1
|
Jensen R. Effects of Dopamine D2-Like Receptor Antagonists on Light Responses of Ganglion Cells in Wild-Type and P23H Rat Retinas. PLoS One 2015; 10:e0146154. [PMID: 26717015 PMCID: PMC4696741 DOI: 10.1371/journal.pone.0146154] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 12/14/2015] [Indexed: 12/04/2022] Open
Abstract
In animal models of retinitis pigmentosa the dopaminergic system in the retina appears to be dysfunctional, which may contribute to the debilitated sight experienced by retinitis pigmentosa patients. Since dopamine D2-like receptors are known to modulate the activity of dopaminergic neurons, I examined the effects of dopamine D2-like receptor antagonists on the light responses of retinal ganglion cells (RGCs) in the P23H rat model of retinitis pigmentosa. Extracellular electrical recordings were made from RGCs in isolated transgenic P23H rat retinas and wild-type Sprague-Dawley rat retinas. Intensity-response curves to flashes of light were evaluated prior to and during bath application of a dopamine D2-like receptor antagonist. The dopamine D2/D3 receptor antagonists sulpiride and eticlopride and the D4 receptor antagonist L-745,870 increased light sensitivity of P23H rat RGCs but decreased light sensitivity in Sprague-Dawley rat RGCs. In addition, L-745,870, but not sulpiride or eticlopride, reduced the maximum peak responses of Sprague-Dawley rat RGCs. I describe for the first time ON-center RGCs in P23H rats that exhibit an abnormally long-latency (>200 ms) response to the onset of a small spot of light. Both sulpiride and eticlopride, but not L-745,870, reduced this ON response and brought out a short-latency OFF response, suggesting that these cells are in actuality OFF-center cells. Overall, the results show that the altered dopaminergic system in degenerate retinas contributes to the deteriorated light responses of RGCs.
Collapse
Affiliation(s)
- Ralph Jensen
- VA Boston Healthcare System, Mail Stop 151E, 150 South Huntington Avenue, Boston, Massachusetts 02130, United States of America
- * E-mail:
| |
Collapse
|
2
|
Ivanova E, Yee CW, Sagdullaev BT. Disruption in dopaminergic innervation during photoreceptor degeneration. J Comp Neurol 2015; 524:1208-21. [PMID: 26356010 DOI: 10.1002/cne.23899] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 09/04/2015] [Accepted: 09/08/2015] [Indexed: 01/18/2023]
Abstract
Dopaminergic amacrine cells (DACs) release dopamine in response to light-driven synaptic inputs, and are critical to retinal light adaptation. Retinal degeneration (RD) compromises the light responsiveness of the retina and, subsequently, dopamine metabolism is impaired. As RD progresses, retinal neurons exhibit aberrant activity, driven by AII amacrine cells, a primary target of the retinal dopaminergic network. Surprisingly, DACs are an exception to this physiological change; DACs exhibit rhythmic activity in healthy retina, but do not burst in RD. The underlying mechanism of this divergent behavior is not known. It is also unclear whether RD leads to structural changes in DACs, impairing functional regulation of AII amacrine cells. Here we examine the anatomical details of DACs in three mouse models of human RD to determine how changes to the dopaminergic network may underlie physiological changes in RD. By using rd10, rd1, and rd1/C57 mice we were able to dissect the impacts of genetic background and the degenerative process on DAC structure in RD retina. We found that DACs density, soma size, and primary dendrite length are all significantly reduced. Using a novel adeno-associated virus-mediated technique to label AII amacrine cells in mouse retina, we observed diminished dopaminergic contacts to AII amacrine cells in RD mice. This was accompanied by changes to the components responsible for dopamine synthesis and release. Together, these data suggest that structural alterations of the retinal dopaminergic network underlie physiological changes during RD.
