1
|
Nickolls AR, Lee MM, Espinoza DF, Szczot M, Lam RM, Wang Q, Beers J, Zou J, Nguyen MQ, Solinski HJ, AlJanahi AA, Johnson KR, Ward ME, Chesler AT, Bönnemann CG. Transcriptional Programming of Human Mechanosensory Neuron Subtypes from Pluripotent Stem Cells. Cell Rep 2021; 30:932-946.e7. [PMID: 31968264 PMCID: PMC7059559 DOI: 10.1016/j.celrep.2019.12.062] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/17/2019] [Accepted: 12/16/2019] [Indexed: 12/17/2022] Open
Abstract
Efficient and homogeneous in vitro generation of peripheral sensory neurons may provide a framework for novel drug screening platforms and disease models of touch and pain. We discover that, by ovesssrexpressing NGN2 and BRN3A, human pluripotent stem cells can be transcriptionally programmed to differentiate into a surprisingly uniform culture of cold- and mechano-sensing neurons. Although such a neuronal subtype is not found in mice, we identify molecular evidence for its existence in human sensory ganglia. Combining NGN2 and BRN3A programming with neural crest patterning, we produce two additional populations of sensory neurons, including a specialized touch receptor neuron subtype. Finally, we apply this system to model a rare inherited sensory disorder of touch and proprioception caused by inactivating mutations in PIEZO2. Together, these findings establish an approach to specify distinct sensory neuron subtypes in vitro, underscoring the utility of stem cell technology to capture human-specific features of physiology and disease. Nickolls et al. develop a method, using human stem cells, to generate specific types of sensory neurons that detect cold temperature and mechanical force. This approach uncovers a class of neuron found in humans, but not mice, and enables the modeling of a rare sensory disorder of touch and proprioception.
Collapse
Affiliation(s)
- Alec R Nickolls
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | - Michelle M Lee
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - David F Espinoza
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Marcin Szczot
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ruby M Lam
- Department of Neuroscience, Brown University, Providence, RI 02912, USA; National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Qi Wang
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jeanette Beers
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jizhong Zou
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Minh Q Nguyen
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hans J Solinski
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Aisha A AlJanahi
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kory R Johnson
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael E Ward
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alexander T Chesler
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Carsten G Bönnemann
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
2
|
Single cell transcriptomics of primate sensory neurons identifies cell types associated with chronic pain. Nat Commun 2021; 12:1510. [PMID: 33686078 PMCID: PMC7940623 DOI: 10.1038/s41467-021-21725-z] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 02/08/2021] [Indexed: 01/24/2023] Open
Abstract
Distinct types of dorsal root ganglion sensory neurons may have unique contributions to chronic pain. Identification of primate sensory neuron types is critical for understanding the cellular origin and heritability of chronic pain. However, molecular insights into the primate sensory neurons are missing. Here we classify non-human primate dorsal root ganglion sensory neurons based on their transcriptome and map human pain heritability to neuronal types. First, we identified cell correlates between two major datasets for mouse sensory neuron types. Machine learning exposes an overall cross-species conservation of somatosensory neurons between primate and mouse, although with differences at individual gene level, highlighting the importance of primate data for clinical translation. We map genomic loci associated with chronic pain in human onto primate sensory neuron types to identify the cellular origin of chronic pain. Genome-wide associations for chronic pain converge on two different neuronal types distributed between pain disorders that display different genetic susceptibilities, suggesting both unique and shared mechanisms between different pain conditions. The contribution of distinct types of dorsal root ganglion neurons to chronic pain is unclear. Here, the authors molecularly profile non-human primate sensory neurons and show that genome-wide associations converge on two neuronal types with different genetic susceptibilities for chronic pain.
Collapse
|
3
|
Stone EJ, Uchida A, Brown A. Charcot-Marie-Tooth disease Type 2E/1F mutant neurofilament proteins assemble into neurofilaments. Cytoskeleton (Hoboken) 2019; 76:423-439. [PMID: 31574566 DOI: 10.1002/cm.21566] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/30/2019] [Accepted: 09/13/2019] [Indexed: 11/12/2022]
Abstract
Charcot-Marie-Tooth disease Type 2E/1F (CMT2E/1F) is a peripheral neuropathy caused by mutations in neurofilament protein L (NFL), which is one of five neurofilament subunit proteins that co-assemble to form neurofilaments in vivo. Prior studies on cultured cells have shown that CMT2E/1F mutations disrupt neurofilament assembly and lead to protein aggregation, suggesting a possible disease mechanism. However, electron microscopy of axons in peripheral nerve biopsies from patients has revealed accumulations of neurofilament polymers of normal appearance and no evidence of protein aggregates. To reconcile these observations, we reexamined the assembly of seven CMT2E/1F NFL mutants in cultured cells. None of the mutants assembled into homopolymers in SW13vim- cells, but P8R, P22S, L268/269P, and P440/441L mutant NFL assembled into heteropolymers in the presence of neurofilament protein M (NFM) alone, and N98S, Q332/333P, and E396/397K mutant NFL assembled in the presence of NFM and peripherin. P8R, P22S, N98S, L268/269P, E396/397K, and P440/441L mutant NFL co-assembled into neurofilaments with endogenous NFL, NFM, and α-internexin in cultured neurons, although the N98S and E396/397K mutants showed reduced filament incorporation, and the Q332/333P mutant showed limited incorporation. We conclude that all the mutants are capable of assembling into neurofilaments, but for some of the mutants this was dependent on the identity of the other neurofilament proteins available for co-assembly, and most likely also their relative expression level. Thus, caution should be exercised when drawing conclusions about the assembly capacity of CMT2E/1F mutants based on transient transfections in cultured cells.
Collapse
Affiliation(s)
- Elizabeth J Stone
- Department of Neuroscience, Ohio State University, Columbus, Ohio.,Neuroscience Graduate Program, Ohio State University, Columbus, Ohio
| | - Atsuko Uchida
- Department of Neuroscience, Ohio State University, Columbus, Ohio
| | - Anthony Brown
- Department of Neuroscience, Ohio State University, Columbus, Ohio
| |
Collapse
|
4
|
Haberberger RV, Barry C, Dominguez N, Matusica D. Human Dorsal Root Ganglia. Front Cell Neurosci 2019; 13:271. [PMID: 31293388 PMCID: PMC6598622 DOI: 10.3389/fncel.2019.00271] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/04/2019] [Indexed: 12/14/2022] Open
Abstract
Sensory neurons with cell bodies situated in dorsal root ganglia convey information from external or internal sites of the body such as actual or potential harm, temperature or muscle length to the central nervous system. In recent years, large investigative efforts have worked toward an understanding of different types of DRG neurons at transcriptional, translational, and functional levels. These studies most commonly rely on data obtained from laboratory animals. Human DRG, however, have received far less investigative focus over the last 30 years. Nevertheless, knowledge about human sensory neurons is critical for a translational research approach and future therapeutic development. This review aims to summarize both historical and emerging information about the size and location of human DRG, and highlight advances in the understanding of the neurochemical characteristics of human DRG neurons, in particular nociceptive neurons.
