP-2 and TIMP-1) were evaluated in 19 renal biopsies of several types of glomerular diseases by immunofluorescence (IF) labeling. In addition, several samples of immunoglobulin A nephropathy (IgAN) were also investigated by in situ hybridization (ISH) and immunoelectron microscopy (IEM). RESULTS The expression of MMP-2 was observed in all the cases examined by IF and ISH. TIMP-2 expression varied from negative to positive among 11 cases of IgAN, but was negative in the cases with lupus nephritis (LN) (n = 3), membranoproliferative glomerulonephritis (MPGN) (n = 2), and post-streptococcal glomerulonephritis (n = 1). However, it was weakly positive in the cases of diabetic nephropathy (DMN) (n = 2). MMP-2 was mainly observed along glomerular capillary loops (GCLs) and Bowman's capsules, whereas TIMP-2 was found in the mesangial area. The expression of MMP-9 in cases of IgAN varied, and was local, not diffuse, if it was present. MMP-9 expression in cases of LN, MPGN, and DMN was diffuse, but the intensity of staining varied. MMP-9 was primarily expressed in the mesangium. TIMP-1 expression was negative in all cases except for those with IgAN. The localization of MMP-2 in patients with IgAN, which was investigated by IEM, was revealed to be mainly on the endothelial cell membranes of GCLs, podocyte membranes, the parietal cell membranes of Bowman's capsules, and some on the membranes of mesangial cells. CONCLUSION The study results suggest that the expression levels and patterns of MMPs and TIMPs are generally similar in several types of glomerular diseases, even though each case has a somewhat different distribution and intensity of expression. When these enzymes were present, their main sites were as follows: MMP-2 was found along glomerular basement membrane, TIMP-2 was located in the acellular mesangial area, MMP-9 was seen in the mesangium, and TIMP-1 was hardly detected. MMP-2 expression is clearly demonstrated to exist at the above-described sites by IEM in patients with IgAN.
Collapse
|
11
|
Fuchs TC, Hewitt P. Preclinical perspective of urinary biomarkers for the detection of nephrotoxicity: what we know and what we need to know. Biomark Med 2012; 5:763-79. [PMID: 22103611 DOI: 10.2217/bmm.11.86] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The assessment of kidney damage is a challenge and must incorporate assessment of the functional capacity of the kidney, as well as a comprehensive understanding of the kidney's role. Multiple parameters have been used for many years to measure renal functionality to assess renal damage. It is astonishing that, beside histopathology, the most common traditional parameters are serum based. However, urine is also used to obtain additional information regarding the health status of the kidneys. Since 2008, several novel urinary protein biomarkers have been qualified by the US FDA and the European Medicines Agency in conjunction with the Predictive Safety Testing Consortium in a specially developed qualification process. Subsequently, the Pharmaceuticals and Medical Devices Agency accepted the qualification of these seven urinary biomarkers. This review will give an overview of the state-of-the-art detection based on urinary biomarkers, which will enhance toxicological research in the future. In addition, the qualification process that leads to acceptance of these biomarkers will be described because of its uniqueness and importance for the field of biomarker research.
Collapse
|
12
|
Baghy K, Iozzo RV, Kovalszky I. Decorin-TGFβ axis in hepatic fibrosis and cirrhosis. J Histochem Cytochem 2012; 60:262-8. [PMID: 22260996 DOI: 10.1369/0022155412438104] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hepatic fibrosis and cirrhosis are worldwide health care problems, especially in regions with a high rate of hepatitis infection. As these diseases affect a major part of the human population, the search for antifibrotic therapies has a high priority in medical research. Transforming growth factor β1 (TGF-β1) is one of the most powerful profibrotic cytokines. Thus, blocking TGF-β1 activity by natural inhibitors represents a valid and logical strategy to combat hepatic fibrosis. One of the natural inhibitors of TGF-β1 is decorin, a small leucine-rich proteoglycan that binds with high affinity to this cytokine and prevents its interaction with pro-fibrotic receptors. Recent evidence has shown that decorin has a protective role in liver fibrogenesis insofar as its genetic ablation in mice leads to enhanced matrix deposition, impaired matrix degradation, and "activation" of hepatic stellate cells, the main producers of fibrotic tissue. Moreover, TGF-β1 exerts a stronger effect when functional decorin is absent. These data provide robust genetic evidence for a direct role of endogenous decorin in preventing and retarding hepatic fibrosis. Thus, boosting the endogenous production of decorin or systemic delivery of recombinant decorin could represent an additional therapeutic modality against hepatic fibrosis.
Collapse
Affiliation(s)
- Kornélia Baghy
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | | | | |
Collapse
|
13
|
Roberts-Pilgrim AM, Makareeva E, Myles MH, Besch-Williford CL, Brodeur AC, Walker AL, Leikin S, Franklin CL, Phillips CL. Deficient degradation of homotrimeric type I collagen, α1(I)3 glomerulopathy in oim mice. Mol Genet Metab 2011; 104:373-82. [PMID: 21855382 PMCID: PMC3205245 DOI: 10.1016/j.ymgme.2011.07.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 07/27/2011] [Accepted: 07/27/2011] [Indexed: 01/15/2023]
Abstract
Col1a2-deficient (oim) mice synthesize homotrimeric type I collagen due to nonfunctional proα2(I) collagen chains. Our previous studies revealed a postnatal, progressive type I collagen glomerulopathy in this mouse model, but the mechanism of the sclerotic collagen accumulation within the renal mesangium remains unclear. The recent demonstration of the resistance of homotrimeric type I collagen to cleavage by matrix metalloproteinases (MMPs), led us to investigate the role of MMP-resistance in the glomerulosclerosis of Col1a2-deficient mice. We measured the pre- and post-translational expression of type I collagen and MMPs in glomeruli from heterozygous and homozygous animals. Both the heterotrimeric and homotrimeric isotypes of type I collagen were equally present in whole kidneys of heterozygous mice by immunohistochemistry and biochemical analysis, but the sclerotic glomerular collagen was at least 95-98% homotrimeric, suggesting homotrimeric type I collagen is the pathogenic isotype of type I collagen in glomerular disease. Although steady-state MMP and Col1a1 mRNA levels increased with the disease progression, we found these changes to be a secondary response to the deficient clearance of MMP-resistant homotrimers. Increased renal MMP expression was not sufficient to prevent homotrimeric type I collagen accumulation.
Collapse
Affiliation(s)
- Anna M. Roberts-Pilgrim
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, USA. , , and ,
| | - Elena Makareeva
- NICHD, National Institutes of Health, Bethesda, MD 20892, USA. ,
| | - Matthew H. Myles
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri 65211, USA. , ,
| | | | - Amanda C. Brodeur
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, USA. , , and ,
- Department of Child Health, University of Missouri, Columbia, Missouri 65212, USA. ,
| | - Andrew L. Walker
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, USA. , , and ,
| | - Sergey Leikin
- NICHD, National Institutes of Health, Bethesda, MD 20892, USA. ,
| | - Craig L. Franklin
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri 65211, USA. , ,
| | - Charlotte L. Phillips
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, USA. , , and ,
- Department of Child Health, University of Missouri, Columbia, Missouri 65212, USA. ,
- Correspondence and Reprint Requests: Charlotte L. Phillips, Ph.D., Associate Professor, Departments of Biochemistry and Child Health, University of Missouri, 117 Schweitzer Hall, Columbia, MO 65211 USA, Phone: 1-573-882-5122, Fax: 1-573-882-5635,
| |
Collapse
|
14
|
Sejima T, Kajiwara D, Kikuchi H, Imayoshi S, Yamauchi T, Ichimura K. Experimentally induced eosinophilic polyps in rabbit sinuses. Am J Rhinol Allergy 2011; 24:341-7. [PMID: 21244733 DOI: 10.2500/ajra.2010.24.3519] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Nasal polyps are one of the most common findings of physical examination in the otolaryngology area and the experimental model of nasal polyps in the rabbit maxillary sinus is helpful for clarifying the mechanism of polyp formation. Several protocols have been reported for this model, but most of them involved infectious polyps without eosinophil infiltration. We have attempted to establish a novel rabbit model of polyps associated with eosinophil infiltration. METHODS Rabbits were either untreated (group A) or sensitized with ovalbumin (OVA; groups B-D). After repeated exposure to OVA, some animals further received valine-glycine-serine-glutamine (group C) or poly-L-arginine (group D) in their maxillary sinuses for 4 weeks. Subsequently, sinus tissues were dissected and subjected to histological analysis. The changes in mRNA expression were analyzed by DNA microarray. RESULTS Remarkable histological changes were observed in groups C and D but not in group B in eosinophil number in the maxillary sinus mucosa, the width of the lamina propria, and polyp scoring. These changes in group D were greater than those in group C. DNA microarray analysis revealed that up-regulated genes in group D included those related to inflammation and extracellular matrix metabolism. On the other hand, down-regulated genes in group D involved those related to anti-inflammation. CONCLUSION Our results indicate that treatment with inflammatory agents, in combination with an antigen-dependent immune response, could induce nasal polyp formation associated with eosinophil infiltration and mucosal hypertrophy. The gene expression profile supported the clinical relevance of this model.
