1
|
Salzer J, Feltri ML, Jacob C. Schwann Cell Development and Myelination. Cold Spring Harb Perspect Biol 2024; 16:a041360. [PMID: 38503507 PMCID: PMC11368196 DOI: 10.1101/cshperspect.a041360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Glial cells in the peripheral nervous system (PNS), which arise from the neural crest, include axon-associated Schwann cells (SCs) in nerves, synapse-associated SCs at the neuromuscular junction, enteric glia, perikaryon-associated satellite cells in ganglia, and boundary cap cells at the border between the central nervous system (CNS) and the PNS. Here, we focus on axon-associated SCs. These SCs progress through a series of formative stages, which culminate in the generation of myelinating SCs that wrap large-caliber axons and of nonmyelinating (Remak) SCs that enclose multiple, small-caliber axons. In this work, we describe SC development, extrinsic signals from the axon and extracellular matrix (ECM) and the intracellular signaling pathways they activate that regulate SC development, and the morphogenesis and organization of myelinating SCs and the myelin sheath. We review the impact of SCs on the biology and integrity of axons and their emerging role in regulating peripheral nerve architecture. Finally, we explain how transcription and epigenetic factors control and fine-tune SC development and myelination.
Collapse
Affiliation(s)
- James Salzer
- Neuroscience Institute, New York University Grossman School of Medicine, New York, New York 10016, USA
| | - M Laura Feltri
- Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York 14203, USA
- IRCCS Neurological Institute Carlo Besta, Milano 20133, Italy
- Department of Biotechnology and Translational Sciences, Universita' Degli Studi di Milano, Milano 20133, Italy
| | - Claire Jacob
- Faculty of Biology, Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University Mainz, Mainz 55128, Germany
| |
Collapse
|
2
|
Colwell CS, Ghiani CA. Potential Circadian Rhythms in Oligodendrocytes? Working Together Through Time. Neurochem Res 2019; 45:591-605. [PMID: 30906970 DOI: 10.1007/s11064-019-02778-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 03/14/2019] [Indexed: 12/15/2022]
Abstract
Oligodendrocytes (OL) are the only myelinating cells of the central nervous system thus interferences, either environmental or genetic, with their maturation or function have devastating consequences. Albeit so far neglected, one of the less appreciated, nevertheless possible, regulators of OL maturation and function is the circadian cycle. Yet, disruptions in these rhythms are unfortunately becoming a common "disorder" in the today's world. The temporal patterning of behaviour and physiology is controlled by a circadian timing system based in the anterior hypothalamus. At the molecular level, circadian rhythms are generated by a transcriptional/translational feedback system that regulates transcription and has a major impact on cellular function(s). Fundamental cellular properties/functions in most cell types vary with the daily circadian cycle: OL are unlikely an exception! To be clear, the presence of circadian oscillators or the cell-specific function(s) of the circadian clock in OL has yet to be defined. Furthermore, we wish to entertain the idea of links between the "thin" evidence on OL intrinsic circadian rhythms and their interjection(s) at different stages of lineage progression as well as in supporting/regulating OL crucial function: myelination. Individuals with intellectual and developmental syndromes as well as neurodegenerative diseases present with a disrupted sleep/wake cycle; hence, we raise the possibility that these disturbances in timing can contribute to the loss of white matter observed in these disorders. Preclinical and clinical work in this area is needed for a better understanding of how circadian rhythms influence OL maturation and function(s), to aid the development of new therapeutic strategies and standards of care for these patients.
Collapse
Affiliation(s)
- Christopher S Colwell
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA.,Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Cristina A Ghiani
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA. .,Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA. .,Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
3
|
Cisterna BA, Arroyo P, Puebla C. Role of Connexin-Based Gap Junction Channels in Communication of Myelin Sheath in Schwann Cells. Front Cell Neurosci 2019; 13:69. [PMID: 30881289 PMCID: PMC6405416 DOI: 10.3389/fncel.2019.00069] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 02/12/2019] [Indexed: 12/21/2022] Open
Abstract
Peripheral nerves have the capacity to conduct action potentials along great distances and quickly recover following damage which is mainly due to Schwann cells (SCs), the most abundant glial cells of the peripheral nervous system (PNS). SCs wrap around an axonal segment multiple times, forming a myelin sheath, allowing for a significant increase in action potential conduction by insulating the axons. Mature myelin consists of compact and non-compact (or cytoplasmic) myelin zones. Non-compact myelin is found in paranodal loops bordering the nodes of Ranvier, and in the inner and outermost cytoplasmic tongues and is the region in which Schmidt-Lanterman incisures (SLI; continuous spirals of overlapping cytoplasmic expansions within areas of compact myelin) are located. Using different technologies, it was shown that the layers of non-compact myelin could be connected to each other by gap junction channels (GJCs), formed by connexin 32 (Cx32), and their relative abundance allows for the transfer of ions and different small molecules. Likewise, Cx29 is expressed in the innermost layer of the myelin sheath. Here it does not form GJCs but colocalizes with Kv1, which implies that the SCs play an active role in the electrical condition in mammals. The critical role of GJCs in the functioning of myelinating SCs is evident in Charcot-Marie-Tooth disease (CMT), X-linked form 1 (CMTX1), which is caused by mutations in the gap junction protein beta 1 (GJB1) gene that codes for Cx32. Although the management of CMT symptoms is currently supportive, there is a recent method for targeted gene delivery to myelinating cells, which rescues the phenotype in KO-Cx32 mice, a model of CMTX1. In this mini-review article, we discuss the current knowledge on the role of Cxs in myelin-forming SCs and summarize recent discoveries that may become a real treatment possibility for patients with disorders such as CMT.
Collapse
Affiliation(s)
- Bruno A Cisterna
- Escuela de Medicina, Universidad de Talca, Talca, Chile.,Centro para el Desarrollo de la Nanociencia y Nanotecnología (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
| | - Pablo Arroyo
- Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carlos Puebla
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| |
Collapse
|
4
|
Deng B, Lv W, Duan W, Liu Y, Li Z, Song X, Cui C, Qi X, Wang X, Li C. FGF9 modulates Schwann cell myelination in developing nerves and induces a pro‐inflammatory environment during injury. J Cell Biochem 2018; 119:8643-8658. [PMID: 29953642 DOI: 10.1002/jcb.27105] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 05/07/2018] [Indexed: 01/12/2023]
Affiliation(s)
- Binbin Deng
- Department of Neurology Second Hospital of Hebei Medical University Shijiazhuang China
- Department of Neurology The First Affiliated Hospital of Wenzhou Medical University Wenzhou Zhejiang China
| | - Wenjing Lv
- Department of Neurology Second Hospital of Hebei Medical University Shijiazhuang China
| | - Weisong Duan
- Department of Neurology Second Hospital of Hebei Medical University Shijiazhuang China
- Neurological Laboratory of Hebei Province Shijiazhuang China
| | - Yakun Liu
- Department of Neurology Second Hospital of Hebei Medical University Shijiazhuang China
| | - Zhongyao Li
- Department of Neurology Second Hospital of Hebei Medical University Shijiazhuang China
| | - Xueqing Song
- Department of Neurology Second Hospital of Hebei Medical University Shijiazhuang China
| | - Can Cui
- Department of Neurology Second Hospital of Hebei Medical University Shijiazhuang China
| | - Xiaoming Qi
- Department of Neurology Second Hospital of Hebei Medical University Shijiazhuang China
| | - Xiaoxiao Wang
- Department of Neurology Second Hospital of Hebei Medical University Shijiazhuang China
| | - Chunyan Li
- Department of Neurology Second Hospital of Hebei Medical University Shijiazhuang China
- Neurological Laboratory of Hebei Province Shijiazhuang China
| |
Collapse
|
5
|
Schilling JM, Head BP, Patel HH. Caveolins as Regulators of Stress Adaptation. Mol Pharmacol 2018; 93:277-285. [PMID: 29358220 DOI: 10.1124/mol.117.111237] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 01/19/2018] [Indexed: 12/21/2022] Open
Abstract
Caveolins have been recognized over the past few decades as key regulators of cell physiology. They are ubiquitously expressed and regulate a number of processes that ultimately impact efficiency of cellular processes. Though not critical to life, they are central to stress adaptation in a number of organs. The following review will focus specifically on the role of caveolin in stress adaptation in the heart, brain, and eye, three organs that are susceptible to acute and chronic stress and that show as well declining function with age. In addition, we consider some novel molecular mechanisms that may account for this stress adaptation and also offer potential to drive the future of caveolin research.
Collapse
Affiliation(s)
- Jan M Schilling
- Veterans Administration San Diego Healthcare System and Department of Anesthesiology, UCSD School of Medicine, San Diego, California
| | - Brian P Head
- Veterans Administration San Diego Healthcare System and Department of Anesthesiology, UCSD School of Medicine, San Diego, California
| | - Hemal H Patel
- Veterans Administration San Diego Healthcare System and Department of Anesthesiology, UCSD School of Medicine, San Diego, California
| |
Collapse
|
6
|
Myelin structure in unfixed, single nerve fibers: Scanning X-ray microdiffraction with a beam size of 200nm. J Struct Biol 2017; 200:229-243. [PMID: 28698109 DOI: 10.1016/j.jsb.2017.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/27/2017] [Accepted: 07/07/2017] [Indexed: 11/21/2022]
Abstract
Previous raster-scanning with a 1μm X-ray beam of individual, myelinated fibers from glutaraldehyde-fixed rat sciatic nerve revealed a spatially-dependent variation in the diffraction patterns from single fibers. Analysis indicated differences in the myelin periodicity, membrane separations, distribution of proteins, and orientation of membrane lamellae. As chemical fixation is known to produce structural artifacts, we sought to determine in the current study whether the structural heterogeneity is intrinsic to unfixed myelin. Using a 200nm-beam that was about five-fold smaller than before, we raster-scanned individual myelinated fibers from both the peripheral (PNS; mouse and rat sciatic nerves) and central (CNS; rat corpus callosum) nervous systems. As expected, the membrane stacking in the internodal region was nearly parallel to the fiber axis and in the paranodal region it was perpendicular to the axis. A myelin lattice was also frequently observed when the incident beam was injected en face to the sheath. Myelin periodicity and diffracted intensity varied with axial position along the fiber, as did the calculated membrane profiles. Raster-scanning with an X-ray beam at sub-micron resolution revealed for the first time that the individual myelin sheaths in unfixed nerve are heterogeneous in both membrane structure and packing.
