1
|
Abstract
The evolution of the eukaryotic cell from the primal endosymbiotic event involved a complex series of adaptations driven primarily by energy optimization. Transfer of genes from endosymbiont to host and concomitant expansion (by infolding) of the endosymbiont's chemiosmotic membrane greatly increased output of adenosine triphosphate (ATP) and placed selective pressure on the membrane at the host-endosymbiont interface to sustain the energy advantage. It is hypothesized that critical functions at this interface (metabolite exchange, polypeptide import, barrier integrity to proteins and DNA) were managed by a precursor β-barrel protein ("pβB") from which the voltage-dependent anion-selective channel (VDAC) descended. VDAC's role as hub for disparate and increasingly complex processes suggests an adaptability that likely springs from a feature inherited from pβB, retained because of important advantages conferred. It is proposed that this property is the remarkable structural flexibility evidenced in VDAC's gating mechanism, a possible origin of which is discussed.
Collapse
Affiliation(s)
- Carmen A Mannella
- Department of Physiology, Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 20201, USA
| |
Collapse
|
2
|
Toleikis A, Trumbeckaite S, Liobikas J, Pauziene N, Kursvietiene L, Kopustinskiene DM. Fatty Acid Oxidation and Mitochondrial Morphology Changes as Key Modulators of the Affinity for ADP in Rat Heart Mitochondria. Cells 2020; 9:E340. [PMID: 32024170 PMCID: PMC7072426 DOI: 10.3390/cells9020340] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/26/2020] [Accepted: 01/27/2020] [Indexed: 01/16/2023] Open
Abstract
Fatty acids are the main respiratory substrates important for cardiac function, and their oxidation is altered during various chronic disorders. We investigated the mechanism of fatty acid-oxidation-induced changes and their relations with mitochondrial morphology and ADP/ATP carrier conformation on the kinetics of the regulation of mitochondrial respiration in rat skinned cardiac fibers. Saturated and unsaturated, activated and not activated, long and medium chain, fatty acids similarly decreased the apparent KmADP. Addition of 5% dextran T-70 to mimic the oncotic pressure of the cellular cytoplasm markedly increased the low apparent KmADP value of mitochondria in cardiac fibers respiring on palmitoyl-l-carnitine or octanoyl-l-carnitine, but did not affect the high apparent KmADP of mitochondria respiring on pyruvate and malate. Electron microscopy revealed that palmitoyl-l-carnitine oxidation-induced changes in the mitochondrial ultrastructure (preventable by dextran) are similar to those induced by carboxyatractyloside. Our data suggest that a fatty acid oxidation-induced conformational change of the adenosine diphosphate (ADP)/adenosine triphosphate (ATP) carrier (M-state to C-state, condensed to orthodox mitochondria) may affect the oxidative phosphorylation affinity for ADP.
Collapse
Affiliation(s)
- Adolfas Toleikis
- Neuroscience Institute, Lithuanian University of Health Sciences, Eiveniu 4, LT-50161 Kaunas, Lithuania; (A.T.); (S.T.); (J.L.)
| | - Sonata Trumbeckaite
- Neuroscience Institute, Lithuanian University of Health Sciences, Eiveniu 4, LT-50161 Kaunas, Lithuania; (A.T.); (S.T.); (J.L.)
- Department of Pharmacognosy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50166 Kaunas, Lithuania
| | - Julius Liobikas
- Neuroscience Institute, Lithuanian University of Health Sciences, Eiveniu 4, LT-50161 Kaunas, Lithuania; (A.T.); (S.T.); (J.L.)
- Department of Biochemistry, Medical Academy, Lithuanian University of Health Sciences, Eiveniu 4, LT-50161 Kaunas, Lithuania;
| | - Neringa Pauziene
- Institute of Anatomy, Lithuanian University of Health Sciences, Mickeviciaus 9, LT-44307 Kaunas, Lithuania;
| | - Lolita Kursvietiene
- Department of Biochemistry, Medical Academy, Lithuanian University of Health Sciences, Eiveniu 4, LT-50161 Kaunas, Lithuania;
| | - Dalia M. Kopustinskiene
- Institute of Pharmaceutical Technologies, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania
| |
Collapse
|
3
|
Anflous-Pharayra K, Lee N, Armstrong DL, Craigen WJ. VDAC3 has differing mitochondrial functions in two types of striated muscles. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1807:150-6. [PMID: 20875390 PMCID: PMC2998388 DOI: 10.1016/j.bbabio.2010.09.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 09/16/2010] [Accepted: 09/20/2010] [Indexed: 10/19/2022]
Abstract
Voltage-dependent anion channel (VDAC) is an abundant mitochondrial outer membrane protein. In mammals, three VDAC isoforms have been characterized. We have previously reported alterations in the function of mitochondria when assessed in situ in different muscle types in VDAC1 deficient mice (Anflous et al., 2001). In the present report we extend the study to VDAC3 deficient muscles and measure the respiratory enzyme activity in both VDAC1 and VDAC3 deficient muscles. While in the heart the absence of VDAC3 causes a decrease in the apparent affinity of in situ mitochondria for ADP, in the gastrocnemius, a mixed glycolytic/oxidative muscle, the affinity of in situ mitochondria for ADP remains unchanged. The absence of VDAC1 causes multiple defects in respiratory complex activities in both types of muscle. However, in VDAC3 deficient mice the defect is restricted to the heart and only to complex IV. These functional alterations correlate with structural aberrations of mitochondria. These results demonstrate that, unlike VDAC1, there is muscle-type specificity for VDAC3 function and therefore in vivo these two isoforms may fulfill different physiologic functions.