Collapse
Affiliation(s)
- Elena Ivanova
- Departments of Ophthalmology and Neurology, Weill Medical College of Cornell University, Burke Medical Research Institute, White Plains, New York
| | - Christopher W Yee
- Departments of Ophthalmology and Neurology, Weill Medical College of Cornell University, Burke Medical Research Institute, White Plains, New York
| | - Botir T Sagdullaev
- Departments of Ophthalmology and Neurology, Weill Medical College of Cornell University, Burke Medical Research Institute, White Plains, New York
| |
Collapse
|
3
|
Chakraborty R, Pardue MT. Molecular and Biochemical Aspects of the Retina on Refraction. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 134:249-67. [PMID: 26310159 DOI: 10.1016/bs.pmbts.2015.06.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mutant mouse models with specific visual pathway defects offer an advantage to comprehensively investigate the role of specific pathways/neurons involved in refractive development. In this review, we will focus on recent studies using mouse models that have provided insight into retinal pathways and neurotransmitters controlling refractive development. Specifically, we will examine the contributions of rod and cone photoreceptors and the ON and OFF retinal pathways to visually driven eye growth with emphasis on dopaminergic mechanisms.
Collapse
Affiliation(s)
- Ranjay Chakraborty
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Machelle T Pardue
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, Georgia, USA.
| |
Collapse
|
4
|
Atkinson CL, Feng J, Zhang DQ. Functional integrity and modification of retinal dopaminergic neurons in the rd1 mutant mouse: roles of melanopsin and GABA. J Neurophysiol 2012; 109:1589-99. [PMID: 23255724 DOI: 10.1152/jn.00786.2012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The progressive loss of rod and cone photoreceptors in human subjects with retinitis pigmentosa causes a gradual decline in vision and can result in blindness. Current treatment strategies for the disease rely on the integrity of inner retinal neurons, such as amacrine cells, that are postsynaptic to photoreceptors. Previous work has demonstrated that a specialized subclass of retinal amacrine cell that synthesizes and releases the key neurotransmitter dopamine remains morphologically intact during the disease; however, the pathophysiological function of these neurons remains poorly understood. Here we examined spontaneous and light-evoked spike activity of genetically labeled dopamine neurons from the retinas of retinal degeneration 1 (rd1) mice. Our results indicated that rd1 dopamine neurons remained functionally intact with preserved spontaneous spiking activity and light-evoked responses. The light responses were mediated exclusively by melanopsin phototransduction, not by surviving cones. Our data also suggested that dopamine neurons were altered during photoreceptor loss, as evidenced by less spontaneous bursting activity and increased light-evoked responses with age. Further evidence showed that these alterations were attributed to enhanced GABA/melanopsin signaling to dopamine neurons during disease progression. Taken together, our studies provide valuable information regarding the preservation and functional modification of the retinal dopamine neuronal system in rd1; this information should be considered when designing treatment strategies for retinitis pigmentosa.
Collapse
Affiliation(s)
- Cameron L Atkinson
- Eye Research Inst., Oakland Univ., 423 Dodge Hall, Rochester, MI 48309, USA
| | | | | |
Collapse
|
5
|
Herrmann R, Heflin SJ, Hammond T, Lee B, Wang J, Gainetdinov RR, Caron MG, Eggers ED, Frishman LJ, McCall MA, Arshavsky VY. Rod vision is controlled by dopamine-dependent sensitization of rod bipolar cells by GABA. Neuron 2011; 72:101-10. [PMID: 21982372 DOI: 10.1016/j.neuron.2011.07.030] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2011] [Indexed: 11/19/2022]
Abstract
Dark and light adaptation of retinal neurons allow our vision to operate over an enormous light intensity range. Here we report a mechanism that controls the light sensitivity and operational range of rod-driven bipolar cells that mediate dim-light vision. Our data indicate that the light responses of these cells are enhanced by sustained chloride currents via GABA(C) receptor channels. This sensitizing GABAergic input is controlled by dopamine D1 receptors, with horizontal cells serving as a plausible source of GABA release. Our findings expand the role of dopamine in vision from its well-established function of suppressing rod-driven signals in bright light to enhancing the same signals under dim illumination. They further reveal a role for GABA in sensitizing the circuitry for dim-light vision, thereby complementing GABA's traditional role in providing dynamic feedforward and feedback inhibition in the retina.