Collapse
Affiliation(s)
- Rainer Viktor Haberberger
- Pain and Pulmonary Neurobiology Laboratory, Centre for Neuroscience, Anatomy and Histology, Flinders University, Adelaide, SA, Australia.,Órama Institute, Flinders University, Adelaide, SA, Australia
| | - Christine Barry
- Pain and Pulmonary Neurobiology Laboratory, Centre for Neuroscience, Anatomy and Histology, Flinders University, Adelaide, SA, Australia
| | - Nicholas Dominguez
- Pain and Pulmonary Neurobiology Laboratory, Centre for Neuroscience, Anatomy and Histology, Flinders University, Adelaide, SA, Australia
| | - Dusan Matusica
- Pain and Pulmonary Neurobiology Laboratory, Centre for Neuroscience, Anatomy and Histology, Flinders University, Adelaide, SA, Australia.,Órama Institute, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
5
|
DRG Voltage-Gated Sodium Channel 1.7 Is Upregulated in Paclitaxel-Induced Neuropathy in Rats and in Humans with Neuropathic Pain. J Neurosci 2017; 38:1124-1136. [PMID: 29255002 DOI: 10.1523/jneurosci.0899-17.2017] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 11/10/2017] [Accepted: 12/08/2017] [Indexed: 11/21/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a common adverse effect experienced by cancer patients receiving treatment with paclitaxel. The voltage-gated sodium channel 1.7 (Nav1.7) plays an important role in multiple preclinical models of neuropathic pain and in inherited human pain phenotypes, and its gene expression is increased in dorsal root ganglia (DRGs) of paclitaxel-treated rats. Hence, the potential of change in the expression and function of Nav1.7 protein in DRGs from male rats with paclitaxel-related CIPN and from male and female humans with cancer-related neuropathic pain was tested here. Double immunofluorescence in CIPN rats showed that Nav1.7 was upregulated in small DRG neuron somata, especially those also expressing calcitonin gene-related peptide (CGRP), and in central processes of these cells in the superficial spinal dorsal horn. Whole-cell patch-clamp recordings in rat DRG neurons revealed that paclitaxel induced an enhancement of ProTx II (a selective Nav1.7 channel blocker)-sensitive sodium currents. Bath-applied ProTx II suppressed spontaneous action potentials in DRG neurons occurring in rats with CIPN, while intrathecal injection of ProTx II significantly attenuated behavioral signs of CIPN. Complementarily, DRG neurons isolated from segments where patients had a history of neuropathic pain also showed electrophysiological and immunofluorescence results indicating an increased expression of Nav1.7 associated with spontaneous activity. Nav1.7 was also colocalized in human cells expressing transient receptor potential vanilloid 1 and CGRP. Furthermore, ProTx II decreased firing frequency in human DRGs with spontaneous action potentials. This study suggests that Nav1.7 may provide a potential new target for the treatment of neuropathic pain, including chemotherapy (paclitaxel)-induced neuropathic pain.SIGNIFICANCE STATEMENT This work demonstrates that the expression and function of the voltage-gated sodium channel Nav1.7 are increased in a preclinical model of chemotherapy-induced peripheral neuropathy (CIPN), the most common treatment-limiting side effect of all the most common anticancer therapies. This is key as gain-of-function mutations in human Nav1.7 recapitulate both the distribution and pain percept as shown by CIPN patients. This work also shows that Nav1.7 is increased in human DRG neurons only in dermatomes where patients are experiencing acquired neuropathic pain symptoms. This work therefore has major translational impact, indicating an important novel therapeutic avenue for neuropathic pain as a class.
Collapse
|
6
|
Age-dependent decline in density of human nerve and spinal ganglia neurons expressing the α3 isoform of Na/K-ATPase. Neuroscience 2015; 310:342-53. [PMID: 26386295 DOI: 10.1016/j.neuroscience.2015.09.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 09/09/2015] [Accepted: 09/11/2015] [Indexed: 11/20/2022]
Abstract
Ambulatory instability and falls are a major source of morbidity in the elderly. Age-related loss of tendon reflexes is a major contributing factor to this morbidity, and deterioration of the afferent limb of the stretch reflex is a potential contributing factor to such age-dependent loss of tendon reflexes. To evaluate this, we assessed the number and distribution of muscle spindle afferent fibers in human sacral spinal ganglia (S1) and tibial nerve samples obtained at autopsy, using immunohistochemical staining for the α3 isoform of Na(+), K(+)-ATPase (α3NKA), a marker of muscle spindle afferents. Across all age groups, an average of 26 ± 4% of myelinated fibers of tibial nerve and 17 ± 2% of ganglion neuronal profiles were α3NKA-positive (n = 8 per group). Subject age explained 85% of the variability in these counts. The relative frequency of α3NKA-labeled fibers/neurons starts to decline during the 5th decade of life, approaching half that of young adult values in 65-year-old subjects. At all ages, α3NKA-positive neurons were among the largest of spinal ganglia neurons. However, as compared to younger subjects, the population of α3NKA-positive neurons from advanced-age subjects showed diminished numbers of large (both moderately and strongly labeled), and medium-sized (strongly labeled) profiles. Considering the critical significance of ion transport by NKA for neuronal activity, our data suggest that functional impairment and, also, most likely atrophy and/or degeneration of muscle spindle afferents, are mechanisms underlying loss of tendon reflexes with age. The larger and more strongly α3NKA-expressing spindle afferents appear to be proportionally more vulnerable.
Collapse
|
7
|
Davidson S, Copits BA, Zhang J, Page G, Ghetti A, Gereau RW. Human sensory neurons: Membrane properties and sensitization by inflammatory mediators. Pain 2014; 155:1861-1870. [PMID: 24973718 PMCID: PMC4158027 DOI: 10.1016/j.pain.2014.06.017] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 05/28/2014] [Accepted: 06/20/2014] [Indexed: 12/26/2022]
Abstract
Biological differences in sensory processing between human and model organisms may present significant obstacles to translational approaches in treating chronic pain. To better understand the physiology of human sensory neurons, we performed whole-cell patch-clamp recordings from 141 human dorsal root ganglion (hDRG) neurons from 5 young adult donors without chronic pain. Nearly all small-diameter hDRG neurons (<50 μm) displayed an inflection on the descending slope of the action potential, a defining feature of rodent nociceptive neurons. A high proportion of hDRG neurons were responsive to the algogens allyl isothiocyanate (AITC) and ATP, as well as the pruritogens histamine and chloroquine. We show that a subset of hDRG neurons responded to the inflammatory compounds bradykinin and prostaglandin E2 with action potential discharge and show evidence of sensitization including lower rheobase. Compared to electrically evoked action potentials, chemically induced action potentials were triggered from less depolarized thresholds and showed distinct afterhyperpolarization kinetics. These data indicate that most small/medium hDRG neurons can be classified as nociceptors, that they respond directly to compounds that produce pain and itch, and that they can be activated and sensitized by inflammatory mediators. The use of hDRG neurons as preclinical vehicles for target validation is discussed.
Collapse
Affiliation(s)
- Steve Davidson
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Bryan A. Copits
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110
| | | | - Guy Page
- AnaBios Corporation, San Diego, CA 92109
| | | | - Robert W. Gereau
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
8
|
Expression of purinergic P2X receptor subtypes 1, 2, 3 and 7 in equine laminitis. Vet J 2013; 198:472-8. [PMID: 24080476 DOI: 10.1016/j.tvjl.2013.08.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Revised: 08/09/2013] [Accepted: 08/12/2013] [Indexed: 12/13/2022]
Abstract
Tissue sensitisation and chronic pain have been described in chronic-active laminitis in the horse, making treatment of such cases difficult. Purinergic P2X receptors are linked to chronic pain and inflammation. The aim of this study was to examine the expression of purinergic P2X receptor subtypes 1, 2, 3 and 7 in the hoof, palmar digital vessels and nerve, dorsal root ganglia and spinal cord in horses with chronic-active laminitis (n=5) compared to non-laminitic horses (n=5). Immunohistochemical analysis was performed on tissue sections using antibodies against P2X receptor subtypes 1-3 and 7. In horses with laminitis, there was a reduction in the thickness of the tunica media layer of the palmar digital vein as a proportion of the whole vessel diameter (0.48±0.05) compared to the non-laminitic group (0.57±0.04; P=0.02). P2X receptor subtype 3 was expressed in the smooth muscle layer (tunica media) of the palmar digital artery of horses with laminitis, but was absent in horses without laminitis. There was strong expression of P2X receptor subtype 7 in the proliferating, partially keratinised, epidermal cells of the secondary epidermal lamellae in the hooves of horses with laminitis, but no immunopositivity in horses without laminitis.
