1
|
de Mello T, Argenta DF, Caon T. Revisiting the Effect of Aging on the Transport of Molecules through the Skin. Pharm Res 2024; 41:1031-1044. [PMID: 38740664 DOI: 10.1007/s11095-024-03710-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 04/30/2024] [Indexed: 05/16/2024]
Abstract
Both intrinsic and extrinsic aging lead to a series of morphological changes in the skin including the flattening of the dermal-epidermal junction, increased stratum corneum dryness, reduction in sebaceous gland activity and enzyme activity as well as atrophy of blood vessels. In this study, the impact of these changes on the transport of molecules through the skin was revised. The increase in the number of transdermal formulations on the market in recent decades and life expectancy represent the main reasons for an in-depth discussion of this topic. Furthermore, elderly subjects have often been excluded from clinical trials due to polypharmacy, raising concerns in terms of efficacy and safety. In this way, ex vivo and in vivo studies comparing the transport of molecules through the mature and young skin were analyzed in detail. The reduced water content in mature skin had a significant impact on the transport rate of hydrophilic molecules. The lower enzymatic activity in aged skin, in turn, would explain changes in the activation of prodrugs. Interestingly, greater deposition of nanoparticles was also found in mature skin. In vivo models should be prioritized in future experimental studies as they allow to evaluate both absorption and metabolism simultaneously, providing more realistic information.
Collapse
Affiliation(s)
- Tamires de Mello
- Laboratory of Cosmetic & Pharmaceutical Technology, Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Débora Fretes Argenta
- Laboratory of Cosmetic & Pharmaceutical Technology, Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Thiago Caon
- Laboratory of Cosmetic & Pharmaceutical Technology, Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil.
| |
Collapse
|
2
|
Gronich N. Central Nervous System Medications: Pharmacokinetic and Pharmacodynamic Considerations for Older Adults. Drugs Aging 2024; 41:507-519. [PMID: 38814377 PMCID: PMC11193826 DOI: 10.1007/s40266-024-01117-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2024] [Indexed: 05/31/2024]
Abstract
Most drugs have not been evaluated in the older population. Recognizing physiological alterations associated with changes in drug disposition and with the ultimate effect, especially in central nervous system-acting drugs, is fundamental. While considering pharmacokinetics, it should be noted that the absorption of most drugs from the gastrointestinal tract does not change in advanced age. There are only few data about the effect of age on the transdermal absorption of medications such as fentanyl. Absorption from an intramuscular injection may be similar in older adults as in younger patients. The distribution of lipophilic drugs (such as diazepam) is increased owing to a relative increase in the percentage of body fat, causing drug accumulation and prolonged drug elimination following cessation. Phase I drug biotransformation is variably decreased in aging, impacting elimination, and hepatic drug clearance has been shown to decrease in older individuals by 10-40% for most drugs studied. Lower doses of phenothiazines, butyrophenones, atypical antipsychotics, antidepressants (citalopram, mirtazapine, and tricyclic antidepressants), and benzodiazepines (such as diazepam) achieve the same extent of exposure. For renally cleared drugs with no prior metabolism (such as gabapentin), the glomerular filtration rate appropriately estimates drug clearance. Important pharmacodynamic changes in older adults include an increased sedative effect of benzodiazepines at a given drug exposure, and a higher sensitivity to mu opiate receptor agonists and to opioid adverse effects. Artificial intelligence, physiologically based pharmacokinetic modeling and simulation, and concentration-effect modeling enabling a differentiation between the pharmacokinetic and the pharmacodynamic effects of aging might help to close some of the gaps in knowledge.
Collapse
Affiliation(s)
- Naomi Gronich
- Department of Community Medicine and Epidemiology, Lady Davis Carmel Medical Center, Clalit Health Services, 7 Michal St, 3436212, Haifa, Israel.
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, 3200003, Haifa, Israel.
| |
Collapse
|
3
|
de Villiers P, Parker N, van Rensburg R, Goussard P, Marks C, Lorente VPF. Methamidophos poisoning: A paediatric case report. Toxicol Rep 2024; 12:18-22. [PMID: 38173652 PMCID: PMC10762317 DOI: 10.1016/j.toxrep.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/28/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
Methamidophos is a highly hazardous organophosphate and is known to cause an acute cholinergic toxidrome. Methamidophos use is not allowed in South Africa and therefore local data pertaining to methamidophos poisoning is very limited, with no paediatric clinical cases described. Methamidophos is an active metabolite of acephate, a commonly used organophosphate, registered for agricultural use in South Africa. We present a paediatric case of methamidophos poisoning with prolonged clinical effects. The patient experienced a prolonged cholinergic toxidrome lasting 10 days, with a period of near-full recovery during this time. We discuss the biological plausibility of the detected methamidophos being a byproduct of acephate. In addition, we highlight the importance of closer monitoring of patients with organophosphate poisoning in areas where acephate is commonly used.
Collapse
Affiliation(s)
- Pierre de Villiers
- Department of Paediatrics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Noor Parker
- Department of Paediatrics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Roland van Rensburg
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Pierre Goussard
- Department of Paediatrics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Carine Marks
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Veshni Pillay-Fuentes Lorente
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
4
|
Salave S, Patel P, Desai N, Rana D, Benival D, Khunt D, Thanawuth K, Prajapati BG, Sriamornsak P. Recent advances in dosage form design for the elderly: a review. Expert Opin Drug Deliv 2023; 20:1553-1571. [PMID: 37978899 DOI: 10.1080/17425247.2023.2286368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 11/17/2023] [Indexed: 11/19/2023]
Abstract
INTRODUCTION With the increase in the elderly population and the prevalence of multiple medical conditions, medication adherence, and efficacy have become crucial for the effective management of their health. The aging population faces unique challenges that need to be addressed through advancements in drug delivery systems and formulation technologies. AREAS COVERED The current review highlights the recent advances in dosage form design for older individuals, with consideration of their specific physiological and cognitive changes. Various dosage forms, such as modified-release tablets/capsules, chewable tablets, and transdermal patches, can be tailored to meet the specific needs of elderly patients. Advancements in drug delivery systems, such as nanotherapeutics, additive manufacturing (three-dimensional printing), and drug-food combinations, improve drug delivery and efficacy and overcome challenges, such as dysphagia and medication adherence. EXPERT OPINION Regulatory guidelines and considerations are crucial in ensuring the safe utilization of medications among older adults. Important factors to consider include geriatric-specific guidelines, safety considerations, labeling requirements, clinical trial considerations, and adherence and accessibility considerations.
Collapse
Affiliation(s)
- Sagar Salave
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | - Pranav Patel
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | - Nimeet Desai
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, India
| | - Dhwani Rana
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | - Derajram Benival
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | - Dignesh Khunt
- Graduate School of Pharmacy, Gujarat Technological University, Gandhinagar, Gujarat, India
| | | | - Bhupendra G Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Mehsana, India
| | - Pornsak Sriamornsak
- Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
- Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
5
|
Wang H, Wang H, Wang K, Xiong J, Huang S, Wolfson JM, Koutrakis P. Characterization of chemical transport in human skin and building material. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131917. [PMID: 37379590 DOI: 10.1016/j.jhazmat.2023.131917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/09/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023]
Abstract
Volatile organic compounds (VOCs) and semi-volatile organic compounds (SVOCs) are ubiquitous in indoor environment. They can emit from source into air, and subsequently penetrate human skin into blood through dermal uptake, causing adverse health effects. This study develops a two-layer analytical model to characterize the VOC/SVOC dermal uptake process, which is then extended to predict VOC emissions from two-layer building materials or furniture. Based on the model, the key transport parameters of chemicals in every skin or material layer are determined via a hybrid optimization method using data from experiments and literature. The measured key parameters of SVOCs for dermal uptake are more accurate than those from previous studies using empirical correlations. Moreover, the association between the absorption amount of studied chemicals into blood and age is preliminarily investigated. Further exposure analysis reveals that the contribution of dermal uptake to the total exposure can be comparable with that of inhalation for the examined SVOCs. This study makes the first attempt to accurately determine the key parameters of chemicals in skin, which is demonstrated to be critical for health risk assessment.