Collapse
Affiliation(s)
- Keltoum Anflous-Pharayra
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| | | | | | | |
Collapse
|
4
|
Gellerich FN, Gizatullina Z, Trumbeckaite S, Nguyen HP, Pallas T, Arandarcikaite O, Vielhaber S, Seppet E, Striggow F. The regulation of OXPHOS by extramitochondrial calcium. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1018-27. [PMID: 20144582 DOI: 10.1016/j.bbabio.2010.02.005] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 02/01/2010] [Accepted: 02/02/2010] [Indexed: 11/29/2022]
Abstract
Despite extensive research, the regulation of mitochondrial function is still not understood completely. Ample evidence shows that cytosolic Ca2+ has a strategic task in co-ordinating the cellular work load and the regeneration of ATP by mitochondria. Currently, the paradigmatic view is that Cacyt2+ taken up by the Ca2+ uniporter activates the matrix enzymes pyruvate dehydrogenase, alpha-ketoglutarate dehydrogenase and isocitrate dehydrogenase. However, we have recently found that Ca2+ regulates the glutamate-dependent state 3 respiration by the supply of glutamate to mitochondria via aralar, a mitochondrial glutamate/aspartate carrier. Since this activation is not affected by ruthenium red, glutamate transport into mitochondria is controlled exclusively by extramitochondrial Ca2+. Therefore, this discovery shows that besides intramitochondrial also extramitochondrial Ca2+ regulates oxidative phosphorylation. This new mechanism acts as a mitochondrial "gas pedal", supplying the OXPHOS with substrate on demand. These results are in line with recent findings of Satrustegui and Palmieri showing that aralar as part of the malate-aspartate shuttle is involved in the Ca2+-dependent transport of reducing hydrogen equivalents (from NADH) into mitochondria. This review summarises results and evidence as well as hypothetical interpretations of data supporting the view that at the surface of mitochondria different regulatory Ca2+-binding sites exist and can contribute to cellular energy homeostasis. Moreover, on the basis of our own data, we propose that these surface Ca2+-binding sites may act as targets for neurotoxic proteins such as mutated huntingtin and others. The binding of these proteins to Ca2+-binding sites can impair the regulation by Ca2+, causing energetic depression and neurodegeneration.
Collapse
Affiliation(s)
- Frank N Gellerich
- KeyNeurotek Pharmaceuticals AG, ZENIT Technology Park, Leipziger Str. 44, D-39120 Magdeburg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Chinopoulos C, Adam-Vizi V. Mitochondria as ATP consumers in cellular pathology. Biochim Biophys Acta Mol Basis Dis 2009; 1802:221-7. [PMID: 19715757 DOI: 10.1016/j.bbadis.2009.08.008] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Revised: 07/17/2009] [Accepted: 08/17/2009] [Indexed: 12/21/2022]
Abstract
ATP provided by oxidative phosphorylation supports highly complex and energetically expensive cellular processes. Yet, in several pathological settings, mitochondria could revert to ATP consumption, aggravating an existing cellular pathology. Here we review (i) the pathological conditions leading to ATP hydrolysis by the reverse operation of the mitochondrial F(o)F(1)-ATPase, (ii) molecular and thermodynamic factors influencing the directionality of the F(o)F(1)-ATPase, (iii) the role of the adenine nucleotide translocase as the intermediary adenine nucleotide flux pathway between the cytosol and the mitochondrial matrix when mitochondria become ATP consumers, (iv) the role of the permeability transition pore in bypassing the ANT, thereby allowing the flux of ATP directly to the hydrolyzing F(o)F(1)-ATPase, (v) the impact of the permeability transition pore on glycolytic ATP production, and (vi) endogenous and exogenous interventions for limiting ATP hydrolysis by the mitochondrial F(o)F(1)-ATPase.
Collapse
Affiliation(s)
- Christos Chinopoulos
- Department of Medical Biochemistry, Semmelweis University, Neurobiochemical Group, Hungarian Academy of Sciences, Budapest, Hungary
| | | |
Collapse
|
6
|
Saks V, Kaambre T, Guzun R, Anmann T, Sikk P, Schlattner U, Wallimann T, Aliev M, Vendelin M. The creatine kinase phosphotransfer network: thermodynamic and kinetic considerations, the impact of the mitochondrial outer membrane and modelling approaches. Subcell Biochem 2007; 46:27-65. [PMID: 18652071 DOI: 10.1007/978-1-4020-6486-9_3] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In this review, we summarize the main structural and functional data on the role of the phosphocreatine (PCr)--creatine kinase (CK) pathway for compartmentalized energy transfer in cardiac cells. Mitochondrial creatine kinase, MtCK, fixed by cardiolipin molecules in the vicinity of the adenine nucleotide translocator, is a key enzyme in this pathway. Direct transfer of ATP and ADP between these proteins has been revealed both in experimental studies on the kinetics of the regulation of mitochondrial respiration and by mathematical modelling as a main mechanism of functional coupling of PCr production to oxidative phosphorylation. In cells in vivo or in permeabilized cells in situ, this coupling is reinforced by limited permeability of the outer membrane of the mitochondria for adenine nucleotides due to the contacts with cytoskeletal proteins. Due to these mechanisms, at least 80% of total energy is exported from mitochondria by PCr molecules. Mathematical modelling of intracellular diffusion and energy transfer shows that the main function of the PCr-CK pathway is to connect different pools (compartments) of ATP and, by this way, to overcome the local restrictions and diffusion limitation of adenine nucleotides due to the high degree of structural organization of cardiac cells.