Collapse
|
7
|
Rash JE, Vanderpool KG, Yasumura T, Hickman J, Beatty JT, Nagy JI. KV1 channels identified in rodent myelinated axons, linked to Cx29 in innermost myelin: support for electrically active myelin in mammalian saltatory conduction. J Neurophysiol 2016; 115:1836-59. [PMID: 26763782 PMCID: PMC4869480 DOI: 10.1152/jn.01077.2015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 01/04/2016] [Indexed: 11/22/2022] Open
Abstract
Saltatory conduction in mammalian myelinated axons was thought to be well understood before recent discoveries revealed unexpected subcellular distributions and molecular identities of the K(+)-conductance pathways that provide for rapid axonal repolarization. In this study, we visualize, identify, localize, quantify, and ultrastructurally characterize axonal KV1.1/KV1.2 channels in sciatic nerves of rodents. With the use of light microscopic immunocytochemistry and freeze-fracture replica immunogold labeling electron microscopy, KV1.1/KV1.2 channels are localized to three anatomically and compositionally distinct domains in the internodal axolemmas of large myelinated axons, where they form densely packed "rosettes" of 9-nm intramembrane particles. These axolemmal KV1.1/KV1.2 rosettes are precisely aligned with and ultrastructurally coupled to connexin29 (Cx29) channels, also in matching rosettes, in the surrounding juxtaparanodal myelin collars and along the inner mesaxon. As >98% of transmembrane proteins large enough to represent ion channels in these specialized domains, ∼500,000 KV1.1/KV1.2 channels define the paired juxtaparanodal regions as exclusive membrane domains for the voltage-gated K(+)conductance that underlies rapid axonal repolarization in mammals. The 1:1 molecular linkage of KV1 channels to Cx29 channels in the apposed juxtaparanodal collars, plus their linkage to an additional 250,000-400,000 Cx29 channels along each inner mesaxon in every large-diameter myelinated axon examined, supports previously proposed K(+)conductance directly from juxtaparanodal axoplasm into juxtaparanodal myeloplasm in mammalian axons. With neither Cx29 protein nor myelin rosettes detectable in frog myelinated axons, these data showing axon-to-myelin linkage by abundant KV1/Cx29 channels in rodent axons support renewed consideration of an electrically active role for myelin in increasing both saltatory conduction velocity and maximum propagation frequency in mammalian myelinated axons.
Collapse
Affiliation(s)
- John E Rash
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado; Program in Molecular, Cellular and Integrative Neurosciences, Colorado State University, Fort Collins, Colorado; and
| | - Kimberly G Vanderpool
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Thomas Yasumura
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Jordan Hickman
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Jonathan T Beatty
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - James I Nagy
- Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
8
|
Abstract
Myelinated nerve fibers are essential for the rapid propagation of action potentials by saltatory conduction. They form as the result of reciprocal interactions between axons and Schwann cells. Extrinsic signals from the axon, and the extracellular matrix, drive Schwann cells to adopt a myelinating fate, whereas myelination reorganizes the axon for its role in conduction and is essential for its integrity. Here, we review our current understanding of the development, molecular organization, and function of myelinating Schwann cells. Recent findings into the extrinsic signals that drive Schwann cell myelination, their cognate receptors, and the downstream intracellular signaling pathways they activate will be described. Together, these studies provide important new insights into how these pathways converge to activate the transcriptional cascade of myelination and remodel the actin cytoskeleton that is critical for morphogenesis of the myelin sheath.
Collapse
Affiliation(s)
- James L Salzer
- Department of Neuroscience and Physiology, New York University Neuroscience Institute, New York University School of Medicine, New York, New York 10016
| |
Collapse
|
9
|
Inouye H, Liu J, Makowski L, Palmisano M, Burghammer M, Riekel C, Kirschner DA. Myelin organization in the nodal, paranodal, and juxtaparanodal regions revealed by scanning x-ray microdiffraction. PLoS One 2014; 9:e100592. [PMID: 24984037 PMCID: PMC4077703 DOI: 10.1371/journal.pone.0100592] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 05/09/2014] [Indexed: 12/03/2022] Open
Abstract
X-ray diffraction has provided extensive information about the arrangement of lipids and proteins in multilamellar myelin. This information has been limited to the abundant inter-nodal regions of the sheath because these regions dominate the scattering when x-ray beams of 100 µm diameter or more are used. Here, we used a 1 µm beam, raster-scanned across a single nerve fiber, to obtain detailed information about the molecular architecture in the nodal, paranodal, and juxtaparanodal regions. Orientation of the lamellar membrane stacks and membrane periodicity varied spatially. In the juxtaparanode-internode, 198–202 Å-period membrane arrays oriented normal to the nerve fiber axis predominated, whereas in the paranode-node, 205–208 Å-period arrays oriented along the fiber direction predominated. In parts of the sheath distal to the node, multiple sets of lamellar reflections were observed at angles to one another, suggesting that the myelin multilayers are deformed at the Schmidt-Lanterman incisures. The calculated electron density of myelin in the different regions exhibited membrane bilayer profiles with varied electron densities at the polar head groups, likely due to different amounts of major myelin proteins (P0 glycoprotein and myelin basic protein). Scattering from the center of the nerve fibers, where the x-rays are incident en face (perpendicular) to the membrane planes, provided information about the lateral distribution of protein. By underscoring the heterogeneity of membrane packing, microdiffraction analysis suggests a powerful new strategy for understanding the underlying molecular foundation of a broad spectrum of myelinopathies dependent on local specializations of myelin structure in both the PNS and CNS.
Collapse
Affiliation(s)
- Hideyo Inouye
- Department of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts, United States of America
| | - Jiliang Liu
- Department of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts, United States of America
| | - Lee Makowski
- Department of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts, United States of America
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, United States of America
| | - Marilena Palmisano
- Division of Cell Biology & Genetics, Università Vita-Salute San Raffaele, Milano, Italy
| | | | | | - Daniel A. Kirschner
- Biology Department, Boston College, Chestnut Hill, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
10
|
Abstract
The fundamental roles of Schwann cells during peripheral nerve formation and regeneration have been recognized for more than 100 years, but the cellular and molecular mechanisms that integrate Schwann cell and axonal functions continue to be elucidated. Derived from the embryonic neural crest, Schwann cells differentiate into myelinating cells or bundle multiple unmyelinated axons into Remak fibers. Axons dictate which differentiation path Schwann cells follow, and recent studies have established that axonal neuregulin1 signaling via ErbB2/B3 receptors on Schwann cells is essential for Schwann cell myelination. Extracellular matrix production and interactions mediated by specific integrin and dystroglycan complexes are also critical requisites for Schwann cell-axon interactions. Myelination entails expansion and specialization of the Schwann cell plasma membrane over millimeter distances. Many of the myelin-specific proteins have been identified, and transgenic manipulation of myelin genes have provided novel insights into myelin protein function, including maintenance of axonal integrity and survival. Cellular events that facilitate myelination, including microtubule-based protein and mRNA targeting, and actin based locomotion, have also begun to be understood. Arguably, the most remarkable facet of Schwann cell biology, however, is their vigorous response to axonal damage. Degradation of myelin, dedifferentiation, division, production of axonotrophic factors, and remyelination all underpin the substantial regenerative capacity of the Schwann cells and peripheral nerves. Many of these properties are not shared by CNS fibers, which are myelinated by oligodendrocytes. Dissecting the molecular mechanisms responsible for the complex biology of Schwann cells continues to have practical benefits in identifying novel therapeutic targets not only for Schwann cell-specific diseases but other disorders in which axons degenerate.