Collapse
|
9
|
Optimized surface markers for the prospective isolation of high-quality hiPSCs using flow cytometry selection. Sci Rep 2013; 3:1179. [PMID: 23378912 PMCID: PMC3560358 DOI: 10.1038/srep01179] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 01/10/2013] [Indexed: 12/16/2022] Open
Abstract
hiPSC derivation and selection remains inefficient; with selection of high quality clones dependent on extensive characterization which is not amenable to high-throughput (HTP) approaches. We recently described the use of a cocktail of small molecules to enhance hiPSC survival and stability in single cell culture and the use of flow cytometry cell sorting in the HTP-derivation of hiPSCs. Here we report an enhanced protocol for the isolation of bona fide hiPSCs in FACS-based selection using an optimized combination of cell surface markers including CD30. Depletion of CD30(+) cells from reprogramming cultures almost completely abolished the NANOG and OCT4 positive sub-population, suggesting it is a pivotal marker of pluripotent cells. Combining CD30 to SSEA4 and TRA-1-81 in FACS greatly enhanced specificity and efficiency of hiPSC selection and derivation. The current method allows for the efficient and automated, prospective isolation of high-quality hiPSC from the reprogramming cell milieu.
Collapse
|
10
|
Abstract
Multipotent mesenchymal stromal cells (MSCs) are found in a variety of adult tissues including human dermis. These MSCs are morphologically similar to bone marrow-derived MSCs, but are of unclear phenotype. To shed light on the characteristics of human dermal MSCs, this study was designed to identify and isolate dermal MSCs by a specific marker expression profile, and subsequently rate their mesenchymal differentiation potential. Immunohistochemical staining showed that MSC markers CD73/CD90/CD105, as well as CD271 and SSEA-4, are expressed on dermal cells in situ. Flow cytometric analysis revealed a phenotype similar to bone marrow-derived MSCs. Human dermal cells isolated by plastic adherence had a lower differentiation capacity as compared with bone marrow-derived MSCs. To distinguish dermal MSCs from differentiated fibroblasts, we immunoselected CD271(+) and SSEA-4(+) cells from adherent dermal cells and investigated their mesenchymal differentiation capacity. This revealed that cells with increased adipogenic, osteogenic, and chondrogenic potential were enriched in the dermal CD271(+) population. The differentiation potential of dermal SSEA-4(+) cells, in contrast, appeared to be limited to adipogenesis. These results indicate that specific cell populations with variable mesenchymal differentiation potential can be isolated from human dermis. Moreover, we identified three different subsets of dermal mesenchymal progenitor cells.
Collapse
|
11
|
Russo D, Castellani G, Chiocchetti R. Expression of high-molecular-mass neurofilament protein in horse (Equus caballus) spinal ganglion neurons. Microsc Res Tech 2011; 75:626-37. [DOI: 10.1002/jemt.21102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 09/09/2011] [Indexed: 02/06/2023]
|
12
|
Transient receptor potential cation channel, subfamily C, member 5 (TRPC5) is a cold-transducer in the peripheral nervous system. Proc Natl Acad Sci U S A 2011; 108:18114-9. [PMID: 22025699 DOI: 10.1073/pnas.1115387108] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Detection and adaptation to cold temperature is crucial to survival. Cold sensing in the innocuous range of cold (>10-15 °C) in the mammalian peripheral nervous system is thought to rely primarily on transient receptor potential (TRP) ion channels, most notably the menthol receptor, TRPM8. Here we report that TRP cation channel, subfamily C member 5 (TRPC5), but not TRPC1/TRPC5 heteromeric channels, are highly cold sensitive in the temperature range 37-25 °C. We found that TRPC5 is present in mouse and human sensory neurons of dorsal root ganglia, a substantial number of peripheral nerves including intraepithelial endings, and in the dorsal lamina of the spinal cord that receives sensory input from the skin, consistent with a potential TRPC5 function as an innocuous cold transducer in nociceptive and thermosensory nerve endings. Although deletion of TRPC5 in 129S1/SvImJ mice resulted in no temperature-sensitive behavioral changes, TRPM8 and/or other menthol-sensitive channels appear to underpin a much larger component of noxious cold sensing after TRPC5 deletion and a shift in mechanosensitive C-fiber subtypes. These findings demonstrate that highly cold-sensitive TRPC5 channels are a molecular component for detection and regional adaptation to cold temperatures in the peripheral nervous system that is distinct from noxious cold sensing.
Collapse
|
13
|
Abstract
The combination of carbohydrate and lipid generates unusual molecules in which the two distinctive halves of the glycoconjugate influence the function of each other. Membrane glycolipids can act as primary receptors for carbohydrate binding proteins to mediate transmembrane signaling despite restriction to the outer bilayer leaflet. The extensive heterogeneity of the lipid moiety plays a significant, but still largely unknown, role in glycosphingolipid function. Potential interplay between glycolipids and their fatty acid isoforms, together with their preferential interaction with cholesterol, generates a complex mechanism for the regulation of their function in cellular physiology.
Collapse
Affiliation(s)
- Clifford A Lingwood
- Research Institute, Hospital for Sick Children, Molecular Structure and Function, Toronto, Ontario M5G 1X8, Canada.
| |
Collapse
|
14
|
Sundberg M, Jansson L, Ketolainen J, Pihlajamäki H, Suuronen R, Skottman H, Inzunza J, Hovatta O, Narkilahti S. CD marker expression profiles of human embryonic stem cells and their neural derivatives, determined using flow-cytometric analysis, reveal a novel CD marker for exclusion of pluripotent stem cells. Stem Cell Res 2008; 2:113-24. [PMID: 19383417 DOI: 10.1016/j.scr.2008.08.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 08/14/2008] [Accepted: 08/23/2008] [Indexed: 12/28/2022] Open
Abstract
Human embryonic stem cells (hESCs) are pluripotent cells that can differentiate into neural cell lineages. These neural populations are usually heterogeneous and can contain undifferentiated pluripotent cells that are capable of producing teratomas in cell grafts. The characterization of surface protein profiles of hESCs and their neural derivatives is important to determine the specific markers that can be used to exclude undifferentiated cells from neural populations. In this study, we analyzed the cluster of differentiation (CD) marker expression profiles of seven undifferentiated hESC lines using flow-cytometric analysis and compared their profiles to those of neural derivatives. Stem cell and progenitor marker CD133 and epithelial adhesion molecule marker CD326 were more highly expressed in undifferentiated hESCs, whereas neural marker CD56 (NCAM) and neural precursor marker (chemokine receptor) CD184 were more highly expressed in hESC-derived neural cells. CD326 expression levels were consistently higher in all nondifferentiated hESC lines than in neural cell derivatives. In addition, CD326-positive hESCs produced teratomas in SCID mouse testes, whereas CD362-negative neural populations did not. Thus, CD326 may be useful as a novel marker of undifferentiated hESCs to exclude undifferentiated hESCs from differentiated neural cell populations prior to transplantation.