Collapse
Affiliation(s)
- Valdur Saks
- Laboratory of Fundamental and Applied Bioenergetics, INSERM U 884, Joseph Fourier University, 2280, Rue de la Piscine, BP53X-38041, Grenoble Cedex 9, France
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Carvajal K, El Hafidi M, Marin-Hernández A, Moreno-Sánchez R. Structural and functional changes in heart mitochondria from sucrose-fed hypertriglyceridemic rats. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2005; 1709:231-9. [PMID: 16139786 DOI: 10.1016/j.bbabio.2005.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2005] [Revised: 07/26/2005] [Accepted: 08/05/2005] [Indexed: 11/29/2022]
Abstract
In the heart of sugar-induced hypertriglyceridemic (HTG) rats, cardiac performance is impaired with glucose as fuel, but not with fatty acids. Accordingly, the glycolytic flux and the transfer of energy diminish in the HTG heart, in comparison to control heart. To further explore the biochemical nature of such alteration in the HTG heart, the components of the non-glycolytic energy systems involved were evaluated. Total creatine kinase (CK) activity in the myocardial tissue was depressed by 30% in the HTG heart whereas the activity of the mitochondrial CK (mitCK) isoenzyme fraction that is functionally associated with oxidative phosphorylation decreased in isolated HTG heart mitochondria by 45%. Adenylate kinase (AK) was 20% lower in the HTG heart. In contrast, respiratory rates with 2-oxoglutarate (2-OG) and pyruvate/malate (pyr) were significantly higher in HTG heart mitochondria than in control mitochondria. 2-OG dehydrogenase activity was also higher in HTG mitochondria. Respiration with succinate was similar in both groups. Content of cytochromes b, c + c1 and a + a3, and cytochrome c oxidase activity, were also similar in the two kinds of mitochondria. A larger content of saturated and monounsaturated fatty acids was found in the HTG mitochondrial membranes with no changes in phospholipids composition or cholesterol content. Mitochondrial membranes from HTG hearts were more rigid, which correlated with the generation of higher membrane potentials. As the mitochondrial function was preserved or even enhanced in the HTG heart, these results indicated that deficiency in energy transfer was associated with impairment in mitCK and AK. This situation brought about uncoupling between the site of ATP production and the site of ATP consumption (contractile machinery), in spite of compensatory increase in mitochondrial oxidative capacity and membrane potential generation.
Collapse
Affiliation(s)
- Karla Carvajal
- Department of Biochemistry, Instituto Nacional de Cardiología. Juan Badiano #1, Col. Sección XVI, Tlalpan, México, D.F., Mexico.
| | | | | | | |
Collapse
|
8
|
Seppet E, Eimre M, Peet N, Paju K, Orlova E, Ress M, Kõvask S, Piirsoo A, Saks VA, Gellerich FN, Zierz S, Seppet EK. Compartmentation of energy metabolism in atrial myocardium of patients undergoing cardiac surgery. Mol Cell Biochem 2005; 270:49-61. [PMID: 15792353 DOI: 10.1007/s11010-005-3780-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The parameters of oxidative phosphorylation and its interaction with creatine kinase (CK)- and adenylate kinase (AK)-phosphotransfer networks in situ were studied in skinned atrial fibers from 59 patients undergoing coronary artery bypass surgery, valve replacement/correction and atrial septal defect correction. In atria, the mitochondrial CK and AK are effectively coupled to oxidative phosphorylation, the MM-CK is coupled to ATPases and there exists a direct transfer of adenine nucleotides between mitochondria and ATPases. Elimination of cytoplasmic ADP with exogenous pyruvate kinase was not associated with a blockade of the stimulatory effects of creatine and AMP on respiration, neither could it abolish the coupling of MM-CK to ATPases and direct transfer of adenine nucleotides. Thus, atrial energy metabolism is compartmentalized so that mitochondria form functional complexes with adjacent ATPases. These complexes isolate a part of cellular adenine nucleotides from their cytoplasmic pool for participating in energy transfer via CK- and AK-networks, and/or direct exchange. Compared to atria in sinus rhythm, the fibrillating atria were larger and exhibited increased succinate-dependent respiration relative to glutamate-dependent respiration and augmented proton leak. Thus, alterations in mitochondrial oxidative phosphorylation may contribute to pathogenesis of atrial fibrillation.