Collapse
Affiliation(s)
- Hao Wang
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Haimei Wang
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Keliang Wang
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jianyin Xiong
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Shaodan Huang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston 02115, United States.
| | - Jack M Wolfson
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston 02115, United States
| | - Petros Koutrakis
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston 02115, United States
| |
Collapse
|
6
|
Shahinfar S, Maibach H. In vitro percutaneous penetration test overview. Front Pharmacol 2023; 14:1102433. [PMID: 37388444 PMCID: PMC10300277 DOI: 10.3389/fphar.2023.1102433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 05/31/2023] [Indexed: 07/01/2023] Open
Abstract
Skin is a detailed, organized, and intricate niche in the human body. Topical and transdermal drugs are unique, in that their absorption is quite different from other routes of administration (oral, intramuscular, intravenous, etc.,.). A robust amount of research is required to approve the use of a drug-in vivo, in vitro, and ex vivo studies collectively help manufacturers and government agencies with approval of various compounds. Use of human and animal studies poses ethical and financial concerns, making samples difficult to use. In vitro and ex vivo methods have improved over the past several decades-results show relevance when compared to in vivo methods. The history of testing is discussed, followed by a detailed account of known complexities of skin and the current state of percutaneous penetration.
Collapse
Affiliation(s)
- Sheeva Shahinfar
- Texas A&M University School of Medicine, Bryan, TX, United States
| | | |
Collapse
|
7
|
Labarthe S, Dubourg K, Dimet J, Bauduer F. Assessment of barium diffusion from therapeutic mud wrapped in micro-perforated polyethylene bags towards the human organism. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2023; 67:887-895. [PMID: 37016191 DOI: 10.1007/s00484-023-02463-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 03/13/2023] [Accepted: 03/18/2023] [Indexed: 05/09/2023]
Abstract
Barium is present within the clay-derived therapeutic mud packs deposed on the patient's skin for treating some rheumatologic conditions. We studied in twenty-four young healthy volunteers the diffusion of Ba from mud wrapped in micro-perforated polyethylene bags and soaked in mineral water. No significant systematic increase in plasma or urine Ba levels was evidenced when comparing pre- and post-treatment samples using inductively-coupled plasma mass spectrometry. These levels were markedly inferior to the recommended thresholds in nearly all the participants. Noticeably variability in blood and especially urine Ba concentrations was large and mainly explained by environmental exposure (alimentation). Interestingly, we evidenced an intense Ba accumulation within the therapeutic mud at the end of the regimen. Because we chose a clay with one of the highest Ba content available in France for medical therapy and participants with an optimal transcutaneous diffusion capacity (young individuals with low-fat mass), we conclude unambiguously that there is no risk of Ba overexposure in patients receiving pelotherapy according to the procedure used in French medical spas.
Collapse
Affiliation(s)
- Sébastien Labarthe
- Institut du Thermalisme, Université de Bordeaux, Collège des sciences de la santé, 8 rue Sainte Ursule, 40100, Dax, France
| | - Karine Dubourg
- Institut du Thermalisme, Université de Bordeaux, Collège des sciences de la santé, 8 rue Sainte Ursule, 40100, Dax, France
| | - Jérôme Dimet
- Centre de Recherche Clinique, Groupement Hospitalier Territorial des Landes, 40000, Mont-de-Marsan, France
| | - Frédéric Bauduer
- Institut du Thermalisme, Université de Bordeaux, Collège des sciences de la santé, 8 rue Sainte Ursule, 40100, Dax, France.
| |
Collapse
|
8
|
Examining the Systemic Bioavailability of Cannabidiol and Tetrahydrocannabinol from a Novel Transdermal Delivery System in Healthy Adults: A Single-Arm, Open-Label, Exploratory Study. Adv Ther 2023; 40:282-293. [PMID: 36308640 PMCID: PMC9859876 DOI: 10.1007/s12325-022-02345-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 09/29/2022] [Indexed: 01/28/2023]
Abstract
INTRODUCTION Transdermal cannabinoids may provide better safety and bioavailability profiles compared with other routes of administration. This single-arm, open-label study investigated a novel topical transdermal delivery system on the pharmacokinetics of cannabidiol (CBD) and tetrahydrocannabinol (THC). METHODS Participants were 39.5 ± 7.37 years old and healthy, based on a review by the Medical Director. Blood was collected pre-dose and 10, 20, 30, and 45 min, and 1, 1.5, 2, 2.5, 3, 4, 5, 6, 8, and 12 h after topical application of 100 mg CBD:100 mg THC. Psychoactive effects were assessed prior to each timepoint. Area-under-the-curve (AUC0-12 h), maximum concentration (Cmax), time to maximum concentration (Tmax), area-under-the-curve to infinity (AUCI), terminal elimination rate constant (λ), terminal half-life (t½), and absorption rate constant (ka) were measured individually for CBD and THC. Safety was assessed by clinical chemistry, hematology, and adverse events. RESULTS AUC0-12 h for CBD and THC was 3329.8 ± 3252.1 and 2093.4 ± 2090.6 pg/mL/h, with Cmax of 576.52 ± 1016.18 and 346.57 ± 776.85 pg/mL, respectively. Tmax for CBD and THC was 8 h, ranging from 2.5 h to 12 h and 10 min to 12 h, respectively. AUCI for CBD and THC was 6609.2 ± 7056.4 and 3721.0 ± 3251.7 pg/mL/h, with t1/2 of 5.68 ± 1.5 and 5.38 ± 1.25 h, respectively. CBD was absorbed at a faster rate compared with THC (123.36 ± 530.97 versus 71.5 ± 1142.19 h-1) but with similar λ (0.12 ± 0.029 versus 0.13 ± 0.03 h-1). No psychoactive effects were reported. Transdermal cannabinoid delivery was safe and well tolerated in the population studied. CONCLUSION To our knowledge, this is the first pharmacokinetic study in humans that demonstrated CBD and THC entering systemic circulation via transdermal administration . This study represents an important contribution to understanding the pharmacokinetics of transdermal cannabinoids. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov Identifier-NCT05121506 (November 16, 2021).
Collapse
|
9
|
In-Vivo Tape Stripping Study with Caffeine for Comparisons on Body Sites, Age and Washing. Pharm Res 2022; 39:1935-1944. [PMID: 35725844 DOI: 10.1007/s11095-022-03311-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/02/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE Assessing the percutaneous absorption of cosmetic ingredients using in-vitro human skin reveals certain limitations, such as restricted anatomical sites and repeated exposure, and to overcome these issues, in-vivo studies are required. The aim of the study is to develop a robust non-invasive in-vivo protocol that should be applicable to a wide range of application. METHODS A robust tape stripping protocol was therefore designed according to recent recommendations, and the impact of two different washing procedures on caffeine distribution in tape strips was investigated to optimise the protocol. The optimised protocol was then used to study the effect of age and anatomical area on the percutaneous absorption of caffeine, including facial areas which are not readily available for in-vitro studies. RESULTS With tape stripping, a difference between the percutaneous absorption on the face (forehead, cheek) and the volar forearm was observed. No obvious difference was observed between percutaneous absorption in young and post-menopausal women, but this could be due to the limited number of subjects. CONCLUSION This tape stripping protocol is now to be deployed to address many other factors, such as percutaneous absorption in other anatomical areas (e.g. abdomen, axilla, etc.), impact of repeated applications and effect of formulation.