Collapse
Affiliation(s)
- Maria Sundberg
- REGEA, Institute for Regenerative Medicine, University of Tampere and Tampere University Hospital, Tampere, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
STEFANIDIS K, LOUTRADIS D, KOUMBI L, ANASTASIADOU V, DINOPOULOU V, KIAPEKOU E, LAVDAS A, MESOGITIS S, ANTSAKLIS A. Deleted in Azoospermia-Like (DAZL) gene–expressing cells in human amniotic fluid: a new source for germ cells research? Fertil Steril 2008; 90:798-804. [DOI: 10.1016/j.fertnstert.2007.06.106] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Revised: 06/23/2007] [Accepted: 06/28/2007] [Indexed: 10/22/2022]
|
16
|
Martínez-Gutiérrez M, Castellanos JE. Morphological and biochemical characterisation of sensory neurons infected in vitro with rabies virus. Acta Neuropathol 2007; 114:263-9. [PMID: 17440742 DOI: 10.1007/s00401-007-0222-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Revised: 03/09/2007] [Accepted: 03/27/2007] [Indexed: 01/21/2023]
Abstract
This work was aimed at the morphological and biochemical characterisation of the most susceptible neuronal subpopulation to rabies virus (RABV) infection. Adult mouse DRG cultures were infected with RABV and double-processed for viral antigen detection and neuropeptides: calcitonin gene-related peptide (CGRP), galanin (GAL), substance P (SP), neuropeptide Y (NPY) and vasoactive intestinal peptide (VIP). It was found that 56% of the neurons in culture were small (diameter < 20 microm) but, in spite of this, 69% of the infected neurons had intermediate and large diameters (> or = 20 microm). More than 50% of infected neurons expressed NPY, VIP or SP, whereas no association was found between infected neurons and the presence of CGRP or GAL. Despite SP having been shown to be a small neuron marker, it was found that RABV infects medium and large-sized SP positive cells. RABV preference for larger neurons could explain part of the neuropathogenesis since it can be suggested that, following a rabid accident, the virus uses large neurons (mainly innervating muscle and joints) in vivo to be transported later on to the central nervous system.
Collapse
Affiliation(s)
- Marlén Martínez-Gutiérrez
- Instituto de Virología, Universidad El Bosque, Transversal 9A Bis No. 132-55, Edificio de Rectoría-Laboratorio 205, Bogota, Colombia
| | | |
Collapse
|
17
|
Barraud P, Stott S, Møllgård K, Parmar M, Björklund A. In vitro characterization of a human neural progenitor cell coexpressing SSEA4 and CD133. J Neurosci Res 2007; 85:250-9. [PMID: 17131412 DOI: 10.1002/jnr.21116] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The stage-specific embryonic antigen 4 (SSEA4) is commonly used as a cell surface marker to identify the pluripotent human embryonic stem (ES) cells. Immunohistochemistry on human embryonic central nervous system revealed that SSEA4 is detectable in the early neuroepithelium, and its expression decreases as development proceeds. Flow cytometry analysis of forebrain-derived cells demonstrated that the SSEA4-expressing cells are enriched in the neural stem/progenitor cell fraction (CD133(+)), but are rarely codetected with the neural stem cell (NSC) marker CD15. Using a sphere-forming assay, we showed that both subfractions CD133(+)/SSEA4(+) and CD133(+)/CD15(+) isolated from the embryonic forebrain are enriched in neurosphere-initiating cells. In addition CD133, SSEA4, and CD15 expression is sustained in the expanded neurosphere cells and also mark subfractions of neurosphere-initiating cells. Therefore, we propose that SSEA4 associated with CD133 can be used for both the positive selection and the enrichment of neural stem/progenitor cells from human embryonic forebrain.
Collapse
Affiliation(s)
- Perrine Barraud
- Research Center for Stem Cell Biology and Cell Therapy, BMC A11, Lund University, Lund, Sweden.
| | | | | | | | | |
Collapse
|
18
|
Baiou D, Santha P, Avelino A, Charrua A, Bacskai T, Matesz K, Cruz F, Nagy I. Neurochemical characterization of insulin receptor-expressing primary sensory neurons in wild-type and vanilloid type 1 transient receptor potential receptor knockout mice. J Comp Neurol 2007; 503:334-47. [PMID: 17492627 DOI: 10.1002/cne.21389] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The insulin receptor (IR) is expressed by a subpopulation of primary sensory neurons (PSN), including a proportion of cells expressing the nociceptive transducer vanilloid type 1 transient receptor potential receptor (TRPV1). Recent data suggest functional links between the IR and other receptors, including TRPV1, which could be involved in the development of PSN malfunctions in pathological insulin secretion. Here we used combined immunohistochemical labelling on sections from L4-5 dorsal root ganglia of wild-type (WT) and TRPV1 knockout (KO) mice to examine the neurochemical properties of IR-expressing PSN and the possible effect of deletion of TRPV1 on those characteristics. We found that antibodies raised against the high-molecular-weight neurofilament (NF-200) and the neurofilament protein peripherin distinguished between small and large neurons. We also found that the IR was expressed predominantly by the small peripherin-immunopositive cells both in the WT and in the KO animals. IR expression, however, did not show any preference between the major subpopulations of the small cells, the calcitonin gene-related peptide (CGRP)-expressing and Bandeiraea simplicifolia isolectin B4 (IB4)-binding neurons, either in the WT or in the KO mice. Nevertheless, a significant proportion of the IR-expressing cells also expressed TRPV1. Comparison of the staining pattern of these markers showed no difference between WT and KO animals. These findings indicate that the majority of the IR-expressing PSN are small neurons, which are considered as nociceptive cells. Furthermore, these data show that deletion of the TRPV1 gene does not induce any additional changes in neurochemical phenotype of nociceptive PSN.
Collapse
Affiliation(s)
- Djalil Baiou
- Department of Anaesthetics, Pain Medicine and Intensive Care, Imperial College London, Chelsea and Westminster Hospital, London, SW10 9NH United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Leonard RB, Kevetter GA. Vestibular efferents contain peripherin. Neurosci Lett 2006; 408:104-7. [PMID: 16997461 DOI: 10.1016/j.neulet.2006.08.072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2006] [Revised: 08/11/2006] [Accepted: 08/24/2006] [Indexed: 10/24/2022]
Abstract
Vestibular efferents have a common origin with the motoneurons of the facial nerve. In adults they share a number of common features, such as the same transmitter. Here we show using retrograde transport and immunohistochemistry, that the vestibular efferents, like facial motoneurons, contain peripherin. This supports the suggestion that peripherin-positive fibers at the apex of the cristae ampullaris are efferents.
Collapse
Affiliation(s)
- Robert B Leonard
- Department of Neurosciences and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555-1043, USA.
| | | |
Collapse
|
20
|
Anand U, Otto WR, Casula MA, Day NC, Davis JB, Bountra C, Birch R, Anand P. The effect of neurotrophic factors on morphology, TRPV1 expression and capsaicin responses of cultured human DRG sensory neurons. Neurosci Lett 2006; 399:51-6. [PMID: 16481104 DOI: 10.1016/j.neulet.2006.01.046] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2005] [Revised: 01/15/2006] [Accepted: 01/20/2006] [Indexed: 11/23/2022]
Abstract
We have studied the effect of key neurotrophic factors (NTFs) on morphology, levels of the vanilloid receptor-1 (TRPV1) and responses to capsaicin in adult human sensory neurons in vitro. Avulsed dorsal root ganglia (DRG, n = 5) were cultured with or without a combination of nerve growth factor (NGF), glial cell (line)-derived growth factor (GDNF) and neurotrophin3 (NT3) for 5 days. In the absence of NTFs, the diameter of neurons ranged from 20 to 100 microm (mean 42 +/- 4 microm). Adding NTFs caused a significant increase in neuronal sizes, up to 120 microm (mean diameter 62 +/- 5 microm, P < 0.01, t-test), an overall 35% increase of TRPV1-positive neurons (P < 0.003), and notably of large TRPV1-positive neurons > 80 microm (P < 0.05). Responses to capsaicin were significantly enhanced with calcium ratiometry (P < 0.0001). Short duration (1h) exposure of dissociated sensory neurons to NTFs increased numbers of TRPV1-positive neurons, but not of TRPV3, Nav 1.8 and IK1 and the morphological size-distribution remained similar to intact post-mortem DRG neurons. NTFs thus increase size, elevate TRPV1 levels and enhance capsaicin responses in cultured human DRG neurons; these changes may relate to pathophysiology in disease states, and provide an in vitro model to study novel analgesics.