Collapse
Affiliation(s)
- Takayuki Sejima
- Department of Otorhinolaryngology–Head and Neck Surgery, Jichi Medical University School of Medicine, Tochigi, Japan.
| | | | | | | | | | | |
Collapse
|
15
|
Baghy K, Dezső K, László V, Fullár A, Péterfia B, Paku S, Nagy P, Schaff Z, Iozzo RV, Kovalszky I. Ablation of the decorin gene enhances experimental hepatic fibrosis and impairs hepatic healing in mice. J Transl Med 2011; 91:439-51. [PMID: 20956977 PMCID: PMC5074558 DOI: 10.1038/labinvest.2010.172] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Accumulation of connective tissue is a typical feature of chronic liver diseases. Decorin, a small leucine-rich proteoglycan, regulates collagen fibrillogenesis during development, and by directly blocking the bioactivity of transforming growth factor-β1 (TGFβ1), it exerts a protective effect against fibrosis. However, no in vivo investigations on the role of decorin in liver have been performed before. In this study we used decorin-null (Dcn-/-) mice to establish the role of decorin in experimental liver fibrosis and repair. Not only the extent of experimentally induced liver fibrosis was more severe in Dcn-/- animals, but also the healing process was significantly delayed vis-à-vis wild-type mice. Collagen I, III, and IV mRNA levels in Dcn-/- livers were higher than those of wild-type livers only in the first 2 months, but no difference was observed after 4 months of fibrosis induction, suggesting that the elevation of these proteins reflects a specific impairment of their degradation. Gelatinase assays confirmed this hypothesis as we found decreased MMP-2 and MMP-9 activity and higher expression of TIMP-1 and PAI-1 mRNA in Dcn-/- livers. In contrast, at the end of the recovery phase increased production rather than impaired degradation was found to be responsible for the excessive connective tissue deposition in livers of Dcn-/- mice. Higher expression of TGFβ1-inducible early responsive gene in decorin-null livers indicated enhanced bioactivity of TGFβ1 known to upregulate TIMP-1 and PAI-1 as well. Moreover, two main axes of TGFβ1-evoked signaling pathways were affected by decorin deficiency, namely the Erk1/2 and Smad3 were activated in Dcn-/- samples, whereas no significant difference in phospho-Smad2 was observed between mice with different genotypes. Collectively, our results indicate that the lack of decorin favors the development of hepatic fibrosis and attenuates its subsequent healing process at least in part by affecting the bioactivity of TGFβ1.
Collapse
Affiliation(s)
- Kornélia Baghy
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Katalin Dezső
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Viktória László
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Alexandra Fullár
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Bálint Péterfia
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Sándor Paku
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Péter Nagy
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Zsuzsa Schaff
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Renato V Iozzo
- Department of Pathology, Anatomy, and Cell Biology, and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ilona Kovalszky
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary,Corresponding author. 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Ulloi ut 26., Budapest, Hungary 1085., Tel.: +36-1-459-1500, Ext. 54449, Fax.: +36-1-317-1074, (I. Kovalszky)
| |
Collapse
|
16
|
Park J, Seo JY, Ha H. Plasminogen activator inhibitor-1 antisense oligodeoxynucleotides abrogate mesangial fibronectin accumulation. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2010; 14:385-90. [PMID: 21311679 DOI: 10.4196/kjpp.2010.14.6.385] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2010] [Revised: 10/30/2010] [Accepted: 11/06/2010] [Indexed: 11/15/2022]
Abstract
Excessive extracellular matrix (ECM) accumulation is the main feature of chronic renal disease including diabetic nephropathy. Plasminogen activator inhibitor (PAI)-1 is known to play an important role in renal ECM accumulation in part through suppression of plasmin generation and matrix metalloproteinase (MMP) activation. The present study examined the effect of PAI-1 antisense oligodeoxynucleotide (ODN) on fibronectin upregulation and plasmin/MMP suppression in primary mesangial cells cultured under high glucose (HG) or transforming growth factor (TGF)-β1, major mediators of diabetic renal ECM accumulation. Growth arrested and synchronized rat primary mesangial cells were transfected with 1 µM phosphorothioate-modified antisense or control mis-match ODN for 24 hours with cationic liposome and then stimulated with 30 mM D-glucose or 2 ng/ml TGF-β1. PAI-1 or fibronectin protein was measured by Western blot analysis. Plasmin activity was determined using a synthetic fluorometric plasmin substrate and MMP-2 activity analyzed using zymography. HG and TGF-β1 significantly increased PAI-1 and fibronectin protein expression as well as decreased plasmin and MMP-2 activity. Transient transfection of mesangial cells with PAI-1 antisense ODN, but not mis-match ODN, effectively reversed basal as well as HG- and TGF-β1-induced suppression of plasmin and MMP-2 activity. Both basal and upregulated fibronectin secretion were also inhibited by PAI-1 antisense ODN. These data confirm that PAI-1 plays an important role in ECM accumulation in diabetic mesangium through suppression of protease activity and suggest that PAI-1 antisense ODN would be an effective therapeutic strategy for prevention of renal fibrosis including diabetic nephropathy.
Collapse
Affiliation(s)
- Jehyun Park
- Department of Bioinspired Science, Division of Life and Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 120-752, Korea
| | | | | |
Collapse
|
17
|
QIN YUANHAN, ZHOU TIANBIAO, LEI FENGYING, HUANG WEIFANG, ZHAO YANJUN, LIN FAQUAN, SU LINA. Cut-off values for serum matrix metalloproteinase-9: Is there a threshold to predict renal involvement for Henoch-Schonlein purpura in children? Nephrology (Carlton) 2010; 16:93-9. [PMID: 21175984 DOI: 10.1111/j.1440-1797.2010.01360.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
18
|
Abstract
Chronic kidney disease may be stimulated by many different etiologies, but its progression involves a common, yet complex, series of events that lead to the replacement of normal tissue with scar. These events include altered physiology within the kidney leading to abnormal hemodynamics, chronic hypoxia, inflammation, cellular dysfunction, and activation of fibrogenic biochemical pathways. The end result is the replacement of normal structures with extracellular matrix. Treatments presently are focused on delaying or preventing such progression, and are largely nonspecific. In pediatrics, such therapy is complicated further by pathophysiological issues that render children a unique population.
Collapse
|
19
|
Zhang Y, Huang P, Jiang T, Zhao J, Zhang N. Role of aldose reductase in TGF-beta1-induced fibronectin synthesis in human mesangial cells. Mol Biol Rep 2009; 37:2735-42. [PMID: 19760097 DOI: 10.1007/s11033-009-9811-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Accepted: 09/02/2009] [Indexed: 11/30/2022]
Abstract
Accumulation of glomerular extracellular matrix (ECM) may result in glomerulosclerosis. Several lines of evidence indicate a key role for transforming growth factor-beta1 (TGF-beta1) in glomerular ECM synthesis and degradation, such as fibronectin (FN). Aldose reductase (AR) was proven to be one of the TGF-beta1 responsive genes in cultured rat mesangial cells using the SSH-PCR method and there were positive correlation between the AR and TGF-beta1 in our previous studies. So we assumed that AR could regulate FN synthesis. In this study, we explored the role of AR in FN production and possible mechanism involved. The expression of AR, FN and c-Jun proteins were analyzed by Western blot and the activity of activator protein-1 (AP-1) was assessed by electrophoretic mobility shift assay (EMSA). Our results showed that AR could mediate the TGF-beta1-induced FN production, which may associate with AP-1 activation.
Collapse
Affiliation(s)
- Yuejuan Zhang
- Department of Pathology, Shanghai Medical College, Fudan University, Box 230, 138 Yixueyuan Road, 200032 Shanghai, China
| | | | | | | | | |
Collapse
|
20
|
Li Y, Qi Y, Kim MS, Xu KZY, Huang THW, Rong X, Murray M, Yamahara J. Increased renal collagen cross-linking and lipid accumulation in nephropathy of Zucker diabetic fatty rats. Diabetes Metab Res Rev 2008; 24:498-506. [PMID: 18613221 DOI: 10.1002/dmrr.874] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND Zucker diabetic fatty (ZDF) rat is a genetic model of type 2 diabetes and obesity. The mechanism underlying nephropathy in ZDF rats, however, remains unclear. METHODS ZDF rats were compared to age-matched Zucker lean (ZL) rats. Physiological and blood biochemical parameters, renal glomerular cross-sectional area (hematoxylin-eosin staining), fibrosis (van Giesen staining), collagen composition (Sircol Collagen Assay), lipids (enzymatic method) and mRNA expression (RT-PCR) were determined. RESULTS ZDF rats showed an increase in renal-insoluble collagen content and the ratio of renal-insoluble to salt-soluble collagen (2- and 1.5-fold of the control animals). There were increases in renal glomerulosclerosis and interstitial fibrosis in ZDF rats (increased to 2-fold) in the glomerular mesangium and tubulointerstitium, and increased glomerular area. Renal triglyceride accumulated to greater than 2-fold of those levels in ZL rats. These changes were accompanied by hypoalbuminemia, and elevated plasma blood urea nitrogen and uric acid levels. Gene profiling showed increased expression of transcripts encoding the glomerulosclerotic mediator collagens I and IV, plasminogen activator inhibitor-1, transforming growth factor-beta1, and angiotensin II type 1 receptor in ZDF rat kidney. Moreover, renal expression of mRNAs encoding sterol regulatory element-binding protein-1, a nuclear transcription factor that activates genes involved in fatty acid synthesis, and acetyl-CoA carboxylase, a key enzyme that mediates fatty acid synthesis, was increased in ZDF rats. CONCLUSIONS Our findings suggest that dysregulated gene expression may result in increased renal collagen cross-linking and lipid accumulation, that may be associated with development of nephropathy in the animal model of type 2 diabetes and obesity.
Collapse
Affiliation(s)
- Yuhao Li
- Faculty of Pharmacy, The University of Sydney, NSW, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Kakehi T, Yabe-Nishimura C. NOX enzymes and diabetic complications. Semin Immunopathol 2008; 30:301-14. [PMID: 18488224 DOI: 10.1007/s00281-008-0122-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Accepted: 04/24/2008] [Indexed: 12/24/2022]
Abstract
Several molecular mechanisms have been identified that mediate the tissue-damaging effects of hyperglycemia. These are increased flux through the polyol and hexosamine pathways, increased formation of advanced glycation end products, activation of protein kinase C, and augmented generation of reactive oxygen species (ROS). Increased production of ROS not only causes cellular damage but also activates the signal transduction cascade that activates specific target genes. Based on recent experimental data, it is now accepted that increased NADPH oxidase activity in tissues vulnerable to hyperglycemia takes place downstream of the advanced glycation end products and protein kinase C pathways, two of the primary mechanisms involved in the pathogenesis of diabetic complications. Thus, compounds that suppress NADPH oxidase activity may offer therapeutic benefits to ameliorate diabetic complications, highlighting the significance of NADPH oxidase as a new therapeutic target.