Collapse
|
10
|
Miller MA, Kasting GB. Absorption of solvent-deposited weak electrolytes and their salts through human skin in vitro. Int J Pharm 2022; 620:121753. [DOI: 10.1016/j.ijpharm.2022.121753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 11/29/2022]
|
11
|
Roberts MS, Cheruvu HS, Mangion SE, Alinaghi A, Benson HA, Mohammed Y, Holmes A, van der Hoek J, Pastore M, Grice JE. Topical drug delivery: History, percutaneous absorption, and product development. Adv Drug Deliv Rev 2021; 177:113929. [PMID: 34403750 DOI: 10.1016/j.addr.2021.113929] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/05/2021] [Accepted: 08/11/2021] [Indexed: 02/07/2023]
Abstract
Topical products, widely used to manage skin conditions, have evolved from simple potions to sophisticated delivery systems. Their development has been facilitated by advances in percutaneous absorption and product design based on an increasingly mechanistic understanding of drug-product-skin interactions, associated experiments, and a quality-by-design framework. Topical drug delivery involves drug transport from a product on the skin to a local target site and then clearance by diffusion, metabolism, and the dermal circulation to the rest of the body and deeper tissues. Insights have been provided by Quantitative Structure Permeability Relationships (QSPR), molecular dynamics simulations, and dermal Physiologically Based PharmacoKinetics (PBPK). Currently, generic product equivalents of reference-listed products dominate the topical delivery market. There is an increasing regulatory interest in understanding topical product delivery behavior under 'in use' conditions and predicting in vivo response for population variations in skin barrier function and response using in silico and in vitro findings.
Collapse
|
12
|
Brans R, John SM, Frosch PJ. Clinical Aspects of Irritant Contact Dermatitis. Contact Dermatitis 2021. [DOI: 10.1007/978-3-030-36335-2_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
Bayerl C. Topische Hormontherapie im Anti-Aging der Haut. Hautarzt 2020; 71:786-790. [DOI: 10.1007/s00105-020-04674-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Defraeye T, Bahrami F, Ding L, Malini RI, Terrier A, Rossi RM. Predicting Transdermal Fentanyl Delivery Using Mechanistic Simulations for Tailored Therapy. Front Pharmacol 2020; 11:585393. [PMID: 33117179 PMCID: PMC7550783 DOI: 10.3389/fphar.2020.585393] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 08/31/2020] [Indexed: 01/05/2023] Open
Abstract
Transdermal drug delivery is a key technology for administering drugs. However, most devices are “one-size-fits-all”, even though drug diffusion through the skin varies significantly from person-to-person. For next-generation devices, personalization for optimal drug release would benefit from an augmented insight into the drug release and percutaneous uptake kinetics. Our objective was to quantify the changes in transdermal fentanyl uptake with regards to the patient’s age and the anatomical location where the patch was placed. We also explored to which extent the drug flux from the patch could be altered by miniaturizing the contact surface area of the patch reservoir with the skin. To this end, we used validated mechanistic modeling of fentanyl diffusion, storage, and partitioning in the epidermis to quantify drug release from the patch and the uptake within the skin. A superior spatiotemporal resolution compared to experimental methods enabled in-silico identification of peak concentrations and fluxes, and the amount of stored drug and bioavailability. The patients’ drug uptake showed a 36% difference between different anatomical locations after 72 h, but there was a strong interpatient variability. With aging, the drug uptake from the transdermal patch became slower and less potent. A 70-year-old patient received 26% less drug over the 72-h application period, compared to an 18-year-old patient. Additionally, a novel concept of using micron-sized drug reservoirs was explored in silico. These reservoirs induced a much higher local flux (µg cm-2 h-1) than conventional patches. Up to a 200-fold increase in the drug flux was obtained from these small reservoirs. This effect was mainly caused by transverse diffusion in the stratum corneum, which is not relevant for much larger conventional patches. These micron-sized drug reservoirs open new ways to individualize reservoir design and thus transdermal therapy. Such computer-aided engineering tools also have great potential for in-silico design and precise control of drug delivery systems. Here, the validated mechanistic models can serve as a key building block for developing digital twins for transdermal drug delivery systems.
Collapse
Affiliation(s)
- Thijs Defraeye
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, St. Gallen, Switzerland
| | - Flora Bahrami
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, St. Gallen, Switzerland.,ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Lu Ding
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, St. Gallen, Switzerland.,Laboratory of Biomechanical Orthopedics, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Riccardo Innocenti Malini
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, St. Gallen, Switzerland
| | - Alexandre Terrier
- Laboratory of Biomechanical Orthopedics, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - René M Rossi
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, St. Gallen, Switzerland
| |
Collapse
|
15
|
Kim B, Cho HE, Moon SH, Ahn HJ, Bae S, Cho HD, An S. Transdermal delivery systems in cosmetics. BIOMEDICAL DERMATOLOGY 2020. [DOI: 10.1186/s41702-020-0058-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
AbstractTransdermal delivery systems have been intensively studied over the past 2 decades, with the focus on overcoming the skin barrier for more effective application of pharmaceutical and cosmetic products. Although the cosmeceutical industry has made a substantial progress in the development and incorporation of new and effective actives in their products, the barrier function of the skin remains a limiting factor in the penetration and absorption of these actives. Enhancement via modification of the stratum corneum by hydration, acting of chemical enhancers on the structure of stratum corneum lipids, and partitioning and solubility effects are described. This review summarizes the advances in the development and mechanisms of action of chemical components that act as permeation enhancers, as well as the advances in appropriate vehicles, such as gels, emulsions, and vesicular delivery systems, that can be used for effective transdermal delivery.
Collapse
|
16
|
Law RM, Ngo MA, Maibach HI. Twenty Clinically Pertinent Factors/Observations for Percutaneous Absorption in Humans. Am J Clin Dermatol 2020; 21:85-95. [PMID: 31677110 DOI: 10.1007/s40257-019-00480-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
At least 20 clinically relevant factors affect percutaneous absorption of drugs and chemicals: relevant physico-chemical properties, vehicle/formulation, drug exposure conditions (dose, duration, surface area, exposure frequency), skin appendages (hair follicles, glands) as sub-anatomical pathways, skin application sites (regional variation in penetration), population variability (premature, infants, and aged), skin surface conditions (hydration, temperature, pH), skin health and integrity (trauma, skin diseases), substantivity and binding to different skin components, systemic distribution and systemic toxicity, stratum corneum exfoliation, washing-off and washing-in, rubbing/massaging, transfer to others (human to human and hard surface to human), volatility, metabolic biotransformation/cutaneous metabolism, photochemical transformation and photosensitivity, excretion pharmacokinetics, lateral spread, and chemical method of determining percutaneous absorption.
Collapse
Affiliation(s)
- Rebecca M Law
- School of Pharmacy, Memorial University of Newfoundland, H3440, 300 Prince Phillip Dr., St. John's, NL, A1B 3V6, Canada.
- Department of Dermatology, UCSF School of Medicine, N461 2340 Sutter Street, San Francisco, CA, 94115, USA.
| | - Mai A Ngo
- California Department of Toxic Substances Control, 8800 Cal Center Drive, Sacramento, CA, 95826, USA
| | - Howard I Maibach
- Department of Dermatology, UCSF School of Medicine, N461 2340 Sutter Street, San Francisco, CA, 94115, USA
| |
Collapse
|
17
|
Hausmann C, Vogt A, Kerscher M, Ghoreschi K, Schäfer-Korting M, Zoschke C. Optimizing skin pharmacotherapy for older patients: the future is at hand but are we ready for it? Drug Discov Today 2020; 25:851-861. [PMID: 31987937 DOI: 10.1016/j.drudis.2020.01.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/04/2020] [Accepted: 01/16/2020] [Indexed: 02/06/2023]
Abstract
Age-related changes affect both the local pharmacotherapy of skin diseases and the transdermal administration of drugs. The development of aged skin models disregards the highly individual process of aging, facilitating general conclusions for older patients. Nevertheless, 'omics technology, high-content screening, and non-invasive imaging, as well as bioprinting, CRISPR-Cas, and, patients-on-a-chip, can retrieve personalized information for the generation of in vitro models. Herein, we suggest a strategy to optimize pharmacotherapy for older patients. The technology for relevant human cell-based models is at hand and the consideration of patient heterogeneity is required to unlock their full potential.
