1
|
Liu J, Ting JP, Al-Azzam S, Ding Y, Afshar S. Therapeutic Advances in Diabetes, Autoimmune, and Neurological Diseases. Int J Mol Sci 2021; 22:ijms22062805. [PMID: 33802091 PMCID: PMC8001105 DOI: 10.3390/ijms22062805] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/02/2021] [Accepted: 03/06/2021] [Indexed: 02/08/2023] Open
Abstract
Since 2015, 170 small molecules, 60 antibody-based entities, 12 peptides, and 15 gene- or cell-therapies have been approved by FDA for diverse disease indications. Recent advancement in medicine is facilitated by identification of new targets and mechanisms of actions, advancement in discovery and development platforms, and the emergence of novel technologies. Early disease detection, precision intervention, and personalized treatments have revolutionized patient care in the last decade. In this review, we provide a comprehensive overview of current and emerging therapeutic modalities developed in the recent years. We focus on nine diseases in three major therapeutics areas, diabetes, autoimmune, and neurological disorders. The pathogenesis of each disease at physiological and molecular levels is discussed and recently approved drugs as well as drugs in the clinic are presented.
Collapse
Affiliation(s)
- Jinsha Liu
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA; (J.L.); (J.P.T.); (Y.D.)
| | - Joey Paolo Ting
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA; (J.L.); (J.P.T.); (Y.D.)
| | - Shams Al-Azzam
- Professional Scientific Services, Eurofins Lancaster Laboratories, Lancaster, PA 17605, USA;
| | - Yun Ding
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA; (J.L.); (J.P.T.); (Y.D.)
| | - Sepideh Afshar
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA; (J.L.); (J.P.T.); (Y.D.)
- Correspondence:
| |
Collapse
|
2
|
Wittwer J, Bradley D. Clusterin and Its Role in Insulin Resistance and the Cardiometabolic Syndrome. Front Immunol 2021; 12:612496. [PMID: 33717095 PMCID: PMC7946829 DOI: 10.3389/fimmu.2021.612496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/04/2021] [Indexed: 12/12/2022] Open
Abstract
The cardiometabolic syndrome involves a clustering of metabolic and cardiovascular factors which increase the risk of patients developing both Type 2 Diabetes Mellitus and cardio/cerebrovascular disease. Although the mechanistic underpinnings of this link remain uncertain, key factors include insulin resistance, excess visceral adiposity, atherogenic dyslipidemia, and endothelial dysfunction. Of these, a state of resistance to insulin action in overweight/obese patients appears to be central to the pathophysiologic process. Given the increasing prevalence of obesity-related Type 2 Diabetes, coupled with the fact that cardiovascular disease is the number one cause of mortality in this patient population, a more thorough understanding of the cardiometabolic syndrome and potential options to mitigate its risk is imperative. Inherent in the pathogenesis of insulin resistance is an underlying state of chronic inflammation, at least partly in response to excess adiposity. Within obese adipose tissue, an immunomodulatory shift occurs, involving a preponderance of pro-inflammatory immune cells and cytokines/adipokines, along with antigen presentation by adipocytes. Therefore, various adipokines differentially expressed by obese adipocytes may have a significant effect on cardiometabolism. Clusterin is a molecular chaperone that is widely produced by many tissues throughout the body, but is also preferentially overexpressed by obese compared lean adipocytes and relates strongly to multiple components of the cardiometabolic syndrome. Herein, we summarize the known and potential roles of circulating and adipocyte-specific clusterin in cardiometabolism and discuss potential further investigations to determine if clusterin is a viable target to attenuate both metabolic and cardiovascular disease.
Collapse
Affiliation(s)
- Jennifer Wittwer
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Diabetes and Metabolism Research Center, The Ohio State University, Columbus, OH, United States
| | - David Bradley
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Diabetes and Metabolism Research Center, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
3
|
Bradley D. Clusterin as a Potential Biomarker of Obesity-Related Alzheimer's Disease Risk. Biomark Insights 2020; 15:1177271920964108. [PMID: 33110346 PMCID: PMC7555556 DOI: 10.1177/1177271920964108] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 09/14/2020] [Indexed: 02/03/2023] Open
Abstract
Over 35% of the adult US population is obese. In turn, excess adiposity increases the risk of multiple complications including type 2 diabetes (T2D), insulin resistance, and cardiovascular disease; yet, obesity also independently heightens risk of Alzheimer's Disease (AD), even after adjusting for other important confounding risk factors including blood pressure, sociodemographics, cholesterol levels, smoking status, and Apolipoprotein E (ApoE) genotype. Among patients over the age of 65 with dementia, 37% have coexisting diabetes, and an estimated 7.3% of cases of AD are directly attributable to midlife obesity. Clusterin, also known as apolipoprotein J (ApoJ), is a multifunctional glycoprotein that acts as a molecular chaperone, assisting folding of secreted proteins. Clusterin has been implicated in several physiological and pathological states, including AD, metabolic disease, and cardiovascular disease. Despite long-standing interest in elucidating clusterin's relationship with amyloid beta (Aβ) aggregation/clearance and toxicity, significant knowledge gaps still exist. Altered clusterin expression and protein levels have been linked with cognitive and memory function, disrupted central nervous system lipid flux, as well as pathogenic brain structure; and its role in cardiometabolic disease suggests that it may be a link between insulin resistance, dyslipidemia, and AD. Here, we briefly highlight clusterin's relevance to AD by presenting existing evidence linking clusterin to AD and cardiometabolic disease, and discussing its potential utility as a biomarker for AD in the presence of obesity-related metabolic disease.
Collapse
Affiliation(s)
- David Bradley
- Diabetes and Metabolism Research Center, Division of Endocrinology, Diabetes & Metabolism, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
4
|
Dai D, Wen F, Zhou S, Su Z, Liu G, Wang M, Zhou J, He F. Association of MTTP gene variants with pediatric NAFLD: A candidate-gene-based analysis of single nucleotide variations in obese children. PLoS One 2017; 12:e0185396. [PMID: 28953935 PMCID: PMC5617203 DOI: 10.1371/journal.pone.0185396] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 09/12/2017] [Indexed: 12/12/2022] Open
Abstract
Objective We used targeted next-generation sequencing to investigate whether genetic variants of lipid metabolism-related genes are associated with increased susceptibility to nonalcoholic fatty liver disease (NAFLD) in obese children. Methods A cohort of 100 obese children aged 6 to 18 years were divided into NAFLD and non-NAFLD groups and subjected to hepatic ultrasound, anthropometric, and biochemical analyses. We evaluated the association of genetic variants with NAFLD susceptibility by investigating the single nucleotide polymorphisms in each of 36 lipid-metabolism-related genes. The panel genes were assembled for target region sequencing. Correlations between single nucleotide variations, biochemical markers, and clinical phenotypes were analyzed. Results 97 variants in the 36 target genes per child were uncovered. Twenty-six variants in 16 genes were more prevalent in NAFLD subjects than in in-house controls. The mutation rate of MTTP rs2306986 and SLC6A2 rs3743788 was significantly higher in NAFLD subjects than in non-NAFLD subjects (OR: 3.879; P = 0.004; OR: 6.667, P = 0.005). Logistic regression analysis indicated the MTTP variant rs2306986 was an independent risk factor for NAFLD (OR: 23.468, P = 0.044). Conclusions The results of this study, examining a cohort of obese children, suggest that the genetic variation at MTTP rs2306986 was associated with higher susceptibility to NAFLD. This may contribute to the altered lipid metabolism by disruption of assembly and secretion of lipoprotein, leading to reducing fat export from the involved hepatocytes.
Collapse
Affiliation(s)
- Dongling Dai
- Shenzhen Children's Hospital, Shenzhen, China
- First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Feiqiu Wen
- Shenzhen Children's Hospital, Shenzhen, China
- * E-mail: (FW); (SZ)
| | - Shaoming Zhou
- Shenzhen Children's Hospital, Shenzhen, China
- * E-mail: (FW); (SZ)
| | - Zhe Su
- Shenzhen Children's Hospital, Shenzhen, China
| | - Guosheng Liu
- First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Mingbang Wang
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, China
- Shenzhen Following Precision Medical Research Institute, Shenzhen, China
| | - Jianli Zhou
- First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Fusheng He
- Shenzhen Following Precision Medical Research Institute, Shenzhen, China
| |
Collapse
|
5
|
Desai P, Shete H, Adnaik R, Disouza J, Patravale V. Therapeutic targets and delivery challenges for Alzheimer’s disease. World J Pharmacol 2015; 4:236-264. [DOI: 10.5497/wjp.v4.i3.236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 05/29/2015] [Accepted: 08/11/2015] [Indexed: 02/06/2023] Open
Abstract
Dementia, including Alzheimer’s disease, the 21st Century epidemic, is one of the most significant social and health crises which has currently afflicted nearly 44 million patients worldwide and about new 7.7 million cases are reported every year. This portrays the unmet need towards better understanding of Alzheimer’s disease pathomechanisms and related research towards more effective treatment strategies. The review thus comprehensively addresses Alzheimer’s disease pathophysiology with an insight of underlying multicascade pathway and elaborates possible therapeutic targets- particularly anti-amyloid approaches, anti-tau approaches, acetylcholinesterase inhibitors, glutamatergic system modifiers, immunotherapy, anti-inflammatory targets, antioxidants, 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase inhibitors and insulin. In spite of extensive research leading to identification of newer targets and potent drugs, complete cure of Alzheimer’s disease appears to be an unreached holy grail. This can be attributed to their ineffective delivery across blood brain barrier and ultimately to the brain. With this understanding, researchers are now focusing on development of drug delivery systems to be delivered via suitable route that can circumvent blood brain barrier effectively with enhanced patient compliance. In this context, we have summarized current drug delivery strategies by oral, transdermal, intravenous, intranasal and other miscellaneous routes and have accentuated the future standpoint towards promising therapy ultimately leading to Alzheimer’s disease cure.