Collapse
Affiliation(s)
- Tomoko Kakehi
- Department of Pharmacology, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamikyoku, Kyoto, Japan
| | | |
Collapse
|
22
|
Huang Y, Border WA, Yu L, Zhang J, Lawrence DA, Noble NA. A PAI-1 mutant, PAI-1R, slows progression of diabetic nephropathy. J Am Soc Nephrol 2008; 19:329-38. [PMID: 18216319 PMCID: PMC2396741 DOI: 10.1681/asn.2007040510] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2007] [Accepted: 10/17/2007] [Indexed: 01/02/2023] Open
Abstract
Plasminogen activator inhibitor-1 (PAI-1) has been implicated in renal fibrosis. In vitro, PAI-1 inhibits plasmin generation, and this decreases mesangial extracellular matrix turnover. PAI-1R, a mutant PAI-1, increases glomerular plasmin generation, reverses PAI-1 inhibition of matrix degradation, and reduces disease in experimental glomerulonephritis. This study sought to determine whether short-term administration of PAI-1R could slow the progression of glomerulosclerosis in the db/db mouse, a model of type 2 diabetes in which mesangial matrix accumulation is evident by 20 wk of age. Untreated uninephrectomized db/db mice developed progressive albuminuria and mesangial matrix expansion between weeks 20 and 22, associated with increased renal mRNA encoding alpha1(I) and (IV) collagens and fibronectin. Treatment with PAI-1R prevented these changes without affecting body weight, blood glucose, glycosylated hemoglobin, creatinine, or creatinine clearance; therefore, PAI-1R may prevent progression of glomerulosclerosis in type 2 diabetes.
Collapse
Affiliation(s)
- Yufeng Huang
- Fibrosis Research Laboratory, Division of Nephrology, University of Utah School of Medicine, Salt Lake City, Utah 84108, USA
| | | | | | | | | | | |
Collapse
|
23
|
Bruno NE, Yano Y, Takei Y, Gabazza EC, Qin L, Nagashima M, Morser J, D'Alessandro-Gabazza CN, Taguchi O, Sumida Y. Protective role of thrombin activatable fibrinolysis inhibitor in obstructive nephropathy-associated tubulointerstitial fibrosis. J Thromb Haemost 2008; 6:139-46. [PMID: 17988229 DOI: 10.1111/j.1538-7836.2007.02826.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Thrombin-activatable fibrinolysis inhibitor (TAFI) has been reported to affect wound healing and fibrotic processes, but its role in renal tubulointerstitial fibrosis remains unknown. OBJECTIVE To study its potential role, we compared TAFI-deficient and wild-type mice for the degree of renal fibrosis caused by unilateral ureteral obstruction (UUO). METHODS The grade of tubulointerstitial fibrosis, the activity of plasmin, MMP-2 and MMP-9 were evaluated on days 4 and 9 after UUO. RESULTS The renal content of hydroxyproline and the activity of plasmin, MMP-2 and MMP-9 were significantly increased in kidneys with UUO from TAFI-deficient mice compared with those from wild-type mice. These differences disappeared when animals with UUO from both groups were treated with the plasmin inhibitor tranexamic acid. The renal concentrations of fibrogenic cytokines were also significantly elevated in kidneys with UUO from TAFI-deficient mice compared with those from wild-type mice. CONCLUSION The results of this study suggest that increased renal activity of plasmin in TAFI-deficient mice causes increased renal interstitial fibrosis in obstructive nephropathy.
Collapse
Affiliation(s)
- N E Bruno
- Department of Diabetes and Endocrinology, Mie University Graduate School of Medicine, Tsu-city, Mie, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Das F, Ghosh-Choudhury N, Venkatesan B, Li X, Mahimainathan L, Choudhury GG. Akt kinase targets association of CBP with SMAD 3 to regulate TGFbeta-induced expression of plasminogen activator inhibitor-1. J Cell Physiol 2007; 214:513-27. [PMID: 17671970 DOI: 10.1002/jcp.21236] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Transforming growth factor-beta (TGFbeta) controls expression of plasminogen activator inhibitor type 1 (PAI-1), which regulates degradation of extracellular matrix proteins in fibrotic diseases. The TGFbeta receptor-specific Smad 3 has been implicated in the PAI-1 expression. The mechanism by which non-Smad signaling contributes to this process is not known. We studied the cross-talk between Smad 3 and PI 3 kinase/Akt signaling in TGFbeta-induced PAI-1 expression in renal mesangial cells. Inhibition of PI 3 kinase and Akt kinase blocked TGFbeta- and Smad 3-mediated expression of PAI-1. In contrast, constitutively active PI 3 kinase and Akt kinase increased PAI-1 expression, similar to TGFbeta. Inhibition of PI 3 kinase and Akt kinase had no effect on TGFbeta-induced Smad 3 phosphorylation and its translocation to the nucleus. Notably, inhibition of PI 3 kinase-dependent Akt kinase abrogated TGFbeta-induced PAI-1 transcription, without affecting binding of Smad 3 to the PAI-1 Smad binding DNA element. However, PI 3 kinase inhibition and dominant negative Akt kinase antagonized the association of the transcriptional coactivator CBP with Smad 3 in response to TGFbeta, resulting in inhibition of Smad 3 acetylation. Together our findings identify TGFbeta-induced PI 3 kinase/Akt signaling as a critical regulator of Smad 3-CBP interaction and Smad 3 acetylation, which cause increased PAI-1 expression.
Collapse
Affiliation(s)
- Falguni Das
- Department of Medicine, University of Texas Health Science Center at San Antonio, Texas, USA
| | | | | | | | | | | |
Collapse
|
25
|
Yildiz B, Kural N, Colak O, Ak I, Akcar N. IGF-1, IGFBP-3, VEGF and MMP-9 levels and their potential relationship with renal functions in patients with compensatory renal growth. Clin Physiol Funct Imaging 2007; 28:107-12. [PMID: 18093232 DOI: 10.1111/j.1475-097x.2007.00783.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Mechanisms of compensatory renal growth (CRG) still remain a mystery. Various growth factors, including growth hormone, insulin-like growth factor-1 (IGF-1) have been implicated in different forms of CRG. AIMS To investigate the serum levels of IGF-1, vascular endothelial growth factor (VEGF - role in vascular remodelling), matrix metalloproteinase-9 (MMP-9 - essential for normal nephrogenesis) and correlation of renal function in patients with unilateral nephrectomized, agenesis and hypoplasic kidney. METHODS Thirty patients were included in this study. In group I, there were 10 patients with unilateral nephrectomy, while in group II, there were 10 patients with unilateral agenesis. As for group III, there were 10 patients with unilateral hypoplastic kidney. The serum levels of IGF-1, IGF-binding protein-3 (IGFBP-3), VEGF and MMP-9 were studied in all the cases. Clearance of creatinin (Ccr) and protein excretion were examined in the 24 h urine. CRG was determined with ultrasonography and scintigraphy. Twenty-six control subjects were also studied. RESULTS The levels of IGF-1, IGFBP-3, VEGF and MMP-9 were significantly higher in patients than in the control subjects (P < 0.001). Ccr and protein excretion levels were different in study groups than in those of the control group (P < 0.01). There were positive correlations between the serum levels of IGF-1 with IGFBP-3; IGF-1 with MMP-9; IGFBP-3 with MMP-9 (r = 0.825, P = 0.0001; P < 0.001 r = 0.611; P < 0.001 r = 0.585, respectively). There were negative correlations between GFR and the serum levels of IGF-1, IGFBP-3 and MMP-9 (P < 0.01 r = -0.708; P = 0.002 r = -0.803; P < 0.05 r = -0.442, respectively). Furthermore, there were positive correlations between proteinuria and the serum levels of IGF-1, IGFBP-3 and MMP-9 (P = 0.039 r = 0.600; P < 0.05 r = 0.456; P < 0.05 r = 0.424). CONCLUSIONS Increased IGF-1, IGFBP-3, VEGF and MMP-9 were observed in CRG in the follow-up period. IGF-1 and MMP-9 seemed to have increased in patients with CRG in defiance of the development of fibrosis. Moreover, IGF-1 and MMP-9 seem to be associated with reduced renal function and proteinuria.
Collapse
Affiliation(s)
- Bilal Yildiz
- Department of Pediatrics Faculty of Medicine, University of Osmangazi, Eskisehir, Turkey
| | | | | | | | | |
Collapse
|
26
|
Bahi A, Dreyer JL. Overexpression of plasminogen activators in the nucleus accumbens enhances cocaine-, amphetamine- and morphine-induced reward and behavioral sensitization. GENES BRAIN AND BEHAVIOR 2007; 7:244-56. [PMID: 17680802 DOI: 10.1111/j.1601-183x.2007.00346.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Urokinase-type plasminogen activator (uPA) and tissue-type plasminogen activator (tPA) are extracellular proteases that play a role in synaptic plasticity and remodeling. Psychostimulants induce both tPA and uPA in acute and chronic drug delivery, but cocaine induces preferentially uPA, whereas morphine and amphetamine induce preferentially tPA. Specific doxycline-regulatable lentiviruses expressing these extracellular proteases have been prepared and stereotaxically injected into the nucleus accumbens. We show that tPA-overexpressing animals show greater locomotor activity and behavioral sensitization upon morphine and amphetamine treatments. These effects could be fully suppressed by doxycycline or when tPA had been silenced using small interfering RNAs (siRNAs)-expressing lentiviruses. Furthermore, animals infected with lentiviruses expressing uPA show enhanced conditional place preference for cocaine compared with tPA-overexpressing animals. In contrast, tPA-overexpressing animals when administered amphetamine or morphine showed greater place preference compared with uPA-overexpressing animals. The effects are suppressed when tPA has been silenced using specific siRNAs-expressing vectors. Tissue-type plasminogen activator and uPA possibly induce distinct behaviors, which may be interpreted according to their differential pattern of activation and downstream targets. Taken together, these data add further evidence for a significant function of extracellular proteases tPA and uPA in addiction and suggest a differential role of plasminogen activators in this context.