Collapse
Affiliation(s)
- Evelin Seppet
- Department of Pathophysiology, Human Genetics and Biology and Cardiovascular and Thoracic Surgery, Centre of Molecular and Clinical Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
ter Veld F, Jeneson JAL, Nicolay K. Mitochondrial affinity for ADP is twofold lower in creatine kinase knock-out muscles. Possible role in rescuing cellular energy homeostasis. FEBS J 2005; 272:956-65. [PMID: 15691329 DOI: 10.1111/j.1742-4658.2004.04529.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Adaptations of the kinetic properties of mitochondria in striated muscle lacking cytosolic (M) and/or mitochondrial (Mi) creatine kinase (CK) isoforms in comparison to wild-type (WT) were investigated in vitro. Intact mitochondria were isolated from heart and gastrocnemius muscle of WT and single- and double CK-knock-out mice strains (cytosolic (M-CK-/-), mitochondrial (Mi-CK-/-) and double knock-out (MiM-CK-/-), respectively). Maximal ADP-stimulated oxygen consumption flux (State3 Vmax; nmol O2 x mg mitochondrial protein(-1) x min(-1)) and ADP affinity (K50ADP; microM) were determined by respirometry. State 3 Vmax and of M-CK-/- and MiM-CK-/- gastrocnemius mitochondria were twofold higher than those of WT, but were unchanged for Mi-CK-/-. For mutant cardiac mitochondria, only the of mitochondria isolated from the MiM-CK-/- phenotype was different (i.e. twofold higher) than that of WT. The implications of these adaptations for striated muscle function were explored by constructing force-flow relations of skeletal muscle respiration. It was found that the identified shift in affinity towards higher ADP concentrations in MiM-CK-/- muscle genotypes may contribute to linear mitochondrial control of the reduced cytosolic ATP free energy potentials in these phenotypes.
Collapse
Affiliation(s)
- Frank ter Veld
- Department of Experimental In Vivo NMR, Image Sciences Institute, University Medical Center, Utrecht, the Netherlands.
| | | | | |
Collapse
|
10
|
Vendelin M, Lemba M, Saks VA. Analysis of functional coupling: mitochondrial creatine kinase and adenine nucleotide translocase. Biophys J 2005; 87:696-713. [PMID: 15240503 PMCID: PMC1304393 DOI: 10.1529/biophysj.103.036210] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mechanism of functional coupling between mitochondrial creatine kinase (MiCK) and adenine nucleotide translocase (ANT) in isolated heart mitochondria is analyzed. Two alternative mechanisms are studied: 1), dynamic compartmentation of ATP and ADP, which assumes the differences in concentrations of the substrates between intermembrane space and surrounding solution due to some diffusion restriction and 2), direct transfer of the substrates between MiCK and ANT. The mathematical models based on these possible mechanisms were composed and simulation results were compared with the available experimental data. The first model, based on a dynamic compartmentation mechanism, was not sufficient to reproduce the measured values of apparent dissociation constants of MiCK reaction coupled to oxidative phosphorylation. The second model, which assumes the direct transfer of substrates between MiCK and ANT, is shown to be in good agreement with experiments--i.e., the second model reproduced the measured constants and the estimated ADP flux, entering mitochondria after the MiCK reaction. This model is thermodynamically consistent, utilizing the free energy profiles of reactions. The analysis revealed the minimal changes in the free energy profile of the MiCK-ANT interaction required to reproduce the experimental data. A possible free energy profile of the coupled MiCK-ANT system is presented.
Collapse
Affiliation(s)
- Marko Vendelin
- Laboratory of Fundamental and Applied Bioenergetics, Institut National de la Santé et de la Recherche Médicale E0221, Joseph Fourier University, Grenoble, France.
| | | | | |
Collapse
|
11
|
Graham BH, Craigen WJ. Genetic approaches to analyzing mitochondrial outer membrane permeability. Curr Top Dev Biol 2004; 59:87-118. [PMID: 14975248 DOI: 10.1016/s0070-2153(04)59004-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Affiliation(s)
- Brett H Graham
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
12
|
Vyssokikh M, Zorova L, Zorov D, Heimlich G, Jürgensmeier J, Schreiner D, Brdiczka D. The intra-mitochondrial cytochrome c distribution varies correlated to the formation of a complex between VDAC and the adenine nucleotide translocase: this affects Bax-dependent cytochrome c release. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2004; 1644:27-36. [PMID: 14741742 DOI: 10.1016/j.bbamcr.2003.10.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The mechanism of Bax-dependent cytochrome c release is still controversial and may also depend on the actual localisation of cytochrome C: (i) we studied the distribution of cytochrome c in sub-fractions of rat kidney mitochondria and found that 10-20% of the total cytochrome c was associated at the peripheral inner membrane and to some extent organised in the contact sites. (ii) Cytochrome c concentrations in the contact site fractions varied related to surface bound hexokinase activity. It decreased upon reduction of contact sites by glycerol or specific dissociation of the VDAC-ANT complexes by bongkrekate, whereas it increased upon induction of contacts by dextran or association of VDAC-ANT complexes by atractyloside. (iii) The outer membrane pore (VDAC) acquires high capacity for hexokinase binding by interacting with the ANT. Thus, surface-attached hexokinase protein indicated the frequency of VDAC-ANT complexes and the correlation between hexokinase activity and cytochrome c suggested association of the latter to the complexes. (iv) Substances affecting exclusively the structure of either hexokinase (glucose-6P) or cytochrome c (borate) led to a decrease only of the effected protein without changing the concentration of other contact site constituents. (v) Hexokinase was furthermore used as a tool to isolate the contact site forming complex of outer membrane VDAC and inner membrane ANT from Triton-dissolved membranes. Cytochrome c remained attached to the hexokinase VDAC-ANT complexes that were reconstituted in phospholipid vesicles. (vi) The vesicles were loaded with malate and BaxDeltaC released the endogenous cytochrome c from the reconstituted complexes without forming unspecific pores for malate. BaxDeltaC targeted a cytochrome c fraction associated at the VDAC-ANT complex. The cytochrome c organisation was dependent on the actual structure of VDAC and ANT. Thus, the BaxDeltaC effect was suppressed either by hexokinase utilising glucose and ATP or by bongkrekic acid both influencing the pore and ANT structure.