Collapse
|
6
|
Streptozotocin Intracerebroventricular-Induced Neurotoxicity and Brain Insulin Resistance: a Therapeutic Intervention for Treatment of Sporadic Alzheimer's Disease (sAD)-Like Pathology. Mol Neurobiol 2015; 53:4548-62. [PMID: 26298663 DOI: 10.1007/s12035-015-9384-y] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 08/10/2015] [Indexed: 02/03/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that is remarkably characterized by pathological hallmarks which include amyloid plaques, neurofibrillary tangles, neuronal loss, and progressive cognitive loss. Several well-known genetic mutations which are being used for the development of a transgenic model of AD lead to an early onset familial AD (fAD)-like condition. However, these settings are only reasons for a small percentage of the total AD cases. The large majorities of AD cases are considered as a sporadic in origin and are less influenced by a single mutation of a gene. The etiology of sporadic Alzheimer's disease (sAD) remains unclear, but numerous risk factors have been identified that increase the chance of developing AD. Among these risk factors are insulin desensitization/resistance state, oxidative stress, neuroinflammation, synapse dysfunction, tau hyperphosphorylation, and deposition of Aβ in the brain. Subsequently, these risk factors lead to development of sAD. However, the underlying molecular mechanism is not so clear. Streptozotocin (STZ) produces similar characteristic pathology of sAD such as altered glucose metabolism, insulin signaling, synaptic dysfunction, protein kinases such as protein kinase B/C, glycogen synthase-3β (GSK-3β) activation, tau hyperphosphorylation, Aβ deposition, and neuronal apoptosis. Further, STZ also leads to inhibition of Akt/PKB, insulin receptor (IR) signaling molecule, and insulin resistance in brain. These alterations mediated by STZ can be used to explore the underlying molecular and pathophysiological mechanism of AD (especially sAD) and their therapeutic intervention for drug development against AD pathology.
Collapse
|
7
|
Bilotta F, Lauretta MP, Tewari A, Haque M, Hara N, Uchino H, Rosa G. Insulin and the Brain: A Sweet Relationship With Intensive Care. J Intensive Care Med 2015; 32:48-58. [PMID: 26168800 DOI: 10.1177/0885066615594341] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 04/28/2015] [Accepted: 05/15/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND Insulin receptors (IRs) in the brain have unique molecular features and a characteristic pattern of distribution. Their possible functions extend beyond glucose utilization. In this systematic review, we explore the interactions between insulin and the brain and its implications for anesthesiologists, critical care physicians, and other medical disciplines. METHODS A literature search of published preclinical and clinical studies between 1978 and 2014 was conducted, yielding 5996 articles. After applying inclusion and exclusion criteria, 92 studies were selected for this systematic review. RESULTS The IRs have unique molecular features, pattern of distribution, and mechanism of action. It has effects on neuronal function, metabolism, and neurotransmission. The IRs are involved in neuronal apoptosis and neurodegenerative processes. CONCLUSION In this systematic review, we present a close relationship between insulin and the brain, with discernible effects on memory, learning abilities, and motor functions. The potential therapeutic effects extend from acute brain insults such as traumatic brain injury, brain ischemia, and hemorrhage, to chronic neurodegenerative diseases such as Alzheimer and Parkinson disease. An understanding of the wider effects of insulin conveyed in this review will prompt anaesthesiologists and critical care physicians to consider its therapeutic potential and guide future studies.
Collapse
Affiliation(s)
- F Bilotta
- Department of Anesthesiology, Critical Care and Pain Medicine, "Sapienza" University of Rome, Rome, Italy
| | - M P Lauretta
- Anesthesia and Intensive Care Department, "La Sapienza" University of Rome, Rome, Italy .,Critical Care Department, University College London Hospital, London, United Kingdom
| | - A Tewari
- Department of Pediatric Neuroanesthesia and IONM, Cincinnati Children Hospital & Medical Center, Cincinnati, OH, USA
| | - M Haque
- Anesthesia and Critical Care Department, University College London Hospital, London, United Kingdom
| | - N Hara
- Department of Anesthesiology, Tokyo Medical University, Tokyo, Japan
| | - H Uchino
- Department of Anesthesiology, Tokyo Medical University, Tokyo, Japan
| | - G Rosa
- Department of Anesthesiology, Critical Care and Pain Medicine, "Sapienza" University of Rome, Rome, Italy
| |
Collapse
|
8
|
Morris JK, Burns JM. Insulin: an emerging treatment for Alzheimer's disease dementia? Curr Neurol Neurosci Rep 2013; 12:520-7. [PMID: 22791280 DOI: 10.1007/s11910-012-0297-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Accumulating evidence indicates a role for metabolic dysfunction in the pathogenesis of Alzheimer's disease (AD). It is widely reported that Type 2 diabetes (T2D) increases the risk of developing AD, and several postmortem analyses have found evidence of insulin resistance in the AD brain. Thus, insulin-based therapies have emerged as potential strategies to slow cognitive decline in AD. The main methods for targeting insulin to date have been intravenous insulin infusion, intranasal insulin administration, and use of insulin sensitizers. These methods have elicited variable results regarding improvement in cognitive function. This review will discuss the rationale for targeting insulin signaling to improve cognitive function in AD, the results of clinical studies that have targeted insulin signaling, and what these results mean for future studies of the role of insulin-based therapies for AD.
Collapse
Affiliation(s)
- Jill K Morris
- Department of Neurology and Alzheimer's Disease Center, University of Kansas Medical Center, Fairway, KS 66205, USA.
| | | |
Collapse
|
9
|
Ghasemi R, Haeri A, Dargahi L, Mohamed Z, Ahmadiani A. Insulin in the brain: sources, localization and functions. Mol Neurobiol 2012; 47:145-71. [PMID: 22956272 DOI: 10.1007/s12035-012-8339-9] [Citation(s) in RCA: 203] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 08/20/2012] [Indexed: 02/07/2023]
Abstract
Historically, insulin is best known for its role in peripheral glucose homeostasis, and insulin signaling in the brain has received less attention. Insulin-independent brain glucose uptake has been the main reason for considering the brain as an insulin-insensitive organ. However, recent findings showing a high concentration of insulin in brain extracts, and expression of insulin receptors (IRs) in central nervous system tissues have gathered considerable attention over the sources, localization, and functions of insulin in the brain. This review summarizes the current status of knowledge of the peripheral and central sources of insulin in the brain, site-specific expression of IRs, and also neurophysiological functions of insulin including the regulation of food intake, weight control, reproduction, and cognition and memory formation. This review also considers the neuromodulatory and neurotrophic effects of insulin, resulting in proliferation, differentiation, and neurite outgrowth, introducing insulin as an attractive tool for neuroprotection against apoptosis, oxidative stress, beta amyloid toxicity, and brain ischemia.
Collapse
Affiliation(s)
- Rasoul Ghasemi
- Department of Physiology, Faculty of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | | | | | |
Collapse
|
10
|
Duarte AI, Moreira PI, Oliveira CR. Insulin in central nervous system: more than just a peripheral hormone. J Aging Res 2012; 2012:384017. [PMID: 22500228 PMCID: PMC3303591 DOI: 10.1155/2012/384017] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 10/12/2011] [Accepted: 11/23/2011] [Indexed: 12/14/2022] Open
Abstract
Insulin signaling in central nervous system (CNS) has emerged as a novel field of research since decreased brain insulin levels and/or signaling were associated to impaired learning, memory, and age-related neurodegenerative diseases. Thus, besides its well-known role in longevity, insulin may constitute a promising therapy against diabetes- and age-related neurodegenerative disorders. More interestingly, insulin has been also faced as the potential missing link between diabetes and aging in CNS, with Alzheimer's disease (AD) considered as the "brain-type diabetes." In fact, brain insulin has been shown to regulate both peripheral and central glucose metabolism, neurotransmission, learning, and memory and to be neuroprotective. And a future challenge will be to unravel the complex interactions between aging and diabetes, which, we believe, will allow the development of efficient preventive and therapeutic strategies to overcome age-related diseases and to prolong human "healthy" longevity. Herewith, we aim to integrate the metabolic, neuromodulatory, and neuroprotective roles of insulin in two age-related pathologies: diabetes and AD, both in terms of intracellular signaling and potential therapeutic approach.
Collapse
Affiliation(s)
- Ana I. Duarte
- CNC, Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Paula I. Moreira
- CNC, Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
- Institute of Physiology, Faculty of Medicine, University of Coimbra, 3000-354 Coimbra, Portugal
| | - Catarina R. Oliveira
- CNC, Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
- Institute of Biochemistry, Faculty of Medicine, University of Coimbra, 3000-354 Coimbra, Portugal
| |
Collapse
|
11
|
Martín ED, Sánchez-Perez A, Trejo JL, Martin-Aldana JA, Cano Jaimez M, Pons S, Acosta Umanzor C, Menes L, White MF, Burks DJ. IRS-2 Deficiency impairs NMDA receptor-dependent long-term potentiation. ACTA ACUST UNITED AC 2011; 22:1717-27. [PMID: 21955917 PMCID: PMC3388895 DOI: 10.1093/cercor/bhr216] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The beneficial effects of insulin and insulin-like growth factor I on cognition have been documented in humans and animal models. Conversely, obesity, hyperinsulinemia, and diabetes increase the risk for neurodegenerative disorders including Alzheimer's disease (AD). However, the mechanisms by which insulin regulates synaptic plasticity are not well understood. Here, we report that complete disruption of insulin receptor substrate 2 (Irs2) in mice impairs long-term potentiation (LTP) of synaptic transmission in the hippocampus. Basal synaptic transmission and paired-pulse facilitation were similar between the 2 groups of mice. Induction of LTP by high-frequency conditioning tetanus did not activate postsynaptic N-methyl-D-aspartate (NMDA) receptors in hippocampus slices from Irs2(-/-) mice, although the expression of NR2A, NR2B, and PSD95 was equivalent to wild-type controls. Activation of Fyn, AKT, and MAPK in response to tetanus stimulation was defective in Irs2(-/-) mice. Interestingly, IRS2 was phosphorylated during induction of LTP in control mice, revealing a potential new component of the signaling machinery which modulates synaptic plasticity. Given that IRS2 expression is diminished in Type 2 diabetics as well as in AD patients, these data may reveal an explanation for the prevalence of cognitive decline in humans with metabolic disorders by providing a mechanistic link between insulin resistance and impaired synaptic transmission.