Collapse
Affiliation(s)
- Christian Hausmann
- Freie Universität Berlin, Institute of Pharmacy (Pharmacology & Toxicology), Königin-Luise-Strasse 2+4, 14195 Berlin, Germany
| | - Annika Vogt
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Dermatology, Venereology and Allergology, Charitéplatz 1, 10117 Berlin, Germany
| | - Martina Kerscher
- Universität Hamburg, Division of Biochemistry and Molecular Biology, Papendamm 21, 20146 Hamburg, Germany
| | - Kamran Ghoreschi
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Dermatology, Venereology and Allergology, Charitéplatz 1, 10117 Berlin, Germany
| | - Monika Schäfer-Korting
- Freie Universität Berlin, Institute of Pharmacy (Pharmacology & Toxicology), Königin-Luise-Strasse 2+4, 14195 Berlin, Germany
| | - Christian Zoschke
- Freie Universität Berlin, Institute of Pharmacy (Pharmacology & Toxicology), Königin-Luise-Strasse 2+4, 14195 Berlin, Germany.
| |
Collapse
|
18
|
Oh L, Yi S, Zhang D, Shin SH, Bashaw E. In Vitro Skin Permeation Methodology for Over-The-Counter Topical Dermatologic Products. Ther Innov Regul Sci 2019:2168479019875338. [PMID: 31581817 DOI: 10.1177/2168479019875338] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
For topically applied over-the-counter (OTC) products, the association of unwanted systemic exposure and adverse events may be difficult to ascertain without a recognition or determination of in vivo absorption. Evaluation of skin permeability using a validated in vitro permeation methodology can provide important information for both initial formulation selection and reformulation during the product life cycle. Additionally, a comparison of permeation rates between formulations using a validated methodology could reduce the number of nonclinical studies needed as part of reformulation. However, many in vitro permeation tests (IVPTs) have produced results with high variability and low reproducibility between study sites. It is unclear if this is due to a lack of a standardized protocol, or lack of control of multiple key experimental factors including skin source, preparation, receptor fluid, and study design. This review presents the authors perspective on the potential regulatory utility of IVPT and proposes steps to improve the accuracy and reproducibility of IVPT. The focus of this review is on topical dermatologic drugs with an initial emphasis on the OTC marketplace where reformulations are more common.
Collapse
Affiliation(s)
- Luke Oh
- US Food and Drug Administration, Center for Drug Evaluation and Research, Office of Clinical Pharmacology, Silver Spring, MD, USA
| | - Sojeong Yi
- US Food and Drug Administration, Center for Drug Evaluation and Research, Office of Clinical Pharmacology, Silver Spring, MD, USA
| | - Da Zhang
- US Food and Drug Administration, Center for Drug Evaluation and Research, Office of Clinical Pharmacology, Silver Spring, MD, USA
| | - Soo Hyeon Shin
- US Food and Drug Administration, Center for Drug Evaluation and Research, Office of Clinical Pharmacology, Silver Spring, MD, USA
| | - Edward Bashaw
- US Food and Drug Administration, Center for Drug Evaluation and Research, Office of Clinical Pharmacology, Silver Spring, MD, USA
| |
Collapse
|
19
|
Murakami Y, Sekijima H, Fujisawa Y, Ooi K. Adjustment of Conditions for Combining Oxybutynin Transdermal Patch with Heparinoid Cream in Mice by Analyzing Blood Concentrations of Oxybutynin Hydrochloride. Biol Pharm Bull 2019; 42:586-593. [DOI: 10.1248/bpb.b18-00690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yoshihito Murakami
- Sunai Pharmacy Co., Ltd
- Laboratory of Clinical Pharmacology, Graduate School of Pharmaceutical Sciences, Suzuka University of Medical Science
| | - Hidehisa Sekijima
- Department of Pharmaceutical Sciences, Suzuka University of Medical Science
| | - Yutaka Fujisawa
- Department of Pharmaceutical Sciences, Suzuka University of Medical Science
| | - Kazuya Ooi
- Laboratory of Clinical Pharmacology, Graduate School of Pharmaceutical Sciences, Suzuka University of Medical Science
- Department of Pharmaceutical Sciences, Suzuka University of Medical Science
| |
Collapse
|
20
|
Fibroblast origin shapes tissue homeostasis, epidermal differentiation, and drug uptake. Sci Rep 2019; 9:2913. [PMID: 30814627 PMCID: PMC6393472 DOI: 10.1038/s41598-019-39770-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 01/25/2019] [Indexed: 01/03/2023] Open
Abstract
Preclinical studies frequently lack predictive value for human conditions. Human cell-based disease models that reflect patient heterogeneity may reduce the high failure rates of preclinical research. Herein, we investigated the impact of primary cell age and body region on skin homeostasis, epidermal differentiation, and drug uptake. Fibroblasts derived from the breast skin of female 20- to 30-year-olds or 60- to 70-year-olds and fibroblasts from juvenile foreskin (<10 years old) were compared in cell monolayers and in reconstructed human skin (RHS). RHS containing aged fibroblasts differed from its juvenile and adult counterparts, especially in terms of the dermal extracellular matrix composition and interleukin-6 levels. The site from which the fibroblasts were derived appeared to alter fibroblast-keratinocyte crosstalk by affecting, among other things, the levels of granulocyte-macrophage colony-stimulating factor. Consequently, the epidermal expression of filaggrin and e-cadherin was increased in RHS containing breast skin fibroblasts, as were lipid levels in the stratum corneum. In conclusion, the region of the body from which fibroblasts are derived appears to affect the epidermal differentiation of RHS, while the age of the fibroblast donors determines the expression of proteins involved in wound healing. Emulating patient heterogeneity in preclinical studies might improve the treatment of age-related skin conditions.
Collapse
|
21
|
Brans R, John SM, Frosch PJ. Clinical Aspects of Irritant Contact Dermatitis. Contact Dermatitis 2019. [DOI: 10.1007/978-3-319-72451-5_16-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Chetty M, Johnson TN, Polak S, Salem F, Doki K, Rostami-Hodjegan A. Physiologically based pharmacokinetic modelling to guide drug delivery in older people. Adv Drug Deliv Rev 2018; 135:85-96. [PMID: 30189273 DOI: 10.1016/j.addr.2018.08.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 08/20/2018] [Accepted: 08/30/2018] [Indexed: 01/10/2023]
Abstract
Older patients are generally not included in Phase 1 clinical trials despite being the population group who use the largest number of prescription medicines. Physiologically based pharmacokinetic (PBPK) modelling provides an understanding of the absorption and disposition of drugs in older patients. In this review, PBPK models used for the prediction of absorption and exposure of drugs after parenteral, oral and transdermal administration are discussed. Comparisons between predicted drug pharmacokinetics (PK) and observed PK are presented to illustrate the accuracy of the predictions by the PBPK models and their potential use in informing clinical trial design and dosage adjustments in older patients. In addition, a case of PBPK modelling of a bioequivalence study on two controlled release products is described, where PBPK predictions reproduced the study showing bioequivalence in healthy volunteers but not in older subjects with achlorhydria, indicating further utility in prospectively identifying challenges in bioequivalence studies.
Collapse
Affiliation(s)
- Manoranjenni Chetty
- Simcyp Ltd (a Certara company), Blades Enterprise Centre, John Street, Sheffield, UK.
| | - Trevor N Johnson
- Simcyp Ltd (a Certara company), Blades Enterprise Centre, John Street, Sheffield, UK
| | - Sebastian Polak
- Simcyp Ltd (a Certara company), Blades Enterprise Centre, John Street, Sheffield, UK; Unit of Pharmacoepidemiology and Pharmacoeconomics, Department of Social Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 Str., 30-688 Cracow, Poland
| | - Farzaneh Salem
- Simcyp Ltd (a Certara company), Blades Enterprise Centre, John Street, Sheffield, UK
| | - Kosuke Doki
- Department of Pharmaceutical Sciences, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan; Centre for Applied Pharmacokinetic Research (CAPKR), University of Manchester, Manchester, UK
| | - Amin Rostami-Hodjegan
- Simcyp Ltd (a Certara company), Blades Enterprise Centre, John Street, Sheffield, UK; Centre for Applied Pharmacokinetic Research (CAPKR), University of Manchester, Manchester, UK
| |
Collapse
|
23
|
Khan MS, Roberts MS. Challenges and innovations of drug delivery in older age. Adv Drug Deliv Rev 2018; 135:3-38. [PMID: 30217519 DOI: 10.1016/j.addr.2018.09.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 08/31/2018] [Accepted: 09/07/2018] [Indexed: 12/12/2022]
Abstract
Both drug delivery performance and various age-related physical, mental and physiological changes can affect drug effectiveness and safety in elderly patients. The many drug delivery systems developed over the years include recent novel transdermal, nasal, pulmonary and orally disintegrating tablets that provide consistent, precise, timely and more targeted drug delivery. Certain drug delivery systems may be associated with suboptimal outcomes in the elderly because of the nature of drug present, a lack of appreciation of the impact of age-related changes in drug absorption, distribution and clearance, the limited availability of pharmacokinetic, safety and clinical data. Polypharmacy, patient morbidity and poor adherence can also contribute to sub-optimal drug delivery systems outcomes in the elderly. The development of drug delivery systems for the elderly is a poorly realised opportunity, with each system having specific advantages and limitations. A key challenge is to provide the innovation that best meets the specific physiological, psychological and multiple drug requirements of individual elderly patients.