Collapse
Affiliation(s)
- Rolf Herrmann
- Albert Eye Research Institute, Duke University, Durham, NC 27710, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Gias C, Vugler A, Lawrence J, Carr AJ, Chen LL, Ahmado A, Semo M, Coffey PJ. Degeneration of cortical function in the Royal College of Surgeons rat. Vision Res 2011; 51:2176-85. [PMID: 21871912 DOI: 10.1016/j.visres.2011.08.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Revised: 06/13/2011] [Accepted: 08/10/2011] [Indexed: 10/17/2022]
Abstract
The purpose of the current study was to determine the progress of cortical functional degeneration in the Royal College of Surgeons (RCS) rat. Cortical responses were measured with optical imaging of intrinsic signals using gratings of various spatial frequencies. Subsequently, electrophysiological recordings were also taken across cortical layers in response to a pulse of broad-spectrum light. We found significant degeneration in the cortical processing of visual information as early as 4 weeks of age. These results show that degeneration in the cortical response of the RCS rat starts before development has been properly completed.
Collapse
Affiliation(s)
- Carlos Gias
- Institute of Ophthalmology, University College London, 11-43 Bath Street, EC1V 9EL London, UK.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Rubin GR, Kraft TW. Flicker assessment of rod and cone function in a model of retinal degeneration. Doc Ophthalmol 2007; 115:165-72. [PMID: 17674067 DOI: 10.1007/s10633-007-9066-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Accepted: 06/06/2007] [Indexed: 11/26/2022]
Abstract
Critical flicker frequency (CFF) is the lowest frequency for which a flickering light is indistinguishable from a non-flickering light of the same mean luminance. CFF is related to light intensity, with cone photoreceptors capable of achieving higher CFF than rods. A contemporaneous measure of rod and cone function can facilitate characterization of a retinal degeneration. We used sinusoidal flicker ERG to obtain CFF values, over a wide range of light intensities, in RCS dystrophic (RCS-p(+)) and wild type rats. Recordings were made at PN23, PN44, and PN64. The CFF curve in control animals increased in proportion to the log of stimulus intensity, with a gentle slope over the lowest 4 log-unit intensity range. The slope of the CFF curve dramatically increased for higher intensities, indicating a rod-cone break. In the RCS rats the rod driven CFF was significantly lower in amplitude compared to normal rats at the earliest age tested (PN23). By PN64 the rod driven CFF was immeasurable in the RCS rats. The amplitude of the cone driven CFF approached normal values at PN23, but was greatly reduced by PN44. By PN64 the entire CFF function was greatly depressed and there was no longer a discernable rod-cone break. These CFF/ERG data show that RCS rats exhibit significant early degeneration of the rods, followed soon after by degeneration of the cones. Using this approach, rod and cone function can be independently accessed using flicker ERG by testing at a few select intensities.
Collapse
Affiliation(s)
- Glen R Rubin
- Department of Vision Sciences, University of Alabama at Birmingham, 924 18th Street South, Worrell Building, Birmingham, AL 35294-4390, USA
| | | |
Collapse
|
8
|
Ohzeki T, Machida S, Takahashi T, Ohtaka K, Kurosaka D. The Effect of intravitreal N-methyl-DL-aspartic acid on the electroretinogram in Royal College of surgeons rats. Jpn J Ophthalmol 2007; 51:165-74. [PMID: 17554477 DOI: 10.1007/s10384-007-0420-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Accepted: 01/19/2007] [Indexed: 12/16/2022]
Abstract
PURPOSE To investigate how the third-order neuronal response contributes to shaping the electroretinogram (ERG) in the Royal College of Surgeons (RCS) rat. METHODS Full-field ERGs were recorded from dystrophic RCS rats (n = 30) at 4, 6, 8, 10, 12, or 14 weeks of age in response to different stimulus intensities (maximum intensity, 0.84 log cd-s/m(2)). N-methyl-DL: -aspartic acid (NMDA, 5 mM) was injected into the vitreous cavity of the right eyes to eliminate the third-order neuronal response. The left eyes received the vehicle and served as controls. The third-order neuronal response was isolated by digitally subtracting waveforms of the NMDA-injected eyes from those of the control eyes. RESULTS The ERG a- and b-waves deteriorated with the age of the rat. The third-order neuronal response was preserved to a greater degree than the b-wave despite progression of photoreceptor degeneration. Intravitreal injection of NMDA attenuated the a-wave and enhanced the b-wave across the stimulus range from low to middle intensities. This tendency became more pronounced with advancing rat age. In aged dystrophic RCS rats this phenomenon was seen even at maximum intensity. The difference between NMDA-injected and vehicle-injected eyes was larger for the threshold than for the maximum amplitude at each examined time point (P < 0.001). Intravitreal injection of NMDA decreased implicit times of the a- and b-waves after the rats reached 8 weeks of age (P < 0.005 for the a-wave). CONCLUSION With advancing photoreceptor degeneration, the third-order neuronal response made a greater contribution to shaping the a- and b-waves in dystrophic RCS rats.
