1
|
McLean KJ, Baldwin RL, Li CJ, Klotz JL, Edwards JL, McLeod KR. Synthetic Alkaloid Treatment Influences the Intestinal Epithelium and Mesenteric Adipose Transcriptome in Holstein Steers. Front Vet Sci 2020; 7:615. [PMID: 33062652 PMCID: PMC7518393 DOI: 10.3389/fvets.2020.00615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 07/29/2020] [Indexed: 11/13/2022] Open
Abstract
Holstein steers (n = 16) were used to determine if a synthetic alkaloid, bromocriptine, would alter the transcriptome of the small intestine and adjacent mesenteric adipose. On d 0, steers were assigned to one of two treatments: control (CON; saline only) or bromocriptine (BROMO; 0.1 mg/kg BW bromocriptine mesylate injected intramuscularly every 3 d for 30 d). Steers were slaughtered and midpoint sections of jejunal epithelium and associated mesenteric fat were collected for RNA isolation. Transcriptome analysis was completed via RNA-Seq to determine if BROMO differed compared with CON within intestinal epithelium or mesenteric adipose mRNA isolates. Differential expression thresholds were set at a significant P-value (P < 0.05) and a fold change ≥ 1.5. Only two genes were differentially expressed within the intestinal epithelium but there were 20 differentially expressed genes in the mesenteric adipose tissue (six up regulated and 14 down regulated). Functions related to cell movement, cell development, cell growth and proliferation, cell death, and overall cellular function and maintenance were the top five functional molecular categories influenced by BROMO treatment within the intestinal epithelium. The top molecular categories within mesenteric adipose were antigen presentation, protein synthesis, cell death, cell movement, and cell to cell signaling and interaction. In conclusion, BROMO treatment influenced the intestinal epithelium and mesenteric adipose transcriptome and identified genes and pathways influential to the effects associated with alkaloid exposure which are important to beef production.
Collapse
Affiliation(s)
- Kyle J McLean
- Ruminant Nutrition Laboratory, Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, United States.,Department of Animal Science, University of Tennessee Institute of Agriculture, Knoxville, TN, United States
| | - Ransom L Baldwin
- Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Cong-Jun Li
- Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| | - James L Klotz
- Forage-Animal Production Research Unit, Agricultural Research Service, United States Department of Agriculture, Lexington, KY, United States
| | - J Lannett Edwards
- Department of Animal Science, University of Tennessee Institute of Agriculture, Knoxville, TN, United States
| | - Kyle R McLeod
- Ruminant Nutrition Laboratory, Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
2
|
Orban T, Leinonen H, Getter T, Dong Z, Sun W, Gao S, Veenstra A, Heidari-Torkabadi H, Kern TS, Kiser PD, Palczewski K. A Combination of G Protein-Coupled Receptor Modulators Protects Photoreceptors from Degeneration. J Pharmacol Exp Ther 2017; 364:207-220. [PMID: 29162627 DOI: 10.1124/jpet.117.245167] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 11/20/2017] [Indexed: 02/03/2023] Open
Abstract
Degeneration of retinal photoreceptor cells can arise from environmental and/or genetic causes. Since photoreceptor cells, the retinal pigment epithelium (RPE), neurons, and glial cells of the retina are intimately associated, all cell types eventually are affected by retinal degenerative diseases. Such diseases often originate either in rod and/or cone photoreceptor cells or the RPE. Of these, cone cells located in the central retina are especially important for daily human activity. Here we describe the protection of cone cells by a combination therapy consisting of the G protein-coupled receptor modulators metoprolol, tamsulosin, and bromocriptine. These drugs were tested in Abca4-/-Rdh8-/- mice, a preclinical model for retinal degeneration. The specificity of these drugs was determined with an essentially complete panel of human G protein-coupled receptors. Significantly, the combination of metoprolol, tamsulosin, and bromocriptine had no deleterious effects on electroretinographic responses of wild-type mice. Moreover, putative G protein-coupled receptor targets of these drugs were shown to be expressed in human and mouse eyes by RNA sequencing and quantitative polymerase chain reaction. Liquid chromatography together with mass spectrometry using validated internal standards confirmed that metoprolol, tamsulosin, and bromocriptine individually or together penetrate the eye after either intraperitoneal delivery or oral gavage. Collectively, these findings support human trials with combined therapy composed of lower doses of metoprolol, tamsulosin, and bromocriptine designed to safely impede retinal degeneration associated with certain genetic diseases (e.g., Stargardt disease). The same low-dose combination also could protect the retina against diseases with complex or unknown etiologies such as age-related macular degeneration.
Collapse
Affiliation(s)
- Tivadar Orban
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio (T.O., H.L., T.G., S.G., A.V., H.H.-T., T.S.K., P.D.K., K.P.); Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio (T.S.K., P.D.K.); and Polgenix Inc., Cleveland, Ohio (Z.D., W.S.)
| | - Henri Leinonen
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio (T.O., H.L., T.G., S.G., A.V., H.H.-T., T.S.K., P.D.K., K.P.); Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio (T.S.K., P.D.K.); and Polgenix Inc., Cleveland, Ohio (Z.D., W.S.)
| | - Tamar Getter
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio (T.O., H.L., T.G., S.G., A.V., H.H.-T., T.S.K., P.D.K., K.P.); Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio (T.S.K., P.D.K.); and Polgenix Inc., Cleveland, Ohio (Z.D., W.S.)
| | - Zhiqian Dong
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio (T.O., H.L., T.G., S.G., A.V., H.H.-T., T.S.K., P.D.K., K.P.); Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio (T.S.K., P.D.K.); and Polgenix Inc., Cleveland, Ohio (Z.D., W.S.)
| | - Wenyu Sun
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio (T.O., H.L., T.G., S.G., A.V., H.H.-T., T.S.K., P.D.K., K.P.); Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio (T.S.K., P.D.K.); and Polgenix Inc., Cleveland, Ohio (Z.D., W.S.)
| | - Songqi Gao
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio (T.O., H.L., T.G., S.G., A.V., H.H.-T., T.S.K., P.D.K., K.P.); Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio (T.S.K., P.D.K.); and Polgenix Inc., Cleveland, Ohio (Z.D., W.S.)
| | - Alexander Veenstra
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio (T.O., H.L., T.G., S.G., A.V., H.H.-T., T.S.K., P.D.K., K.P.); Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio (T.S.K., P.D.K.); and Polgenix Inc., Cleveland, Ohio (Z.D., W.S.)
| | - Hossein Heidari-Torkabadi
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio (T.O., H.L., T.G., S.G., A.V., H.H.-T., T.S.K., P.D.K., K.P.); Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio (T.S.K., P.D.K.); and Polgenix Inc., Cleveland, Ohio (Z.D., W.S.)
| | - Timothy S Kern
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio (T.O., H.L., T.G., S.G., A.V., H.H.-T., T.S.K., P.D.K., K.P.); Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio (T.S.K., P.D.K.); and Polgenix Inc., Cleveland, Ohio (Z.D., W.S.)
| | - Philip D Kiser
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio (T.O., H.L., T.G., S.G., A.V., H.H.-T., T.S.K., P.D.K., K.P.); Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio (T.S.K., P.D.K.); and Polgenix Inc., Cleveland, Ohio (Z.D., W.S.)
| | - Krzysztof Palczewski
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio (T.O., H.L., T.G., S.G., A.V., H.H.-T., T.S.K., P.D.K., K.P.); Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio (T.S.K., P.D.K.); and Polgenix Inc., Cleveland, Ohio (Z.D., W.S.)
| |
Collapse
|