Collapse
Affiliation(s)
- Grahame J Kidd
- Department of Neuroscience, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.
| | | | | |
Collapse
|
11
|
Broadwater L, Pandit A, Azzam S, Clements R, Vadnal J, Sulak M, Yong VW, Freeman EJ, Gregory RB, McDonough J. Analysis of the mitochondrial proteome in multiple sclerosis cortex. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1812:630-41. [PMID: 21295140 PMCID: PMC3074931 DOI: 10.1016/j.bbadis.2011.01.012] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 01/09/2011] [Accepted: 01/25/2011] [Indexed: 12/29/2022]
Abstract
Mitochondrial dysfunction has been proposed to play a role in the neuropathology of multiple sclerosis (MS). Previously, we reported significant alterations in the transcription of nuclear-encoded electron transport chain genes in MS and confirmed translational alterations for components of Complexes I and III that resulted in reductions in their activity. To more thoroughly and efficiently elucidate potential alterations in the expression of mitochondrial and related proteins, we have characterized the mitochondrial proteome in postmortem MS and control cortex using Surface-Enhanced Laser Desorption Ionization Time of Flight Mass Spectrometry (SELDI-TOF-MS). Using principal component analysis (PCA) and hierarchical clustering techniques we were able to analyze the differential patterns of SELDI-TOF spectra to reveal clusters of peaks which distinguished MS from control samples. Four proteins in particular were responsible for distinguishing disease from control. Peptide fingerprint mapping unambiguously identified these differentially expressed proteins. Three proteins identified are involved in respiration including cytochrome c oxidase subunit 5b (COX5b), the brain specific isozyme of creatine kinase, and hemoglobin β-chain. The fourth protein identified was myelin basic protein (MBP). We then investigated whether these alterations were consistent in the experimental autoimmune encephalomyelitis (EAE) mouse model of MS. We found that MBP was similarly altered in EAE but the respiratory proteins were not. These data indicate that while the EAE mouse model may mimic aspects of MS neuropathology which result from inflammatory demyelinating events, there is another distinct mechanism involved in mitochondrial dysfunction in gray matter in MS which is not modeled in EAE.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Animals
- Autopsy
- Biomarkers/analysis
- Blotting, Western
- Brain/metabolism
- Brain/pathology
- Case-Control Studies
- Cerebral Cortex/metabolism
- Cerebral Cortex/pathology
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/etiology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Female
- Fluorescent Antibody Technique
- Glycoproteins/administration & dosage
- Humans
- Immunoprecipitation
- Male
- Mice
- Mice, Inbred C57BL
- Middle Aged
- Multiple Sclerosis/metabolism
- Multiple Sclerosis/pathology
- Myelin Basic Protein/metabolism
- Myelin-Oligodendrocyte Glycoprotein
- Peptide Fragments/administration & dosage
- Peptide Mapping
- Principal Component Analysis
- Proteome/analysis
- Proteomics
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
Collapse
Affiliation(s)
- Laurie Broadwater
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242
| | - Ashish Pandit
- Department of Biological Sciences, Kent State University, Kent, Ohio 44242
| | - Sausan Azzam
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242
| | - Robert Clements
- Department of Biological Sciences, Kent State University, Kent, Ohio 44242
| | - Jonathan Vadnal
- Department of Biological Sciences, Kent State University, Kent, Ohio 44242
| | - Michael Sulak
- Department of Biological Sciences, Kent State University, Kent, Ohio 44242
| | - V. Wee Yong
- Departments of Clinical Neurosciences and Oncology, University of Calgary, Calgary, Alberta, CA T2N 4N1
| | - Ernest J. Freeman
- Department of Biological Sciences, Kent State University, Kent, Ohio 44242
| | - Roger B. Gregory
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242
| | - Jennifer McDonough
- Department of Biological Sciences, Kent State University, Kent, Ohio 44242
| |
Collapse
|
12
|
Velumian AA, Samoilova M, Fehlings MG. Visualization of cytoplasmic diffusion within living myelin sheaths of CNS white matter axons using microinjection of the fluorescent dye Lucifer Yellow. Neuroimage 2010; 56:27-34. [PMID: 21073961 DOI: 10.1016/j.neuroimage.2010.11.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2010] [Revised: 08/10/2010] [Accepted: 11/04/2010] [Indexed: 01/16/2023] Open
Abstract
The compactness of myelin allows for efficient insulation defining rapid propagation of action potentials, but also raises questions about how cytoplasmic access to its membranes is achieved, which is critical for physiological activity. Understanding the organization of cytoplasmic ('water') spaces of myelin is also important for diffusion MRI studies of CNS white matter. Using longitudinal slices of mature rat spinal cord, we monitored the diffusion of the water-soluble fluorescent dye Lucifer Yellow injected into individual oligodendrocytes or internodal myelin. We show that living myelin sheaths on CNS axons are fenestrated by a network of diffusionally interconnected cytoplasmic 'pockets' (1.9 ± 0.2 pockets per 10μm sheath length, n=58) that included Schmidt-Lanterman clefts (SLCs) and numerous smaller compartments. 3-D reconstructions of these cytoplasmic networks show that the outer cytoplasmic layer of CNS myelin is cylindrically 'encuffing', which differs from EM studies using fixed tissue. SLCs were found in different 'open states' and remained stable within a 1-2hour observation period. Unlike the peripheral nervous system, where similarly small (<500Da) molecules diffuse along the whole myelin segment within a few minutes, in mature CNS this takes more than one hour. The slower cytoplasmic diffusion in CNS myelin possibly contributes to its known vulnerability to injury and limited capacity for repair. Our findings point to an elaborate cytoplasmic access to compact CNS myelin. These results could be of relevance to MRI studies of CNS white matter and to CNS repair/regeneration strategies.
Collapse
Affiliation(s)
- Alexander A Velumian
- Division of Genetics and Development, Toronto Western Research Institute, Canada.
| | | | | |
Collapse
|
13
|
Schmitz M, Klöppner S, Klopfleisch S, Möbius W, Schwartz P, Zerr I, Althaus HH. Mutual effects of caveolin and nerve growth factor signaling in pig oligodendrocytes. J Neurosci Res 2010; 88:572-88. [PMID: 19795378 DOI: 10.1002/jnr.22235] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Signaling of growth factors may depend on the recruitment of their receptors to specialized microdomains. Previous reports on PC12 cells indicated an interaction of raft-organized caveolin and TrkA signaling. Because porcine oligodendrocytes (OLs) respond to nerve growth factor (NGF), we were interested to know whether caveolin also plays a role in oligodendroglial NGF/TrkA signaling. OLs expressed caveolin at the plasma membrane but also intracellularly. This was partially organized in the classically Omega-shaped invaginations, which may represent caveolae. We could show that caveolin and TrkA colocalize by using a discontinuous sucrose gradient (Song et al. [1996] J. Biol. Chem. 271:9690-9697), MACS technology, and immunoprecipitation. However, differential extraction of caveolin and TrkA with Triton X-100 at 4 degrees C indicated that caveolin and TrkA are probably not exclusively present in detergent-resistant, caveolin-containing rafts (CCRs). NGF treatment of OLs up-regulated the expression of caveolin-1 (cav-1) and stimulated tyrosine-14 phosphorylation of cav-1. Furthermore, OLs were transfected with cav-1-specific small interfering RNA (siRNA). A knockdown of cav-1 resulted in a reduced activation of downstream components of the NGF signaling cascade, such as p21Ras and mitogen-activated protein kinase (MAPK) after NGF exposure of OLs. Subsequently, increased oligodendroglial process formation via NGF was impaired. The present study indicates that CCRs/caveolin could play a modulating role during oligodendroglial differentiation and regeneration.
Collapse
Affiliation(s)
- Matthias Schmitz
- RU Neural Regeneration, Max-Planck Institute of Experimental Medicine, Goettingen, Germany.
| | | | | | | | | | | | | |
Collapse
|
14
|
Devaux J, Fykkolodziej B, Gow A. Claudin Proteins And Neuronal Function. CURRENT TOPICS IN MEMBRANES 2010; 65:229-253. [PMID: 25013353 DOI: 10.1016/s1063-5823(10)65010-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The identification and characterization of the claudin family of tight junction (TJ) proteins in the late 1990s ushered in a new era for research into the molecular and cellular biology of intercellular junctions. Since that time, TJs have been studied in the contexts of many diseases including deafness, male infertility, cancer, bacterial invasion and liver and kidney disorders. In this review, we consider the role of claudins in the nervous system focusing on the mechanisms by which TJs in glial cells are involved in neuronal function. Electrophysiological evidence suggests that claudins may operate in the central nervous system (CNS) in a manner similar to polarized epithelia. We also evaluate hypotheses that TJs are the gatekeepers of an immune-privileged myelin compartment and that TJs emerged during evolution to form major adhesive forces within the myelin sheath. Finally, we consider the implications of CNS myelin TJs in the contexts of behavioral disorders (schizophrenia) and demyelinating/hypomyelinating diseases (multiple sclerosis and the leukodystrophies), and explore evidence of a possible mechanism governing affective disorder symptoms in patients with white matter abnormalities.
Collapse
Affiliation(s)
- Jérôme Devaux
- Département Signalisation Neuronale, CRN2M, UMR 6231, CNRS, Université de la Méditerranée-Université Paul Cézanne, IFR Jean Roche, Marseille, France
| | - Bozena Fykkolodziej
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Alexander Gow
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA. ; Carman and Ann Adams Dept of Pediatrics, Wayne State University School of Medicine, Detroit, MI, 48201, USA. ; Dept of Neurology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| |
Collapse
|
15
|
Abstract
Myelin, formed by oligodendrocytes (OLs) in the CNS, is critical for axonal functions, and its damage leads to debilitating neurological disorders such as multiple sclerosis. Understanding the molecular mechanisms of myelination and the pathogenesis of human myelin disease has been limited partly by the relative lack of identification and functional characterization of the repertoire of human myelin proteins. Here, we present a large-scale analysis of the myelin proteome, using the shotgun approach of 1-dimensional PAGE and liquid chromatography/tandem MS. Three hundred eight proteins were commonly identified from human and mouse myelin fractions. Comparative microarray analysis of human white and gray matter showed that transcripts of several of these were elevated in OL-rich white matter compared with gray matter, providing confidence in their detection in myelin. Comparison with other databases showed that 111 of the identified proteins/transcripts also were expressed in OLs, rather than in astrocytes or neurons. Comparison with 4 previous myelin proteomes further confirmed more than 50% of the identified proteins and revealed the presence of 163 additional proteins. A select group of identified proteins also were verified by immunoblotting. We classified the identified proteins into biological subgroups and discussed their relevance in myelin biogenesis and maintenance. Taken together, the study provides insights into the complexity of this metabolically active membrane and creates a valuable resource for future in-depth study of specific proteins in myelin with relevance to human demyelinating diseases.