Collapse
Affiliation(s)
- Michail Vyssokikh
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Russian Federation
| | | | | | | | | | | | | |
Collapse
|
13
|
Garlid KD, Dos Santos P, Xie ZJ, Costa ADT, Paucek P. Mitochondrial potassium transport: the role of the mitochondrial ATP-sensitive K(+) channel in cardiac function and cardioprotection. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2003; 1606:1-21. [PMID: 14507424 DOI: 10.1016/s0005-2728(03)00109-9] [Citation(s) in RCA: 234] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Coronary artery disease and its sequelae-ischemia, myocardial infarction, and heart failure-are leading causes of morbidity and mortality in man. Considerable effort has been devoted toward improving functional recovery and reducing the extent of infarction after ischemic episodes. As a step in this direction, it was found that the heart was significantly protected against ischemia-reperfusion injury if it was first preconditioned by brief ischemia or by administering a potassium channel opener. Both of these preconditioning strategies were found to require opening of a K(ATP) channel, and in 1997 we showed that this pivotal role was mediated by the mitochondrial ATP-sensitive K(+) channel (mitoK(ATP)). This paper will review the evidence showing that opening mitoK(ATP) is cardioprotective against ischemia-reperfusion injury and, moreover, that mitoK(ATP) plays this role during all three phases of the natural history of ischemia-reperfusion injury preconditioning, ischemia, and reperfusion. We discuss two distinct mechanisms by which mitoK(ATP) opening protects the heart-increased mitochondrial production of reactive oxygen species (ROS) during the preconditioning phase and regulation of intermembrane space (IMS) volume during the ischemic and reperfusion phases. It is likely that cardioprotection by ischemic preconditioning (IPC) and K(ATP) channel openers (KCOs) arises from utilization of normal physiological processes. Accordingly, we summarize the results of new studies that focus on the role of mitoK(ATP) in normal cardiomyocyte physiology. Here, we observe the same two mechanisms at work. In low-energy states, mitoK(ATP) opening triggers increased mitochondrial ROS production, thereby amplifying a cell signaling pathway leading to gene transcription and cell growth. In high-energy states, mitoK(ATP) opening prevents the matrix contraction that would otherwise occur during high rates of electron transport. MitoK(ATP)-mediated volume regulation, in turn, prevents disruption of the structure-function of the IMS and facilitates efficient energy transfers between mitochondria and myofibrillar ATPases.
Collapse
Affiliation(s)
- Keith D Garlid
- Department of Biology, Portland State University, 1719 SW 10th Avenue, PO Box 751, Portland, OR 97207, USA.
| | | | | | | | | |
Collapse
|
14
|
Saks V, Kuznetsov A, Andrienko T, Usson Y, Appaix F, Guerrero K, Kaambre T, Sikk P, Lemba M, Vendelin M. Heterogeneity of ADP diffusion and regulation of respiration in cardiac cells. Biophys J 2003; 84:3436-56. [PMID: 12719270 PMCID: PMC1302901 DOI: 10.1016/s0006-3495(03)70065-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Heterogeneity of ADP diffusion and regulation of respiration were studied in permeabilized cardiomyocytes and cardiac fibers in situ and in silico. Regular arrangement of mitochondria in cells was altered by short-time treatment with trypsin and visualized by confocal microscopy. Manipulation of matrix volumes by changing K(+) and sucrose concentrations did not affect the affinity for ADP either in isolated heart mitochondria or in skinned fibers. Pyruvate kinase (PK)-phosphoenolpyruvate (PEP) were used to trap ADP generated in Ca,MgATPase reactions. Inhibition of respiration by PK-PEP increased 2-3 times after disorganization of regular mitochondrial arrangement in cells. ADP produced locally in the mitochondrial creatine kinase reaction was not accessible to PK-PEP in intact permeabilized fibers, but some part of it was released from mitochondria after short proteolysis due to increased permeability of outer mitochondrial membrane. In in silico studies we show by mathematical modeling that these results can be explained by heterogeneity of ADP diffusion due to its restrictions at the outer mitochondrial membrane and in close areas, which is changed after proteolysis. Localized restrictions and heterogeneity of ADP diffusion demonstrate the importance of mitochondrial functional complexes with sarcoplasmic reticulum and myofibrillar structures and creatine kinase in regulation of oxidative phosphorylation.
Collapse
Affiliation(s)
- Valdur Saks
- Laboratory of Fundamental and Applied Bioenergetics, INSERM E0221, Joseph Fourier University, 2280 Rue de la Piscine, BP53X-38041, Grenoble Cedex 9, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Kongas O, Yuen TL, Wagner MJ, Van Beek JHGM, Krab K. High K(m) of oxidative phosphorylation for ADP in skinned muscle fibers: where does it stem from? Am J Physiol Cell Physiol 2002; 283:C743-51. [PMID: 12176731 DOI: 10.1152/ajpcell.00101.2002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mitochondria in saponin-skinned cardiac fiber bundles were reported to have an order of magnitude lower apparent affinity to ADP than isolated mitochondria. Although ADP was measured outside the bundles, it was thought that the low affinity was not caused by diffusion gradients because of relatively short diffusion distances. Here we test the hypothesis that considerable ADP diffusion gradients exist and can be diminished by increasing the intrafiber ADP production rate. We increased the ADP-producing activity in rat heart skinned fiber bundles by incubating with 100 IU/ml yeast hexokinase and glucose. Consequently, we observed a significant decrease of the apparent Michaelis constant (K(m)) to ADP of the respiration rate of bundles from 216 +/- 59 to 50 +/- 9 microM. Fitting the results with a mathematical model, we estimated the K(m) of mitochondria in the bundles to be 25 microM. We conclude that the affinity to ADP of in situ mitochondria in heart is of the same order of magnitude as that of isolated mitochondria.