Collapse
Affiliation(s)
- Takayuki Ohzeki
- Department of Ophthalmology, Iwate Medical University School of Medicine, Morioka, Iwate, Japan
| | | | | | | | | |
Collapse
|
9
|
Vugler AA, Redgrave P, Hewson-Stoate NJ, Greenwood J, Coffey PJ. Constant illumination causes spatially discrete dopamine depletion in the normal and degenerate retina. J Chem Neuroanat 2007; 33:9-22. [PMID: 17223011 DOI: 10.1016/j.jchemneu.2006.10.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2006] [Revised: 10/20/2006] [Accepted: 10/21/2006] [Indexed: 11/20/2022]
Abstract
A fully competent retinal dopamine system underpins normal visual function. Although this system is known to be compromised both prior to and during retinal degeneration, the spatial dynamics of dopamine turnover within the degenerate retina are at present unknown. Here, using immunohistochemistry for dopamine in combination with quantitative optical density measurements, we reveal a global decline in retinal dopamine levels in the light adapted RCS dystrophic rat, which is restricted to plexiform layers in the dark. Pharmacological blockade of dopamine production with the drug alpha-methyl-p-tyrosine (AMPT) allows the direct visualisation of dopamine depletion in normal and degenerate retina in response to constant illumination. In normal retinae this effect is spatially discrete, being undetectable in perikarya and specific to amacrine cell fibres in sublamina 1 of the inner plexiform layer. A similar response was observed in the retinae of dystrophic rats but with a reduction in amplitude of approximately 50%. It is suggested that the pattern of dopamine depletion observed in rat retina may reflect an AMPT-resistant pool of perikaryal dopamine and/or a reduction in extrasynaptic release of this neurotransmitter in response to illumination in vivo. We conclude that the visualisation of dopamine depletion reported here represents a release of this neurotransmitter in the response to light. Turnover of dopamine in the dystrophic retina is discussed in the context of surviving photoreceptors, including the intrinsically photosensitive melanopsin ganglion cells of the inner retina.
Collapse
Affiliation(s)
- A A Vugler
- Division of Cellular Therapy, Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK.
| | | | | | | | | |
Collapse
|
10
|
Tanaka M, Machida S, Ohtaka K, Tazawa Y, Nitta J. Third-order neuronal responses contribute to shaping the negative electroretinogram in sodium iodate-treated rats. Curr Eye Res 2005; 30:443-53. [PMID: 16020277 DOI: 10.1080/02713680590959330] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
PURPOSE To determine possible mechanisms that shape the negative electroretinograms (ERGs) in rats with photoreceptor degeneration induced by destruction of the retinal pigment epithelium. METHODS Sprague-Dawley rats (n = 48) were injected intravenously with 60 mg/kg of sodium iodate (NaIO(3)). Full-field ERGs were elicited by different stimulus intensities with a maximum luminance of 1.23 log cd-s/m(2) and recorded at 6 hr and on days 7, 14, and 28 after the NaIO(3) injections. DL-2-amino-4-phosphonobutyric acid (APB, 1 mM) or N-methyl-L-aspartic acid (NMDA, 5 mM) was injected into the vitreous cavity to isolate photoreceptor (PIII), second-order, and third-order neuronal responses. After recording the ERGs, animals were sacrificed for histological analysis. RESULTS Negative ERGs were recorded under scotopic conditions on day 7 after the NaIO(3) injection. An intravitreal injection of NMDA eliminated most of the a-wave, resulting in the abolition of the negative ERG. On days 14 and 28, the a-wave amplitudes were reduced compared to those on day 7 with the loss of the negative ERGs. The mean amplitudes of the PIII and second-order neuronal responses were progressively reduced until day 7. In contrast, the mean amplitude of the third-order neuronal responses were relatively well-preserved until day 7 and then were decreased between days 7 and 14. As a result, the amplitude of the third-order neuronal response dominated over the second-order neuronal response on day 7. There was no significant difference in the middle and inner retinal morphology at each time point. CONCLUSIONS NaIO(3) produced negative ERGs transiently, and the third-order neuronal responses were the main contributors to the negative ERG. The relative preservation of the third-order neuronal response plays a role in shaping the negative ERGs in this model.