Collapse
|
16
|
Malmierca M, Storm-Mathisen J, Cant N, Irvine D. From cochlea to cortex: A tribute to Kirsten Kjelsberg Osen. Neuroscience 2008. [DOI: 10.1016/j.neuroscience.2008.04.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Giuditta A, Tai Chun J, Eyman M, Cefaliello C, Bruno AP, Crispino M. Local Gene Expression in Axons and Nerve Endings: The Glia-Neuron Unit. Physiol Rev 2008; 88:515-55. [DOI: 10.1152/physrev.00051.2006] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Neurons have complex and often extensively elongated processes. This unique cell morphology raises the problem of how remote neuronal territories are replenished with proteins. For a long time, axonal and presynaptic proteins were thought to be exclusively synthesized in the cell body, which delivered them to peripheral sites by axoplasmic transport. Despite this early belief, protein has been shown to be synthesized in axons and nerve terminals, substantially alleviating the trophic burden of the perikaryon. This observation raised the question of the cellular origin of the peripheral RNAs involved in protein synthesis. The synthesis of these RNAs was initially attributed to the neuron soma almost by default. However, experimental data and theoretical considerations support the alternative view that axonal and presynaptic RNAs are also transcribed in the flanking glial cells and transferred to the axon domain of mature neurons. Altogether, these data suggest that axons and nerve terminals are served by a distinct gene expression system largely independent of the neuron cell body. Such a local system would allow the neuron periphery to respond promptly to environmental stimuli. This view has the theoretical merit of extending to axons and nerve terminals the marginalized concept of a glial supply of RNA (and protein) to the neuron cell body. Most long-term plastic changes requiring de novo gene expression occur in these domains, notably in presynaptic endings, despite their intrinsic lack of transcriptional capacity. This review enlightens novel perspectives on the biology and pathobiology of the neuron by critically reviewing these issues.
Collapse
|
18
|
Silva WI, Maldonado HM, Velázquez G, García JO, González FA. Caveolins in glial cell model systems: from detection to significance. J Neurochem 2008; 103 Suppl 1:101-12. [PMID: 17986145 DOI: 10.1111/j.1471-4159.2007.04712.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Glial cells prevail in number and in diversity of cellular phenotypes in the nervous system. They have also gained prominence due to their multiple physiological and pathophysiological roles. Our current knowledge of the asymmetry and heterogeneity of the plasma membrane demands an in depth analysis of the diverse array of membrane microdomains postulated to exist in the context of glial cells. This review focuses and analyzes the studies reported to date on the detection of caveolae membrane rafts and the caveolin family members in glial cell model systems, the conditions leading to changes in their level of expression, and their functional and clinical significance. Outstanding in this work emerge the ubiquitous expression of caveolins, including the typically regarded 'muscle-specific' cav3, in diverse glial cell model systems, their participation in reactive astrogliosis, cancer, and their key relevance to calcium signaling. The knowledge obtained to date demands incorporation of the caveolins and caveolae membrane rafts in our current models on the role of glial cells in heath and neurological disease.
Collapse
Affiliation(s)
- W I Silva
- Department of Physiology, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico
| | | | | | | | | |
Collapse
|
19
|
Vanrobaeys F, Van Coster R, Dhondt G, Devreese B, Van Beeumen J. Profiling of Myelin Proteins by 2D-Gel Electrophoresis and Multidimensional Liquid Chromatography Coupled to MALDI TOF−TOF Mass Spectrometry. J Proteome Res 2005; 4:2283-93. [PMID: 16335977 DOI: 10.1021/pr050205c] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The myelin sheath is an electrically insulating layer that consists of lipids and proteins. It plays a key role in the functioning of the nervous system by allowing fast saltatory conduction of nerve pulses. Profiling of the proteins present in myelin is an indispensable prerequisite to better understand the molecular aspects of this dynamic, functionally active membrane. Two types of protein, the myelin basic protein and the proteolipid protein, account for nearly 85% of the protein content in myelin. Identification and characterization of the other "minor" proteins is, in this respect, a real challenge. In the present work, two proteomic strategies were applied in order to study the protein composition of myelin from the murine central nervous system. First, the protein mixture was separated by 2D-gel electrophoresis and, after spot excision and in-gel digestion, samples were analyzed by mass spectrometry. Via this approach, we identified 57 protein spots, corresponding to 38 unique proteins. Alternatively, the myelin sample was digested by trypsin and the resulting peptide mixture was further analyzed by off-line 2D-liquid chromatography. After the second-dimension separation (nanoLC), the peptides were spotted "on-line" onto a MALDI target and analyzed by MALDI TOF-TOF mass spectrometry. We identified 812 peptides by MALDI MS/MS, representing 93 proteins. Membrane proteins, low abundant proteins, and highly basic proteins were all represented in this shotgun proteomic approach. By combining the results of both approaches, we can present a comprehensive proteomic map of myelin, comprising a total of 103 protein identifications, which is of utmost importance for the molecular understanding of white matter and its disorders.
Collapse
Affiliation(s)
- Frank Vanrobaeys
- Laboratory of Protein Biochemistry and Protein Engineering, Ghent University, Belgium
| | | | | | | | | |
Collapse
|
20
|
KAMASAWA N, SIK A, MORITA M, YASUMURA T, DAVIDSON KGV, NAGY JI, RASH JE. Connexin-47 and connexin-32 in gap junctions of oligodendrocyte somata, myelin sheaths, paranodal loops and Schmidt-Lanterman incisures: implications for ionic homeostasis and potassium siphoning. Neuroscience 2005; 136:65-86. [PMID: 16203097 PMCID: PMC1550704 DOI: 10.1016/j.neuroscience.2005.08.027] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2005] [Revised: 07/20/2005] [Accepted: 08/03/2005] [Indexed: 11/22/2022]
Abstract
The subcellular distributions and co-associations of the gap junction-forming proteins connexin 47 and connexin 32 were investigated in oligodendrocytes of adult mouse and rat CNS. By confocal immunofluorescence light microscopy, abundant connexin 47 was co-localized with astrocytic connexin 43 on oligodendrocyte somata, and along myelinated fibers, whereas connexin 32 without connexin 47 was co-localized with contactin-associated protein (caspr) in paranodes. By thin-section transmission electron microscopy, connexin 47 immunolabeling was on the oligodendrocyte side of gap junctions between oligodendrocyte somata and astrocytes. By freeze-fracture replica immunogold labeling, large gap junctions between oligodendrocyte somata and astrocyte processes contained much more connexin 47 than connexin 32. Along surfaces of internodal myelin, connexin 47 was several times as abundant as connexin 32, and in the smallest gap junctions, often occurred without connexin 32. In contrast, connexin 32 was localized without connexin 47 in newly-described autologous gap junctions in Schmidt-Lanterman incisures and between paranodal loops bordering nodes of Ranvier. Thus, connexin 47 in adult rodent CNS is the most abundant connexin in most heterologous oligodendrocyte-to-astrocyte gap junctions, whereas connexin 32 is the predominant if not sole connexin in autologous ("reflexive") oligodendrocyte gap junctions. These results clarify the locations and connexin compositions of heterologous and autologous oligodendrocyte gap junctions, identify autologous gap junctions at paranodes as potential sites for modulating paranodal electrical properties, and reveal connexin 47-containing and connexin 32-containing gap junctions as conduits for long-distance intracellular and intercellular movement of ions and associated osmotic water. The autologous gap junctions may regulate paranodal electrical properties during saltatory conduction. Acting in series and in parallel, autologous and heterologous oligodendrocyte gap junctions provide essential pathways for intra- and intercellular ionic homeostasis.
Collapse
Key Words
- confocal microscopy
- freeze fracture
- immunofluorescence
- immunogold labeling
- rodent
- a/a, astrocyte-to-astrocyte
- aqp4, aquaporin4
- caspr, contactin-associated protein
- cx, connexin, designated according to molecular weight in kilodaltons
- cx26, connexin26
- cx29, connexin29
- cx30, connexin30
- cx32, connexin32
- cx43, connexin43
- cx47, connexin47
- dab, diaminobenzidine
- e-face, extraplasmic leaflet
- fril, freeze-fracture replica immunogold labeling
- gfap, glial acidic fibrillary acidic protein
- imp, intramembrane particle/intramembrane protein
- ko, knockout
- le, labeling efficiency
- lm, light microscopy
- o/a, oligodendrocyte-to-astrocyte
- o/o, oligodendrocyte-to-oligodendrocyte
- pb, phosphate buffer
- p-face, protoplasmic leaflet
- pns, peripheral nervous system
- tbst, tris-hcl-buffered saline with triton x-100
- tem, transmission electron microscopy
Collapse
Affiliation(s)
- N. KAMASAWA
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523-1617, USA
| | - A. SIK
- Centre de recherche Université Laval Robert-Giffard, 2601 Chemin de la Canardiere, Quebec, Quebec, Canada G1J 2G3
| | - M. MORITA
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523-1617, USA
| | - T. YASUMURA
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523-1617, USA
| | - K. G. V. DAVIDSON
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523-1617, USA
| | - J. I. NAGY
- Department of Physiology, Faculty of Medicine, University of Manitoba, 730 William Avenue, Winnepeg, Manitoba, Canada R3E 3J7
| | - J. E. RASH
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523-1617, USA
| |
Collapse
|
21
|
Silva WI, Maldonado HM, Velázquez G, Rubio-Dávila M, Miranda JD, Aquino E, Mayol N, Cruz-Torres A, Jardón J, Salgado-Villanueva IK. Caveolin isoform expression during differentiation of C6 glioma cells. Int J Dev Neurosci 2005; 23:599-612. [PMID: 16135403 DOI: 10.1016/j.ijdevneu.2005.07.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2005] [Revised: 07/18/2005] [Accepted: 07/19/2005] [Indexed: 12/01/2022] Open
Abstract
Caveolae, a specialized form of lipid rafts, are cholesterol- and sphingolipid-rich membrane microdomains implicated in potocytosis, endocytosis, transcytosis, and as platforms for signal transduction. One of the major constituents of caveolae are three highly homologous caveolin isoforms (caveolin-1, caveolin-2, and caveolin-3). The present study expands the analysis of caveolin isoform expression in C6 glioma cells. Three complementary approaches were used to assess their differential expression during the dibutyryl-cyclic AMP-induced differentiation of C6 cells into an astrocyte-like phenotype. Immunoblotting, conventional RT-PCR, and real-time RT-PCR analysis established the expression of the caveolin-3 isoform in C6 cells, in addition to caveolin-1 and caveolin-2. Similar to the other isoforms, caveolin-3 was associated with light-density, detergent-insoluble caveolae membrane fractions obtained using sucrose-density gradient centrifugation. The three caveolin isoforms display different temporal patterns of mRNA/protein expression during the differentiation of C6 cells. Western blot and real-time RT-PCR analysis demonstrate that caveolin-1 and caveolin-2 are up-regulated during the late stages of the differentiation of C6 cells. Meanwhile, caveolin-3 is gradually down-regulated during the differentiation process. Indirect immunofluorescence analysis via laser-scanning confocal microscopy reveals that the three caveolin isoforms display similar subcellular distribution patterns. In addition, co-localization of caveolin-1/caveolin-2 and caveolin-1/caveolin-3 was detected in both C6 glioma phenotypes. The findings reveal a differential temporal pattern of caveolin gene expression during phenotypic differentiation of C6 glioma cells, with potential implications to developmental and degenerative events in the brain.