Collapse
Affiliation(s)
- U Anand
- Peripheral Neuropathy Unit, Imperial College, Area A, Ground Floor, Hammersmith Hospital, Du Cane Road, London W12 ONN, UK
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Cooling L, Hwang D. Monoclonal antibody B2, a marker of neuroendocrine sympathoadrenal precursors, recognizes the Luke (LKE) antigen. Transfusion 2005; 45:709-16. [PMID: 15847659 DOI: 10.1111/j.1537-2995.2005.04338.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Blood group antigens are physiologically important differentiation markers in embryogenesis and development. Monoclonal antibody (MoAb) B2 recognizes a transient antigen expressed on late sympathoadrenal neuroendocrine precursors and early sympathetic neuroblasts. It has been suggested that MoAb B2 may recognize a globo-series glycosphingolipid (GSL) related to the P blood group family. STUDY DESIGN AND METHODS MoAb B2 and two anti-LKE MoAbs, MC813-70 and RM1, were screened against a panel of GSL standards and isolated red blood cell (RBC) GSLs by high-performance thin layer chromatography (HPTLC) immunostaining. The ability of all three MoAbs to bind intact RBCs and two LKE+ renal cell carcinoma cell lines (A498, ACHN) were examined by flow cytometry and hemagglutination. RESULTS MoAbs B2, MC813-70, and RM1 all specifically recognized monosialogalactosylgloboside (MSGG) on HPTLC immunostaining. Only MoAb MC813-70 bound intact RBC by flow cytometry and hemagglutination. Differential staining was observed between the three antibodies and two renal cell carcinoma cell lines. CONCLUSION MoAb B2 recognizes MSGG or LKE antigen, suggesting that LKE may play a role in neuroendocrine differentiation from neural crest cells. Although MoAb B2 is not suitable for RBC phenotyping, it may be a useful immunologic reagent for the identification of human embryonic stem cells and renal cell and embryonic carcinoma.
Collapse
Affiliation(s)
- Laura Cooling
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA.
| | | |
Collapse
|
22
|
Nandi R, Beacham D, Middleton J, Koltzenburg M, Howard RF, Fitzgerald M. The functional expression of mu opioid receptors on sensory neurons is developmentally regulated; morphine analgesia is less selective in the neonate. Pain 2004; 111:38-50. [PMID: 15327807 DOI: 10.1016/j.pain.2004.05.025] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2004] [Revised: 05/11/2004] [Accepted: 05/20/2004] [Indexed: 11/29/2022]
Abstract
Opioid requirements in neonatal patients are reported to be lower than older infants and this may be a reflection of the developmental regulation of opioid receptors. In this study we have investigated the postnatal regulation of Mu opioid receptor (MOR) function in both rat lumbar dorsal root ganglion (DRG) cultures and behavioural mechanical and thermal reflex tests in rat pups. Immunostaining with MOR and selective neurofilament (NF200) antibodies was combined with calcium imaging of MOR function in cultured neonatal and adult rat dorsal root ganglion cells. Calcium imaging showed that a significantly greater number of neonatal DRG neurons expressed functional MOR compared to adult (56.5+/-3.4 versus 39.9+/-1.5%, n=8, mean+/-SEM, P<0.001). This expression is confined to the large, neurofilament positive sensory neurons, while expression in small, nociceptive, neurofilament negative neurons remains unchanged. Sensory threshold testing in rat pups showed that the analgesic potency of systemic morphine to mechanical stimulation is significantly greater in the neonate and declines with postnatal age. Morphine analgesic potency in thermal nociceptive tests did not change with postnatal age. These experiments show that the MOR expressed on large DRG neurons in neonates are functional and are subject to postnatal developmental regulation. This changing functional receptor profile is consistent with greater morphine potency in mechanical, but not thermal, sensory tests in young animals. These results have important clinical implications for the use of morphine in neonates and provide a possible explanation for the differences in morphine requirements observed in the youngest patients.
Collapse
Affiliation(s)
- Reema Nandi
- Department of Anatomy and Developmental Biology, University College London, Gower Street, London WC1E6BT, UK.
| | | | | | | | | | | |
Collapse
|
23
|
Landry M, Aman K, Dostrovsky J, Lozano AM, Carlstedt T, Spenger C, Josephson A, Wiesenfeld-Hallin Z, Hökfelt T. Galanin expression in adult human dorsal root ganglion neurons: initial observations. Neuroscience 2003; 117:795-809. [PMID: 12654333 DOI: 10.1016/s0306-4522(02)00965-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Human dorsal root ganglia (DRGs) were obtained during various procedures and processed for single and double in situ hybridisation using oligonucleotide probes complementary to three peptide mRNAs. Some postmortem ganglia were also analysed. In donor (unlesioned) DRGs 12.5% of the neuron profiles (NPs) were galanin mRNA-positive (mRNA(+)), 47.5% calcitonin gene-related peptide (CGRP) mRNA(+) and 32.7% substance P mRNA(+). The corresponding percentages for cervical/thoracic DRGs from patients suffering from severe brachial plexus injury were 32.8%, 57.4% and 34.5%, respectively. In these DRGs a high proportion of the galanin mRNA(+) NPs contained CGRP mRNA and substance P mRNA. In DRGs from a patient with migraine-like pain a comparatively small proportion expressed galanin, whereas in DRGs from a herpes zoster patient galanin mRNA(+) NPs were comparatively more frequent. The results from human postmortem DRGs revealed only weak peptide mRNA signals. The present results demonstrate that galanin is expressed in DRGs not only in a number of animal species including monkey as previously shown, but also in a considerable proportion of human DRG neurons, often together with CGRP and substance P, and mostly in small neurons. Thus, galanin may play a role in processing of sensory information, especially pain, in human DRGs and dorsal horn. However, to what extent a similarly dramatic upregulation of galanin expression can be seen after peripheral nerve lesion in man, as has been reported for rat, mouse and monkey, remains to be analysed.
Collapse
Affiliation(s)
- M Landry
- Department of Neuroscience, Retzius väg 8, B3:4, Karolinska Institutet, S-171 77, Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Kevetter GA, Leonard RB. Molecular probes of the vestibular nerve. II. Characterization of neurons in Scarpa's ganglion to determine separate populations within the nerve. Brain Res 2002; 928:18-29. [PMID: 11844468 DOI: 10.1016/s0006-8993(01)03264-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
An unambiguous delineation of the exact numbers and/or proportions of calyx-only, dimorph, and bouton-only vestibular afferents is needed to continue studies concerning vestibular integration in the nervous system. Here, we take advantage of immunocytochemical properties of three groups of vestibular afferents. We utilize calretinin to delineate the calyx-only population, and peripherin to stain the bouton-only afferents. An additional subgroup of afferents that stain with calbindin, but not calretinin is also introduced. The size of the cells that stain with these markers was determined. Cells that are calbindin-positive overlap the sizes of Nissl-stained somata. Cells that stain with peripherin or calretinin are non-overlapping with calretinin cells being the largest and peripherin-positive cells the smallest. Twenty percent of the ganglion cells were peripherin positive, another 20% stained with calretinin antibodies, 30% stained with calbindin, and all cells in Scarpa's ganglion stained with parvalbumin. Most of the calretinin-positive cells also stained with calbindin. One-third of the calbindin-positive population stained only with calbindin. These studies indicate that the calyx- and bouton-only populations of vestibular afferents in gerbil comprise at least 40% of the nerve. In addition, at least 10% of the nerve also stains with calbindin and neither calretinin nor peripherin. Based on indirect evidence, we hypothesize that these are a subpopulation of dimorph afferents. This study has provided an anatomical instrument (in addition to intracellular physiological methods) to study separate populations of vestibular afferents.