Collapse
Affiliation(s)
- Olav Kongas
- Laboratory for Physiology, Institute for Cardiovascular Research, Vrije Universiteit Medical Center 1081 BT Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
16
|
Dos Santos P, Kowaltowski AJ, Laclau MN, Seetharaman S, Paucek P, Boudina S, Thambo JB, Tariosse L, Garlid KD. Mechanisms by which opening the mitochondrial ATP- sensitive K(+) channel protects the ischemic heart. Am J Physiol Heart Circ Physiol 2002; 283:H284-95. [PMID: 12063301 DOI: 10.1152/ajpheart.00034.2002] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Diazoxide opening of the mitochondrial ATP-sensitive K(+) (mitoK(ATP)) channel protects the heart against ischemia-reperfusion injury by unknown mechanisms. We investigated the mechanisms by which mitoK(ATP) channel opening may act as an end effector of cardioprotection in the perfused rat heart model, in permeabilized fibers, and in rat heart mitochondria. We show that diazoxide pretreatment preserves the normal low outer membrane permeability to nucleotides and cytochrome c and that these beneficial effects are abolished by the mitoK(ATP) channel inhibitor 5-hydroxydecanoate. We hypothesize that an open mitoK(ATP) channel during ischemia maintains the tight structure of the intermembrane space that is required to preserve the normal low outer membrane permeability to ADP and ATP. This hypothesis is supported by findings in mitochondria showing that small decreases in intermembrane space volume, induced by either osmotic swelling or diazoxide, increased the half-saturation constant for ADP stimulation of respiration and sharply reduced ATP hydrolysis. These effects are proposed to lead to preservation of adenine nucleotides during ischemia and efficient energy transfer upon reperfusion.
Collapse
Affiliation(s)
- Pierre Dos Santos
- Unité 441 Athérosclérose and IFR 4, Institut National de la Santé et de la Recherche Médicale, 33600 Pessac, France
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Gellerich FN, Laterveer FD, Zierz S, Nicolay K. The quantitation of ADP diffusion gradients across the outer membrane of heart mitochondria in the presence of macromolecules. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1554:48-56. [PMID: 12034470 DOI: 10.1016/s0005-2728(02)00212-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We have previously provided evidence that diffusion of metabolites across the porin pores of mitochondrial outer membrane is hindered. A functional consequence of this diffusion limitation is the dynamic compartmentation of ADP in the intermembrane space. These earlier studies were done on isolated mitochondria suspended in isotonic media without macromolecules, in which intermembrane space of mitochondria is enlarged. The present study was undertaken to assess the diffusion limitation of outer membrane in the presence of 10% (w/v) dextran M20, in order to mimic the action of cytosolic macromolecules on mitochondria. Under these conditions, mitochondria have a more native, condensed configuration.Flux-dependent concentration gradients of ADP were estimated by measuring the ADP diffusion fluxes across the porin pores of isolated rat heart mitochondria incubated together with pyruvate kinase (PK), both of which compete for ADP regenerated by mitochondrial creatine kinase (mtCK) within the intermembrane space or by yeast hexokinase (HK) extramitochondrially. From diffusion fluxes and bulk phase concentrations of ADP, its concentrations in the intermembrane space were calculated using Fick's law of diffusion. Flux-dependent gradients up to 23 microM ADP (for a diffusion rate of J(Dif)=1.9 micromol ADP/min/mg mitochondrial protein) were observed. These gradients are about twice those estimated in the absence of dextran and in the same order of magnitude as the cytosolic ADP concentration (30 microM), but they are negligibly low for cytosolic ATP (5 mM). Therefore, it is concluded that the dynamic ADP compartmentation is of biological importance for intact heart cells. If mtCK generates ADP within the intermembrane space, the local ADP concentration can be clearly higher than in the cytosol resulting in higher extramitochondrial phosphorylation potentials. In this way, mtCK contributes to ensure optimal kinetic conditions for ATP-splitting reactions in the extramitochondrial compartment.