Collapse
Affiliation(s)
- W I Silva
- Department of Physiology, School of Medicine, University of Puerto Rico, Medical Sciences Campus, P.O. Box 365067, San Juan, PR.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Myelin, the multilayered membrane which surrounds nerve axons, is the only example of a membranous structure where contact between extracellular surfaces of membrane from the same cell occurs. The two major glycosphingolipids (GSLs) of myelin, galactosylceramide (GalC) and its sulfated form, galactosylceramide I(3)-sulfate (SGC), can interact with each other by trans carbohydrate-carbohydrate interactions across apposed membranes. They occur in detergent-insoluble lipid rafts containing kinases and thus may be located in membrane signaling domains. These signaling domains may contact each other across apposed extracellular membranes, thus forming glycosynapses in myelin. Multivalent forms of these carbohydrates, GalC/SGC-containing liposomes, or galactose conjugated to albumin, have been added to cultured oligodendrocytes (OLs) to mimic interactions which might occur between these signaling domains when OL membranes or the extracellular surfaces of myelin come into contact. These interactions between multivalent carbohydrate and the OL membrane cause co-clustering or redistribution of myelin GSLs, GPI-linked proteins, several transmembrane proteins, and signaling proteins to the same membrane domains. They also cause depolymerization of the cytoskeleton, indicating that they cause transmission of a signal across the membrane. Their effects have similarities to those of anti-GSL antibodies on OLs, shown by others, suggesting that the multivalent carbohydrate interacts with GalC/SGC in the OL membrane. Communication between the myelin sheath and the axon regulates both axonal and myelin function and is necessary to prevent neurodegeneration. Participation of transient GalC and SGC interactions in glycosynapses between the apposed extracellular surfaces of mature compact internodal myelin might allow transmission of signals throughout the myelin sheath and thus facilitate myelin-axonal communication.
Collapse
Affiliation(s)
- Joan M Boggs
- Division of Structural Biology and Biochemistry, Research Institute, Hospital for Sick Children, 555 University Ave., Toronto, ON, Canada M5G 1X8.
| | | | | | | | | | | |
Collapse
|
23
|
Meier C, Dermietzel R, Davidson KGV, Yasumura T, Rash JE. Connexin32-containing gap junctions in Schwann cells at the internodal zone of partial myelin compaction and in Schmidt-Lanterman incisures. J Neurosci 2004; 24:3186-98. [PMID: 15056698 PMCID: PMC1803337 DOI: 10.1523/jneurosci.5146-03.2004] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2003] [Revised: 02/12/2004] [Accepted: 02/12/2004] [Indexed: 11/21/2022] Open
Abstract
In vertebrate peripheral nerves, the insulating myelin sheath is formed by Schwann cells, which generate flattened membrane processes that spiral around axons and form compact myelin by extrusion of cytoplasm and adhesion of apposed intracellular and extracellular membrane surfaces. Cytoplasm remains within the innermost and outermost tongues, in the paranodal loops bordering nodes of Ranvier and in Schmidt-Lanterman incisures. By immunocytochemistry, connexin32 (Cx32) protein has been demonstrated at paranodal loops and Schmidt-Lanterman incisures, and it is widely assumed that gap junctions are present in these locations, thereby providing a direct radial route for transport of ions and metabolites between cytoplasmic myelin layers. This study used freeze-fracture replica immunogold labeling to detect Cx32 in ultrastructurally defined gap junctions in Schmidt-Lanterman incisures, as well as in a novel location, between the outer two layers of internodal myelin, approximately every micrometer along the entire length of myelin, at the zone between compact myelin and noncompact myelin. Thus, these gap junctions link the partially compacted second layer of myelin to the noncompact outer tongue. Although these gap junctions are unusually small (average, 11 connexon channels), their relative abundance and regular distribution along the zone that is structurally intermediate between compact and noncompact myelin demonstrates the existence of multiple sites for unidirectional or bidirectional transport of water, ions, and small molecules between these two distinct cytoplasmic compartments, possibly to regulate or facilitate myelin compaction or to maintain the transition zone between noncompact and compact myelin.
Collapse
Affiliation(s)
- Carola Meier
- Department of Neuroanatomy and Molecular Brain Research, Ruhr-University Bochum, 44801 Bochum, Germany.
| | | | | | | | | |
Collapse
|
24
|
Taylor CM, Marta CB, Claycomb RJ, Han DK, Rasband MN, Coetzee T, Pfeiffer SE. Proteomic mapping provides powerful insights into functional myelin biology. Proc Natl Acad Sci U S A 2004; 101:4643-8. [PMID: 15070771 PMCID: PMC384800 DOI: 10.1073/pnas.0400922101] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Myelin is a dynamic, functionally active membrane necessary for rapid action potential conduction, axon survival, and cytoarchitecture. The number of debilitating neurological disorders that occur when myelin is disrupted emphasizes its importance. Using high-resolution 2D gel electrophoresis, mass spectrometry, and immunoblotting, we have developed an extensive proteomic map of proteins present in myelin, identifying 98 proteins corresponding to at least 130 of the approximately 200 spots on the map. This proteomic map has been applied to analyses of the localization and function of selected proteins, providing a powerful tool to investigate the diverse functions of myelin.
Collapse
Affiliation(s)
- Christopher M Taylor
- Department of Neuroscience, MC 3401, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030-3401, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Berciano MT, Fernandez R, Pena E, Calle E, Villagra NT, Rodriguez-Rey JC, Lafarga M. Formation of intranuclear crystalloids and proliferation of the smooth endoplasmic reticulum in schwann cells induced by tellurium treatment: association with overexpression of HMG CoA reductase and HMG CoA synthase mRNA. Glia 2000; 29:246-59. [PMID: 10642751 DOI: 10.1002/(sici)1098-1136(20000201)29:3<246::aid-glia6>3.0.co;2-l] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Administration of tellurium (Te) in weaning rats causes a well-established demyelinating neuropathy induced by the inhibition in myelinating Schwann cells (SC) of the synthesis of cholesterol, a major component of the myelin sheath, at the level of squalene epoxidase. We have used this experimental model of Te neuropathy to study the biogenesis and reorganization of the endomembranes of the nuclear envelope and endoplasmic reticulum (ER) in response to Te treatment by ultrastructural analysis and in situ hybridization for the detection of HMG CoA reductase and synthase mRNA, which encode key enzymes in cholesterol synthesis. The adaptive response of myelinating SC to cholesterol depletion includes cell hypertrophy, the formation of tubular invaginations of proliferating nuclear membranes giving rise to peculiar nuclear inclusions termed crystalloids, and, at the cytoplasmic level, the formation of lamellar bodies of rough ER, proliferation of the smooth ER, and overexpression of HMG CoA reductase and synthase mRNAs. The changes revert after withdrawal of Te treatment. Our results show that the biogenesis and structural organization of both endomembrane systems change dynamically upon Te-induced cholesterol depletion, indicating that this constituent plays a critical role in the organization of nuclear envelope and ER compartments in SC. The results also suggest that the HMG CoA reductase, an integral membrane protein of ER, provides the signal for the extensive membrane assembly. While the physiological meaning of crystalloid remains to be clarified, the hypertrophy of the smooth ER may represent a cytoprotective mechanism involved in detoxification of the neurotoxic agent or its metabolic derivates.