Collapse
Affiliation(s)
- A Bahi
- Institute of Biochemistry, University of Fribourg, Fribourg, Switzerland
| | | |
Collapse
|
27
|
Yuan J, Jia R, Bao Y. Aldosterone up-regulates production of plasminogen activator inhibitor-1 by renal mesangial cells. BMB Rep 2007; 40:180-8. [PMID: 17394767 DOI: 10.5483/bmbrep.2007.40.2.180] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In vivo studies have demonstrated that aldosterone is an independent contributor to glomerulosclerosis. In the present study, we have investigated whether aldosterone itself mediated glomerulosclerosis, as angiotensin II (Ang II) did, by inducing cultured renal mesangial cells to produce plasminogen activator inhibitor-1 (PAI-1), and whether these effects were mediated by aldosterone-induced increase in transforming growth factor beta(1) (TGF-beta(1)) expression and cellular reactive oxygen species (ROS) activity. Quiescent rat mesangial cells were treated by aldosterone alone or by combination of aldosterone and spironolactone, Ang II, neutralizing antibody to TGF-beta(1) or antioxidant Nacetylcysteme (NAC). This study indicate that aldosterone can increase PAI-1 mRNA and protein expression by cultured mesangial cells alone, which is independent of aldosterone-induced increases in TGF-beta(1) expression and cellular ROS. The effects on PAI-1, TGF-beta(1) and ROS generation were markedly attenuated by spironolactone, a mineralocorticoid receptor antagonist, which demonstrate that mineralocorticoid receptor (MR) may play a role in mediating these effects of aldosterone.
Collapse
Affiliation(s)
- Jun Yuan
- Department of nephrology, Renmin Hospital of Wuhan University, Wuhan, China.
| | | | | |
Collapse
|
28
|
Naini AE, Harandi AA, Moghtaderi J, Bastani B, Amiran A. Doxycycline: a pilot study to reduce diabetic proteinuria. Am J Nephrol 2007; 27:269-73. [PMID: 17429196 DOI: 10.1159/000101726] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Accepted: 03/07/2007] [Indexed: 11/19/2022]
Abstract
BACKGROUND Activity of matrix metalloproteinases (MMPs), the enzymes primarily responsible for the deposition of extracellular matrix proteins, contributes to the pathogenesis of diabetic proteinuria. We evaluated the effect of doxycycline, a potent nonselective MMPs inhibitor, on reduction of proteinuria in diabetic patients. MATERIAL AND METHODS In a self-control clinical trial, 35 patients with overt diabetic nephropathy (proteinuria >300 mg/24 h) received oral doxycycline 100 mg/day for 2 months. Twenty-four-hour urine volume, Cr and protein excretion were measured at baseline, after 1 and 2 months of treatment, and after 4 months of its discontinuation. Treatment-related side effects were closely monitored and documented. RESULTS Mean (+/-SD) 24-hour urine protein was 888 +/- 419 mg at baseline, 884 +/- 368 mg after 1 month, and 643 +/- 386 mg after the 2 months of doxycycline treatment. There was statistically significant reduction in proteinuria at 2 months of treatment vs. at the baseline (p < 0.001). Mean 24-hour urine protein excretion increased to 1,021 +/- 422 mg 4 months after doxycycline was discontinued. The changes in serum sodium, potassium, BUN and Cr concentrations, and blood pressure measurements during the 2 months of treatment and follow-up period were not statistically significant. CONCLUSION Proteinuria in patients with diabetic nephropathy can be reduced with low dose doxycycline therapy over a 2-month period of drug administration. Further studies are necessary to determine the long-term effect, the optimal dose, and the optimal duration of this potentially novel therapy.
Collapse
Affiliation(s)
- Afsoon Emami Naini
- Division of Nephrology, Isfahan University of Medical Sciences and Health Services, Isfahan, Iran
| | | | | | | | | |
Collapse
|
29
|
Endo T, Nakabayashi K, Sekiuchi M, Kuroda T, Soejima A, Yamada A. Matrix metalloproteinase-2, matrix metalloproteinase-9, and tissue inhibitor of metalloproteinase-1 in the peripheral blood of patients with various glomerular diseases and their implication in pathogenetic lesions: study based on an enzyme-linked assay and immunohistochemical staining. Clin Exp Nephrol 2006; 10:253-61. [PMID: 17186329 DOI: 10.1007/s10157-006-0438-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2006] [Accepted: 08/31/2006] [Indexed: 10/23/2022]
Abstract
BACKGROUND Various glomerular diseases progress to end-stage renal failure due to an accumulation of the mesangial matrix (MM) and a thickening of the glomerular basement membrane (GBM). Both the MM and GBM are consistently metabolized through the synthesis and destruction of the matrix. Such synthesis is influenced by transforming growth factor-beta (TGF-beta) and other factors, whereas the destruction is presumed to be mediated by both matrix metalloproteinases (MMPs) and inhibitors of matrix metalloproteinases (TIMPs). Based on such evidence, we tried to detect MMP-2, MMP-9, and TIMP-1 in the peripheral blood of patients with various glomerular diseases. METHODS Serum was used to detect MMP-2 and TIMP-1, while plasma was used to detect MMP-9. These enzymes were detected using an enzyme-linked assay. RESULTS The findings showed an increased level of MMP-2 in patients with a alteration of GBM, typically membranous nephropathy (MN), regardless of the differences in their etiological processes. In contrast, MMP-9 did not show a strong association with any specific glomerular abnormalities. However, it mainly tended to increase in patients with MM accumulation. In addition, the localization of MMP-2, MMP-9, and TGF-beta1 was studied using immunohistochemical staining. MMP-2 was demonstrated to exist in the glomerular capillary loop (GCL) as well as in the mesangial cells and the mesangial matrix. MMP-9 was found to exist in mesangial cells and the matrix, GCL, infiltrated neutrophils, and some tubular epithelial cells. Positive staining for TGF-beta1 in GCL was found to be associated with an increased level of MMP-2 in patients with MN, whereas in MM such positive staining was not necessarily associated with an increased level of MMP-9. CONCLUSIONS These results therefore suggest that MMP-2 plays an important role in the degradation of GBM, while MMP-9 only moderately affects the degradation of MM.
Collapse
Affiliation(s)
- Tetsuya Endo
- First Department of Internal Medicine, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo 181-8611, Japan
| | | | | | | | | | | |
Collapse
|
30
|
Kuroda T, Tanioka H, Masui M, Ito M, Notoya M, Shinosaki T. Altered expression of matrix-related molecules in the development of chronic Thy1.1 nephritis. Nephron Clin Pract 2006; 104:e169-82. [PMID: 17028444 DOI: 10.1159/000096068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Accepted: 07/04/2006] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND/AIM Matrix production and degradation are critically important in chronic nephritis. Our aim was to investigate the precise expression of matrix-related molecules which is essential for understanding the pathogenesis of renal disease. METHODS Chronic nephritis was induced by a single injection of anti-Thy1.1 antibody to unilaterally nephrectomized rats. RNA was extracted from renal cortex and isolated glomeruli 4, 7, and 10 weeks after the antibody injection. Matrix-related gene expressions were measured by polymerase chain reaction. The expression of alpha1(IV) and alpha3(IV) collagens was studied by immunohistochemistry. The gelatinolytic activity in the glomeruli was assayed by gelatin zymography. RESULTS Polymerase chain reaction revealed an increase of alpha1(IV) in both glomeruli and renal cortex from nephritic rats. In contrast, the expression of alpha3(IV), normally a component of the glomerular basement membrane, was decreased in nephritic animals. Immunohistochemistry confirmed the finding that alpha1(IV) and alpha3(IV) were up- and downregulated, respectively, in the glomeruli. Gene expression and activity of matrix metalloproteinase 2 were enhanced, while those of matrix metalloproteinase 9 were clearly suppressed in nephritis. CONCLUSIONS Downregulation of alpha3(IV) and enhancement of the matrix metalloproteinase-2 activity in the glomeruli may contribute to the glomerular damage by altering the glomerular basement membrane components. Impairment of the glomerular basement membrane integrity may possibly be implicated in irreversible renal dysfunction.