Collapse
Affiliation(s)
- Frank Norbert Gellerich
- Muskellabor der Neurologischen Klinik und Poliklinik, Martin-Luther-Universität, Halle-Wittenberg, Julius-Kühn-Str. 7, D-06097 Halle/Saale, Halle-Wittenberg, Germany.
| | | | | | | |
Collapse
|
18
|
Schild L, Keilhoff G, Augustin W, Reiser G, Striggow F. Distinct Ca2+ thresholds determine cytochrome c release or permeability transition pore opening in brain mitochondria. FASEB J 2001; 15:565-7. [PMID: 11259368 DOI: 10.1096/fj.00-0551fje] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In diseases associated with neuronal degeneration, such as Alzheimer's or cerebral ischemia, the cytosolic Ca2+ concentration ([Ca2+]cyt) is pathologically elevated. It is still unclear, however, under which conditions Ca2+ induces either apoptotic or necrotic neuronal cell death. Studying respiration and morphology of rat brain mitochondria, we found that extramitochondrial [Ca2+] above 1 M causes reversible release of cytochrome c, a key trigger of apoptosis. This event was NO-independent but required Ca2+ influx into the mitochondrial matrix. The mitochondrial permeability transition pore (PTP), widely thought to underlie cytochrome c release, was not involved. In contrast to noncerebral tissue, only relatively high [Ca2+] (is approximately equal to 200 M) opened PTP and ruptured mitochondria. Our findings might reflect a fundamental mechanism to protect postmitotic neuronal tissue against necrotic devastation and inflammation.
Collapse
Affiliation(s)
- L Schild
- Institute of Clinical Chemistry, Department of Pathological Biochemistry, Institute of Medical Neurobiology, Institute of Neurobiochemistry, Medical Faculty, Otto-von-Guericke-University, Magdeburg, Germany.
| | | | | | | | | |
Collapse
|
19
|
Brustovetsky N, Brustovetsky T, Dubinsky JM. On the mechanisms of neuroprotection by creatine and phosphocreatine. J Neurochem 2001; 76:425-34. [PMID: 11208905 DOI: 10.1046/j.1471-4159.2001.00052.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Creatine and phosphocreatine were evaluated for their ability to prevent death of cultured striatal and hippocampal neurons exposed to either glutamate or 3-nitropropionic acid (3NP) and to inhibit the mitochondrial permeability transition in CNS mitochondria. Phosphocreatine (PCr), and to a lesser extent creatine (Cr), but not (5R,10S)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate (MK801), dose-dependently ameliorated 3NP toxicity when applied simultaneously with the 3NP in Mg2+-free media. Pre-treatment of PCr for 2 or 5 days and Cr for 5 days protected against glutamate excitotoxicity equivalent to that achieved by MK801 post-treatment. The combination of PCr or Cr pre-treatment and MK801 post-treatment did not provide additional protection, indicating that both prevented the toxicity attributable to secondary glutamate release. To determine if Cr or PCr directly inhibited the permeability transition, mitochondrial swelling and depolarization were assayed in isolated, purified brain mitochondria. PCr reduced the amount of swelling induced by calcium by 20%. Cr decreased mitochondrial swelling when inhibitors of creatine kinase octamer-dimer transition were present. However, in brain mitochondria prepared from rats fed a diet supplemented with 2% creatine for 2 weeks, the extent of calcium-induced mitochondrial swelling was not altered. Thus, the neuroprotective properties of PCr and Cr may reflect enhancement of cytoplasmic high-energy phosphates but not permeability transition inhibition.
Collapse
Affiliation(s)
- N Brustovetsky
- Department of Neuroscience, University of Minnesota, Minneapolis 55455, USA
| | | | | |
Collapse
|
20
|
Kay L, Nicolay K, Wieringa B, Saks V, Wallimann T. Direct evidence for the control of mitochondrial respiration by mitochondrial creatine kinase in oxidative muscle cells in situ. J Biol Chem 2000; 275:6937-44. [PMID: 10702255 DOI: 10.1074/jbc.275.10.6937] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The efficiency of stimulation of mitochondrial respiration in permeabilized muscle cells by ADP produced at different intracellular sites, e.g. cytosolic or mitochondrial intermembrane space, was evaluated in wild-type and creatine kinase (CK)-deficient mice. To activate respiration by endogenous production of ADP in permeabilized cells, ATP was added either alone or together with creatine. In cardiac fibers, while ATP alone activated respiration to half of the maximal rate, creatine plus ATP increased the respiratory rate up to its maximum. To find out whether the stimulation by creatine is a consequence of extramitochondrial [ADP] increase, or whether it directly correlates with ADP generation by mitochondrial CK in the mitochondrial intermembrane space, an exogenous ADP-trap system was added to rephosphorylate all cytosolic ADP. Under these conditions, creatine plus ATP still increased the respiration rate by 2.5 times, compared with ATP alone, for the same extramitochondrial [ADP] of 14 microM. Moreover, this stimulatory effect of creatine, observed in wild-type cardiac fibers disappeared in mitochondrial CK deficient, but not in cytosolic CK-deficient muscle. It is concluded that respiration rates can be dissociated from cytosolic [ADP], and ADP generated by mitochondrial CK is an important regulator of oxidative phosphorylation.
Collapse
Affiliation(s)
- L Kay
- Institute of Cell Biology, ETH-Hönggerberg, CH-8093 Zürich, Switzerland.