Collapse
Affiliation(s)
- M T Berciano
- Department of Anatomy and Cell Biology, University of Cantabria, Faculty of Medicine, Santander, Spain
| | | | | | | | | | | | | |
Collapse
|
26
|
Affiliation(s)
- Daniel D. Mikol
- Department of Neurology, University of Michigan, Ann Arbor, Michigan
| | - Hoylond L. Hong
- Department of Neurology, University of Michigan, Ann Arbor, Michigan
| | - Hsin‐Lin Cheng
- Department of Neurology, University of Michigan, Ann Arbor, Michigan
| | - Eva L. Feldman
- Department of Neurology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
27
|
Abstract
Cell interactions in the nervous system are frequently mediated by surface proteins that are attached to the membrane by a glycosyl phosphatidylinositol (GPI) anchor. In this study, we have characterized the expression of such proteins on glial cells. We have detected a major GPI-anchored protein on astrocytes and Schwann cells, with a molecular weight of 140 kD. When Schwann cells were treated with forskolin to promote a myelinating phenotype, expression of this 140-kD protein dramatically decreased, whereas another GPI-anchored protein of 80 kD was strongly induced; expression of other integral membrane proteins were likewise dramatically altered. The size and pattern of expression of the 140-kD protein suggested that it might correspond to the Ran-2 antigen, a glial lineage marker. This notion was confirmed by immunoprecipitating this 140-kD protein with the Ran-2 monoclonal antibody. The Ran-2 antigen is expressed over the entire Schwann cell surface in a punctate fashion; it is removed by phosphatidylinositol phospholipase C treatment, thereby confirming that it is GPI-anchored. When Schwann cells are cocultured with neurons, the Ran-2 antigen initially concentrates at sites of Schwann cell contact with neurons, suggesting that it may play a role in early Schwann cell-neuron interactions; it is then downregulated. Protein sequencing of the Ran-2 antigen immunopurified from rat brain membranes showed complete identity over two extended segments with the copper binding protein ceruloplasmin. These findings indicate that astrocytes and Schwann cells express a novel GPI-anchored form of ceruloplasmin and suggest that this GPI form plays a role in axonal-glial interactions.
Collapse
Affiliation(s)
- J L Salzer
- Department of Cell Biology, Kaplan Cancer Center, New York University Medical School, New York 10016, USA
| | | | | | | |
Collapse
|
28
|
Balice-Gordon RJ, Bone LJ, Scherer SS. Functional gap junctions in the schwann cell myelin sheath. J Cell Biol 1998; 142:1095-104. [PMID: 9722620 PMCID: PMC2132877 DOI: 10.1083/jcb.142.4.1095] [Citation(s) in RCA: 190] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/1998] [Revised: 06/18/1998] [Indexed: 02/08/2023] Open
Abstract
The Schwann cell myelin sheath is a multilamellar structure with distinct structural domains in which different proteins are localized. Intracellular dye injection and video microscopy were used to show that functional gap junctions are present within the myelin sheath that allow small molecules to diffuse between the adaxonal and perinuclear Schwann cell cytoplasm. Gap junctions are localized to periodic interruptions in the compact myelin called Schmidt-Lanterman incisures and to paranodes; these regions contain at least one gap junction protein, connexin32 (Cx32). The radial diffusion of low molecular weight dyes across the myelin sheath was not interrupted in myelinating Schwann cells from cx32-null mice, indicating that other connexins participate in forming gap junctions in these cells. Owing to the unique geometry of myelinating Schwann cells, a gap junction-mediated radial pathway may be essential for rapid diffusion between the adaxonal and perinuclear cytoplasm, since this radial pathway is approximately one million times faster than the circumferential pathway.
Collapse
Affiliation(s)
- R J Balice-Gordon
- Department of Neuroscience, The University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6074, USA.
| | | | | |
Collapse
|
29
|
Ledeen RW, Chakraborty G. Cytokines, signal transduction, and inflammatory demyelination: review and hypothesis. Neurochem Res 1998; 23:277-89. [PMID: 9482240 DOI: 10.1023/a:1022493013904] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The mechanism of focal demyelination in multiple sclerosis has been a long-standing enigma of this disorder. Cytokines, a diverse family of signalling molecules, are viewed as potential mediators of the process based on clinical observations and studies with animal models and tissue/cell culture systems. Myelin and oligodendrocyte (OL) destruction occur in cultured preparations subjected to cytokines such as tumor necrosis factor-alpha (TNF alpha) and lymphotoxin (LT). Many studies have shown these and other cytokines to be elevated at lesion sites and in the CSF of multiple sclerosis (MS) patients, with similar findings in animal models. Some variability in the nature of MS lesion formation has been reported, both OLs and myelin being primary targets. To account for myelin destruction in the presence of apparently functional OLs we hypothesize that cytokines such as TNF alpha and LT alpha contribute to myelin damage through triggering of specific reactions within the myelin sheath. We further propose that neutral sphingomyelinase (SMase) is one such enzyme, two forms of which have been detected in purified myelin. An additional event is accumulation of cholesterol ester, apparently a downstream consequence of cytokine-induced SMase. The resulting lipid changes are viewed as potentially destabilizing to myelin, which may render it more vulnerable to attack by invading and resident phagocytes.
Collapse
Affiliation(s)
- R W Ledeen
- Department of Neurosciences, New Jersey Medical School, UMDNJ, Newark 07103, USA.
| | | |
Collapse
|
30
|
Abstract
Schwann cell plasma membrane vesicles have been shown to increase in numerical density after nerve injury but their function is unclear. In this study, ultrastructural tracers were micro-injected in vivo into crushed rat sciatic nerves after various time intervals to ascertain whether plasma membrane vesicles of Schwann cells are involved in the uptake and utilization of molecules from the endoneurium during axonal regeneration and remyelination. Horseradish peroxidase (HRP), a tracer of fluid-phase endocytosis, was taken up by macrophages and fibroblasts but remained external to Schwann cells throughout the study. After 14-16 days of crush injury, HRP was present within vessel lumina and in cytoplasmic vesicles of pericytes and vascular endothelia. Low-density lipoprotein-gold, which is primarily internalized by receptor-mediated endocytosis, and bovine serum albumin-gold, proposed as a tracer for fluid-phase endocytosis, were internalized by macrophages and fibroblasts but were not taken up by Schwann cells. Although Schwann cells formed pits in the plasma membrane and vesicles were evident in the cytoplasm, none of the tracers used were internalized by Schwann cells. It is suggested that Schwann cell plasmalemmal and cytoplasmic vesicles have a cellular role unrelated to endocytosis or alternatively the Schwann cell basal lamina may function as a diffusion barrier to the tracers employed.
Collapse
Affiliation(s)
- J T Beswetherick
- Reta Lila Weston Institute of Neurological Studies, University College and Middlesex School of Medicine, London
| | | | | |
Collapse
|
31
|
Schröder JM, Himmelmann F. Fine structural evaluation of altered Schmidt-Lanterman incisures in human sural nerve biopsies. Acta Neuropathol 1992; 83:120-33. [PMID: 1557944 DOI: 10.1007/bf00308471] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Fine structural alterations of Schmidt-Lanterman incisures (SLI) were investigated in a series of 242 unselected sural nerve biopsies that had been examined for diagnostic purposes. The series included cases with Friedreich's ataxia, HSAN I, HMSN I-III, HMSN VI, tomaculous neuropathy, metachromatic leukodystrophy, ceroidlipofuscinosis, dysproteinemic neuropathies, and myotonic dystrophy, in addition to several neuropathies less-specifically classified as either of a predominantly demyelinating, axonal, or neuronal type. The following classification of SLI alterations is proposed: (A) abnormal inclusions; (B) changes in shape and dimension; and (C) modes of disintegration. Abnormal inclusions comprised membranous whorls, uniform and pleomorphous lysosome-like bodies, and accumulation of granular substances at the site of the major dense line, or granular deposits at the site of the intraperiod line of the myelin sheath. Variations of incisural shape and dimension included folding, dilatation, and pocket formation (compartmentalization). Disintegration at incisures comprised a fine, vesicular and a gross, vacuolar type. Various combinations of these changes were observed. The most frequent change consisted of membranous whorls, detected in SLI of 89 biopsies. They were most prominent in chloroquine neuropathy where they occurred in SLI as well as in the adaxonal and abaxonal cytoplasm of Schwann cells. Compartmentalization of the myelin sheath at incisures associated with formation of myelin loops was a frequent feature in myotonic dystrophy. It is concluded, that changes of incisural ultrastructure are sensitive indicators of human neuropathies offering clues to the type of the underlying pathomechanism.
Collapse
Affiliation(s)
- J M Schröder
- Institut für Neuropathologie, Rheinisch-Westfälischen Technischen Hochschule Aachen, Federal Republic of Germany
| | | |
Collapse
|
32
|
Affiliation(s)
- B D Trapp
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
33
|
Yoshikawa H, Dyck PJ, Poduslo JF, Giannini C. Polyglucosan body axonal enlargement increases myelin spiral length but not lamellar number. J Neurol Sci 1990; 98:107-17. [PMID: 2230827 DOI: 10.1016/0022-510x(90)90186-q] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The area of the unrolled myelin sheet of internodes of myelinated fibers (MF) of peripheral nerve is thought to be determined by axonal caliber and internodal length. We studied the effect of a focal increase of axonal caliber due to the deposition of polyglucosan bodies (PGB), amylopectin-like glucose polymers, on number of myelin lamellae (NL), interlamellar distance (periodicity), and myelin spiral length (MSL) from a sural nerve biopsy specimen of a patient with chronic inflammatory demyelinating polyneuropathy. Axonal area, NL, periodicity, and MSL were estimated within internodes of MF above, at, and below PGB. The axon caliber at the level of the PGB was significantly (P less than 0.002) increased when the PGB was included. At the PGB, NL and their periodicity were not significantly different from those above or below the PGB. The MSL was significantly longer overlying the PGB than it was in the same internode above or below the PGB. Because slippage or stretching of the myelin sheath as well as movement of molecular constituents of myelin is not likely over large distances, localized biosynthesis and assembly of new myelin may explain this increase of MSL.