Collapse
Affiliation(s)
- Eduardo D Martín
- Laboratory of Neurophysiology and Synaptic Plasticity, Albacete Science and Technology Park, PCYTA, Institute for Research in Neurological Disabilities, University of Castilla-La Mancha, 02071 Albacete, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Daws LC, Avison MJ, Robertson SD, Niswender KD, Galli A, Saunders C. Insulin signaling and addiction. Neuropharmacology 2011; 61:1123-8. [PMID: 21420985 DOI: 10.1016/j.neuropharm.2011.02.028] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2010] [Revised: 02/25/2011] [Accepted: 02/28/2011] [Indexed: 11/16/2022]
Abstract
Across species, the brain evolved to respond to natural rewards such as food and sex. These physiological responses are important for survival, reproduction and evolutionary processes. It is no surprise, therefore, that many of the neural circuits and signaling pathways supporting reward processes are conserved from Caenorhabditis elegans to Drosophilae, to rats, monkeys and humans. The central role of dopamine (DA) in encoding reward and in attaching salience to external environmental cues is well recognized. Less widely recognized is the role of reporters of the "internal environment", particularly insulin, in the modulation of reward. Insulin has traditionally been considered an important signaling molecule in regulating energy homeostasis and feeding behavior rather than a major component of neural reward circuits. However, research over recent decades has revealed that DA and insulin systems do not operate in isolation from each other, but instead, work together to orchestrate both the motivation to engage in consummatory behavior and to calibrate the associated level of reward. Insulin signaling has been found to regulate DA neurotransmission and to affect the ability of drugs that target the DA system to exert their neurochemical and behavioral effects. Given that many abused drugs target the DA system, the elucidation of how dopaminergic, as well as other brain reward systems, are regulated by insulin will create opportunities to develop therapies for drug and potentially food addiction. Moreover, a more complete understanding of the relationship between DA neurotransmission and insulin may help to uncover etiological bases for "food addiction" and the growing epidemic of obesity. This review focuses on the role of insulin signaling in regulating DA homeostasis and DA signaling, and the potential impact of impaired insulin signaling in obesity and psychostimulant abuse.
Collapse
Affiliation(s)
- Lynette C Daws
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | | | | | | | | | | |
Collapse
|
13
|
Mielke JG, Wang YT. Insulin, synaptic function, and opportunities for neuroprotection. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 98:133-86. [PMID: 21199772 DOI: 10.1016/b978-0-12-385506-0.00004-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A steadily growing number of studies have begun to establish that the brain and insulin, while traditionally viewed as separate, do indeed have a relationship. The uptake of pancreatic insulin, along with neuronal biosynthesis, provides neural tissue with the hormone. As well, insulin acts upon a neuronal receptor that, although a close reflection of its peripheral counterpart, is characterized by unique structural and functional properties. One distinction is that the neural variant plays only a limited part in neuronal glucose transport. However, a number of other roles for neural insulin are gradually emerging; most significant among these is the modulation of ligand-gated ion channel (LGIC) trafficking. Notably, insulin has been shown to affect the tone of synaptic transmission by regulating cell-surface expression of inhibitory and excitatory receptors. The manner in which insulin regulates receptor movement may provide a cellular mechanism for insulin-mediated neuroprotection in the absence of hypoglycemia and stimulate the exploration of new therapeutic opportunities.
Collapse
Affiliation(s)
- John G Mielke
- Faculty of Applied Health Sciences, Department of Health Studies and Gerontology, University of Waterloo, Waterloo, Ontario, Canada
| | | |
Collapse
|
14
|
Insulin reveals Akt signaling as a novel regulator of norepinephrine transporter trafficking and norepinephrine homeostasis. J Neurosci 2010; 30:11305-16. [PMID: 20739551 DOI: 10.1523/jneurosci.0126-10.2010] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Noradrenergic signaling in the CNS plays an essential role in circuits involving attention, mood, memory, and stress as well as providing pivotal support for autonomic function in the peripheral nervous system. The high-affinity norepinephrine (NE) transporter (NET) is the primary mechanism by which noradrenergic synaptic transmission is terminated. Data indicate that NET function is regulated by insulin, a hormone critical for the regulation of metabolism. Given the high comorbidity of metabolic disorders such as diabetes and obesity with mental disorders such as depression and schizophrenia, we sought to determine how insulin signaling regulates NET function and thus noradrenergic homeostasis. Here, we show that acute insulin treatment, through the downstream kinase protein kinase B (Akt), significantly decreases NET surface expression in mouse hippocampal slices and superior cervical ganglion neuron boutons (sites of synaptic NE release). In vivo manipulation of insulin/Akt signaling, with streptozotocin, a drug that induces a type 1-like diabetic state in mice, also results in aberrant NET function and NE homeostasis. Notably, we also demonstrate that Akt inhibition or stimulation, independent of insulin, is capable of altering NET surface availability. These data suggest that aberrant states of Akt signaling such as in diabetes and obesity have the potential to alter NET function and noradrenergic tone in the brain. Furthermore, they provide one potential molecular mechanism by which Akt, a candidate gene for mood disorders such as schizophrenia and depression, can impact brain monoamine homeostasis.
Collapse
|
15
|
Cardoso S, Santos R, Correia S, Carvalho C, Zhu X, Lee HG, Casadesus G, Smith MA, Perry G, Moreira PI. Insulin and Insulin-Sensitizing Drugs in Neurodegeneration: Mitochondria as Therapeutic Targets. Pharmaceuticals (Basel) 2009; 2:250-286. [PMID: 27713238 PMCID: PMC3978547 DOI: 10.3390/ph2030250] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 12/21/2009] [Accepted: 12/22/2009] [Indexed: 12/13/2022] Open
Abstract
Insulin, besides its glucose lowering effects, is involved in the modulation of lifespan, aging and memory and learning processes. As the population ages, neurodegenerative disorders become epidemic and a connection between insulin signaling dysregulation, cognitive decline and dementia has been established. Mitochondria are intracellular organelles that despite playing a critical role in cellular metabolism are also one of the major sources of reactive oxygen species. Mitochondrial dysfunction, oxidative stress and neuroinflammation, hallmarks of neurodegeneration, can result from impaired insulin signaling. Insulin-sensitizing drugs such as the thiazolidinediones are a new class of synthetic compounds that potentiate insulin action in the target tissues and act as specific agonists of the peroxisome proliferator-activated receptor gamma (PPAR-γ). Recently, several PPAR agonists have been proposed as novel and possible therapeutic agents for neurodegenerative disorders. Indeed, the literature shows that these agents are able to protect against mitochondrial dysfunction, oxidative damage, inflammation and apoptosis. This review discusses the role of mitochondria and insulin signaling in normal brain function and in neurodegeneration. Furthermore, the potential protective role of insulin and insulin sensitizers in Alzheimer´s, Parkinson´s and Huntington´s diseases and amyotrophic lateral sclerosis will be also discussed.
Collapse
Affiliation(s)
- Susana Cardoso
- Center for Neuroscience and Cell Biology, University of Coimbra, 3000-354 Coimbra, Portugal
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3000- 354 Coimbra, Portugal
| | - Renato Santos
- Center for Neuroscience and Cell Biology, University of Coimbra, 3000-354 Coimbra, Portugal
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3000- 354 Coimbra, Portugal
| | - Sonia Correia
- Center for Neuroscience and Cell Biology, University of Coimbra, 3000-354 Coimbra, Portugal
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3000- 354 Coimbra, Portugal
| | - Cristina Carvalho
- Center for Neuroscience and Cell Biology, University of Coimbra, 3000-354 Coimbra, Portugal
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3000- 354 Coimbra, Portugal
| | - Xiongwei Zhu
- School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Hyoung-Gon Lee
- School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Gemma Casadesus
- School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Mark A Smith
- School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - George Perry
- College of Sciences, The University of Texas at San Antonio, TX 78249, USA
| | - Paula I Moreira
- Center for Neuroscience and Cell Biology, University of Coimbra, 3000-354 Coimbra, Portugal.
- Institute of Physiology, Faculty of Medicine, University of Coimbra, 3000-354 Coimbra, Portugal.
| |
Collapse
|
16
|
Insulin resistance and amyloidogenesis as common molecular foundation for type 2 diabetes and Alzheimer's disease. Biochim Biophys Acta Mol Basis Dis 2008; 1792:482-96. [PMID: 19026743 DOI: 10.1016/j.bbadis.2008.10.014] [Citation(s) in RCA: 240] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2008] [Revised: 10/18/2008] [Accepted: 10/21/2008] [Indexed: 12/22/2022]
Abstract
Characterized as a peripheral metabolic disorder and a degenerative disease of the central nervous system respectively, it is now widely recognized that type 2 diabetes mellitus (T2DM) and Alzheimer's disease (AD) share several common abnormalities including impaired glucose metabolism, increased oxidative stress, insulin resistance and amyloidogenesis. Several recent studies suggest that this is not an epiphenomenon, but rather these two diseases disrupt common molecular pathways and each disease compounds the progression of the other. For instance, in AD the accumulation of the amyloid-beta peptide (Abeta), which characterizes the disease and is thought to participate in the neurodegenerative process, may also induce neuronal insulin resistance. Conversely, disrupting normal glucose metabolism in transgenic animal models of AD that over-express the human amyloid precursor protein (hAPP) promotes amyloid-peptide aggregation and accelerates the disease progression. Studying these processes at a cellular level suggests that insulin resistance and Abeta aggregation may not only be the consequence of excitotoxicity, aberrant Ca(2+) signals, and proinflammatory cytokines such as TNF-alpha, but may also promote these pathological effectors. At the molecular level, insulin resistance and Abeta disrupt common signal transduction cascades including the insulin receptor family/PI3 kinase/Akt/GSK3 pathway. Thus both disease processes contribute to overlapping pathology, thereby compounding disease symptoms and progression.