Collapse
|
24
|
Mazzarello V, Ferrari M, Ena P. Werner syndrome: quantitative assessment of skin aging. Clin Cosmet Investig Dermatol 2018; 11:397-402. [PMID: 30122969 PMCID: PMC6078079 DOI: 10.2147/ccid.s167942] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background Werner syndrome (WS) is a rare autosomal recessive disorder characterized by premature aging in adults. Although not sufficient to diagnose WS, persistent short stature and alteration of the dentition are among the few early signs that appear at puberty and can lead to a suspected diagnosis. Objective The study aimed at quantifying the signs of WS skin aging through biophysical parameters to find new parameters to be applied together with clinical observations in order to diagnose the disease early. Patients and methods The skin disorders induced by the disease were studied using noninvasive techniques: Tewameter TM300, Corneometer CM825, Skin-pH-Meter PH900, Mexameter MX16, Visioscan VC98, and Cutometer MPA580. Twenty-four patients divided into young group, WS group, and elderly group were recruited for the study. Results The WS skin is quite similar to aged skin, with some differences concerning the barrier function and skin elasticity; for instance, a WS patient of 30 years of age has the same skin roughness of a 50/60 years old subject with a more severe skin condition leading to higher dryness, high transepidermal water loss, and less distensibility correlating with skin indurations. Conclusion In patients with WS, the biophysical parameters can quantify the damage induced on the skin by the disease. In order to stage the degree of the disease, biophysical parameters could be used in the future as a diagnostic procedure in the initial stages of the disease as they may reveal lesions not yet clinically perceptible or in advanced stages.
Collapse
Affiliation(s)
- Vittorio Mazzarello
- Skinlab, Department of Biomedical Sciences, University of Sassari, Sassari, Italy,
| | - Marco Ferrari
- Skinlab, Department of Biomedical Sciences, University of Sassari, Sassari, Italy,
| | - Pasquale Ena
- Skinlab, Department of Biomedical Sciences, University of Sassari, Sassari, Italy,
| |
Collapse
|
25
|
Age related depth profiles of human Stratum Corneum barrier-related molecular parameters by confocal Raman microscopy in vivo. Mech Ageing Dev 2018; 172:6-12. [DOI: 10.1016/j.mad.2017.08.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 08/19/2017] [Indexed: 12/20/2022]
|
26
|
Schwingenschuh S, Scharfetter H, Martinsen ØG, Boulgaropoulos B, Augustin T, Tiffner KI, Dragatin C, Raml R, Hoefferer C, Prandl EC, Sinner F, Hajnsek M. Assessment of skin permeability to topically applied drugs by skin impedance and admittance. Physiol Meas 2017; 38:N138-N150. [PMID: 28967873 DOI: 10.1088/1361-6579/aa904e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Pharmacokinetic and pharmacodynamic studies of topically applied drugs are commonly performed by sampling of interstitial fluid with dermal open flow microperfusion and subsequent analysis of the samples. However, the reliability of results from the measured concentration-time profile of the penetrating drug suffers from highly variable skin permeability to topically applied drugs that is mainly caused by inter- and intra-subject variations of the stratum corneum. Thus, statistically significant results can only be achieved by performing high numbers of experiments. To reduce the expenditures needed for such high experiment numbers we aimed to assess the correlation between skin permeability and skin impedance/skin admittance. APPROACH We performed an ex vivo drug penetration study with human skin, based on the hypothesis that inter-subject variations of the respective concentration-time profiles can be correlated with variations of the passive electrical properties of the skin. Therefore, skin impedance and skin admittance were related to the skin permeability to the model drug Clobetasol-17-proprionate. MAIN RESULTS The measured low frequency skin impedance and the skin admittance correlated linearly with the drug concentration-time profiles from dermal sampling. SIGNIFICANCE Skin permeability can be assessed by measuring the passive electrical properties of the skin, which enables correction of skin permeability variations. This allows reduction of experiment numbers in future pharmacokinetic and pharmacodynamic studies with human skin ex vivo and in vivo and leads to diminished study costs.
Collapse
Affiliation(s)
- Simon Schwingenschuh
- Joanneum Research, HEALTH-Institute for Biomedicine and Health Sciences, Graz, Austria
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Bramante M. Safety Evaluation in the Elderly via Dermatological Exposure. TEXTBOOK OF AGING SKIN 2017:1443-1455. [DOI: 10.1007/978-3-662-47398-6_81] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
28
|
Löwenau LJ, Zoschke C, Brodwolf R, Volz P, Hausmann C, Wattanapitayakul S, Boreham A, Alexiev U, Schäfer-Korting M. Increased permeability of reconstructed human epidermis from UVB-irradiated keratinocytes. Eur J Pharm Biopharm 2016; 116:149-154. [PMID: 28034807 DOI: 10.1016/j.ejpb.2016.12.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 10/25/2016] [Accepted: 12/23/2016] [Indexed: 01/08/2023]
Abstract
Extrinsic (photo) aging accelerates chronologically aging in the skin due to cumulative UV irradiation. Despite recent insights into the molecular mechanisms of fibroblast aging, age-related changes of the skin barrier function have been understudied. In contrast, the constantly increasing subpopulation of aged patients causes a clinical need for effective and safe (dermatological) treatment. Herein, we reconstructed human epidermis from UVB-irradiated keratinocytes (UVB-RHE). UVB-irradiated keratinocytes show higher activity of senescence associated β-galactosidase, less cell proliferation, and reduced viability. Higher amounts of β-galactosidase are also detectable in UVB-RHE. Moreover, UVB-RHE release more interleukin-1α and -8 into the culture medium and present altered differentiation with a thinner stratum corneum compared to normal RHE. For the first time, the permeation of testosterone and caffeine through UVB-irradiated RHE indicate a clear influence of the UVB stress on the skin barrier function. Impaired barrier function was confirmed by the increased permeation of testosterone and caffeine as well as by the increased penetration of dendritic core-multishell nanocarriers into the constructs. Taken together, UVB-RHE emulate hallmarks of skin aging and might contribute to an improved non-clinical development of medicinal or cosmetic products.
Collapse
Affiliation(s)
- Lilian Julia Löwenau
- Institute for Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany
| | - Christian Zoschke
- Institute for Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany
| | - Robert Brodwolf
- Institute of Experimental Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Pierre Volz
- Institute of Experimental Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Christian Hausmann
- Institute for Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany
| | - Suvara Wattanapitayakul
- Institute for Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany
| | - Alexander Boreham
- Institute of Experimental Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Ulrike Alexiev
- Institute of Experimental Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Monika Schäfer-Korting
- Institute for Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany.