Collapse
Affiliation(s)
- Takayuki Kuroda
- Discovery Research Laboratories, Shionogi & Co., Ltd., Osaka, Japan.
| | | | | | | | | | | |
Collapse
|
31
|
Huang Y, Border WA, Lawrence DA, Noble NA. Noninhibitory PAI-1 enhances plasmin-mediated matrix degradation both in vitro and in experimental nephritis. Kidney Int 2006; 70:515-22. [PMID: 16788698 DOI: 10.1038/sj.ki.5000353] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Plasminogen activator inhibitor-type 1 (PAI-1) is thought to be profibrotic by inhibiting plasmin generation, thereby decreasing turnover of pathological extracellular matrix (ECM). A mutant, noninhibitory PAI-1 (PAI-1R) was recently shown by us to increase glomerular plasmin generation and reduce disease in anti-thy-1 nephritis. Here, in vitro and in vivo studies were performed to determine whether enhanced plasmin-dependent ECM degradation underlies the therapeutic effect of PAI-1R. 3H-labeled ECM was produced by rat mesangial cells (MCs). The effect of wild-type PAI-1 (wt-PAI-1) and PAI-1R on ECM degradation by newly plated MCs was measured by the release of 3H into medium. In vivo, anti-thy-1 nephritis was assessed in normal, untreated diseased and PAI-1R treated rats with or without the plasmin/plasminogen inhibitor, tranexamic acid (TA). wt-PAI-1 totally inhibited plasmin generation and reduced ECM degradation by 76% when exogenous plasminogen was added. Although PAI-1R alone had no effect, PAI-1R in the presence of wt-PAI-1 reversed the wt-PAI-1 inhibition of ECM degradation in a time- and dose-dependent manner (P<0.001). Plasmin activity and zymography were consistent with ECM degradation. Plasmin inhibitors: alpha2-antiplasmin, aprotinin, and TA completely blocked PAI-1R's ability to normalize ECM degradation (P<0.001). Consistent with the in vitro results, TA reversed PAI-1R-induced reductions in glomerular fibrin and ECM accumulation. Other measures of disease severity were either unaltered or partially reversed. PAI-1R reduces pathological ECM accumulation, in large part through effectively competing with native PAI-1 thereby restoring plasmin generation and increasing plasmin-dependent degradation of matrix components.
Collapse
Affiliation(s)
- Y Huang
- Fibrosis Research Laboratory, Division of Nephrology, University of Utah School of Medicine, Salt Lake City, Utah 84108, USA
| | | | | | | |
Collapse
|
32
|
Liu S, Li Y, Zhao H, Chen D, Huang Q, Wang S, Zou W, Zhang Y, Li X, Huang H. Increase in extracellular cross-linking by tissue transglutaminase and reduction in expression of MMP-9 contribute differentially to focal segmental glomerulosclerosis in rats. Mol Cell Biochem 2006; 284:9-17. [PMID: 16477388 DOI: 10.1007/s11010-005-9005-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2005] [Accepted: 09/13/2005] [Indexed: 12/23/2022]
Abstract
Tissue transglutaminase (tTG) is a Ca(2+)-dependent enzyme which stabilizes the extracellular matrix (ECM) through post-translational modification, and may play an important role in the pathogenesis of focal and segmental glomerulosclerosis (FSGS). Here, we have investigated whether tTG contributes to the glomerular ECM expansion in the puromycin aminonucleoside (PAN)-injection-induced experimental rat model of FSGS. The localization and expression of tTG, MMP-9 gelatinase, and the ECM component fibronectin (FN) in kidneys was determined by immunohistochemistry and measured by semi-quantitative analysis. Protein levels of tTG and MMP-9 were also analyzed by Western blotting.In situtransglutaminase activity was assayed by measurement of incorporated substrate and the immunofluorescence staining for the cross-linking product, epsilon-(gamma-glutamyl) lysine. Prominent proteinuria, a typical pathological feature of FSGS, was observed in PAN injection group rats. tTG immunoreactivity was located markedly in glomeruli and the levels of this protein in whole-kidney homogenates of PAN injection group rats were significantly increased (361+/- 106% control, P< 0.05). Similarly, transglutaminase activity and epsilon-(gamma-glutamyl) lysine were also predominately located within glomeruli and were much more intense in the PAN-injected group than that in control animals. MMP-9 was also located primarily within glomeruli. In PAN-injected kidneys, protein levels of active MMP-9 were significantly reduced (59+/- 27% control, P< 0.01), while pro-MMP-9 levels increased (148+/- 42% control, P< 0.05). Remarkable expression of glomerular fibronectin (FN) was found in PAN injection group rats. Semi-quantitative analysis demonstrated this increased intensity of FN staining in the PAN-injected rats was 149+/- 23% of the control values (P< 0.05). Enhanced cross-linking of ECM by tissue transglutaminase and decreased degradation due to reduced active MMP-9 expression may be at least partially responsible for the deposition of FN within injured glomeruli in experimental FSGS.
Collapse
Affiliation(s)
- Senyan Liu
- Division of Nephrology, Peking University First Hospital, Beijing, 100034, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Li X, Kimura H, Hirota K, Kasuno K, Torii K, Okada T, Kurooka H, Yokota Y, Yoshida H. Synergistic effect of hypoxia and TNF-alpha on production of PAI-1 in human proximal renal tubular cells. Kidney Int 2005; 68:569-83. [PMID: 16014034 DOI: 10.1111/j.1523-1755.2005.00435.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Chronic hypoxia has been newly proposed as a common mechanism of tubulointerstitial fibrosis in the progression of various chronic inflammatory renal diseases, where plasminogen activator inhibitor-1 (PAI-1) plays an important role in the accumulation of extracellular matrix (ECM) through inhibition of plasmin-dependent ECM degradation. In the present study, we investigated the presence of PAI-1 in renal tubular cells by immunostaining renal biopsy samples. We also closely examined the effects of hypoxia and tumor necrosis factor-alpha (TNF-alpha) on PAI-1 expression in cultured human proximal renal tubular cells (HPTECs). METHODS Confluent cells growth-arrested in Dulbecco's modified Eagle's medium (DMEM) for 24 hours were exposed to hypoxia (1% O(2)) and/or TNF-alpha at 10 ng/mL for up to 48 hours. Amounts of PAI-1 protein and mRNA after stimulation were measured by enzyme-linked immunosorbent assay (ELISA) and TaqMan quantitative polymerase chain reaction (PCR) or cDNA array analysis, respectively, and compared to those in cells incubated under control conditions (18% O(2) without TNF-alpha). Hypoxia-inducible factor-1alpha (HIF-1alpha) was demonstrated by immunoblot and immunofluorescence analyses. Human PAI-1 promoter activity was estimated by luciferase reporter gene assay. RESULTS In crescentic glomerulonephritis, clusters of proximal tubules were specifically stained for PAI-1. cDNA array analysis identified PAI-1 as a major gene highly induced by hypoxia in HPTECs. Treatment of 24 hours with hypoxia, TNF-alpha, and their combination induced a 2.8-fold, a 1.8-fold, and a 4.6-fold increase in PAI-1 protein secretion, and produced a 3.6-fold, a 3.3-fold, and a 12.1-fold increase at the PAI-1 mRNA level, respectively. Immunoblot analysis and immunocytochemistry revealed that hypoxia-inducible factor-1alpha (HIF-1alpha) was markedly accumulated in the cell lysates and exclusively translocated to nuclei after 16 hours' exposure of HPTECs to hypoxia but not to TNF-alpha. Luciferase reporter gene assay showed that hypoxia, TNF-alpha, and their combination increased PAI-1 transcription activity by 1.8-fold, 1.4-fold, and 2.2-fold, respectively. A dominant-negative form of HIF-1alpha significantly suppressed PAI-1 transcription activity induced by hypoxia. Inhibition of nuclear factor-kappaB (NF-kappaB) caused a moderate decrease in PAI-1 production under hypoxia. CONCLUSION Hypoxia induces PAI-1 expression via remarkable nuclear accumulation of HIF-1alpha and partially via NF-kappaB activation in HPTECs. TNF-alpha can synergistically enhance this hypoxia-induced PAI-1 expression.
Collapse
Affiliation(s)
- Xuan Li
- Division of Nephrology, Department of General Medicine, School of Medicine, Faculty of Medical Sciences, Fukui University, Fukui, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Lee EA, Seo JY, Jiang Z, Yu MR, Kwon MK, Ha H, Lee HB. Reactive oxygen species mediate high glucose-induced plasminogen activator inhibitor-1 up-regulation in mesangial cells and in diabetic kidney. Kidney Int 2005; 67:1762-71. [PMID: 15840023 DOI: 10.1111/j.1523-1755.2005.00274.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Plasminogen activator inhibitor-1 (PAI-1) plays an important role in remodeling of extracellular matrix (ECM) in the glomeruli. PAI-1 is up-regulated by high glucose and is overexpressed in diabetic kidney. Since reactive oxygen species (ROS) mediate ECM accumulation in diabetic glomeruli and was recently found to mediate transforming growth factor-beta1 (TGF-beta1)-induced PAI-1 up-regulation in glomerular mesangial cells, we examined the role of ROS in high glucose-induced PAI-1 expression in cultured glomerular mesangial cells and in streptozotocin-induced diabetic rat glomeruli. METHODS Growth arrested and synchronized primary rat mesangial cells were treated with different concentrations of glucose in the presence or absence of N-acetylcysteine (NAC) or trolox, or after cellular reduced form of glutathione (GSH) depleted with DL-buthionine-(S,R)-sulfoximine (BSO). Taurine was administered to diabetic rats from 2 days to 4 weeks after streptozotocin injection. Urinary protein excretion, glomerular volume, and fractional mesangial area were measured as markers of renal injury and lipid peroxide (LPO) as an oxidative stress marker. PAI-1 mRNA expression was measured by Northern blot analysis in mesangial cells and reverse transcription-polymerase chain reaction (RT-PCR) in glomeruli, PAI-1 protein by Western blot analysis and enzyme-linked immunosorbent assay (ELISA), and plasmin activity by fluorometry. RESULTS High glucose significantly increased PAI-1 mRNA and protein expression and decreased plasmin activity in mesangial cells. Equimolar concentrations of l-glucose or mannitol did not affect PAI-1 expression. BSO pretreatment significantly increased basal PAI-1 expression and amplified the response to high glucose. NAC effectively inhibited high glucose-induced, but not basal, PAI-1 expression. Reduced plasmin activity in mesangial cells by high glucose was rescued by antioxidants. Anti-TGF-beta antibody inhibited both high glucose- and H(2)O(2)-induced PAI-1 up-regulation. Taurine significantly reduced plasma LPO, glomerular PAI-1 expression, glomerular volume, fractional mesangial area, and proteinuria in streptozotocin-induced diabetic rats. CONCLUSION These results demonstrate that ROS mediate high glucose-induced up-regulation of PAI-1 expression in cultured mesangial cells and in diabetic glomeruli. Since both high glucose and TGF-beta1 induce cellular ROS and ROS mediate both high glucose- and TGF-beta1-induced PAI-1, ROS appear to amplify TGF-beta1 signaling in high glucose-induced PAI-1 up-regulation. Antioxidants can prevent accumulation of ECM protein in diabetic glomeruli partly by abrogating up-regulation of PAI-1 and suppression of plasmin activity.