Collapse
|
17
|
Branched-chain amino acids may improve recovery from a vegetative or minimally conscious state in patients with traumatic brain injury: a pilot study. Arch Phys Med Rehabil 2008; 89:1642-7. [PMID: 18760149 DOI: 10.1016/j.apmr.2008.02.023] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Accepted: 02/26/2008] [Indexed: 01/25/2023]
Abstract
OBJECTIVE To investigate whether supplementation with branched-chain amino acids (BCAAs) may improve recovery of patients with a posttraumatic vegetative or minimally conscious state. DESIGN Patients were randomly assigned to 15 days of intravenous BCAA supplementation (n=22; 19.6g/d) or an isonitrogenous placebo (n=19). SETTING Tertiary care rehabilitation setting. PARTICIPANTS Patients (N=41; 29 men, 12 women; mean age, 49.5+/-21 y) with a posttraumatic vegetative or minimally conscious state, 47+/-24 days after the index traumatic event. INTERVENTION Supplementation with BCAAs. MAIN OUTCOME MEASURE Disability Rating Scale (DRS) as log(10)DRS. RESULTS Fifteen days after admission to the rehabilitation department, the log(10)DRS score improved significantly only in patients who had received BCAAs (log(10)DRS score, 1.365+/-0.08 to 1.294+/-0.05; P<.001), while the log(10)DRS score in the placebo recipients remained virtually unchanged (log(10)DRS score, 1.373+/-0.03 to 1.37+/-0.03; P not significant). The difference in improvement of log(10)DRS score between the 2 groups was highly significant (P<.000). Moreover, 68.2% (n=15) of treated patients achieved a log(10)DRS point score of .477 or higher (3 as geometric mean) that allowed them to exit the vegetative or minimally conscious state. CONCLUSIONS Supplemented BCAAs may improve the recovery from a vegetative or minimally conscious state in patients with posttraumatic vegetative or minimally conscious state.
Collapse
|
18
|
Grünblatt E, Salkovic-Petrisic M, Osmanovic J, Riederer P, Hoyer S. Brain insulin system dysfunction in streptozotocin intracerebroventricularly treated rats generates hyperphosphorylated tau protein. J Neurochem 2007; 101:757-70. [PMID: 17448147 DOI: 10.1111/j.1471-4159.2006.04368.x] [Citation(s) in RCA: 275] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The intracerebroventricular (icv) application of streptozotocin (STZ) in low dosage was used in 3-month-old rats to explore brain insulin system dysfunction. Three months following STZ icv treatment, the expression of insulin-1 and -2 mRNA was significantly reduced to 11% in hippocampus and to 28% in frontoparietal cerebral cortex, respectively. Insulin receptor (IR) mRNA expression decreased significantly in frontoparietal cerebral cortex and hippocampus (16% and 33% of control). At the protein/activity level, different abnormalities of protein tyrosine kinase activity (increase in hippocampus), total IR beta-subunit (decrease in hypothalamus) and phosphorylated IR tyrosine residues (increase) became apparent. The STZ-induced disturbance in learning and memory capacities was not abolished by icv application of glucose transport inhibitors known to prevent STZ-induced diabetes mellitus. The discrepancy between reduced IR gene expression and increase in both phosphorylated IR tyrosine residues/protein tyrosine kinase activity may indicate imbalance between phosphorylation/dephosphorylation of the IR beta-subunit causing its dysfunction. These abnormalities may point to a complex brain insulin system dysfunction after STZ icv application, which may lead to an increase in hyperphosphorylated tau-protein concentration. Brain insulin system dysfunction is discussed as possible pathological core in the generation of hyperphosphorylated tau protein as a morphological marker of sporadic Alzheimer's disease.
Collapse
Affiliation(s)
- Edna Grünblatt
- Clinical Neurochemistry and National Parkinson Foundation Centre of Excellence Laboratory, Clinic for Psychiatry and Psychotherapy, Bayrische Julius-Maximilian University of Würzburg, Würzburg, Germany.
| | | | | | | | | |
Collapse
|
19
|
Long-term abnormalities in brain glucose/energy metabolism after inhibition of the neuronal insulin receptor: implication of tau-protein. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2007:195-202. [PMID: 17982895 DOI: 10.1007/978-3-211-73574-9_25] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The triplicate intracerebroventricular (icv) application of the diabetogenic compound streptozotocin (STZ) in low dosage was used in 1-year-old male Wistar rats to induce a damage of the neuronal insulin signal transduction (IST) system and to investigate the activities of hexokinase (HK), phosphofructokinase (PFK), glyceraldehyde-3-phosphate dehydrogenase (GDH), pyruvate kinase (PK), lactate dehydrogenase (LDH) and alpha-ketoglutarate dehydrogenase (alpha-KGDH) in frontoparietotemporal brain cortex (ct) and hippocampus (h) 9 weeks after damage. In parallel, the concentrations of adenosine triphosphate (ATP), adenosine diphosphate (ADP), guanosine triphosphate (GTP) and creatine phosphate (CrP) were determined. We found reductions of HK to 53% (ct) and 60% (h) of control, PFK to 63/64% (ct/h); GDH to 56/61% (ct/h), PFK to 57/59% (ct/h), alpha-KGDH to 37/35% (ct/h) and an increase of LDH to 300/240% (ct/h). ATP decreased to 82/87% (ct/h) of control, GTP to 69/81% (ct/h), CrP to 82/81% (ct/h), approximately P to 82/82% (ct/h), whereas ADP increased to 189/154% (ct/h). The fall of the activities of the glycolytic enzymes HK, PFK, GDH and PK was found to be more marked after 9 weeks of damage when compared with 3- and 6-week damage whereas the diminution in the concentration of energy rich compound was stably reduced by between 20 and 10% relative to control. The abnormalities in glucose/energy metabolism were discussed in relation to tau-protein mismetabolism of experimental animals, and of sporadic AD.
Collapse
|
20
|
Salkovic-Petrisic M, Hoyer S. Central insulin resistance as a trigger for sporadic Alzheimer-like pathology: an experimental approach. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2007:217-33. [PMID: 17982898 DOI: 10.1007/978-3-211-73574-9_28] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
A growing body of evidence implicates impairments in brain insulin signaling in early sporadic Alzheimer disease (sAD) pathology. However, the most widely accepted hypothesis for AD aetiology stipulates that pathological aggregations of the amyloid beta (Abeta) peptide are the cause of all forms of Alzheimer's disease. Streptozotocin-intracerebroventricularly (STZ-icv) treated rats are proposed as a probable experimental model of sAD. The current work reviews evidence obtained from this model indicating that central STZ administration induces brain pathology and behavioural alterations resembling those in sAD patients. Recently, alterations of the brain insulin system resembling those in sAD have been found in the STZ-icv rat model and are associated with tau protein hyperphosphorylation and Abeta-like aggregations in meningeal vessels. In line with these findings the hypothesis has been proposed that insulin resistance in the brain might be the primary event which precedes the Abeta pathology in sAD.
Collapse
Affiliation(s)
- M Salkovic-Petrisic
- Department of Pharmacology and Croatian Institute for Brain Research, Medical School, University of Zagreb, Zagreb, Croatia.
| | | |
Collapse
|
21
|
Awad N, Gagnon M, Messier C. The relationship between impaired glucose tolerance, type 2 diabetes, and cognitive function. J Clin Exp Neuropsychol 2005; 26:1044-80. [PMID: 15590460 DOI: 10.1080/13803390490514875] [Citation(s) in RCA: 304] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The present review integrates findings of published studies that have evaluated the cognitive function of treated and untreated type 2 diabetic patients and provides a detailed overview of the neuropsychological assessments conducted. Cognitive deficits are observed in older people with glucose intolerance or untreated diabetes but these deficits appear to be attenuated by treatments that improve glycemic control. Cognitive decrements in treated type 2 diabetic patients are most consistently observed on measures of verbal memory (35% of the measures) and processing speed (45% of the measures) while preserved function is observed on measures of visuospatial, attention, semantic and language function. Some studies suggest that deficits in cognitive functions are associated with poorer glycemic control. A number of other factors, such as depression, cardiovascular and cerebrovascular disease, increase these deficits. We conclude that, in diabetic patients who achieve and maintain good glycemic control, type 2 diabetes only has a small impact on cognitive functions before the age of 70 years. However, early onset of type 2 diabetes, poor glycemic control and the presence of micro- and macrovascular disease may interact to produce early cognitive deficits. In older adults (70 years and over), diabetes likely interacts with other dementing processes such as vascular disease and Alzheimer's disease to hasten cognitive decline.