Collapse
Affiliation(s)
- H Yoshikawa
- Peripheral Neuropathy Research Laboratory, Mayo Clinic, Rochester, MN 55905
| | | | | | | |
Collapse
|
34
|
Trapp BD, Andrews SB, Wong A, O'Connell M, Griffin JW. Co-localization of the myelin-associated glycoprotein and the microfilament components, F-actin and spectrin, in Schwann cells of myelinated nerve fibres. JOURNAL OF NEUROCYTOLOGY 1989; 18:47-60. [PMID: 2468742 DOI: 10.1007/bf01188423] [Citation(s) in RCA: 119] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The myelin-associated glycoprotein (MAG) is an intrinsic membrane protein that is specific for myelinating cells. MAG has been proposed to function in the PNS as an adhesion molecule involved in Schwann cell-axon contact and maintenance of cytoplasmic channels within the myelin sheath. In this report we show that the microfilament components, F-actin and spectrin, co-localize with MAG in periaxonal membranes, Schmidt-Lanterman incisures, paranodal myelin loops, and inner and outer mesaxons of myelinating Schwann cells. F-actin was localized light microscopically by rhodamine-labelled phallicidin binding. Spectrin and MAG were localized by light microscopic and ultrastructural immunocytochemistry. The findings indicate that plasma membrane linkage of F-actin in Schwann cells is likely to occur via spectrin, and raise the possibility that microfilaments interact with the cytoplasmic domain of MAG. An interaction between MAG and microfilaments would be consistent with the proposed function of MAG as an adhesion molecule.
Collapse
Affiliation(s)
- B D Trapp
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | | | | | | | | |
Collapse
|
35
|
Ushiki T, Ide C. Scanning electron microscopic studies of the myelinated nerve fibres of the mouse sciatic nerve with special reference to the Schwann cell cytoplasmic network external to the myelin sheath. JOURNAL OF NEUROCYTOLOGY 1987; 16:737-47. [PMID: 3450786 DOI: 10.1007/bf01611982] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The three-dimensional morphology of the surface of myelinated nerve fibres in the mouse sciatic nerve was studied by scanning electron microscopy after combined potassium hydroxide treatment and collagenase digestion (to remove the surrounding collagen fibrils and basal laminae from nerve fibres) as well as by transmission electron microscopy. The myelinated nerve fibre appeared as a long cylinder with sporadic annular constrictions corresponding to the nodes of Ranvier. Slight swellings of the surface due to Schwann cell nuclei were usually found at the middle of each internode. The surface of the nerve fibre clearly exhibited a network of bulges, which consisted of longitudinal bands extending from the nuclear swelling to the nodes of Ranvier through the internode, and transverse trabeculae bridging between these longitudinal bands. These bulges on the surface of nerve fibres were the site of the retained Schwann cell cytoplasm external to the myelin lamellae. These cytoplasmic networks on myelinated fibres presumably corresponded to the networks described by Cajal following silver impregnation. In addition, other thin elevations and focal round swellings were also found associated with these longitudinal bands and transverse trabeculae. These networks of Schwann cell cytoplasm are considered to be cytoplasmic channels for nutrition. The two apposing paranodal bulbs of nodes of Ranvier were often asymmetrical in their structure. The networks of the paranodal region were more complicated than those in the internode. The networks of Schwann cell cytoplasm converged into a continuous circumferential collar toward the node, which in turn gave rise to finger-like projections into the nodal gap.
Collapse
Affiliation(s)
- T Ushiki
- Department of Anatomy, Iwate Medical College School of Medicine, Morioka, Japan
| | | |
Collapse
|
36
|
Ishise J, Rosenbluth J. Nodal and paranodal structure during Wallerian degeneration in frog spinal nerve. Brain Res 1987; 418:85-97. [PMID: 3499206 DOI: 10.1016/0006-8993(87)90965-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The nodal and paranodal regions of myelinated peripheral nerve fibers in frogs were examined at sequential times (1-24 days) during Wallerian degeneration. In the region up to 3 mm distal to the transection, paranodal demyelination and axoplasmic degeneration became apparent on day 4 and progressed to involve most of the nodes by day 8. The E-fracture face of the axolemma showed a patchy distribution of nodal particles and some paranodal demyelination on days 4 and 6. On day 8, nodal particles were evenly distributed at low concentration and the adjacent demyelinated paranodal regions showed a corresponding increase in particle density, suggesting redistribution of the nodal particles. The sequence of changes seen in comparable to that in Wallerian degeneration of central nervous system (CNS) fibers but progressed more rapidly in the peripheral nervous system (PNS). In addition a higher proportion of PNS fibers shows pathological changes at corresponding time periods.
Collapse
Affiliation(s)
- J Ishise
- Department of Physiology, New York University School of Medicine, NY 10016
| | | |
Collapse
|
37
|
Pannese E, Rigamonti L, Procacci P, Ledda M, Arcidiacono G, Frattola D. An electron microscope study of quantitative relationships between axon and Schwann cell sheath in myelinated fibres of peripheral nerves. ANATOMY AND EMBRYOLOGY 1987; 175:423-30. [PMID: 3578824 DOI: 10.1007/bf00309678] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The quantitative relationships between the cross-sectional area of the Schwann cell sheath (myelin included) and that of its related axon were studied by electron microscopy in the nerve fibres of the spinal roots of lizard (Lacerta muralis). In both ventral and dorsal roots the cross-sectional area of the Schwann cell sheath (myelin included) was found to be directly proportional to that of its related axon (correlation coefficients between 0.88 and 0.92). The ratio between the cross-sectional area of the Schwann cell sheath (myelin included) and that of its related axon tends to diminish as the cross-sectional area of the latter increases. Thus, under normal conditions, in myelinated fibres of the spinal roots of the lizard a quantitative balance exists between the nerve tissue and its associated glial tissue. This result agrees with those previously obtained in the spinal ganglia of the lizard, gecko, cat and rabbit. Some of the mechanisms probably involved in the control of the quantitative balance between nerve tissue and its associated glial tissue in peripheral nerves are presented and discussed.
Collapse
|
38
|
Villegas GM, Lane NJ, Villegas J. Freeze-fracture studies on the giant axon and ensheathing Schwann cells of the squid. JOURNAL OF NEUROCYTOLOGY 1987; 16:11-21. [PMID: 3585414 DOI: 10.1007/bf02456694] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The giant axons and encompassing sheaths from the stellar nerves of the squids Sepioteuthis sepioidea and Loligo forbesi have been analysed by freeze-fracture. The axolemma exhibits many intramembranous particles (IMPs) that fracture onto the cytoplasmic membrane half-leaflet (P-face); the larger IMPs may be aggregated into clusters. Axoplasmic subsurface cisternae are found beneath this membrane. Clustered or aligned arrays of P-face IMPs are also found on the membranes of the Schwann cells that intimately encapsulate the giant axons as well as 'capitate' projections of Schwann cells into the axons. When adjacent Schwann cells abut directly against one another, aligned E-face IMPs are found along the fracture plane of the upturning membranes. These E-face alignments of IMPs have complementary furrows on the Schwann cell membranes which exhibit no complementary structure on the axolemma as they represent the clefts between adjacent glial cells. The other Schwann cell membranes exhibit P-face dimples and E-face (extracellular membrane half-leaflet) protuberances which may reflect endo- or exocytotic activity; alternatively they may represent caveolae. Comparable structures are occasionally observed at axo-glial interfaces. However, those in the Schwann cell membrane could be part of the transverse tubular lattice system which also exists in adaxonal glia. Beyond the Schwann cells, layers of endoneurial cells (fibrocytes) are interleaved by collagen-filled spaces. These cells exhibit extensive cross-fractured intracellular invaginations as well as inpushings of the extracellular matrix material. Their membranes exhibit a large number of IMPs.
Collapse
|
39
|
Blanchard CE, Sikri K, Allt G. Filipin-sterol complexes at Schmidt-Lanterman incisures. Acta Neuropathol 1987; 72:355-61. [PMID: 3577691 DOI: 10.1007/bf00687267] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Employing the freeze-fracture technique, the distribution of filipin-sterol complexes was determined for membranes of peripheral nerve myelin. A heterogeneous distribution of complexes was observed with the greatest abundance on membranes associated with the cytoplasmic channels of Schmidt-Lanterman and longitudinal incisures. In addition there was an irregular network of well-labelled membrane bands in compact myelin. The results are related to a possible role for these channels and bands in the biochemical turnover of cholesterol in myelin.
Collapse
|
40
|
Abstract
The macromolecular structure of perinodal Schwann cell membrane was examined with freeze-fracture electron microscopy. Perinodal microvillous-like processes of Schwann cells exhibit an asymmetrical partitioning of intramembranous particles (IMPs), with a moderate (approximately 900/microns2) density of particles on P-faces and a lower (approximately 300/microns2) density of IMPs on E-faces. The densities of IMPs observed on the fracture faces of perinodal processes are similar to those within the outer membrane of the Schwann cell proper. On both fracture faces of the perinodal processes and the Schwann cell membrane proper, a high (approximately 45%) percentage of the IMPs displayed a large (greater than or equal to 9.6 nm) diameter. Specialized junctions (i.e., gap junctions, tight junctions) between adjacent perinodal Schwann cell processes or between perinodal processes and nodal axolemmal were not observed.