| |
Collapse
|
29
|
Ishida M, Takeuchi H, Endo H, Yamaguchi JI. Impact of Humidity on In Vitro Human Skin Permeation Experiments for Predicting In Vivo Permeability. J Pharm Sci 2015; 104:4223-4231. [DOI: 10.1002/jps.24656] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 09/03/2015] [Accepted: 09/03/2015] [Indexed: 11/09/2022]
|
30
|
Weschler CJ, Bekö G, Koch HM, Salthammer T, Schripp T, Toftum J, Clausen G. Transdermal Uptake of Diethyl Phthalate and Di(n-butyl) Phthalate Directly from Air: Experimental Verification. ENVIRONMENTAL HEALTH PERSPECTIVES 2015; 123:928-34. [PMID: 25850107 PMCID: PMC4590762 DOI: 10.1289/ehp.1409151] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 04/03/2015] [Indexed: 05/20/2023]
Abstract
BACKGROUND Fundamental considerations indicate that, for certain phthalate esters, dermal absorption from air is an uptake pathway that is comparable to or greater than inhalation. Yet this pathway has not been experimentally evaluated and has been largely overlooked when assessing uptake of phthalate esters. OBJECTIVES This study investigated transdermal uptake, directly from air, of diethyl phthalate (DEP) and di(n-butyl) phthalate (DnBP) in humans. METHODS In a series of experiments, six human participants were exposed for 6 hr in a chamber containing deliberately elevated air concentrations of DEP and DnBP. The participants either wore a hood and breathed air with phthalate concentrations substantially below those in the chamber or did not wear a hood and breathed chamber air. All urinations were collected from initiation of exposure until 54 hr later. Metabolites of DEP and DnBP were measured in these samples and extrapolated to parent phthalate intakes, corrected for background and hood air exposures. RESULTS For DEP, the median dermal uptake directly from air was 4.0 μg/(μg/m(3) in air) compared with an inhalation intake of 3.8 μg/(μg/m(3) in air). For DnBP, the median dermal uptake from air was 3.1 μg/(μg/m(3) in air) compared with an inhalation intake of 3.9 μg/(μg/m(3) in air). CONCLUSIONS This study shows that dermal uptake directly from air can be a meaningful exposure pathway for DEP and DnBP. For other semivolatile organic compounds (SVOCs) whose molecular weight and lipid/air partition coefficient are in the appropriate range, direct absorption from air is also anticipated to be significant.
Collapse
Affiliation(s)
- Charles J Weschler
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Understanding age-induced alterations to the biomechanical barrier function of human stratum corneum. J Dermatol Sci 2015; 80:94-101. [PMID: 26276440 DOI: 10.1016/j.jdermsci.2015.07.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 07/23/2015] [Accepted: 07/29/2015] [Indexed: 11/22/2022]
Abstract
BACKGROUND The appearance and function of human skin are dramatically altered with aging, resulting in higher rates of severe xerosis and other skin complaints. The outermost layer of the epidermis, the stratum corneum (SC), is responsible for the biomechanical barrier function of skin and is also adversely transformed with age. With age the keratin filaments within the corneocytes are prone to crosslinking, the amount of intercellular lipids decreases resulting in fewer lipid bilayers, and the rate of corneocyte turnover decreases. OBJECTIVES The effect of these structural changes on the mechanical properties of the SC has not been determined. Here we determine how several aspects of the SC's mechanical properties are dramatically degraded with age. METHODS We performed a range of biomechanical experiments, including micro-tension, bulge, double cantilever beam, and substrate curvature testing on abdominal stratum corneum from cadaveric female donors ranging in age from 29 to 93 years old. RESULTS We found that the SC stiffens with age, indicating that the keratin fibers stiffen, similarly to collagen fibers in the dermis. The cellular cohesion also increases with age, a result of the altered intercellular lipid structure. The kinetics of water movement through the SC is also decreased. CONCLUSIONS Our results indicate that the combination of structural and mechanical property changes that occur with age are quite significant and may contribute to the prevalence of skin disorders among the elderly.
Collapse
|
32
|
Topical and transdermal delivery of caffeine. Int J Pharm 2015; 490:155-64. [PMID: 26004004 DOI: 10.1016/j.ijpharm.2015.05.050] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 05/17/2015] [Accepted: 05/18/2015] [Indexed: 11/23/2022]
Abstract
Caffeine is administered topically and transdermally for a variety of pharmaceutical and cosmetic applications and it is also used as a model hydrophilic compound in dermal risk assessment studies. This review considers the physicochemical and permeation properties of caffeine with reference to its delivery to and through the skin. Since it has been used as a model compound the findings have implications for the delivery of many hydrophilic compounds having similar properties. Various passive and active formulation strategies to promote enhanced skin permeation of caffeine are considered. Models to study percutaneous caffeine penetration are also discussed in detail.
Collapse
|
33
|
Affiliation(s)
| | - Sarah N Hilmer
- Royal North Shore Hospital, and Sydney Medical School; The University of Sydney; Sydney New South Wales
| |
Collapse
|
34
|
Analysis of gene expression dynamics revealed delayed and abnormal epidermal repair process in aged compared to young skin. Arch Dermatol Res 2015; 307:351-64. [PMID: 25740152 PMCID: PMC4409645 DOI: 10.1007/s00403-015-1551-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 01/09/2015] [Accepted: 02/15/2015] [Indexed: 11/04/2022]
Abstract
With aging, epidermal homeostasis and barrier function are disrupted. In a previous study, we analyzed the transcriptomic response of young skin epidermis after stratum corneum removal, and obtained a global kinetic view of the molecular processes involved in barrier function recovery. In the present study, the same analysis was performed in aged skin in order to better understand the defects which occur with aging. Thirty healthy male volunteers (67 ± 4 years old) were involved. Tape-strippings were carried out on the inner face of one forearm, the other unstripped forearm serving as control. At 2, 6, 18, 30 and 72 h after stripping, TEWL measurements were taken, and epidermis samples were collected. Total RNA was extracted and analyzed using DermArray® cDNA microarrays. The results highlighted that barrier function recovery and overall kinetics of gene expression were delayed following stripping in aged skin. Indeed, the TEWL measurements showed that barrier recovery in the young group appeared to be dramatically significant during the overall kinetics, while there were no significant evolution in the aged group until 30 h. Moreover, gene expression analysis revealed that the number of modulated genes following tape stripping increased as a function of time and reached a peak at 6 h after tape stripping in young skin, while it was at 30 h in aged skin, showing that cellular activity linked to the repair process may be engaged earlier in young epidermis than in aged epidermis. A total of 370 genes were modulated in the young group. In the aged group, 382 genes were modulated,
whose 184 were also modulated in the young group. Only eight genes that were modulated in both groups were significantly differently modulated. The characterization of these genes into 15 functional families helped to draw a scenario for the aging process affecting epidermal repair capacity.
Collapse
|
35
|
Transdermal delivery of testosterone. Eur J Pharm Biopharm 2015; 92:42-8. [PMID: 25709060 DOI: 10.1016/j.ejpb.2015.02.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 02/05/2015] [Accepted: 02/11/2015] [Indexed: 10/24/2022]
Abstract
Male hypogonadism has been treated with exogenous testosterone since the 1930s. The early transdermal patches of testosterone became available in the 1980s with gel and solution preparations following subsequent decades. This review focusses on the skin permeation characteristics of testosterone, pharmacokinetics following application of transdermal formulations and formulations currently available. At present, gels dominate the market for transdermal testosterone replacement therapy, presumably because of their greater patient acceptability and non-occlusive nature compared with patches. However, specific incidences of secondary transfer of gels to children with consequent unwanted effects such as precocious puberty have been reported. A regulatory review of all testosterone replacement therapies is currently underway which may have implications for future prescribing practices of transdermal testosterone products.