Collapse
Affiliation(s)
- Nesrine Awad
- School of Psychology, University of Ottawa, Ottawa, Ontario, Canada
| | | | | |
Collapse
|
22
|
Westling S, Ahrén B, Träskman-Bendz L, Westrin A. High CSF-insulin in violent suicide attempters. Psychiatry Res 2004; 129:249-55. [PMID: 15661318 DOI: 10.1016/j.psychres.2004.09.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2004] [Accepted: 09/07/2004] [Indexed: 11/17/2022]
Abstract
Several studies have investigated a connection between diabetes and major depressive disorder (MDD). Whether these associations are mediated by changes in insulin is not known. Insulin seems to play a role in violent behaviour. To further elucidate the role of insulin in MDD and violent, aggressive, or impulsive behaviour, we measured insulin in cerebrospinal fluid (CSF) in 74 patients with a recent suicide attempt. Patients were divided into those with and without MDD, and they were also subgrouped by whether the suicide attempt was considered to be violent or not. It was found that patients with a violent suicide attempt had significantly higher CSF-insulin (5.9+/-1.0 pmol/l) than those with a nonviolent attempt (5.3+/-0.7 pmol/l). In contrast, there were no significant differences in CSF-insulin between patients with MDD and patients without. Our findings support the hypothesis that CSF-insulin is involved in violent behaviour, but not connected to MDD as such.
Collapse
Affiliation(s)
- Sofie Westling
- Department of Clinical Neuroscience, Division of Psychiatry, Lund University Hospital, 221 85 Lund, Sweden.
| | | | | | | |
Collapse
|
23
|
Abstract
Insulin and specific insulin receptors are found widely distributed in the central nervous system (CNS) networks related in particular to energy homeostasis. This review highlights the complex regulatory loop between dietary nutrients, brain insulin and feeding. It is well documented that brain insulin has a negative, anorexigenic effect on food intake. At present, a specific role for brain insulin on cognitive functions related to feeding is emerging. The balance between orexigenic and anorexigenic pathways in the hypothalamus is crucial for the maintenance of energy homeostasis in animals and humans. The ingestion of nutrients triggers neurochemical events that signal nutrient and energy availability in the CNS, down regulate stimulators, activate anorexigenic factors, including brain insulin, and result in reduced eating. The effects of insulin in the CNS are under a multilevel control of food-intake peripherally and in the CNS, via the metabolic, endocrine and neural modifications induced by nutrients. Single meals as well as glucose and serotonin are able to regulate insulin release directly in the hypothalamus and may be of importance for its biological effects. Central mechanisms operating in glucose-induced insulin release show some analogy with the mechanisms operating in the pancreas. Leptin and melanocortins, peptides that down regulate food intake and are largely affected by nutrients, are highly interactive with insulin in the CNS probably via the neurotransmitter serotonin. In the hypothalamus, insulin and leptin share a common signaling pathway involved in food intake, namely the insulin receptor substrate, phosphatidylinositol 3-kinase pathway. Over or under-feeding, unbalanced single meals or diets, in particular diets enriched in fat, modify the amount of insulin actively transported into the brain, the release of brain insulin, the expression of insulin messenger RNA and potentially disrupt insulin signaling in the CNS. This impairment may result in disorders related to feeding behavior and energy homeostasis leading to profound dysregulations, obesity or diabetes.
Collapse
Affiliation(s)
- K Gerozissis
- Chercheur INSERM, UMR 7059 CNRS, University Paris 7, 2 place Jussieu, case 7126, 75251 Paris Cedex 05, France.
| |
Collapse
|
24
|
Abstract
1. While many questions remained unanswered, it is now well documented that, contrary to earlier views, insulin is an important neuromodulator, contributing to neurobiological processes, in particular energy homeostasis and cognition. A specific role on cognitive functions related to feeding is proposed, and it is suggested that brain insulin from different sources might be involved in the above vital functions in health and disease. 2. A molecule identical to pancreatic insulin, and specific insulin receptors, are found widely distributed in the central nervous system networks related to feeding, reproduction, or cognition. 3. The actions of insulin in the central nervous system may be under both multilevel and multifactorial controls. The amount of blood insulin reaching the brain, brain insulin stores and secretion, potential local biosynthesis and degradation of the peptide, and insulin receptors and signal transduction can be affected by metabolic factors induced by nutrients, hormones, neurotransmitters, and regulatory peptides, peripherally or in the central nervous system. 4. Glucose and serotonin regulate insulin directly in the hypothalamus and may be of importance for its biological effects. Central mechanisms regulating glucose-induced insulin secretion show some analogy with the mechanisms operating in the pancreas. 5. A cross-talk between insulin and leptin receptors has been observed in the brain, and a regulation of central insulin actions, potentially via serotonin modulation, by leptin, galanin, melancortins, and neuropeptide Y (NPY) is suggested. 6. A more complete knowledge of the biological role of insulin in brain function and dysfunction, and of the regulatory mechanisms involved in these processes, constitutes a real advancement in the understanding of the pathophysiology of metabolic and mental diseases and could lead to important medical benefits.
Collapse
|
25
|
Carvelli L, Morón JA, Kahlig KM, Ferrer JV, Sen N, Lechleiter JD, Leeb-Lundberg LMF, Merrill G, Lafer EM, Ballou LM, Shippenberg TS, Javitch JA, Lin RZ, Galli A. PI 3-kinase regulation of dopamine uptake. J Neurochem 2002; 81:859-69. [PMID: 12065645 DOI: 10.1046/j.1471-4159.2002.00892.x] [Citation(s) in RCA: 173] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The magnitude and duration of dopamine (DA) signaling is defined by the amount of vesicular release, DA receptor sensitivity, and the efficiency of DA clearance, which is largely determined by the DA transporter (DAT). DAT uptake capacity is determined by the number of functional transporters on the cell surface as well as by their turnover rate. Here we show that inhibition of phosphatidylinositol (PI) 3-kinase with LY294002 induces internalization of the human DAT (hDAT), thereby reducing transport capacity. Acute treatment with LY294002 reduced the maximal rate of [(3) H]DA uptake in rat striatal synaptosomes and in human embryonic kidney (HEK) 293 cells stably expressing the hDAT (hDAT cells). In addition, LY294002 caused a significant redistribution of the hDAT from the plasma membrane to the cytosol. Conversely, insulin, which activates PI 3-kinase, increased [(3)H]DA uptake and blocked the amphetamine-induced hDAT intracellular accumulation, as did transient expression of constitutively active PI 3-kinase. The LY294002-induced reduction in [(3)H]DA uptake and hDAT cell surface expression was inhibited by expression of a dominant negative mutant of dynamin I, indicating that dynamin-dependent trafficking can modulate transport capacity. These data implicate DAT trafficking in the hormonal regulation of dopaminergic signaling, and suggest that a state of chronic hypoinsulinemia, such as in diabetes, may alter synaptic DA signaling by reducing the available cell surface DATs.
Collapse
Affiliation(s)
- Lucia Carvelli
- Department of Pharmacology, MC 7764, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
As one of the most extensively studied protein hormones, insulin and its receptor have been known to play key roles in a variety of important biological functions. Until recent years, the functions of insulin and insulin receptor (IR) in the central nervous system (CNS) have largely remained unclear. IR is abundantly expressed in several specific brain regions that govern fundamental behaviors such as food intake, reproduction and high cognition. The IR from the periphery and CNS exhibit differences in both structure and function. In addition to that from the peripheral system, locally synthesized insulin in the brain has also been identified. Accumulated evidence has demonstrated that insulin/IR plays important roles in associative learning, as suggested by results from both interventive and correlative studies. Interruption of insulin production and IR activity causes deficits in learning and memory formation. Abnormal insulin/IR levels and activities are seen in Alzheimer's dementia, whereas administration of insulin significantly improves the cognitive performance of these patients. The synaptic bases for the action of insulin/IR include modifying neurotransmitter release processes at various types of presynaptic terminals and modulating the activities of both excitatory and inhibitory postsynaptic receptors such as NMDA and GABA receptors, respectively. At the molecular level, insulin/IR participates in regulation of learning and memory via activation of specific signaling pathways, one of which is shown to be associated with the formation of long-term memory and is composed of intracellular molecules including the shc, Grb-r/SOS, Ras/Raf, and MEK/MAP kinases. Cross-talk with another IR pathway involving IRS1, PI3 kinase, and protein kinase C, as well as with the non-receptor tyrosine kinase pp60c-src, may also be associated with memory processing.
Collapse
Affiliation(s)
- W Q Zhao
- Blanchette Rockefeller Neurosciences Institute, 9601 Medical Center Drive, Johns Hopkins University, Academic & Research Building, 3rd Floor, Rockville, MD 20858, USA.
| | | |
Collapse
|
27
|
Zhao W, Chen H, Xu H, Moore E, Meiri N, Quon MJ, Alkon DL. Brain insulin receptors and spatial memory. Correlated changes in gene expression, tyrosine phosphorylation, and signaling molecules in the hippocampus of water maze trained rats. J Biol Chem 1999; 274:34893-902. [PMID: 10574963 DOI: 10.1074/jbc.274.49.34893] [Citation(s) in RCA: 376] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Evidence accumulated from clinical and basic research has indirectly implicated the insulin receptor (IR) in brain cognitive functions, including learning and memory (Wickelgren, I. (1998) Science 280, 517-519). The present study investigates correlative changes in IR expression, phosphorylation, and associated signaling molecules in the rat hippocampus following water maze training. Although the distribution of IR protein matched that of IR mRNA in most forebrain regions, a dissociation of the IR mRNA and protein expression patterns was found in the cerebellar cortex. After training, IR mRNA in the CA1 and dentate gyrus of the hippocampus was up-regulated, and there was increased accumulation of IR protein in the hippocampal crude synaptic membrane fraction. In the CA1 pyramidal neurons, changes in the distribution pattern of IR in particular cellular compartments, such as the nucleus and dendritic regions, was observed only in trained animals. Although IR showed a low level of in vivo tyrosine phosphorylation, an insulin-stimulated increase of in vitro Tyr phosphorylation of IR was detected in trained animals, suggesting that learning may induce IR functional changes, such as enhanced receptor sensitivity. Furthermore, a training-induced co-immunoprecipitation of IR with Shc-66 was detected, along with changes in in vivo Tyr phosphorylation of Shc and mitogen-activated protein kinase, as well as accumulation of Shc-66, Shc-52, and Grb-2 in hippocampal synaptic membrane fractions following training. These findings suggest that IR may participate in memory processing through activation of its receptor Tyr kinase activity, and they suggest possible engagement of Shc/Grb-2/Ras/mitogen-activated protein kinase cascades.