Collapse
Affiliation(s)
- Eun Ah Lee
- Hyonam Kidney Laboratory, Soon Chun Hyang University, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
35
|
Nagai T, Noda Y, Ishikawa K, Miyamoto Y, Yoshimura M, Ito M, Takayanagi M, Takuma K, Yamada K, Nabeshima T. The role of tissue plasminogen activator in methamphetamine-related reward and sensitization. J Neurochem 2005; 92:660-7. [PMID: 15659235 DOI: 10.1111/j.1471-4159.2004.02903.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In the central nervous system, tissue plasminogen activator (tPA) plays a role in synaptic plasticity and remodeling. Our recent study has suggested that tPA participates in the rewarding effects of morphine by regulating dopamine release. In this study, we investigated the role of tPA in methamphetamine (METH)-related reward and sensitization. Repeated METH treatment dose-dependently induced tPA mRNA expression in the frontal cortex, nucleus accumbens, striatum and hippocampus, whereas single METH treatment did not affect tPA mRNA expression in these brain areas. The METH-induced increase in tPA mRNA expression in the nucleus accumbens was completely inhibited by pre-treatment with R(+)-SCH23390 and raclopride, dopamine D1 and D2 receptor antagonists, respectively. In addition, repeated METH treatment increased tPA activity in the nucleus accumbens. There was no difference in METH-induced hyperlocomotion between wild-type and tPA-deficient (tPA-/-) mice. On the other hand, METH-induced conditioned place preference and behavioral sensitization after repeated METH treatment were significantly reduced in tPA-/- mice compared with wild-type mice. The defect of behavioral sensitization in tPA-/- mice was reversed by microinjections of exogenous tPA into the nucleus accumbens. Our findings suggest that tPA is involved in the rewarding effects as well as the sensitization of the locomotor-stimulating effect of METH.
Collapse
Affiliation(s)
- Taku Nagai
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8560, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Nagai T, Yamada K, Yoshimura M, Ishikawa K, Miyamoto Y, Hashimoto K, Noda Y, Nitta A, Nabeshima T. The tissue plasminogen activator-plasmin system participates in the rewarding effect of morphine by regulating dopamine release. Proc Natl Acad Sci U S A 2004; 101:3650-5. [PMID: 14988509 PMCID: PMC373517 DOI: 10.1073/pnas.0306587101] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Tissue plasminogen activator (tPA) is a serine protease that catalyzes the conversion of plasminogen (plg) to plasmin, which in turn functions to degrade extracellular matrix proteins in the central nervous system. The tPA-plasmin system plays a role in synaptic plasticity and remodeling. Here we show that this protease system participates in the rewarding effects of morphine by acutely regulating morphine-induced dopamine release in the nucleus accumbens (NAcc). A single morphine treatment induced tPA mRNA and protein expression in a naloxone-sensitive manner, which was associated with an increase in the enzyme activity in the NAcc. The acute effect of morphine in inducing tPA expression was diminished after repeated administration. Morphine-induced conditioned place preference and hyperlocomotion were significantly reduced in tPA(-/-) and plg(-/-) mice, being accompanied by a loss of morphine-induced dopamine release in the NAcc. The defect of morphine-induced dopamine release and hyperlocomotion in tPA(-/-) mice was reversed by microinjections of either exogenous tPA or plasmin into the NAcc. Our findings demonstrate a previously undescribed function of the tPA-plasmin system in regulating dopamine release, which is involved in the rewarding effects of morphine.
Collapse
Affiliation(s)
- Taku Nagai
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Song Y, Li C, Cai L. Fluvastatin prevents nephropathy likely through suppression of connective tissue growth factor-mediated extracellular matrix accumulation. Exp Mol Pathol 2004; 76:66-75. [PMID: 14738871 DOI: 10.1016/j.yexmp.2003.08.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Diabetic nephropathy is related to glomerular extracellular matrix (ECM) accumulation that leads to glomerulosclerosis. Fluvastatin as a lipid-lowering medicine significantly prevents diabetic nephropathy, probably not only through its lipid-lowering action, but also mainly through its direct suppression of glomerular ECM accumulation. To test this hypothesis, in the present study, a five-sixths nephrectomized (5/6Nx) rat model to induce a renal ECM accumulation without coexistence of hyperlipidemia was used to investigate the effect of fluvastatin on renal function, glomerular ECM accumulation and expression of connective tissue growth factor (CTGF). 5/6Nx induced a significant nephropathy in rats at 13 weeks, indicated by renal dysfunction including increases in blood urine nitrogen, creatinine and urinary protein excretion, and renal histopathological changes. Administration of fluvastatin significantly prevented the renal dysfunction and histological abnormalities in the 5/6Nx rats. Furthermore, both significant suppression of matrix metalloproteinases (MMPs) activity such as MMP-2 and significant activation of tissue inhibitors of MMP (TIMPs) such as TIMP-2 observed in the 5/6Nx rats were almost completely prevented by fluvastatin, resulting in a significant prevention of glomerular ECM accumulation. For upstream mediator of ECM accumulation, 5/6Nx significantly up-regulated CTGF mRNA expression, but fluvastatin treatment prevented CTGF up-regulation. These results suggest that fluvastatin, as one of well-known lipid-lowering agents, plays an important role in the prevention of nephropathy, likely through suppression of CTGF-mediated ECM accumulation. Therefore, fluvastatin may be a potential candidate for developing a pharmaceutical approach to the prevention of diabetic nephropathy due to its both lipid-lowering and direct anti-renal ECM accumulation actions.
Collapse
Affiliation(s)
- Ye Song
- Department of Pathology, Institute of Frontier Medical Science, Jilin University, Changchun, PR China
| | | | | |
Collapse
|
38
|
Huang Y, Haraguchi M, Lawrence DA, Border WA, Yu L, Noble NA. A mutant, noninhibitory plasminogen activator inhibitor type 1 decreases matrix accumulation in experimental glomerulonephritis. J Clin Invest 2003. [DOI: 10.1172/jci200318038] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
39
|
Abstract
Excessive deposition of extracellular matrix (ECM) in the kidney is the hallmark of diabetic nephropathy. Although the amount of ECM deposited in the kidney depends on the balance between the synthesis and degradation of ECM, the role of ECM degradation in matrix remodeling has been less well appreciated. High glucose, advanced glycation end products, angiotensin II, and TGF-beta1 all increase intracellular reactive oxygen species (ROS) in renal cells and contribute to the development and progression of diabetic renal injury. The role of ROS in increased ECM synthesis has been well documented. ROS may also play a critical role in decreased ECM degradation by mediating high glucose- and TGF-beta1-induced inhibition of the proteolytic system, plasmin, and matrix metalloproteinases in the glomeruli. A recent observation suggests that ROS play an important role in tubulointerstitial fibrosis by mediating TGF-beta1-induced epithelial-mesenchymal transition (EMT). Accelerated ECM degradation is required to disrupt tubular basement membrane and complete EMT. ROS thus seem to be involved in both decreased and increased ECM degradation. It is not clear how cells determine when and where to increase or decrease ECM degradation in response to ROS. Precise definition of ROS-activated signaling pathways leading to ECM remodeling in the kidney will provide new strategies to prevent or treat diabetic renal injury.
Collapse
Affiliation(s)
- Hunjoo Ha
- Hyonam Kidney Laboratory, Soon Chun Hyang University, Seoul, Korea.
| | | |
Collapse
|
40
|
Huang Y, Haraguchi M, Lawrence DA, Border WA, Yu L, Noble NA. A mutant, noninhibitory plasminogen activator inhibitor type 1 decreases matrix accumulation in experimental glomerulonephritis. J Clin Invest 2003; 112:379-88. [PMID: 12897205 PMCID: PMC166295 DOI: 10.1172/jci18038] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In fibrotic renal disease, elevated TGF-beta and angiotensin II lead to increased plasminogen activator inhibitor type 1 (PAI-1). PAI-1 appears to reduce glomerular mesangial matrix turnover by inhibiting plasminogen activators, thereby decreasing plasmin generation and plasmin-mediated matrix degradation. We hypothesized that therapy with a mutant human PAI-1 (PAI-1R) that binds to matrix vitronectin but does not inhibit plasminogen activators, would enhance plasmin generation, increase matrix turnover, and decrease matrix accumulation in experimental glomerulonephritis. Three experimental groups included normal, untreated disease control, and PAI-1R-treated nephritic rats. Plasmin generation by isolated day 3 glomeruli was dramatically decreased by 69%, a decrease that was reversed 43% (P < 0.02) by in vivo PAI-1R treatment. At day 6, animals treated with PAI-1R showed significant reductions in proteinuria (48%, P < 0.02), glomerular staining for periodic acid-Schiff positive material (33%, P < 0.02), collagen I (28%, P < 0.01), collagen III (34%, P < 0.01), fibronectin (48%, P < 0.01), and laminin (41%, P < 0.01), and in collagen I (P < 0.01) and fibronectin mRNA levels (P < 0.02). Treatment did not alter overexpression of TGF-beta1 and PAI-1 mRNAs, although TGF-beta1 protein was significantly reduced. These observations strongly support our hypothesis that PAI-1R reduces glomerulosclerosis by competing with endogenous PAI-1, restoring plasmin generation, inhibiting inflammatory cell infiltration, decreasing local TGF-beta1 concentration, and reducing matrix accumulation.