Collapse
|
41
|
Köling A, Rask-Andersen H, Deuschl H. A freeze-fracture study of receptor axons and Schwann cells in the human olfactory mucosa. Acta Otolaryngol 1986; 102:494-9. [PMID: 3788548 DOI: 10.3109/00016488609119436] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Electron micrographs of freeze-fracture replicas from the human olfactory mucosa were analysed regarding the structure of the axons of the olfactory receptor cells. In the lamina propria, numerous axons were generally invested with one Schwann cell. The ensheathed axons were often found in close contact with one another. Membrane specializations were not found at these sites, nor were tightening membrane junctions observed in the mesaxons. The Schwann cell plasmalemma exhibited caveolae, whose neck was surrounded by uniformly sized intramembranous particles evenly distributed over the axolemmal fracture planes. There was a marked difference in particle density between the P face (about 850/micron 2) and the E face (about 180/micron 2).
Collapse
|
42
|
Forman DS, Shain WG, Fuchs DA. Slow pulsatile movements of Schwann cells in vitro: a time-lapse cinemicrographic study. CELL MOTILITY AND THE CYTOSKELETON 1986; 6:595-603. [PMID: 3802219 DOI: 10.1002/cm.970060608] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Slow pulsatile movements of Schwann cells in vitro were studied quantitatively by using time-lapse cinemicrography. Schwann cells from peripheral nerves of 3-day-old rats were cultured in serum-free medium. Most Schwann cells showed intermittent episodes of pulsatile movement; each episode consisted of one or several contractile pulses. About half of the episodes consisted of a single pulse, and episodes with more than four pulses were rare. The average episode of activity lasted 2.6 min, while the average duration of a single pulse was 1.5 min. The mean quiescent interval between episodes of activity was 3.7 min. Some cells showed no pulsatile activity. Active cells averaged 6.6 episodes/h. The fraction of time which a Schwann cell spent in pulsatile activity varied widely, with an average of 28%. Behavior of Schwann cells in HEPES-buffered Hanks saline was generally similar to that in the complete medium. Raising K+ to 40 mM or Ca++ to 10 mM did not markedly affect the time course of the pulsatile motility, although the contractions were more vigorous in the high Ca++. Pulsatile movement was reversibly inhibited by cytochalasin B and appeared to be potentiated by drugs that disrupt microtubules.
Collapse
|
43
|
Gabriel G, Thomas PK, King RH, Stolinski C, Breathnach AS. Peripheral nerve intramembranous particle density and distribution in chronic streptozotocin-induced diabetes in rats. Acta Neuropathol 1986; 72:62-8. [PMID: 2950714 DOI: 10.1007/bf00687948] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Freeze-fracture studies have been made on the sciatic nerve of rats with chronic streptozotocin-induced diabetes mellitus. The density of intramembranous particles was reduced in both P and E faces of the axolemma of myelinated and unmyelinated axons, in myelin and in the perineurial cells. This may reflect a general reduction in protein synthesis, or excessive protein degradation, related to the diabetic state. The perineurial cells also showed gap junctions which are not normally present in adult rat peripheral nerve. These may represent a reaction to changes in perineurial activity consequent to alterations in the endoneurial tissue fluid.
Collapse
|
44
|
Ide C, Kumagai K, Hayashi S. Freeze-fracture study of the mechanoreceptive digital corpuscles of mice. JOURNAL OF NEUROCYTOLOGY 1985; 14:1037-52. [PMID: 3831243 DOI: 10.1007/bf01224811] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The freeze-fracture replication technique was used to study the mechanoreceptive digital corpuscles in toe pads of mice. The axon terminal plasmalemma had intramembranous particles (IMPs) at a density of 2367 +/- 517 microns-2 (mean +/- S.E.M.) in the P-face and 84 +/- 4 microns-2 in the E-face. Particles were 10 +/- 1.8 nm in diameter in the P-face and 10 +/- 1.5 nm (mean +/- S.D.) in the E-face. Particle-rich and particle-free areas were noted in the P-face. The lamellar cell plasmalemma had IMPs at a density of 3359 +/- 224 microns-2 in the P-face and 265 +/- 95 microns-2 in the E-face. Particles were 10 +/- 1.4 nm in diameter in the P-face and 10 +/- 1.6 nm in the E-face. Non-terminal unmyelinated fibres in the connective tissue compartment of toe pads were also examined: the P-faces of the axolemma and Schwann cell plasmalemma had IMPs at a density of 1356 +/- 283 microns-2 and 1514 +/- 514 microns-2, respectively, while the E-face of these membranes had only a few particles. Particles were 9 +/- 1.2 nm and 10 +/- 1.6 nm in diameter in the P-faces of axon and Schwann cell plasmalemmata, respectively. The results show that the IMPs in terminal axolemma and in lamellar cell plasmalemma have a much higher density than those of non-terminal axons or Schwann cells in myelinated and unmyelinated fibres. In addition, IMPs in the terminal axolemma are larger than those in non-terminal axolemma except for the nodal axolemma. It can be said that plasmalemmata of both the axon terminals and lamellar cells of digital corpuscles are specialized in terms of IMPs, suggesting that they have specific physiological properties in mechanoreceptive functions including mechano-electric transduction.
Collapse
|
45
|
Köling A. Freeze-fracture electron microscopy of non-myelinated nerve fibres in the human dental pulp. Arch Oral Biol 1985; 30:685-90. [PMID: 3865645 DOI: 10.1016/0003-9969(85)90156-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Freeze-fracture replicas from the subodontoblast region gave a good three-dimensional comprehension of the structure of non-myelinated nerve fibres. Each Schwann cell ensheathed 1-15 axons with a mean diameter of 0.4 micron (0.1-1.2 micron). Many axons were not entirely ensheathed but were exposed to the extracellular space to various degrees. Tightening membrane specializations were not found in the mesaxons. The Schwann-cell plasmalemma exhibited caveolae with necks surrounded by evenly-sized intramembranous particles, typical of endocytosis. The nuclear envelope of Schwann cells showed a few typical pores and perinuclear cisterna. In tangential fractures, the axolemma displayed intramembranous particles evenly distributed over the axolemmal fracture planes. There was a marked difference in particle density between the P (600-650/micron2) and E (150-200/micron2) faces.
Collapse
|
46
|
Köling A. Membrane architecture of myelinated nerve fibres in the human dental pulp studied by freeze-fracturing. Arch Oral Biol 1985; 30:121-8. [PMID: 3857028 DOI: 10.1016/0003-9969(85)90103-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The outer surface of the myelin sheath was well visualized in electron micrographs of replicas and the distribution of its cytoplasm-containing portions could be analysed. Numerous caveolae, probably representing the surface stomata of endo- or exocytotic vesicles were found on the plasmalemmal surface overlying organelle-rich cytoplasmic regions. Membrane specializations of the tight-junction type were found at the outer and inner mesaxons of the myelin sheath as well as at the Ranvier node and Schmidt-Lanterman incisures. Presuming that so-called leakiness is related to the junctional morphology, these junctions would be classified as moderately leaky. The morphological features of the Schwann-cell nuclear envelope were essentially as described for other mammalian cells.
Collapse
|
47
|
Kunishita T, Ledeen RW. Phospholipid biosynthesis in myelin: presence of CTP:phosphoethanolamine cytidylyltransferase in purified myelin of rat brain. J Neurochem 1984; 42:326-33. [PMID: 6319597 DOI: 10.1111/j.1471-4159.1984.tb02682.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Highly purified myelin from rat brain was previously shown to contain the ethanolaminephosphotransferase which completes the synthesis of phosphatidyl ethanolamine. We have now obtained evidence for the presence in myelin of CTP:phosphoethanolamine cytidylyltransferase, the enzyme catalyzing formation of CDP-ethanolamine. Myelin was isolated by two different procedures, one based on the Norton-Poduslo method and the other involving repetitive gradients with osmotic shocking deferred to the end. The fact that activity remained constant through all but the earliest steps suggested that the enzyme is intrinsic to myelin. Comparison of subcellular fractions revealed that approximately half the total activity was in the supernatant, the remainder being distributed among the particulate fractions. Relative specific activity of myelin was 27-31% that of microsomes, thus eliminating the possibility of appreciable contamination by the latter. The possibility of adsorption of the soluble enzyme by myelin was rendered unlikely by retention of activity after washing the myelin with buffered sodium chloride or sodium taurocholate. Furthermore, relative specific activity of the cytidylyltransferase was 10-fold higher than that of lactate dehydrogenase (a cytosolic marker) in myelin. The apparent Km for CTP was approximately the same for myelin and microsomes, but that for phosphoethanolamine was significantly higher for myelin.
Collapse
|
48
|
Abstract
Two myelin sheaths sharing a common outer tongue process are illustrated in a thin section electron micrograph from mouse optic nerve. Although they derive from the same outer tongue process, and therefore from the same oligodendrocyte, the two sheaths are of different thicknesses (6 and 9 turns). The example demonstrates that myelin sheath thickness is regulated independently for each axon, at a site very near the axon.
Collapse
|
49
|
Abrahams PH, Day A, Allt G. Plasma membrane pores of the Schwann cell in Wallerian degeneration: a morphometric analysis. Neuropathol Appl Neurobiol 1983; 9:251-9. [PMID: 6877521 DOI: 10.1111/j.1365-2990.1983.tb00112.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Using the freeze-fracture technique, myelinated fibres were examined from the rabbit sciatic nerve at 48 h after a proximal nerve crush. Employing computer-aided morphometric techniques the distribution of Schwann cell plasma membrane pores was analysed. In both normal control and crushed nerves membrane pores were restricted to the cytoplasmic circumferential bands and longitudinal columns, which characterize the surface of the myelinated nerve fibre, and were absent from the flat plaque-like areas delimited by the bands and columns. In approximately half of the myelinated fibres from the crushed nerves there was a five-fold increase in the density of plasma membrane pores. This response of the Schwann cell was interpreted in terms of an increase in pinocytosis and related to regenerative phenomena in the peripheral nerve.
Collapse
|
50
|
|