Collapse
Affiliation(s)
- W Zhao
- Laboratory of Adaptive Systems, NINDS, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
28
|
Kopf SR, Baratti CM. Effects of posttraining administration of insulin on retention of a habituation response in mice: participation of a central cholinergic mechanism. Neurobiol Learn Mem 1999; 71:50-61. [PMID: 9889072 DOI: 10.1006/nlme.1998.3831] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Male Swiss mice were allowed to explore a novel environment, provided by an open-field activity chamber for a 10-min period. The procedure was repeated twice within a 24-h interval. The difference in the exploratory activity between the first (training) and the second exposure (testing) to the chamber was taken as an index of retention of this habituation task. Posttraining intraperitoneal administration of insulin (8, 20, or 80 IU/kg) impaired retention in a dose-related manner, although only the dose of 20 IU/kg of insulin produced significant effects. Thus, the dose-response curve adopted a U-shaped form. Insulin (20 IU/kg) given to untrained mice did not modify their exploratory performance when recorded 24 h later. The effects of insulin on retention were time dependent, suggesting an action on memory storage. An ineffective dose (8 IU/kg) of insulin given together with an ineffective dose of a central acting muscarinic cholinergic antagonist atropine (0.5 mg/kg) or with a central acting nicotinic cholinergic antagonist mecamylamine (5 mg/kg) interacted to impair retention. In contrast, neither methylatropine (0.5 mg/kg), a peripherally acting muscarinic receptor blocker, nor hexamethonium (5 mg/kg), a peripherally acting nicotinic receptor blocker, interacted with the subeffective dose of insulin on retention. The impairing effects of insulin (20 IU/kg) on retention were reversed by the simultaneous administration of physostigmine (70 microg/kg) but not neostigmine (70 microg/kg). We suggest that insulin impairs memory storage of one form of learning elicited by stimuli repeatedly presented without reinforcement, probably through a decrement of brain acetylcholine synthesis.
Collapse
Affiliation(s)
- S R Kopf
- Laboratorio de Neurofarmacologiia de Procesos de Memoria, Cátedra de Farmacologiia, Facultad de Farmacia y Bioquiimica, Universidad de Buenos Aires, Junin 956, Buenos Aires, RA-1113, Argentina
| | | |
Collapse
|
29
|
Kainer F, Prechtl HF, Engele H, Einspieler C. Assessment of the quality of general movements in fetuses and infants of women with type-I diabetes mellitus. Early Hum Dev 1997; 50:13-25. [PMID: 9467690 DOI: 10.1016/s0378-3782(97)00089-3] [Citation(s) in RCA: 296] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The effect of type-I diabetes on the quality of general movements (GMs) was studied longitudinally in 12 human fetuses. GMs were analysed at two-weekly intervals from 16 weeks until delivery. A pregnancy optimality-score and a diabetes optimality-score were used to cover the course of the pregnancy and delivery and the severity of diabetes. GMs of infants were analysed 1, 4-6, and 12-18 weeks after birth and the Bayley developmental test was performed at 10 months. All fetuses showed normal GMs at 16 weeks. From 20 weeks onwards until delivery five fetuses developed abnormal GMs. The diabetes optimality-score was significantly lower in the group with abnormal GMs (P = 0.018) whereas the pregnancy optimality-score did not differ between fetuses with normal and abnormal GMs. Our results indicate that type-I diabetes can have a negative impact on prenatally observed GMs. Consistently normal GMs indicate normal neurodevelopmental outcome at 10 months whereas in the group with abnormal GMs reduced Bayley-scores may occur.
Collapse
Affiliation(s)
- F Kainer
- Department of Obstetrics and Gynaecology, München University, Germany
| | | | | | | |
Collapse
|
30
|
Karagiannis SN, King RH, Thomas PK. Colocalisation of insulin and IGF-1 receptors in cultured rat sensory and sympathetic ganglion cells. J Anat 1997; 191 ( Pt 3):431-40. [PMID: 9419000 PMCID: PMC1467700 DOI: 10.1046/j.1469-7580.1997.19130431.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Peripheral sensory and autonomic neurons are known to possess insulin receptors. These have been considered to be of the peripheral type, i.e. similar to those of hepatic and fat cells rather than of the brain type which show dual specificity for both insulin and insulin-like growth factor (IGF-1). We have examined the localisation of insulin and IGF-1 receptors in cultured sensory and sympathetic ganglion cells using confocal microscopy and indirect labelling with FITC (fluorescein isothiocyanate) and TRITC (tetramethyl rhodamine isothiocyanate) respectively. We have shown that in cultured U266B1 multiple myeloma cells these receptors display separate localisation, whereas they are colocalised in IM-9 lymphocytes which are known to possess hybrid receptors. We have confirmed the sequestration of insulin and IGF-1 receptors in the cytoplasm of sensory and sympathetic neurons, consistent with a brain-type receptor. The colocalisation of insulin and IGF-1 receptors in sensory and sympathetic ganglion cells is consistent with the view that they are hybrid receptors, similar to those present in the CNS. The function of these receptors, as suggested for the CNS, may be related to trophic support for neurons.
Collapse
MESH Headings
- Animals
- Cell Line
- Cells, Cultured
- Fluorescent Antibody Technique, Indirect
- Ganglia, Sensory/chemistry
- Ganglia, Sensory/cytology
- Ganglia, Sympathetic/chemistry
- Ganglia, Sympathetic/cytology
- Humans
- Microscopy, Confocal
- Rats
- Rats, Sprague-Dawley
- Receptor, IGF Type 1/analysis
- Receptor, Insulin/analysis
Collapse
Affiliation(s)
- S N Karagiannis
- Department of Clinical Neurosciences, Royal Free Hospital School of Medicine, London, UK
| | | | | |
Collapse
|
31
|
Schutzer WE, Bethea CL. Lack of ovarian steroid hormone regulation of norepinephrine transporter mRNA expression in the non-human primate locus coeruleus. Psychoneuroendocrinology 1997; 22:325-36. [PMID: 9279938 DOI: 10.1016/s0306-4530(97)00031-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Decreases in ovarian steroids can negatively affect mood, and drugs which block the norepinephrine transporter (NET) or the serotonin transporter (SERT) alleviate depression. However, the respective contribution of the noradrenergic and serotonergic systems may vary depending upon the etiology of the depression. We previously demonstrated that E and P alter gene expression for tryptophan hydroxylase (TPH) and for the serotonin reuptake transporter (SERT) in raphe neurons of the rhesus monkey. In this study, we questioned whether the noradrenergic system contributes to depression related to the reproductive function in women, using a non-human primate model of the menstrual cycle. The effect of estrogen (E) or E plus progesterone (P) on the expression of the NET gene in the locus coeruleus (LC) was examined with in situ hybridization for NET mRNA. In addition, we questioned whether the neurons of the LC contain nuclear E or P receptors (ER/PR). Hence, immunocytochemistry for ER and PR were performed on adjacent sections. Treatment groups consisted of monkeys (n = 4 per treatment) which were ovariectomized/hysterectomized (spayed), E-treated (28 days) and E+P-treated (14 days E, +14 days E+P). Expression of mRNA for NET was unchanged at any level of the LC due to steroid treatment (p > .05). Neither ER nor PR were detected in the LC of any treatment group. Therefore, E and P in a treatment paradigm which mimics the menstrual cycle do not directly regulate NET mRNA expression in the non-human primate LC. In addition, the noradrenergic neurons of the primate LC lack nuclear receptors for ovarian steroids. These data suggest that the noradrenergic system may not contribute significantly to depression related to changes in ovarian hormones.
Collapse
Affiliation(s)
- W E Schutzer
- Division of Reproductive Sciences, Oregon Regional Primate Research Center, Beaverton 97006, USA
| | | |
Collapse
|
32
|
Uysal H, Kuli P, Cağlar S, Inan LE, Akarsu ES, Palaoğlu O, Ayhan IH. Antiseizure activity of insulin: insulin inhibits pentylenetetrazole, penicillin and kainic acid-induced seizures in rats. Epilepsy Res 1996; 25:185-90. [PMID: 8956915 DOI: 10.1016/s0920-1211(96)00078-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The present study was undertaken to evaluate the antiseizure activity spectrum of insulin against various behavioral seizure models in rats. Insulin was injected intraperitoneally (i.p.) at a test dose of 1 U/kg. Dextrose (3 g/kg) was administered simultaneously with insulin to counteract its hypoglycemic effect and induce a normoglycemic state. Insulin was found to significantly decrease the incidence, intensity and mortality rate and prolong the latency of generalized tonic-clonic convulsions induced by pentylenetetrazole (60 mg/kg i.p.) and significantly decrease the intensity and mortality rate and prolong the latency of generalized tonic-clonic convulsions induced by penicillin (2000 U/intracerebrocortical). Insulin was not only found to prolong the latency of all the seizure components but was found to reduce the incidence of focal myoclonic twitches and generalized tonic-clonic convulsions induced by kainic acid (12 mg/kg i.p.) as well. Insulin was shown to be ineffective to suppress ouabain (5 micrograms/intracerebroventricular) induced seizures. These findings indicate that insulin possesses a broad spectrum of antiseizure activity in rats. Interaction with brain Na(+)-K(+)-ATPase has been discussed as a possible mechanism of action.