Collapse
|
36
|
In vitro permeation of platinum through African and Caucasian skin. Toxicol Lett 2015; 232:566-72. [DOI: 10.1016/j.toxlet.2014.12.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 12/11/2014] [Accepted: 12/12/2014] [Indexed: 02/06/2023]
|
37
|
Reeve E, Wiese MD, Mangoni AA. Alterations in drug disposition in older adults. Expert Opin Drug Metab Toxicol 2015; 11:491-508. [DOI: 10.1517/17425255.2015.1004310] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
38
|
So J, Ahn J, Lee TH, Park KH, Paik MK, Jeong M, Cho MH, Jeong SH. Comparison of international guidelines of dermal absorption tests used in pesticides exposure assessment for operators. Toxicol Res 2015; 30:251-60. [PMID: 25584144 PMCID: PMC4289925 DOI: 10.5487/tr.2014.30.4.251] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 11/30/2014] [Accepted: 12/04/2014] [Indexed: 11/20/2022] Open
Abstract
The number of farmers who have suffered from non-fatal acute pesticide poisoning has been reported to vary from 5.7% to 86.7% in South Korea since 1975. Absorption through the skin is the main route of exposure to pesticides for farmers who operate with them. Several in vitro tests using the skins of humans or animal and in vivo tests using laboratory animals are introduced for the assessment of human dermal absorption level of pesticides. The objective of this study is to evaluate and compare international guidelines and strategies of dermal absorption assessments and to propose unique approaches for applications into pesticide registration process in our situation. Until present in our situation, pesticide exposure level to operator is determined just using default value of 10 as for skin absorption ratio because of data shortage. Dermal absorption tests are requested to get exposure level of pesticides and to ultimately know the safety of pesticides for operators through the comparison with the value of AOEL. When the exposure level is higher than AOEL, the pesticide cannot be approved. We reviewed the skin absorption test guidelines recommended by OECD, EFSA and EPA. The EPA recommends assessment of skin absorption of pesticides for humans through the TPA which includes all the results of in vitro human and animal and animal in vivo skin absorption studies. OECD and EFSA, employ a tiered approach, which the requirement of further study depends on the results of the former stage study. OECD guidelines accept the analysis of pesticide level absorbed through skin without radioisotope when the recovery using the non-labeled method is within 80~120%. Various factors are reviewed in this study, including the origin of skin (gender, animal species and sites of skin), thickness, temperature and, etc., which can influence the integrity of results.
Collapse
Affiliation(s)
- Jaehwan So
- Department of Applied Biotoxicology, Hoseo University, Asan, Korea
| | - Junyoung Ahn
- Department of Applied Biotoxicology, Hoseo University, Asan, Korea
| | - Tae-Hee Lee
- Department of Applied Biotoxicology, Hoseo University, Asan, Korea
| | - Kyung-Hun Park
- National Institute of Agricultural Science, RDA, Jeonju, Korea
| | - Min-Kyoung Paik
- National Institute of Agricultural Science, RDA, Jeonju, Korea
| | - Mihye Jeong
- National Institute of Agricultural Science, RDA, Jeonju, Korea
| | - Myung-Haing Cho
- Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Sang-Hee Jeong
- Department of Applied Biotoxicology, Hoseo University, Asan, Korea
| |
Collapse
|
39
|
Bramante M. Safety Evaluation in the Elderly via Dermatological Exposure. TEXTBOOK OF AGING SKIN 2015:1-13. [DOI: 10.1007/978-3-642-27814-3_81-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 11/16/2015] [Indexed: 09/02/2023]
|
40
|
Gajewska M, Paini A, Sala Benito JV, Burton J, Worth A, Urani C, Briesen H, Schramm KW. In vitro-to-in vivo correlation of the skin penetration, liver clearance and hepatotoxicity of caffeine. Food Chem Toxicol 2014; 75:39-49. [PMID: 25455898 DOI: 10.1016/j.fct.2014.10.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 10/13/2014] [Accepted: 10/14/2014] [Indexed: 11/29/2022]
Abstract
This work illustrates the use of Physiologically-Based Toxicokinetic (PBTK) modelling for the healthy Caucasian population in in vitro-to-in vivo correlation of kinetic measures of caffeine skin penetration and liver clearance (based on literature experiments), as well as dose metrics of caffeine-induced measured HepaRG toxicity. We applied a simple correlation factor to quantify the in vitro and in vivo differences in the amount of caffeine permeated through the skin and concentration-time profiles of caffeine in the liver. We developed a multi-scale computational approach by linking the PBTK model with a Virtual Cell-Based Assay to relate an external oral and dermal dose with the measured in vitro HepaRG cell viability. The results revealed higher in vivo skin permeation profiles than those determined in vitro using identical exposure conditions. Liver clearance of caffeine derived from in vitro metabolism rates was found to be much slower than the optimised in vivo clearance with respect to caffeine plasma concentrations. Finally, HepaRG cell viability was shown to remain almost unchanged for external caffeine doses of 5-400 mg for both oral and dermal absorption routes. We modelled single exposure to caffeine only.
Collapse
Affiliation(s)
- M Gajewska
- Systems Toxicology Unit, EURL ECVAM, Institute for Health and Consumer Protection, European Commission, Joint Research Centre, Ispra, VA 21027, Italy; Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt, Department für Biowissenschaften, TUM, Weihenstephaner Steig 23, Freising 85350, Germany.
| | - A Paini
- Systems Toxicology Unit, EURL ECVAM, Institute for Health and Consumer Protection, European Commission, Joint Research Centre, Ispra, VA 21027, Italy
| | - J V Sala Benito
- Systems Toxicology Unit, EURL ECVAM, Institute for Health and Consumer Protection, European Commission, Joint Research Centre, Ispra, VA 21027, Italy
| | - J Burton
- Systems Toxicology Unit, EURL ECVAM, Institute for Health and Consumer Protection, European Commission, Joint Research Centre, Ispra, VA 21027, Italy
| | - A Worth
- Systems Toxicology Unit, EURL ECVAM, Institute for Health and Consumer Protection, European Commission, Joint Research Centre, Ispra, VA 21027, Italy
| | - C Urani
- Department of Earth and Environmental Sciences, University of Milano Bicocca, Piazza della Scienza 1, Milano, Italy
| | - H Briesen
- Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt, Lehrstuhl für Systemverfahrenstechnik, TUM, Weihenstephaner Steig 23, Freising 85350, Germany
| | - K-W Schramm
- Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt, Department für Biowissenschaften, TUM, Weihenstephaner Steig 23, Freising 85350, Germany; Molecular EXposomics (MEX), Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Ingolstädter Landstr.1, Neuherberg D-85764, Germany
| |
Collapse
|
41
|
Holmgaard R, Benfeldt E, Sorensen JA, Nielsen JB. Chronological age affects the permeation of fentanyl through human skin in vitro. Skin Pharmacol Physiol 2013; 26:155-9. [PMID: 23736084 DOI: 10.1159/000348876] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 02/11/2013] [Indexed: 11/19/2022]
Abstract
AIM To study the influence of chronological age on fentanyl permeation through human skin in vitro using static diffusion cells. Elderly individuals are known to be more sensitive to opioids and obtain higher plasma concentrations following dermal application of fentanyl compared to younger individuals. The influence of age - as an isolated pharmacokinetic term - on the absorption of fentanyl has not been previously studied. METHOD Human skin from 30 female donors was mounted in static diffusion cells, and samples were collected during 48 h. Donors were divided into three age groups: <30 years of age (n = 6), ≥30 and <60 years of age (n = 18) and ≥60 years of age (n = 6). RESULTS The youngest group had a significantly higher mean absorption (3,100 ng/cm(2)) than the two other groups (2,000 and 1,475 ng/cm(2), respectively) and a significant larger AUC (young age group: 9,393 ng; middle and old age groups: 5,922 and 4,050 ng, respectively). Furthermore, the lag time and absorption rate were different between the three groups, with a significantly higher rate in the young participants versus the oldest participants. CONCLUSION We demonstrate that fentanyl permeates the skin of young individuals in greater amounts and at a higher absorption rate than in middle-aged and old individuals in vitro.
Collapse
Affiliation(s)
- R Holmgaard
- Department of Plastic Surgery, University of Copenhagen, Roskilde Sygehus, Roskilde, Denmark.
| | | | | | | |
Collapse
|
42
|
Desai PR, Cormier AR, Shah PP, Patlolla RR, Paravastu AK, Singh M. (31)P solid-state NMR based monitoring of permeation of cell penetrating peptides into skin. Eur J Pharm Biopharm 2013; 86:190-9. [PMID: 23702274 DOI: 10.1016/j.ejpb.2013.05.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Revised: 03/19/2013] [Accepted: 05/06/2013] [Indexed: 11/18/2022]
Abstract
The main objective of the current study was to investigate penetration of cell penetrating peptides (CPPs: TAT, R8, R11, and YKA) through skin intercellular lipids using (31)P magic angle spinning (MAS) solid-state NMR. In vitro skin permeation studies were performed on rat skin, and sections (0-60, 61-120, and 121-180μm) were collected and analyzed for (31)P NMR signal. The concentration-dependent shift of 0, 25, 50, 100, and 200mg/ml of TAT on skin layers, diffusion of TAT, R8, R11, and YKA in the skin and time dependent permeation of R11 was measured on various skin sections using (31)P solid-state NMR. Further, CPPs and CPP-tagged fluorescent dye encapsulate liposomes (FLip) in skin layers were tagged using confocal microscopy. The change in (31)P NMR chemical shift was found to depend monotonically on the amount of CPP applied on skin, with saturation behavior above 100mg/ml CPP concentration. R11 and TAT caused more shift in solid-state NMR peaks compared to other peptides. Furthermore, NMR spectra showed R11 penetration up to 180μm within 30min. The results of the solid-state NMR study were in agreement with confocal microscopy studies. Thus, (31)P solid-state NMR can be used to track CPP penetration into different skin layers.