Collapse
Affiliation(s)
- Yufeng Huang
- Division of Nephrology, University of Utah, Salt Lake City, Utah 84108, USA
| | | | | | | | | | | |
Collapse
|
41
|
Matsumoto N, Ishimura E, Koyama H, Tanaka S, Imanishi Y, Shioi A, Inaba M, Nishizawa Y. Blocking of alpha 5 integrin stimulates production of TGF-beta and PAI-1 by human mesangial cells. Biochem Biophys Res Commun 2003; 305:815-9. [PMID: 12767903 DOI: 10.1016/s0006-291x(03)00860-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Expression of integrin, which mediates cell-matrix interaction, is affected by several cytokines, in particular by transforming growth factor-beta (TGF-beta). However, it is unknown whether, in an opposite way, a specific integrin is involved in cytokine synthesis. We tested this hypothesis. Function-blocking anti-alpha 5 integrin (fibronectin receptor) antibody increased TGF-beta secretion in growth-arrested human mesangial cells (2.3-fold) compared with control IgG or anti-alpha v beta 3 integrin (receptor for several matrix proteins) antibody. It also increased the secretion of plasminogen activator inhibitor-1 (PAI-1), a protein associated with matrix increase, by 3.2-fold. The increase in PAI-1 secretion induced by anti-alpha 5 integrin antibody was not abrogated by anti-TGF-beta neutralizing antibody. These results indicate that function-blocking of anti-alpha 5 integrin stimulates TGF-beta as well as PAI-1 production, suggesting that alpha 5 integrin is involved in fibrotic process. Function-modulation of a specific integrin thus appears to play a role in glomerular remodeling.
Collapse
Affiliation(s)
- Naoki Matsumoto
- Department of Nephrology, Osaka City University Graduate School of Medicine, 1-4-3, Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Schnaper HW, Hayashida T, Hubchak SC, Poncelet AC. TGF-beta signal transduction and mesangial cell fibrogenesis. Am J Physiol Renal Physiol 2003; 284:F243-52. [PMID: 12529270 DOI: 10.1152/ajprenal.00300.2002] [Citation(s) in RCA: 227] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Transforming growth factor-beta (TGF-beta) is closely associated with progressive renal fibrosis. Significant progress has been accomplished in determining the cellular signaling pathways that are activated by TGF-beta. This knowledge is being applied to glomerular mesangial cell models of extracellular matrix (ECM) accumulation. A central component of TGF-beta-stimulated mesangial cell fibrogenesis is the TGF-beta family-specific Smad signal transduction pathway. However, while Smads play an important role in collagen accumulation, recent findings indicate that cross talk among a variety of pathways is necessary for maximal stimulation of collagen expression. Further investigation of these multiple interactions will provide insight into possible ways to interrupt cellular mechanisms of glomerular fibrogenesis.
Collapse
Affiliation(s)
- H William Schnaper
- Division of Kidney Diseases, Department of Pediatrics, The Feinberg School of Medicine of Northwestern University, and Children's Memorial Institute for Education and Research, Chicago, Illinois 60611-3008, USA.
| | | | | | | |
Collapse
|
43
|
Devarajan P, Spitzer A. Towards a biological characterization of focal segmental glomerulosclerosis. Am J Kidney Dis 2002; 39:625-36. [PMID: 11877584 DOI: 10.1053/ajkd.2002.31420] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The primary form of focal segmental glomerulosclerosis (FSGS) has become one of the most common causes of end-stage renal disease in children and adolescents. FSGS was initially considered to be the histological expression of a single disease entity. However, evidence accumulated during the past four decades indicates that FSGS is heterogeneous in nature. It therefore is not surprising that the many therapeutic combinations and permutations that have been tried have yielded variable results in different hands. This has generated substantial confusion and frustration among physicians and patients alike. Recent progress in genetics and molecular biology has opened promising new vistas of investigation. Identification of genes that control components of the glomerular capillary, proteins that form the structural basis of podocytes, and genetic mutations that affect the integrity of these structures has revolutionized our understanding of the glomerular filtration barrier. Substantial progress also has been made in understanding the mechanisms that lead to progression of renal disease and, ultimately, sclerosis. Studies of these factors are likely to yield a mechanistic-based classification of FSGS that will allow us to design therapeutic regimens suited to specific subtypes of this disease.
Collapse
Affiliation(s)
- Prasad Devarajan
- Albert Einstein College of Medicine, Children's Hospital at Montefiore, Bronx, NY 10467, USA.
| | | |
Collapse
|
44
|
Haraguchi M, Border WA, Huang Y, Noble NA. t-PA promotes glomerular plasmin generation and matrix degradation in experimental glomerulonephritis. Kidney Int 2001; 59:2146-55. [PMID: 11380816 DOI: 10.1046/j.1523-1755.2001.00729.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND In addition to its well-known role in degrading fibrin, recent evidence suggests that plasmin degrades matrix proteins and activates prometalloproteinases. Plasmin is generated from plasminogen by tissue plasminogen activator (t-PA). We hypothesized that t-PA treatment increases plasmin generation in nephritic glomeruli and degrades pathological matrix leading to a therapeutic reduction in matrix accumulation. METHODS Anti-Thy-1 nephritis was induced by injection of OX-7 antibody. Rats were given twice daily intravenous injections of saline (disease control group) or human recombinant t-PA (rt-PA; 1 mg/kg body weight) on days 3 through 5. Proteinuria, glomerular matrix protein staining, and glomerular mRNA levels for transforming growth factor-beta 1 (TGF-beta 1), fibronectin, and plasminogen activator inhibitor type 1 (PAI-1) were evaluated at day 6. Localization of rt-PA, plasmin generation by glomeruli in vitro, and glomerular production and content of active TGF-beta1 were also investigated. RESULTS Compared with disease control animals, proteinuria and staining score for periodic acid-Schiff (2.75 +/- 0.17 vs. 1.41 +/- 0.09), fibronectin-EDA+ (19 +/- 2 vs. 14 +/- 1), laminin (35 +/- 2 vs. 25 +/- 2), type I collagen (33 +/- 1 vs. 21 +/- 3), and type IV collagen (27 +/- 2 vs. 23 +/- 1) were significantly reduced in treated rats (P < 0.01). Glomerular TGF-beta 1, fibronectin, and PAI-1 mRNA levels were unchanged. rt-PA colocalized with fibrin along glomerular capillary walls and in the mesangium. Nephritic glomeruli in vitro had decreased plasmin activity, which was elevated by an in vivo presacrifice injection of rt-PA. Glomerular production and content of active TGF-beta 1 were unchanged by the rt-PA injection. CONCLUSIONS : These results show that injected rt-PA binds to fibrin in nephritic glomeruli, thus increasing plasmin generation and promoting pathological matrix degradation without activating latent TGF-beta. Agents that increase plasmin generation, such as t-PA, may have potential as antifibrotic therapies.
Collapse
Affiliation(s)
- M Haraguchi
- Fibrosis Research Laboratory, Division of Nephrology, University of Utah, Salt Lake City, Utah 84108, USA
| | | | | | | |
Collapse
|
45
|
Affiliation(s)
- A B Fogo
- Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA.
| |
Collapse
|
46
|
Ma LJ, Nakamura S, Whitsitt JS, Marcantoni C, Davidson JM, Fogo AB. Regression of sclerosis in aging by an angiotensin inhibition-induced decrease in PAI-1. Kidney Int 2000; 58:2425-36. [PMID: 11115076 DOI: 10.1046/j.1523-1755.2000.00426.x] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Glomerular and vascular sclerosis increase with aging, and angiotensin inhibitors ameliorate progression of this injury. We investigated the potential for achieving regression of existing age-related sclerosis, and the mechanisms by which angiotensin type 1 receptor antagonist (AIIRA) may affect remodeling of this sclerosis. We focused on plasminogen activator inhibitor-1 (PAI-1) because it is directly induced by angiotensin, inhibits matrix degradation, and may thus be pivotal in remodeling. METHODS Eighteen-month-old male Sprague-Dawley rats were treated with the AIIRA losartan (N = 8, 80 mg/L, dry weight), sacrificed at age 21 and 24 months, and compared with age-matched untreated controls (N = 15). Blood pressure and renal function were monitored, and morphological, biochemical, and molecular analyses were done on aorta and kidney. RESULTS Body weight increased in both groups. Mean arterial pressure (MAP) and serum creatinine remained normal (24-month MAP 115 +/- 8 vs. 113 +/- 6 mm Hg, controls vs. AIIRA, P = NS). Aorta wall thickness ratio was reduced by AIIRA at 21 and 24 months vs. age-matched controls (21 months 0. 12 +/- 0.01 vs. 0.15 +/- 0.01, P = 0.006; 24 months 0.10 +/- 0.005 vs. 0.14 +/- 0.003, AIIRA vs. controls, respectively, P = 0.0027). The aorta wall thickness ratio after treatment with AIIRA for six months was even lower than that of 18-month control rats (P = 0.018). AIIRA reduced proteinuria versus age-matched control at 24 months (253 +/- 62 vs. 390 +/- 51 mg/24 h, P = 0.0017). AIIRA at 24 months decreased glomerulosclerosis versus age-matched control (sclerosis index, 0 to 4+ scale: 0.06 +/- 0.02 vs. 0.49 +/- 0.12, P = 0.0082) to levels even lower than the 18-month baseline (0.37 +/- 0.14, P = 0.014). Renal collagen content increased with aging and was decreased by AIIRA at 24 months (5.0 +/- 0.7 vs. 3.1 +/- 0.5% collagen, P < 0.05). Apoptosis, assessed by TUNEL, was increased in tubular and interstitial cells in aging and was reduced by AIIRA versus control and baseline, respectively (TUNEL scoring, AIIRA 24 months 0.33 +/- 0.16 vs. 1.06 +/- 0.23 and 0.80 +/- 0.05, P < 0.05). PAI-1 mRNA in kidney was decreased at 24 months in AIIRA versus age-matched controls (PAI-1/GAPDH density ratio: AIIRA 24 months 0. 34 +/- 0.05 vs. 24-month controls 0.99 +/- 0.05, P < 0.05). Increased glomerular PAI-1 immunostaining with aging was decreased by AIIRA at 24 months versus age-matched controls, even below baseline (staining score 0 to 4+, 0.57 +/- 0.15 vs. control 0.90 +/- 0.07, P < 0.05; baseline 1.05 +/- 0.02, P < 0.01). CONCLUSION We conclude that AIIRA not only slows the progression of glomerular and vascular sclerosis in aging, but can also induce regression of these processes. The mechanisms appear to involve modulation of cortical cell turnover and inhibition of PAI-1 expression.