Collapse
Affiliation(s)
- H Uysal
- Ministry of Health Ankara Hospital, Clinic of Neurology, Turkey
| | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
The first rodent longevity study with the insulin-sensitizing nutrient chromium picolinate has reported a dramatic increase in both median and maximal lifespan. Although the observed moderate reductions in serum glucose imply a decreased rate of tissue glycation reactions, it is unlikely that this alone can account for the substantial impact on lifespan; an effect on central neurohormonal regulation can reasonably be suspected. Recent studies highlight the physiological role of insulin as a modulator of brain function. I postulate that aging is associated with a reduction of effective insulin activity in the brain, and this contributes to age-related alterations of hypothalamic functions that result in an 'older' neurohormonal milieu; consistent with this possibility, diabetes leads to changes of hypothalamic regulation analogous to those seen in normal aging. Conversely, promoting brain insulin activity with chromium picolinate may help to maintain the hypothalamus in a more functionally youthful state; increased hypothalamic catecholamine activity, sensitization of insulin-responsive central mechanisms regulating appetite and thermogenesis, and perhaps trophic effects on brain neurons may play a role in this regard. Since both the pineal gland and thymus are dependent on insulin activity, chromium may aid their function as well. Thus, the longevity effect of chromium picolinate may depend primarily on delay or reversal of various age-related changes in the body's hormonal and neural milieu. A more general strategy of hypothalamic 'rejuvenation' is proposed for extending healthful lifespan.
Collapse
|
34
|
McCarty MF. Enhancing central and peripheral insulin activity as a strategy for the treatment of endogenous depression--an adjuvant role for chromium picolinate? Med Hypotheses 1994; 43:247-52. [PMID: 7838010 DOI: 10.1016/0306-9877(94)90075-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Depression is often associated with insulin resistance, owing to cortisol overproduction; conversely, many studies suggest that diabetics are at increased risk for depression. Recent evidence indicates that insulin is transported through the blood-brain barrier and influences brain function via widely distributed insulin receptors on neurons. These receptors are particularly dense on catecholaminergic synaptic terminals, and, while effects are variable dependent on brain region, several studies indicate that insulin promotes central catecholaminergic activity, perhaps by inhibiting synaptic re-uptake of norepinephrine. Additionally, it is well known that insulin enhances serotonergic activity in increasing blood-brain barrier transport of tryptophan. Since impaired monoaminergic activity in key brain pathways is believed to play an etiological role in depression, techniques which promote effective insulin activity, both centrally and peripherally, may be therapeutically beneficial in this disorder. This may rationalize anecdotal reports of improved mood in clinical depressives and diabetics receiving the insulin-sensitizing nutrient chromium picolinate. This nutrient, perhaps in conjunction with other insulin-sensitizing measures such as low-fat diet and aerobic exercise training (already shown to be beneficial in depression), should be tested as an adjuvant for the treatment and secondary prevention of depression.
Collapse
|
35
|
Figlewicz DP, Szot P, Chavez M, Woods SC, Veith RC. Intraventricular insulin increases dopamine transporter mRNA in rat VTA/substantia nigra. Brain Res 1994; 644:331-4. [PMID: 8050044 DOI: 10.1016/0006-8993(94)91698-5] [Citation(s) in RCA: 138] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The hormone insulin can down-regulate the function and synthesis of the re-uptake transporter for norepinephrine (NET) in vivo and in vitro. In the present study we tested whether this action of insulin is generalized to another member of the catecholamine transporter family. We determined the level of dopamine transporter (DAT) mRNA expression in the ventral tegmental area (VTA)/substantia nigra compacta (SNc) of rats which were chronically treated with vehicle or insulin via the third cerebral ventricle (i.c.v.). DAT mRNA was significantly elevated in the VTA/SNc of rats treated with insulin, as compared with levels in vehicle-treated rats. This is in contrast to our previous observation that i.c.v. insulin decreases NET mRNA in the rat locus coeruleus, and suggests that insulin may have differential and specific modulatory effects on CNS catecholaminergic pathways.
Collapse
Affiliation(s)
- D P Figlewicz
- Department of Cell Biology, Oregon Health Sciences University, Portland 97201
| | | | | | | | | |
Collapse
|
36
|
Schwartz MW, Figlewicz DP, Woods SC, Porte D, Baskin DG. Insulin, neuropeptide Y, and food intake. Ann N Y Acad Sci 1993; 692:60-71. [PMID: 8215045 DOI: 10.1111/j.1749-6632.1993.tb26206.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- M W Schwartz
- Department of Medicine, University of Washington, Seattle 98195
| | | | | | | | | |
Collapse
|
37
|
Figlewicz DP, Szot P, Israel PA, Payne C, Dorsa DM. Insulin reduces norepinephrine transporter mRNA in vivo in rat locus coeruleus. Brain Res 1993; 602:161-4. [PMID: 8448653 DOI: 10.1016/0006-8993(93)90258-o] [Citation(s) in RCA: 91] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Acute and chronic in vitro insulin treatment can inhibit the uptake of norepinephrine (NE) by adult rat brain synaptosomes and slices, fetal neuronal cultures, and PC12 cells. In the present study we tested whether chronic in vivo insulin treatment could alter the biosynthetic capacity of rat locus coeruleus neurons for the NE transporter protein (NET). Chronic third ventricular insulin treatment resulted in a suppression of NET mRNA to about one third of the level of vehicle-treated controls. Our finding suggests that insulin may play a regulatory role in the synthesis of this transporter, thereby modulating activity in CNS noradrenergic pathways.
Collapse
Affiliation(s)
- D P Figlewicz
- Department of Psychology, University of Washington, Seattle 98195
| | | | | | | | | |
Collapse
|
38
|
Abstract
We have previously reported that insulin can enhance endogenous noradrenergic activity in vitro in the rat CNS. In the present study, we examined one potential mechanism underlying this effect: the ability of insulin to inhibit norepinephrine (NE) reuptake and secondarily increase its synaptic concentration. Acute (20 min) insulin treatment (0.1-10 nM) significantly inhibited specific 3H-norepinephrine uptake by rat hypothalamic slices. To ascertain whether this is a direct effect of insulin on cells that can synthesize and release norepinephrine, we studied NE uptake by the rat pheochromocytoma PC12 cell line. In PC12 cells, insulin (0.5-10 nM) inhibited NE uptake whereas the related peptide, insulin-like growth factor 1 (IGF-1), did not. Insulin did not compete with 3H-mazindol (a ligand for the NE reuptake transporter) binding to PC12 cell membranes. Thus, this effect of insulin is not due to interaction with either IGF-1 receptors or the norepinephrine transporter, but may be due to insulin interaction with its own receptor. Chronic (96-h) insulin treatment of PC12 cells also resulted in an inhibition of 3H-norepinephrine uptake, and membranes prepared from cells chronically treated with insulin bound less 3H-desipramine than control membranes. Thus, chronic insulin treatment may result in a decrease in the numbers of membrane-associated transporters. We conclude that insulin has a direct and physiological role in the modulation of synaptic norepinephrine levels by modulating reuptake by cells that synthesize and release norepinephrine.
Collapse
Affiliation(s)
- D P Figlewicz
- Department of Psychology, University of Washington, Seattle
| | | | | |
Collapse
|
39
|
Wozniak M, Rydzewski B, Baker SP, Raizada MK. The cellular and physiological actions of insulin in the central nervous system. Neurochem Int 1993; 22:1-10. [PMID: 8443563 DOI: 10.1016/0197-0186(93)90062-a] [Citation(s) in RCA: 159] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Insulin is a peptide hormone involved in the regulation of glucose homeostasis. Its synthesis and function in the peripheral tissues have been extensively studied and well understood. In contrast, demonstration of insulin in the brain has raised questions concerning its origin and physiological significance. In spite of extensive studies, the source of insulin present in the brain has not yet been conclusively identified. Evidence exists in support of both peripheral and central origins of this hormone in the brain. Recognized physiological effects of insulin in the central nervous system (CNS) include regulation of food intake, control of glucose uptake and trophic actions on neuronal and glial cells. These actions of insulin are mediated by insulin receptor resembling closely that in peripheral tissues and coupled with tyrosine kinase signal transduction pathway. In this review we will discuss theories concerning the origin of insulin in the CNS. In addition, we will present current information on both cellular and physiological effects of this hormone in the brain.
Collapse
Affiliation(s)
- M Wozniak
- Department of Physiology, University of Florida, College of Medicine, Gainesville 32610
| | | | | | | |
Collapse
|
40
|
Figlewicz DP, Szot P. Insulin stimulates membrane phospholipid metabolism by enhancing endogenous alpha 1-adrenergic activity in the rat hippocampus. Brain Res 1991; 550:101-7. [PMID: 1653632 DOI: 10.1016/0006-8993(91)90410-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Insulin stimulates membrane phospholipid metabolism and activates protein kinase C (PKC) in its peripheral target tissues. Additionally, insulin can stimulate PKC activity in cultured fetal chick neurons. In the present study, we tested whether insulin can stimulate membrane phospholipid metabolism in the rat hippocampus, a CNS region in which insulin has been reported to stimulate the phosphorylation of a PKC substrate protein and to suppress spontaneous electrical activity of pyramidal cells. Concentrations of 1, 10 and 100 nM insulin significantly stimulated the accumulation of [3H]inositol phosphate ([3H]IP1) and [3H]IP2 in hippocampal slices labelled with [3H]myoinositol. Significant (P less than 0.05) increases of hippocampal diacylglycerol (a product of phosphoinositol hydrolysis) content were observed at 1, 5 or 10 min of incubation with 50 or 100 nM insulin. Addition of tetrodotoxin resulted in a suppression of insulin stimulation of [3H]IP1 release, suggesting that insulin effects may be indirect and mediated via release of an endogenous neuronal transmitter within the hippocampus. Norepinephrine has been shown to both stimulate PI turnover and suppress the spontaneous electrical activity of pyramidal cells via alpha 1-adrenergic receptors. Therefore, we tested whether the effects of insulin were mediated by norepinephrine. We measured [3H]IP1 release in the presence or absence of the alpha 1-adrenergic antagonists prazobind and prazosin. These compounds blocked insulin stimulation of IP1 accumulation, suggesting that the action of insulin to stimulate PI turnover is secondary to enhancement of endogenous noradrenergic activity within the hippocampus.