Collapse
Affiliation(s)
- Michiko Tanaka
- Department of Ophthalmology, Iwate Medical University School of Medicine, 19-1 Uchimaru, Morioka, Iwate 020-8505, Japan
| | | | | | | | | |
Collapse
|
11
|
May CA, Mittag T. Neuronal Nitric Oxide Synthase (nNOS) Positive Retinal Amacrine Cells are Altered in the DBA/2NNia Mouse, a Murine Model for Angle-Closure Glaucoma. J Glaucoma 2004; 13:496-9. [PMID: 15534476 DOI: 10.1097/01.ijg.0000137435.83307.fd] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE To characterize retinal amacrine cell changes in eyes of DBA/2NNia (DBA) mice that develop an inherited angle-closure glaucoma. METHODS DBA and non-glaucomatous C57BL/6J mice of different age groups (2 to 23 months of age) were studied and compared. Morphologic investigations included NADPH-diaphorase staining of retinal whole mounts and fluorescence immunohistochemistry of cryosections with antibodies against neuronal nitric oxide synthase (nNOS), tyrosin hydroxylase (TH), gamma aminobutyric acid (GABA), and vesicular acetylcholine transporter (VAChT). RESULTS Immunohistochemistry of amacrine cell subpopulations in the retinae of DBA mice revealed no significant staining differences in the two mouse strains at all ages using antibodies against TH, GABA, and VAChT. However, staining with nNOS and NADPH diaphorase revealed significant differences between the DBA strain and the C57BL/6J mice. With the onset of elevated IOP and glaucoma beginning at around 6 months in the DBA mice, the total number of NOS positive amacrine cells continuously decreased from 1000 cells at 6 months of age down to 480 cells in animals older than 20 months of age, but did not decline in age-matched C57 mouse retinas. CONCLUSION We previously described a parafoveal loss of nNOS positive amacrine cells in the monkey glaucoma model. The fact that there is also a significant decrease of nNOS amacrine cells in the glaucomatous mouse eye indicates a specific response of nNOS positive amacrine cells in glaucomatous retinopathy.
Collapse
|
12
|
Sauvé Y, Girman SV, Wang S, Keegan DJ, Lund RD. Preservation of visual responsiveness in the superior colliculus of RCS rats after retinal pigment epithelium cell transplantation. Neuroscience 2002; 114:389-401. [PMID: 12204208 DOI: 10.1016/s0306-4522(02)00271-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The dystrophic RCS rat undergoes progressive photoreceptor degeneration due to a primary defect in retinal pigment epithelial (RPE) cells. This has a major impact on central visual responsiveness. Here we have examined how functional deterioration is contained by subretinal transplantation of immortalized human RPE cells. Transplantation was done at three to four weeks of age prior to significant photoreceptor loss and recipients were kept on cyclosporin. At six months of age, sensitivity maps and multi-unit response properties were obtained across the visual field by recording at 76 equidistant sites encompassing the whole superior colliculus.A significant degree of functional protection, both in terms of area of responsive retina and response characteristics was observed following RPE transplantation. At best, the sensitivity, latency of onset, and response rise time were all maintained within normal ranges and this was achieved with no more than half of the normal complement of photoreceptors. Although partial, the degree of anatomical preservation (both in terms of outer nuclear layer thickness and area of rescue) correlated well with the level of preserved visual sensitivities. Sham injections also resulted in rescue, though the area of preservation was strictly confined to the needle injury site and the response properties were significantly worse than with RPE injections. This study shows that central physiological responsiveness and correlated retinal morphology can be preserved in an animal model of retinal disease by implantation of an immortalized cell line. The use of retinal sensitivity measurements provides a background for assessing higher visual functions in these animals and a direct comparison for human perimetry measures.