Collapse
Affiliation(s)
- Golda Anne Kevetter
- Department of Otolaryngology, University of Texas Medical Branch, 301 University Dr., Galveston, TX 77555-1043, USA.
| | | |
Collapse
|
25
|
Boettger MK, Till S, Chen MX, Anand U, Otto WR, Plumpton C, Trezise DJ, Tate SN, Bountra C, Coward K, Birch R, Anand P. Calcium-activated potassium channel SK1- and IK1-like immunoreactivity in injured human sensory neurones and its regulation by neurotrophic factors. Brain 2002; 125:252-63. [PMID: 11844726 DOI: 10.1093/brain/awf026] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Calcium-activated potassium ion channels SK and IK (small and intermediate conductance, respectively) may be important in the pathophysiology of pain following nerve injury, as SK channels are known to impose a period of reduced excitability after each action potential by afterhyperpolarization. We studied the presence and changes of human SK1 (hSK1)- and hIK1-like immunoreactivity in control and injured human dorsal root ganglia (DRG) and peripheral nerves and their regulation by key neurotrophic factors in cultured rat sensory neurones. Using specific antibodies, hSK-1 and hIK-1-like immunoreactivity was detected in a majority of large and small/medium-sized cell bodies of human DRG. hSK1 immunoreactivity was decreased significantly in cell bodies of avulsed human DRG (n = 8, surgery delay 8 h to 12 months). There was a decrease in hIK1-like immunoreactivity predominantly in large cells acutely (<3 weeks after injury), but also in small/medium cells of chronic cases. Twenty-three injured peripheral nerves were studied (surgery delay 8 h to 12 months); in five of these, hIK1-like immunoreactivity was detected proximally but not distally to injury, whereas neurofilament staining confirmed the presence of nerve fibres in both regions. These five nerves, unlike the others, had all undergone Wallerian degeneration previously and the loss of hIK1-like immunoreactivity may therefore reflect reduced axonal transport of this ion channel across the injury site in regenerated fibres, as well as decreased expression in the cell body. In vitro studies of neonatal rat DRG neurones showed that nerve growth factor (NGF) significantly increased the percentage of hSK1-positive cells, whereas neurotrophin 3 (NT-3) and glial cell line-derived neurotrophic factor (GDNF) failed to show a significant effect. NT-3 stimulated hIK1 expression, while NGF and GDNF were ineffective. As expected, NGF increased expression of the voltage-gated sodium channel SNS1/PN3 in this system. Decreased retrograde transport of these neurotrophic factors in injured sensory neurones may thus reduce expression of these ion channels and increase excitability. Blockade of IK1-like and other potassium channels by aminopyridines (4-AP and 3,4-DAP) may also explain the paraesthesiae induced by these medications. Selective potassium channel openers are likely to represent novel therapies for pain following nerve injury.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Animals
- Animals, Newborn
- Antibodies/metabolism
- Cells, Cultured
- Female
- Ganglia, Spinal/cytology
- Ganglia, Spinal/injuries
- Ganglia, Spinal/metabolism
- Glial Cell Line-Derived Neurotrophic Factor
- Humans
- Immunohistochemistry
- Male
- Middle Aged
- Nerve Growth Factor/pharmacology
- Nerve Growth Factors
- Nerve Tissue Proteins/pharmacology
- Neurons, Afferent/drug effects
- Neurons, Afferent/metabolism
- Neuroprotective Agents/pharmacology
- Neurotrophin 3/pharmacology
- Peripheral Nerve Injuries
- Peripheral Nerves/metabolism
- Potassium Channels/metabolism
- Potassium Channels, Calcium-Activated
- Rats
- Rats, Wistar
- Small-Conductance Calcium-Activated Potassium Channels
Collapse
Affiliation(s)
- M K Boettger
- Peripheral Neuropathy Unit, Department of Neurology, Imperial College of Science, Technology and Medicine, Hammersmith Hospital, London, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
BACKGROUND Luke (LKE) is a high-frequency RBC antigen, related to the P blood group system. A LKE-negative phenotype is found in 1 to 2 percent of donors and may be associated with increased P(k). Because P(k) and similar glycolipids are receptors for shiga toxin on cell membranes, a LKE-negative phenotype could have implications for infections by Shigella dysenteriae and enterohemorrhagic Escherichia coli. STUDY DESIGN AND METHODS Volunteer donors (n = 257) were serologically typed for LKE with a LKE MoAb, MC813-70. LKE-strong-positive, LKE-weak-positive and LKE-negative RBCs were analyzed for P(k), P, LKE, and shiga toxin binding by immunofluorescence flow cytometry, high-performance thin-layer chromatography, scanning densitometry, and high-performance thin-layer chromatography immunostaining. RESULTS Among Iowa donors, 78.6 percent were LKE-strong-positive, 20.2 percent were LKE-weak-positive, and 1.2 percent were LKE-negative. There was an inverse expression of P(k) and LKE on RBCs. P(k) expression was increased on LKE-negative RBCs and was associated with increased shiga toxin binding. A LKE-active glycolipid was identified in the ganglioside fraction of LKE-strong-positive RBCs. CONCLUSION A LKE-negative phenotype is associated with increased expression of P(k) on RBCs. Differences in P(k) and LKE expression may play a role in host susceptibility to infection with S. dysenteriae and E. coli.
Collapse
Affiliation(s)
- L L Cooling
- Department of Pathology, University of Michigan Medical School, University Hospital Box 0054, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA.
| | | |
Collapse
|
27
|
Hiruma H, Saito A, Ichikawa T, Kiriyama Y, Hoka S, Kusakabe T, Kobayashi H, Kawakami T. Effects of substance P and calcitonin gene-related peptide on axonal transport in isolated and cultured adult mouse dorsal root ganglion neurons. Brain Res 2000; 883:184-91. [PMID: 11074047 DOI: 10.1016/s0006-8993(00)02892-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Substance P and calcitonin gene-related peptide (CGRP) released from primary sensory neurons are known to play important roles in nociception and nociceptive transmission. In the present study, we attempted to clarify the roles of these neuropeptides in the regulation of axonal transport in sensory neurons. Cells were isolated from adult mouse dorsal root ganglia and cultured in F-12 medium containing fetal bovine serum for 48 h until their neurites were grown. These isolated and cultured DRG cells were mostly (>98%) small (diameter <25 microm) and medium (diameter, 25-40 microm) in size, and were immunoreactive for substance P and CGRP (85.9 and 66. 0% of total cells, respectively). Video-enhanced microscopy was applied to observe particles transported within neurites. Application of substance P (100 nM) decreased the number of particles transported in both anterograde and retrograde directions in each of DRG neurons tested (n=5). The instantaneous velocities of individual particles transported in anterograde and retrograde directions were also reduced by substance P. In contrast, alpha-CGRP (100 nM) increased the number of particles transported in both directions in each of DRG neurons tested (n=5), and also increased the instantaneous velocities of particles transported bidirectionally. Application of beta-CGRP (100-1000 nM) did not elicit any effect on axonal transport. Therefore, axonal transport in sensory neurons seems to be modulated by substance P and alpha-CGRP, both of which can be derived from its own and adjacent sensory neurons.