Collapse
Affiliation(s)
- D P Figlewicz
- Department of Psychology, University of Washington, Seattle 98195
| | | |
Collapse
|
41
|
Unger JW, Moss AM, Livingston JN. Immunohistochemical localization of insulin receptors and phosphotyrosine in the brainstem of the adult rat. Neuroscience 1991; 42:853-61. [PMID: 1720228 DOI: 10.1016/0306-4522(91)90049-t] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Previous studies have demonstrated that insulin receptors are widely distributed throughout areas of the forebrain in the adult rat that are involved in modulating neuroendocrine functions and feeding behaviour. In addition, a recent investigation showed that there is a good correlation between the presence of the insulin receptor and phosphotyrosine-containing proteins in these regions, indicating a possible functional activity of insulin receptors in vivo. It is unknown whether neural connections between specific brainstem nuclei to forebrain regions may also be under direct regulation of insulin or related factors. In order to test this possibility, the distribution of insulin receptors and phosphotyrosine was mapped throughout the hindbrain of the adult rat by immunocytochemistry, using specific antibodies against the beta-subunit of the insulin receptor as well as against phosphotyrosine. Both markers showed a high degree of overlap throughout numerous distinct anatomical regions of the hindbrain. In the mesencephalon, insulin receptor and phosphotyrosine-positive neurons were found in the precommissural nucleus, the lateral and dorsal part of the central gray, the mammillary bodies and the interpeduncular nucleus. In addition, immunoreactivity was found in the subependymal layer around the aqueduct along fibres and nerve cells possibly contacting the cerebrospinal fluid. In the pons and medulla, dense immunoreactivity was seen in the lateral superior olive, nucleus of the solitary tract, spinal trigeminal nucleus and nucleus ambiguous. Scattered cells were found in the pontine and vestibular nuclei, as well as in the reticular formation. The cerebellum contained moderately dense immunoreactivity in the granule cell and molecular cell layer of the cortex, as well as in the deep cerebellar nuclei.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- J W Unger
- Department of Anatomy, University of Munich, F.R.G
| | | | | |
Collapse
|
42
|
Hefti F, Hartikka J, Knusel B. Function of neurotrophic factors in the adult and aging brain and their possible use in the treatment of neurodegenerative diseases. Neurobiol Aging 1989; 10:515-33. [PMID: 2682327 DOI: 10.1016/0197-4580(89)90118-8] [Citation(s) in RCA: 345] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This review summarizes the current knowledge of characterized neurotrophic factors, including nerve growth factor (NGF) which serves as paradigmatic example when studying novel molecules. Special consideration is given to the function of neurotrophic factors in the adult and aging brain. Strategies are discussed for the eventual development of pharmacological applications of these molecules in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- F Hefti
- Andrus Gerontology Center, University of Southern California, Los Angeles 90089-0191
| | | | | |
Collapse
|
43
|
Miñano FJ, Peinado JM, Myers RD. Profile of NE, DA and 5-HT activity shifts in medial hypothalamus perfused by 2-DG and insulin in the sated or fasted rat. Brain Res Bull 1989; 22:695-704. [PMID: 2660952 DOI: 10.1016/0361-9230(89)90089-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This study was carried out in the unrestrained rat to determine the nature of the in vivo profile of monoamine neurotransmitters within the medial hypothalamus in response to the presence of a glucoprivic or metabolic challenge to neurons within this region. In these experiments, insulin or 2-deoxy-D-glucose (2-DG) was applied locally to the paraventricular nucleus (PVN), dorsomedial nucleus (DMN) and ventromedial hypothalamus (VMH). In each of 11 Sprague-Dawley rats, a guide cannula was implanted stereotaxically to rest just above these structures. Upon recovery, a concentric push-pull cannula system was used to perfuse an artificial CSF within a medial hypothalamic site. The CSF was perfused at a rate of 20 microliters/min with a 5.0 min interval intervening between the collection of each 100 microliters sample. After the rat was fasted for 20-22 hr, either 10 micrograms/microliters 2-DG or 4.0 mU/microliters of insulin was incorporated into the control CSF medium and perfused at the same locus. The aliquots of hypothalamic perfusate were assayed by high performance liquid chromatography with electrochemical detection (HPLC-EC) for the respective concentration in pg/microliter of norepinephrine (NE), dopamine (DA), serotonin (5-HT) and each of their major metabolic products. When the rat was sated, 2-DG enhanced significantly the mean efflux of NE from the medial hypothalamus in comparison to control CSF values. However, under the fasted condition, 2-DG augmented the turnover of both the catecholamine and 5-HT as reflected by elevated levels of MHPG and 5-HIAA, respectively. On the other hand, insulin perfused within the same medial hypothalamic sites evoked a significant increase in the synthesis and release of DA from the sated rat, but did not alter its turnover. Following the interval of fast, insulin produced no immediate alteration in transmitter activity; however, in the interval following insulin's perfusion, DA and 5-HT turnover were enhanced while the efflux of 5-HT was suppressed. An analysis of the proportional values of the levels of the amines to each other revealed marked shifts in the relationships between the catechol- and indoleamine transmitters following local perfusion with both 2-DG and insulin. Overall, NE synthesis and turnover exceeded that of 5-HT following 2-DG, whereas DA predominated over NE and 5-HT during insulin's perfusion.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- F J Miñano
- Department of Pharmacology, School of Medicine, East Carolina University, Greenville, NC 27858
| | | | | |
Collapse
|
44
|
Adamo M, Raizada MK, LeRoith D. Insulin and insulin-like growth factor receptors in the nervous system. Mol Neurobiol 1989; 3:71-100. [PMID: 2553069 DOI: 10.1007/bf02935589] [Citation(s) in RCA: 166] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Insulin and the insulin-like growth factors (I and II) are homologous peptides essential to normal metabolism as well as growth. These peptide hormones are present in the brain, and, based on biosynthetic labeling studies as well as evidence for local gene expression, they are synthesized by nervous tissue as well as being taken up by the brain from the peripheral circulation. Furthermore, the presence of insulin and IGF receptors in the brain, on both neuronal and glial cells, also suggests a role for these peptides in the nervous system. Thus, these ligands affect brain electrical activity, either as neurotransmitters or as neuromodulators, altering the release and re-uptake of other neurotransmitters. The insulin and IGF-I and -II receptors found in the brain exhibit a lower molecular weight than corresponding receptors on peripheral tissues, primarily caused by alterations in glycosylation. Despite these alterations, both brain insulin and IGF-I receptors exhibit tyrosine kinase activity in cell-free systems, as do their peripheral counterparts. Brain insulin and IGF-I receptors are developmentally regulated, with the highest levels appearing in fetal or perinatal life. However, the altered glycosylation of brain receptors does not appear until late in fetal development. The receptors are widely distributed in the brain, but especially enriched in the circumventricular organs, choroid plexus, hypothalamus, cerebellum, and olfactory bulb. These studies on the insulin and IGF receptor in brain, add strong support to the suggestion that insulin and IGFs are important neuroactive substances, regulating growth, development, and metabolism in the brain.
Collapse
Affiliation(s)
- M Adamo
- Section of Molecular and Cellular Physiology, NIDDK, Bethesda, MD 20892
| | | | | |
Collapse
|
45
|
Unger J, McNeill TH, Moxley RT, White M, Moss A, Livingston JN. Distribution of insulin receptor-like immunoreactivity in the rat forebrain. Neuroscience 1989; 31:143-57. [PMID: 2771055 DOI: 10.1016/0306-4522(89)90036-5] [Citation(s) in RCA: 200] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Previous studies have suggested that insulin may play a role in the hormonal regulation of neurotransmitter metabolisms within the central nervous system. In order to provide additional information to support this hypothesis, we examined the distribution of insulin receptors within the forebrain of adult male rats. Insulin receptors were localized by immunocytochemistry, using an antibody directed against the carboxy-terminus of the beta-subunit of the insulin receptor. The antibody specificity was tested by immunoprecipitation of brain insulin receptors with antiserum and the purity of the receptor-antibody preparation was determined using hormone binding-assays with radiolabeled insulin and insulin-like growth factor-l. Insulin receptor-like immunoreactivity was found in a widespread, but selective, distribution on neurons throughout the rat forebrain. Double-labeling with glial fibrillary acidic protein did not demonstrate any detectable insulin receptor-like immunoreactivity on glial cells. Areas with the highest density of insulin receptor-like immunoreactivity were found in the olfactory bulbs, hypothalamus and median eminence, medial habenula, subthalamic nucleus, subfornical organ, CA 1/2 pyramidal cell layer of the hippocampus and piriform cortex. Double-staining of hypothalamic sections with somatostatin and vasopressin antisera revealed insulin receptor-like immunoreactivity on a subpopulation of somatostatin neurons in the periventricular region and on vasopressin neurons in the supraoptic nucleus. A moderately dense insulin receptor-like immunoreactivity was observed in layers II-IV of cerebral cortex, medial amygdala, reticular thalamic nucleus, zona incerta, and preoptic and septal regions, whereas a low density of insulin receptor-like immunoreactive neurons was found in basolateral amygdala and most thalamic regions. The basal ganglia and most parts of the thalamus were almost devoid of insulin receptor-like immunoreactivity. Our findings provide morphological support for a direct action of insulin on selected regions of the rat forebrain and suggest that the insulin receptor may modulate synaptic transmission or the release of neurotransmitters and peptide hormones in the CNS.
Collapse
Affiliation(s)
- J Unger
- Department of Neurology, University of Rochester School of Medicine and Dentistry, NY 14642
| | | | | | | | | | | |
Collapse
|