Collapse
Affiliation(s)
- Y Sauvé
- Moran Eye Center, University of Utah Health Sciences Center, 50 North Medical Drive, Salt Lake City, UT 84132, USA.
| | | | | | | | | |
Collapse
|
13
|
Doyle SE, McIvor WE, Menaker M. Circadian rhythmicity in dopamine content of mammalian retina: role of the photoreceptors. J Neurochem 2002; 83:211-9. [PMID: 12358745 DOI: 10.1046/j.1471-4159.2002.01149.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Dopamine, the predominant retinal catecholamine, is a neurotransmitter and neuromodulator known to regulate light-adaptive retinal processes. Because dopamine influences several rhythmic events in the retina it is also a candidate for a retinal circadian signal. Using high performance liquid chromatography (HPLC), we have tested whether dopamine and its breakdown products are rhythmic in Royal College of Surgeons (RCS) rats with normal and dystrophic retinas. In both normal and mutant animals entrained to a 12-h light/12-h dark cycle, we found robust daily rhythms of dopamine and its two major metabolites. To address circadian rhythmicity of dopamine content, rats were entrained to light/dark cycles and released into constant darkness, using the circadian rhythm of wheel-running activity as a marker of each individual's circadian phase. Circadian rhythms of dopamine and metabolite content persisted in both wild type and retinally degenerate animals held for two weeks in constant darkness. Our results demonstrate for the first time clear circadian rhythms of dopamine content and turnover in a free-running mammal, and suggest that rods and cones are not required for dopamine rhythmicity.
Collapse
Affiliation(s)
- Susan E Doyle
- Department of Biology and National Science Foundation Center for Biological Timing, University of Virginia, Charlottesville, VA 22903, USA.
| | | | | |
Collapse
|
14
|
Ogilvie JM, Speck JD. Dopamine has a critical role in photoreceptor degeneration in the rd mouse. Neurobiol Dis 2002; 10:33-40. [PMID: 12079402 DOI: 10.1006/nbdi.2002.0489] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Photoreceptors receive paracrine input from dopaminergic interplexiform cells. Rod photoreceptors in the rd mouse degenerate rapidly due to a specific gene defect. We investigated the effects of dopamine on rd mouse photoreceptors in retinal organ culture. Retinas were harvested from rd or wild-type mice at postnatal day 2 and grown in organ culture for 27 days. When antagonists for either D(1)- or D(2)-family dopamine receptors were added to the media, photoreceptor degeneration was blocked. Furthermore, when dopamine was depleted by the addition of 6-hydroxydopamine and pargyline, photoreceptor survival appeared comparable to wild-type retinal cultures. The addition of a dopamine agonist induced photoreceptor degeneration in dopamine-depleted rd organ cultures. In all cases, photoreceptors maintained robust staining of opsin. These results demonstrate that dopamine antagonists or dopamine depletion blocks photoreceptor degeneration and that dopamine is necessary for photoreceptor degeneration in the rd mouse retinal organ culture model, indicating that dopamine antagonists may represent a therapeutic strategy in retinal degenerative disease.
Collapse
Affiliation(s)
- Judith Mosinger Ogilvie
- Faye and Carl Simons Center for Research in Hearing and Deafness, Central Institute for the Deaf, St. Louis, Missouri, USA
| | | |
Collapse
|
15
|
Abstract
AIM Dopamine serves a variety of functions in the retina. Abnormalities of the retinal dopaminergic system have been described in the Royal College of Surgeons (RCS) rat as well as other models of retinal degeneration. Dopamine has been implicated in several retinal dysfunctions of retinitis pigmentosa. Dopaminergic amacrine cells respond to light by increasing their tyrosine hydroxylase (TH) activity and the rate of dopamine turnover. This study has, therefore, examined the ontogenesis of TH containing cells in the RCS rat retina to assess whether progressive photoreceptor degeneration affects the development or survival of TH containing cells in any way. METHODS TH immunoreactivity in developing dystrophic RCS rat retinae (postnatal day (PN) 0, 3, 6, 14, 18, 26, 32, 56, 85, 91, 12 month and 15 month) and normal retina (PN day 0, 6, 14, 19, 26, 30, 33, 54 and adults) was compared. RESULTS TH immunoreactivity in dystrophic retina closely resembled that in normal retina. In both groups, very faintly immunoreactive cells were detected in the proximal retina at PN 0. Immunoreactivity increased until PN 14, when faintly immunoreactive interplexiform (IP) fibers and fibers in the outer plexiform layer could be observed. In both groups, the IP connections reached their mature level of development at about PN 30. Thus the developmental expression of TH immunoreactive cells resembled that of non-dystrophic retina in both chronology as well as types of cells. These cells survived even in the advanced stages of degeneration. CONCLUSIONS The results suggest that the abnormalities in the dopaminergic system of the RCS retinae are not associated with abnormal ontogeny or survival of TH synthesizing cells.