Collapse
Affiliation(s)
- L J Ma
- Department of Pathology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-2561, USA
| | | | | | | | | | | |
Collapse
|
47
|
Leontovich AA, Zhang J, Shimokawa K, Nagase H, Sarras MP. A novel hydra matrix metalloproteinase (HMMP) functions in extracellular matrix degradation, morphogenesis and the maintenance of differentiated cells in the foot process. Development 2000; 127:907-20. [PMID: 10648248 DOI: 10.1242/dev.127.4.907] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
As a member of Cnidaria, the body wall of hydra is structurally reduced to an epithelial bilayer with an intervening extracellular matrix (ECM). Biochemical and cloning studies have shown that the molecular composition of hydra ECM is similar to that seen in vertebrates and functional studies have demonstrated that cell-ECM interactions are important to developmental processes in hydra. Because vertebrate matrix metalloproteinases (MMPs) have been shown to have an important role in cell-ECM interactions, the current study was designed to determine whether hydra has homologues of these proteinases and, if so, what function these enzymes have in morphogenesis and cell differentiation in this simple metazoan. Utilizing a PCR approach, a single hydra matrix metalloproteinase, named HMMP was identified and cloned. The structure of HMMP was similar to that of vertebrate MMPs with an overall identity of about 35%. Detailed structural analysis indicated some unique features in (1) the cysteine-switch region of the prodomain, (2) the hinge region preceding the hemopexin domain, and (3) the hemopexin domain. Using a bacterial system, HMMP protein was expressed and folded to obtain an active enzyme. Substrate analysis studies indicated that recombinant HMMP could digest a number of hydra ECM components such as hydra laminin. Using a fluorogenic MMP substrate assay, it was determined that HMMP was inhibited by peptidyl hydroxamate MMP inhibitors, GM6001 and matlistatin, and by human recombinant TIMP-1. Whole-mount in situ studies indicated that HMMP mRNA was expressed in the endoderm along the entire longitudinal axis of hydra, but at relatively high levels at regions where cell-transdifferentiation occurred (apical and basal poles). Functional studies using GM6001 and TIMP-1 indicated that these MMP inhibitors could reversibly block foot regeneration. Blockage of foot regeneration was also observed using antisense thio-oligo nucleotides to HMMP introduced into the endoderm of the basal pole using a localized electroporation technique. Studies with adult intact hydra found that GM6001 could also cause the reversible de-differentiation or inhibition of transdifferentiation of basal disk cells of the foot process. Basal disk cells are adjacent to those endoderm cells of the foot process that express high levels of HMMP mRNA. In summary, these studies indicate that hydra has at least one MMP that is functionally tied to morphogenesis and cell transdifferentiation in this simple metazoan.
Collapse
Affiliation(s)
- A A Leontovich
- Department of Anatomy and Cell Biology, and Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | | | | | |
Collapse
|
48
|
Ha TS, Barnes JL, Stewart JL, Ko CW, Miner JH, Abrahamson DR, Sanes JR, Kasinath BS. Regulation of renal laminin in mice with type II diabetes. J Am Soc Nephrol 1999; 10:1931-9. [PMID: 10477145 DOI: 10.1681/asn.v1091931] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
This study examines the regulation of renal laminin in the db/db mouse, a model of type II diabetes characterized by extensive remodeling of extracellular matrix. Immunohistochemistry demonstrated an increase in the contents of laminin chains including beta1 chain in the mesangium and tubular basement membranes at 1, 2, 3, and 4 mo of diabetes. Immunofluorescence with an antibody against the recently discovered laminin alpha5 chain showed that in the normal mouse, the protein had a restricted distribution to the glomerular and tubular basement membranes with scant expression in the mesangium of older mice. In the diabetic mouse, the laminin alpha5 chain content of the glomerular and tubular basement membranes was increased, with marked expression in the mesangium. Northern analysis revealed a significant decrease in the renal cortical contents of alpha5, beta1, and gamma1 chain mRNA in the diabetic mice compared to control, at each of the time points. In situ hybridization showed decreased abundance of alpha5 transcripts in the glomeruli of diabetic mice compared to nondiabetic controls. Analysis of mRNA changes by Northern and in situ hybridization studies demonstrated that the reduction in laminin transcripts involved both glomerular and tubular elements. These observations demonstrate that laminin accumulation in the db/db mice with type II diabetes is due to nontranscriptional mechanisms. Because previous investigations in rodents with type I diabetes have shown that the increase in renal laminin content was associated with a corresponding increment in laminin chain transcript levels, it appears that the mechanisms underlying augmentation in renal matrix laminin content may be distinct in the two types of diabetes.
Collapse
Affiliation(s)
- T S Ha
- Department of Medicine, University of Texas Health Science Center and A.L. Murphy Veterans' Administration Hospital, San Antonio 78284, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Endo A, Nagai N, Urano T, Takada Y, Hashimoto K, Takada A. Proteolysis of neuronal cell adhesion molecule by the tissue plasminogen activator-plasmin system after kainate injection in the mouse hippocampus. Neurosci Res 1999; 33:1-8. [PMID: 10096465 DOI: 10.1016/s0168-0102(98)00105-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Tissue plasminogen activator (tPA) is a serine protease that converts inactive plasminogen to the active protease plasmin and mediates extracellular metabolism. tPA is transcriptionally induced in the mouse hippocampus by pharmacological or electrical stimulation of neuronal activity and mediates excitotoxin-induced neuronal degeneration. Therefore, we hypothesized that tPA would be induced in the hippocampus after kainic acid (KA) injection into the lateral cerebral ventricle (LCV) and that the activated tPA-plasmin system would degrade the neuronal cell adhesion molecule (NCAM), which is a component of the extracellular matrix. In order to investigate this possibility, we first examined whether NCAM is a substrate for the tPA plasmin system by incubating mouse brain homogenates with tPA and plasminogen at 37 degrees C. Next, we examined the degradation of NCAM and the changes of tPA activity in the mouse hippocampus with immunohistochemical procedures and histological zymography after KA injection into both LCVs. As a result, we observed neuronal atrophy and a decrease of NCAM immunoreactivity along with an increase of tPA activity in the CA3 area of the hippocampus. These results suggest that activation of the tPA plasmin system after KA injection into the LCVs results in the degradation of NCAM in the CA3 area.
Collapse
Affiliation(s)
- A Endo
- Department of Dentistry and Oral and Maxillofacial Surgery, Hamamatsu University School of Medicine, Japan
| | | | | | | | | | | |
Collapse
|
50
|
Halkas AC, Gaillard MC, Thomson PD, Green SL, Ludewick H, Kala U. Variants of alpha 1-proteinase inhibitor in black and white South African patients with focal glomerulosclerosis and minimal change nephrotic syndrome. J Med Genet 1998; 35:6-9. [PMID: 9475086 PMCID: PMC1051178 DOI: 10.1136/jmg.35.1.6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To determine the prevalence and biochemical characteristics of certain alleles of alpha 1-proteinase inhibitor in black and white South African patients with two common types of pathology causing the nephrotic syndrome. DESIGN A cross sectional study of black and white patients with focal glomerulosclerosis (FGS) or minimal change disease (MCNS) and black and white controls. SETTING The patients were drawn from the Paediatric Nephrology Units at the Johannesburg and Baragwanath Hospitals and the controls were drawn from the South African Blood Transfusion Service and the Paediatric Nephrology Clinic in Johannesburg. RESULTS There was a significant increase in the prevalence of the V allele in black patients with FGS (12%) as compared to black controls (1%) (p = 0.01). None of the white patients with FGS had the V allele but two out the five coloured (mixed race) patients had the V allele (20%). An increase in the prevalence of the S allele of alpha 1PI was found in white patients with FGS and MCNS (10%) as compared to white controls (2%). The plasma elastase inhibitory capacity (EIC) associated with the phenotypes (PI) M1 (Ala213)S, M1 (Ala213) V, and M1 (Ala213) M1 (Ala213) was significantly decreased as compared to the EIC associated with PI M1 (Val213) M1 (Val213) (p = 0.006, p = 0.004, and p = 0.025, respectively). Twelve of 13 patients with FGS and infected with tuberculosis had either the M1 (Ala213) V or F alleles and required transplantation owing to the severity of the disease. All of these patients were either black or coloured. However, eight of 12 patients with FGS who had the M1 (Ala213) V or S alleles but were PPD negative did not require transplantation. CONCLUSION It is possible that the combination of functionally less efficient alpha 1PI and an inflammatory challenge associated with an infection such as tuberculosis could predispose black and coloured nephrotic patients to more aggressive scarring in FGS.
Collapse
Affiliation(s)
- A C Halkas
- Department of Paediatrics and Child Health, University of the Witwatersrand Medical School, Johannesburg, South Africa
| | | | | | | | | | | |
Collapse
|