Collapse
Affiliation(s)
- Pinaki R Desai
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, USA
| | - Ashley R Cormier
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, USA; National High Magnetic Field Laboratory, Tallahassee, USA
| | - Punit P Shah
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, USA
| | - Ram R Patlolla
- Dr. Reddys Laboratories, Integrated Product Development, Hyderabad, India
| | - Anant K Paravastu
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, USA; National High Magnetic Field Laboratory, Tallahassee, USA.
| | - Mandip Singh
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, USA.
| |
Collapse
|
43
|
Surber C, Elsner P, Singh J. Howard I. Maibach: Extraordinary Leadership in Integrating Key Concepts Underpinning Our Understanding of Percutaneous Absorption and Occupational Dermatology. Skin Pharmacol Physiol 2013; 26:190-8. [DOI: 10.1159/000353622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The purpose of the present article is to briefly highlight some contributions of Prof. Howard I. Maibach to the field of dermatology. After a few introducing remarks regarding Howard's personal career, the article specifically reviews contributions to the understanding of percutaneous absorption and to occupational dermatology. He and his companions/coworkers established and introduced experimental prerequisites to better study and understand percutaneous absorption - both in vitro and in vivo. Not less influential was his contribution to occupational dermatology acting as a founding member of the International Contact Dermatitis Research Group and coinaugurating the North American Contact Dermatitis Group. These groups have been very active ever since. As an academic teacher, he inspired young colleagues to perform original research work and to establish their own working groups. He has done this most successfully with many fellows who worked with him over the years, and who are now leading departments or companies dedicated to dermatological research all over the world. Probably this is his most important and lasting achievement.
Collapse
|
44
|
Singh I, Morris AP. Performance of transdermal therapeutic systems: Effects of biological factors. Int J Pharm Investig 2012; 1:4-9. [PMID: 23071913 PMCID: PMC3465120 DOI: 10.4103/2230-973x.76721] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 10/31/2010] [Accepted: 11/01/2010] [Indexed: 12/14/2022] Open
Abstract
Transdermal drug delivery (TDD) is a technique that is used to deliver a drug into the systemic circulation across the skin. This mechanism of drug delivery route has many advantages, including steady drug plasma concentrations, improved patient compliance, elimination of hepatic first pass, and degradation in the gastrointestinal tract. Over the last 30 years, many transdermal products have been launched in the market. Despite the inherent advantages of TDD and the growing list of transdermal products, one of the major drawbacks to TDD is the occurrence of inter- and intraindividual variation in the absorption of the drug across the skin. A majority of these variations are caused by biological factors, such as gender, age, ethnicity, and skin hydration and metabolism. These factors affect the integrity and the barrier qualities of the skin, which subsequently result in the variation in the amount of drug absorbed. The main objective of this review article is to provide a concise commentary on the biological factors that contribute to the variation in transdermal permeation of drugs across human skin and the available transdermal therapeutic systems that may reduce the variations caused by biological factors.
Collapse
Affiliation(s)
- Inderjeet Singh
- School of Pharmacy, University of Nottingham Malaysia Campus, 43500 Semenyih, Selangor, Malaysia
| | | |
Collapse
|
45
|
Oualha M, Dupic L, Bastian C, Bergounioux J, Bodemer C, Lesage F. Application cutanée localisée d’acide salicylique : un risque méconnu d’intoxication : à propos d’un cas. Arch Pediatr 2012; 19:1089-92. [DOI: 10.1016/j.arcped.2012.07.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 05/30/2012] [Accepted: 07/12/2012] [Indexed: 11/24/2022]
|
46
|
Abstract
In men, the level of testosterone decreases with age. At the skin level, the result is observed as a decrease in density and in a lower elasticity. Identifying compounds that are able to increase the level of testosterone appears to be an attractive strategy to develop new antiaging bioactive ingredients for men. Reverse pharmacognosy was successfully applied to identify new natural compounds able to modulate testosterone levels. Among several in silico hits, honokiol was retained as a candidate as it has the greatest potential to become an active ingredient. This result was then validated in vitro on aromatase and 5-alpha-reductase type 1 and 2, which are two types of enzymes implicated in the degradation of free testosterone. Indeed, honokiol was identified as an inhibitor of aromatase, with a half-maximal inhibitory concentration (IC(50)) of about 50 μM. In addition, honokiol was shown to be an inhibitor of 5-alpha-reductase type 1, with an IC(50) of about 75 μM. Taken together, these data indicate that honokiol modulates testosterone levels, and its structure has the potential to serve as a lead for future designs of highly selective inhibitors of 5-alpha-reductase type 1.
Collapse
|
47
|
Togsverd-Bo K, Idorn LW, Philipsen PA, Wulf HC, Haedersdal M. Protoporphyrin IX formation and photobleaching in different layers of normal human skin: Methyl- and hexylaminolevulinate and different light sources. Exp Dermatol 2012; 21:745-50. [DOI: 10.1111/j.1600-0625.2012.01557.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2012] [Indexed: 12/01/2022]
Affiliation(s)
| | - Luise W. Idorn
- Department of Dermatology; Bispebjerg Hospital; Copenhagen Denmark
| | | | | | | |
Collapse
|
48
|
Adly MA, Assaf HA. Analysis of the expression pattern of involucrin in human scalp skin and hair follicles: hair cycle-associated alterations. Histochem Cell Biol 2012; 138:683-92. [PMID: 22798010 DOI: 10.1007/s00418-012-0986-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2012] [Indexed: 10/28/2022]
Abstract
Involucrin is a structural component of the keratinocyte cornified envelope that is expressed early in the keratinocyte differentiation process. It is a component of the initial envelope scaffolding and considered as a marker for keratinocyte terminal differentiation. The expression pattern of involucrin in human scalp skin and hair follicle cycle stages is not fully explored. This study addresses this issue and tests the hypothesis that "the expression of involucrin undergoes hair follicle cycle-dependent changes". A total of 50 normal human scalp skin biopsies were examined (healthy females, 51-62 years) using immunofluorescence staining methods and real-time PCR analysis. In each case, 50 hair follicles were analyzed (35, 10 and 5 follicles in anagen, catagen and telogen, respectively). Involucrin was prominently expressed in the human scalp skin and hair follicles, on both gene and protein levels. The protein expression showed hair follicle cycle-associated changes i.e. a very strong expression during early and mature anagen, intermediate to strong expression during catagen and prominent decline in the telogen phase. The expression value of involucrin in both anagen and catagen was statistically significantly higher than that of telogen hair follicles (p < 0.001). This study provides the first morphologic indication that involucrin is differentially expressed in the human scalp skin and hair follicles and reports that involucrin expression pattern undergoes hair cycle-dependent changes. The clinical ramifications of these findings are open for further investigations.
Collapse
Affiliation(s)
- Mohamed A Adly
- Department of Zoology, Faculty of Science, Sohag University, Sohâg, Egypt.
| | | |
Collapse
|
49
|
Shen S, Kelly RI. Pharmacotherapy for Skin Disorders in Older People. JOURNAL OF PHARMACY PRACTICE AND RESEARCH 2012. [DOI: 10.1002/j.2055-2335.2012.tb00155.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
50
|
Martin JH, Coory M, Baade P. Challenges of an ageing and dispersed population for delivering cancer services in Australia: more than just doctors needed. Intern Med J 2012; 42:349-51. [DOI: 10.1111/j.1445-5994.2012.02746.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|