Collapse
Affiliation(s)
- R K Sharma
- Department of Ophthalmology, University Hospital of Lund, Lund, Sweden.
| |
Collapse
|
16
|
Leguire LE, Jende DL, Nairus TM, Walson PD, Rogers GL, Bremer DL, McGregor ML. Levodopa-carbidopa and childhood retinal disease. J AAPOS 1998; 2:79-85. [PMID: 10530967 DOI: 10.1016/s1091-8531(98)90068-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE Our purpose was to determine the influence of levodopa-carbidopa on visual function in children with retinal disease. METHOD Two studies were undertaken, a single-dose study and a longitudinal dosing study. A double-masked, placebo controlled single-dose study was undertaken of levodopa-carbidopa (2.08 mg/kg of body weight levodopa with 25% carbidopa) on monocular visual acuity in 14 children with retinal disease. Subjects received two capsules approximately 2.5 hours apart, and monocular visual acuity was measured 2 hours after each capsule ingestion. The second study was a double-masked, placebo-controlled 12-week longitudinal dosing (0.62 mg/kg of body weight) crossover study in which subjects received levodopa-carbidopa for 6 weeks and placebo for 6 weeks. RESULTS The single-dose study revealed a small but statistically significant improvement in monocular visual acuity after levodopa-carbidopa ingestion. The longitudinal study revealed a small but statistically significant improvement in binocular visual acuity after levodopa ingestion. In both studies placebo had no significant effect on visual acuity. Six subjects participated in both studies and demonstrated a significant correlation (r = 0.76, p < 0.05) between change in visual acuity in the single-dose study and the longitudinal dosing study. CONCLUSION The results are consistent with the hypothesis that dopamine influences the receptive field characteristics of retinal cells. The results also suggest that there may be low retinal dopamine levels in some types of retinal disease, which may be amenable to treatment.
Collapse
Affiliation(s)
- L E Leguire
- Department of Ophthalmology, Children's Hospital, and the College of Medicine, Ohio State University, Columbus 43205-2696, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Djamgoz MB, Hankins MW, Hirano J, Archer SN. Neurobiology of retinal dopamine in relation to degenerative states of the tissue. Vision Res 1997; 37:3509-29. [PMID: 9425527 DOI: 10.1016/s0042-6989(97)00129-6] [Citation(s) in RCA: 192] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Neurobiology of retinal dopamine is reviewed and discussed in relation to degenerative states of the tissue. The Introduction deals with the basic physiological actions of dopamine on the different neurons in vertebrate retinae with an emphasis upon mammals. The intimate relationship between the dopamine and melatonin systems is also covered. Recent advances in the molecular biology of dopamine receptors is reviewed in some detail. As degenerative states of the retina, three examples are highlighted: Parkinson's disease; ageing; and retinal dystrophy (retinitis pigmentosa). As visual functions controlled, at least in part, by dopamine, absolute sensitivity, spatial contrast sensitivity, temporal (including flicker) sensitivity and colour vision are reviewed. Possible cellular and synaptic bases of the visual dysfunctions observed during retinal degenerations are discussed in relation to dopaminergic control. It is concluded that impairment of the dopamine system during retinal degenerations could give rise to many of the visual abnormalities observed. In particular, the involvement of dopamine in controlling the coupling of horizontal and amacrine cell lateral systems appears to be central to the visual defects seen.
Collapse
Affiliation(s)
- M B Djamgoz
- Department of Biology, Imperial College of Science, Technology and Medicine, London, U.K.
| | | | | | | |
Collapse
|