Collapse
Affiliation(s)
- H Hiruma
- Department of Physiology, Kitasato University School of Medicine, 1-15-1 Kitasato, 228-8555, Sagamihara, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Coward K, Plumpton C, Facer P, Birch R, Carlstedt T, Tate S, Bountra C, Anand P. Immunolocalization of SNS/PN3 and NaN/SNS2 sodium channels in human pain states. Pain 2000; 85:41-50. [PMID: 10692601 DOI: 10.1016/s0304-3959(99)00251-1] [Citation(s) in RCA: 167] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The tetrodotoxin-resistant (TTX-R) voltage-gated sodium channel SNS/PN3 and the newly discovered NaN/SNS2 are expressed in sensory neurones, particularly in nociceptors. Using specific antibodies, we have studied, for the first time in humans, the presence of SNS/PN3 and NaN/SNS2 in peripheral nerves, including tissues from patients with chronic neurogenic pain. In brachial plexus injury patients, there was an acute decrease of SNS/PN3- and NaN/SNS2-like immunoreactivity in sensory cell bodies of cervical dorsal root ganglia (DRG) whose central axons had been avulsed from spinal cord, with gradual return of the immunoreactivity to control levels over months. In contrast, there was increased intensity of immunoreactivity to both channels in some peripheral nerve fibers just proximal to the site of injury in brachial plexus trunks, and in neuromas. These findings suggest that the expression of these sodium channels in neuronal cell bodies is reduced after spinal cord root avulsion injury in man, but that pre-synthesized channel proteins may undergo translocation with accumulation at sites of nerve injury, as in animal models of peripheral axotomy. The latter may contribute to positive symptoms, as our patients all showed a positive Tinel's sign. Nerve terminals in distal limb neuromas and skin from patients with chronic local hyperalgesia and allodynia all showed marked increases of SNS/PN3-immunoreactive fibers, but little or no NaN/SNS2-immunoreactivity, suggesting that the former may be related to the persistent hypersensitive state. Axonal immunoreactivity to both channels was similar to control nerves in sural nerve biopsies in a selection of neuropathies, irrespective of nerve inflammation, demyelination or spontaneous pain, including a patient with congenital insensitivity to pain. Our studies suggest that the best target for SNS/PN3 blocking agents is likely to be chronic local hypersensitivity.
Collapse
Affiliation(s)
- K Coward
- Peripheral Neuropathy Unit, Division of Neuroscience and Psychological Medicine, Imperial College School of Medicine, Area A, Ground Floor, Hammersmith Hospital, Du Cane Road, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Groves MJ, Martinian L, An SF, Scaravilli F. Expression of three oligosaccharide conjugates by neonatal rat dorsal root ganglion neurons: comparison with CGRP and GAP43 immunoreactivity. J Anat 1999; 195 ( Pt 2):271-80. [PMID: 10529062 PMCID: PMC1467990 DOI: 10.1046/j.1469-7580.1999.19520271.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adult dorsal root ganglion neurons express oligosaccharides conjugated to lipids that may be involved in cell-cell recognition, and consequently in the laminar organisation of their central terminations. This paper describes an immunohistochemical study of the developmental expression of 2 lactoseries (LA4 and LD2) and 1 globoseries (SSEA4) oligosaccharide conjugates in rats from embryonic d 19 to postnatal d 60. The expression of calcitonin gene related peptide and the growth associated protein GAP43 was also examined for comparative purposes. We found that these oligosaccharide conjugates begin to be expressed after birth, suggesting that they may be involved in maturation of the central or peripheral terminations, rather than axonal guidance.
Collapse
Affiliation(s)
- M J Groves
- Department of Neurophatology, Institute of Neurology, London, UK
| | | | | | | |
Collapse
|
30
|
Cooling LL, Walker KE, Gille T, Koerner TA. Shiga toxin binds human platelets via globotriaosylceramide (Pk antigen) and a novel platelet glycosphingolipid. Infect Immun 1998; 66:4355-66. [PMID: 9712788 PMCID: PMC108526 DOI: 10.1128/iai.66.9.4355-4366.1998] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/1998] [Accepted: 06/26/1998] [Indexed: 11/20/2022] Open
Abstract
Hemolytic-uremic syndrome is a clinical syndrome characterized by acute renal failure, microangiopathic hemolytic anemia, and thrombocytopenia that often follows infection by Shiga toxin- or verotoxin-producing strains of Escherichia coli. Because thrombocytopenia and platelet activation are hallmark features of hemolytic-uremic syndrome, we examined the ability of Shiga toxin to bind platelets by flow cytometry and high-performance thin-layer chromatography (HPTLC) of isolated platelet glycosphingolipids. By HPTLC, Shiga toxin was shown to bind globotriaosylceramide (Gb3) and a minor platelet glycolipid with an Rf of 0.03, band 0.03. In a survey of 20 human tissues, band 0.03 was identified only in platelets. In individuals, band 0.03 was expressed by 20% of donors and was specifically associated with increased platelet Gb3 expression. Based on glycosidase digestion and epitope mapping, band 0.03 was hypothesized to represent a novel glycosphingolipid, IV3-beta-Galalpha1-4galactosylglobotetraosylceramide. Based on incidence, structure, and association with increased Gb3 expression, band 0.03 may represent the antithetical Luke blood group antigen. By flow cytometry, Shiga toxin bound human platelets, although the amount of Shiga toxin bound varied in donors. Differences in Shiga toxin binding to platelet membranes did not reflect differences in platelet Gb3 expression. In contrast, there was a loose association between Shiga toxin binding and decreasing forward scatter, suggesting that Shiga toxin and verotoxins bind more efficiently to smaller, older platelets. In summary, Shiga and Shiga-like toxins may bind platelets via specific glycosphingolipid receptors. Such binding may contribute to the thrombocytopenia, platelet activation, and microthrombus formation observed in hemolytic-uremic syndrome.
Collapse
Affiliation(s)
- L L Cooling
- Department of Pathology, SUNY Health Science Center at Syracuse, Syracuse, New York, USA
| | | | | | | |
Collapse
|
31
|
Geuna S, Borrione P, Poncino A, Giacobini-Robecchi MG. Morphological and morphometrical changes in dorsal root ganglion neurons innervating the regenerated lizard tail. Int J Dev Neurosci 1998; 16:85-95. [PMID: 9762581 DOI: 10.1016/s0736-5748(98)00009-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The variations occurring in neurons from dorsal root ganglia that provide innervation to the regenerated tail of the lizard (vicarious ganglia) are analysed. Vicarious ganglion neurons, when compared to control ganglion neurons (i.e. ganglia from the same animal that were not involved in the reinnervation process), show a size increase of the soma (cell hypertrophy) which applies to all cell types and subtypes. No statistically significant differences in the relative percentage of neurofilament-poor (type D) and neurofilament-rich (type L) neurons were found between vicarious dorsal root ganglia compared to controls in all animals. On the contrary, within L neuron sub-types, a statistically significant increase in sub-type L2 (very rich in neurofilaments), and the appearance of sub-type L3 neuron which is not detectable in controls, were demonstrated in vicarious dorsal root ganglia. In spite of these variations in size and percentage distribution, no structural and ultrastructural differences of the various cell types and sub-types are detectable, except for the appearance of the sub-type L3 neurons. However, this neuron sub-type might not be considered specific of hypertrophy since the same morphological features have been observed, in normal conditions, in lizard dorsal root ganglia from cervical and lumbar spinal levels that provide innervation to limb plexuses.
Collapse
Affiliation(s)
- S Geuna
- Dipartimento di Scienze Cliniche e Biologiche, Universita di Torino, Italy
| | | | | | | |
Collapse
|
32
|
Geuna S, Borrione P, Corvetti G, Poncino A, Giacobini-Robecchi MG. Morphometrical analysis of types and sub-types of neurons in dorsal root ganglia of the lizard Podarcis sicula. Ann Anat 1998; 180:79-85. [PMID: 9488910 DOI: 10.1016/s0940-9602(98)80143-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the present study, we conducted a morphometrical analysis of the different types and sub-types of lizard DRG neurons at various spinal levels. This analysis demonstrated significant differences in size distribution among the various neuron types and sub-types, as well as a significant shift to greater values in neurons from the dorsal root ganglia at the cervical and the lumbar spinal levels. The results are critically evaluated in relation to methodological issues, and the implications of these findings are discussed.
Collapse
Affiliation(s)
- S Geuna
- Dipartimento di Scienze Cliniche e Biologiche, Universita' di Torino, Ospedale San Luigi Gonzaga, Orbassano (Torino), Italy
| | | | | | | | | |
Collapse
|
33
|
Bär KJ, Saldanha GJ, Kennedy AJ, Facer P, Birch R, Carlstedt T, Anand P. GDNF and its receptor component Ret in injured human nerves and dorsal root ganglia. Neuroreport 1998; 9:43-7. [PMID: 9592045 DOI: 10.1097/00001756-199801050-00009] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Glial cell line-derived neurotrophic factor (GDNF) is trophic to motor and sensory neurones in animal models. GDNF mRNA is up-regulated in Schwann cells after peripheral nerve injury in rats. We have quantified and localized GDNF and its receptor component Ret, for the first time in any species, in injured human peripheral nerves and dorsal root ganglia (DRG) avulsed from the spinal cord. Significantly higher levels of GDNF were found in nerve distal to the site of the injury than in proximal or intact nerve, and in avulsed DRG than in post-mortem control DRG. GDNF immunostaining was seen in Schwann cells and in DRG neurones, especially of small and medium size, with significantly increased numbers of medium sized sensory neurones immunoreactive for GDNF after avulsion. Ret immunoreactivity was restricted to DRG neurones and axons, with no significant changes in numbers of positive DRG cells after injury. Our findings suggest that GDNF may play a role in injured human nerves and sensory ganglia, particularly in medium sized sensory neurones.
Collapse
Affiliation(s)
- K J Bär
- Academic Department of Neurology, St Bartholomew's and the Royal London School of Medicine & Dentistry, Whitechapel, UK
| | | | | | | | | | | | | |
Collapse
|
34
|
Gilabert R, McNaughton P. Enrichment of the fraction of nociceptive neurones in cultures of primary sensory neurones. J Neurosci Methods 1997; 71:191-8. [PMID: 9128156 DOI: 10.1016/s0165-0270(96)00144-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A method for enriching the fraction of nociceptive neurones in cultures of primary sensory neurones is described. Neurones from neonatal rat dorsal root ganglia were isolated, layered on 40% Ficoll and centrifuged, separating the neurones into a low density fraction (LDF) and a high-density fraction (HDF). The LDF had a smaller mean diameter (19.7 microm) than the HDF (27.3 microm) and uncentrifuged cells (23.6 microm). The proportion of cells immunoreactive for antibodies to substance P and calcitonin gene-related peptide, both of which are found in nociceptive neurones, was significantly greater in the LDF than in HDF. A substantial enrichment of the proportion of neurones responding to the algogenic substances capsaicin and bradykinin with an increase in intracellular calcium was observed in the LDF. The proportion of capsaicin and bradykinin-responsive neurones was also found to be increased by culturing the neurones, with a particularly pronounced enhancement in the proportion of bradykinin-responsive cells. We conclude that separation on the basis of density followed by culture is a useful way of enriching the proportion of nociceptive neurones for the purpose of electrophysiological, biochemical or other studies.
Collapse
Affiliation(s)
- R Gilabert
- Department of Physiology, King's College London, Strand, UK
| | | |
Collapse
|
35
|
Abstract
In this review, we describe the different intermediate filament (IF) proteins, their assembly into IFs, the functions of IFs and their relation to disease with a particular emphasis on the intermediate filaments expressed in the nervous system. In the mammalian nervous system, seven intermediate filament proteins are known to be expressed in neurons or neuroblasts. These include the three neurofilament triplet proteins, which are present in both central and peripheral neurons; alpha-internexin, which is the first neuronal intermediate filament protein expressed in the developing mammalian nervous system and present primarily in CNS neurons in the adult nervous system; peripherin, which is most abundant in the PNS; vimentin, which is expressed in neuronal progenitor cells along with nestin, as well as in a few adult neurons. In contrast to these neuron-specific IF proteins, the glial fibrillary acidic protein (GFAP) is glial specific and expressed in mature astrocytes. Vimentin and nestin are also expressed in glial progenitor cells and vimentin is expressed along with GFAP in some mature astrocytes. As a whole, the expression of IF proteins is tissue specific and developmentally regulated. As a result, IF proteins are good markers for determining the cell origin and differentiation status of tumor cells. For example, peripherin is expressed in neuroblastomas, GFAP in astrocytomas and neurofilaments in tumors of neuronal origin. However, tumor cells may express IF patterns which are irrelevant to their cell origin. Therefore, one has to be very careful in using IF patterns as sole indicators of cell origin and differentiation status of tumors.
Collapse
Affiliation(s)
- C L Ho
- Department of Pathology, Columbia University College of Physicians & Surgeons, New York, NY, USA
| | | |
Collapse
|
36
|
Naves FJ, Huerta JJ, Garcia-Suarez O, Urdangaray N, Esteban I, Del Valle ME, Vega JA. Distribution of immunoreactivity for cytoskeletal (microtubule, microtubule-associated, and neurofilament) proteins in adult human dorsal root ganglia. Anat Rec (Hoboken) 1996; 244:246-56. [PMID: 8808399 DOI: 10.1002/(sici)1097-0185(199602)244:2<246::aid-ar12>3.0.co;2-p] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND The cytoskeleton of mature neurons consists of three main types of filamentous structures: microtubules (or neurotubules) neurofilaments and microfilaments, and of the so-called associated proteins. Neurotubules are formed by alpha- and beta-tubulin; neurofilaments are comprised of three protein subunits (68, 160, and 200 kDa of molecular weight), referred to here as neurofilament proteins (NFPs). The microtubule-associated proteins (MAPs) and tau-proteins form cross bridges between microtubules and other cytoskeletal constituents, as well as cellular organelles. This study analyzes the distribution of several cytoskeletal proteins in adult human dorsal root ganglia (DRG). METHODS Sections of formaldehyde-fixed, paraffin-embedded adult human DRG were processed for PAP immunohistochemistry. Mouse monoclonal antibodies against specific epitopes of alpha- and beta-tubulin, MAP-1, MAP-2, MAP-5, tau-protein, and NFPs (68, 160, and 200 kDa) were used. Furthermore, a quantitative image analysis (optic microdensitometry) was performed to establish the relationship between neuronal size and intensity of immunostaining. RESULTS Most of DRG neuron cell bodies displayed immunoreactivity for all assessed antibodies, with the exception of MAP2, which was absent. Nevertheless, the neuronal perikarya showed an heterogeneous pattern of immunoreactivity, which was not related to neuronal profile size. Positive immunolabelling was also observed in satellite cells and Schwann cells for microtubule and MAP1 proteins, and for tau-protein in Schwann cells. CONCLUSIONS Adult human primary sensory neurons in DRG express immunoreactivity for neurotubule and neurofilament proteins, as well as for some microtubule-associated proteins. However, since large heterogeneity was observed in the expression of those proteins, we conclude that the expression of cytoskeletal proteins is not a criterion to establish DRG neuronal subtypes.
Collapse
Affiliation(s)
- F J Naves
- Departamento de Morfología y Biología Celular, Universidad de Oviedo, Spain
| | | | | | | | | | | | | |
Collapse
|
37
|
Lawson SN. Neuropeptides in morphologically and functionally identified primary afferent neurons in dorsal root ganglia: substance P, CGRP and somatostatin. PROGRESS IN BRAIN RESEARCH 1995; 104:161-73. [PMID: 8552767 DOI: 10.1016/s0079-6123(08)61790-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- S N Lawson
- Department of Physiology, School of Medical Sciences, University Walk, Bristol, UK
| |
Collapse
|