| | | | | | | | | |
Collapse
|
21
|
Beutner G, Rück A, Riede B, Brdiczka D. Complexes between porin, hexokinase, mitochondrial creatine kinase and adenylate translocator display properties of the permeability transition pore. Implication for regulation of permeability transition by the kinases. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1368:7-18. [PMID: 9459579 DOI: 10.1016/s0005-2736(97)00175-2] [Citation(s) in RCA: 260] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Complexes between hexokinase, outer membrane porin, and the adenylate translocator (ANT) were recently found to establish properties of the mitochondrial permeability transition pore in a reconstituted system. The complex was extracted by 0.5% Triton X-100 from rat brain membranes and separated by anion exchanger chromatography. The molecular weight was approximately 400 kDa suggesting tetramers of hexokinase (monomer 100kDa). By the same method a porin, creatine kinase octamer, ANT complex was isolated and reconstituted in liposomes. Vesicles containing the reconstituted complexes both retained ATP that could be used by either kinase to phosphorylate external creatine or glucose. Atractyloside inhibited this activity indicating that the ANT was involved in this process and was functionally reconstituted. Exclusively from the hexokinase complex containing liposome internal malate or ATP was released by addition of Ca2+ in a N-methylVal-4-cyclosporin sensitive way, suggesting that the hexokinase porin ANT complex might include the permeability transition pore (PTP). The Ca2+ dependent opening of the PTP-like structure was inhibited by ADP (apparent I(50), 8 microM) and ATP (apparent I(50), 84 microM). Also glucose inhibited the PTP-like activity, while glucose-6-phosphate abolished this effect. Although porin and ANT were functionally active in vesicles containing the creatine kinase octamer complex, Ca2+ did not induce a release of internal substrates. However, after dissociation of the creatine kinase octamer, the complex exhibited PTP-like properties and the vesicles liberated internal metabolites upon addition of Ca2+. The latter process was also inhibited by N-methylVal-4-cyclosporin. The activity of peptidyl-prolyl-cis-trans-isomerase (representing cyclophilin) was followed during complex isolation. Cyp D was co-purified with the hexokinase complex, while it was absent in the creatine kinase complex. The inhibitory effect of N-methylVal-4-cyclosporin on the creatine kinase complex may be explained by direct interaction with the creatine kinase dimer that appeared to support octamer formation.
Collapse
Affiliation(s)
- G Beutner
- Faculty of Biology, University of Konstanz, Germany
| | | | | | | |
Collapse
|
22
|
Brdiczka D, Beutner G, Rück A, Dolder M, Wallimann T. The molecular structure of mitochondrial contact sites. Their role in regulation of energy metabolism and permeability transition. Biofactors 1998; 8:235-42. [PMID: 9914825 DOI: 10.1002/biof.5520080311] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Contact sites between the outer and peripheral inner membrane of mitochondria are involved in protein precursor uptake and energy transfer. Hexokinase and mitochondrial creatine kinase could be attributed by different techniques to the energy transfer contacts. Kinetic analyses suggested a functional interaction between the kinases, outer membrane pore protein, and inner membrane adenylate translocator (ANT). This suggestion was strongly supported by isolation of hexokinase and creatine kinase complexes that were constituted of kinase oligomers, porin and ANT. Phospholipid vesicles carrying reconstituted kinase-porin-ANT complexes enclosed internal ATP in contrast to vesicles containing free porin only. This indicated that unspecific transport through porin was regulated by its interaction with a specific antiporter, ANT. A direct interaction between porin and ANT in the hexokinase complex conferred the reconstituted system with permeability properties reminiscent of the mitochondrial permeability transition (PT) pore. In the creatine kinase complex this interaction between porin and ANT was replaced by contact of both with the kinase octamer. Thus PT-pore-like functions were not observed unless the creatine kinase octamer was dissociated, suggesting that the ANT was locked in the antiporter state by interaction with the octamer. Indeed, reconstituted pure ANT showed PT-pore-like properties concerning Ca2+ sensitivity. However, as cyclophilin was missing, sensitivity against cyclosporin was not observed.
Collapse
Affiliation(s)
- D Brdiczka
- Faculty of Biology, University of Konstanz, Germany.
| | | | | | | | | |
Collapse
|
23
|
Anflous K, Veksler V, Mateo P, Samson F, Saks V, Ventura-Clapier R. Mitochondrial creatine kinase isoform expression does not correlate with its mode of action. Biochem J 1997; 322 ( Pt 1):73-8. [PMID: 9078245 PMCID: PMC1218160 DOI: 10.1042/bj3220073] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In adult mammalian ventricular tissue, mitochondrial creatine kinase (mi-CK), which is bound to the outer surface of the mitochondrial inner membrane, is functionally coupled to oxidative phosphorylation. This is shown, in saponin-permeabilized rat ventricular fibres, by a shift in the apparent K(m) of mitochondrial respiration for ADP from 300 +/- 56 microM to 111 +/- 40 microM (P < 0.001) on the addition of 25 mM creatine, due to a local accumulation of ADP close to the ATP/ADP translocator. We have found that in atrial fibres, the apparent K(m) for ADP is high, but is not decreased by creatine, suggesting an absence of coupling in this tissue, as has previously been observed in smooth muscle. mi-CK is encoded by two different genes, which are expressed in a tissue-specific manner: the sarcomeric isoform is expressed in ventricular and skeletal muscles, while the ubiquitous isoform is expressed in smooth muscle, brain and other tissues. In order to determine whether a specific function can be attributed to the expression of a specific isoform, we investigated mi-CK mRNA expression by Northern blot analysis. Hybridization with synthetic oligonucleotides specific for each mi-CK isoform showed the expression of only the sarcomeric isoform in rat atria. This result was confirmed by PCR using primers specific for each isoform. In addition, electrophoretic analysis of CK isoforms showed no difference in the octamer/dimer ratio of mi-CK in the atria and ventricles. In atria, unlike the soleus or ventricles, the maximum potential rate of mitochondrial phosphocreatine synthesis was lower than the maximal rate of ATP production by the mitochondria. The total CK/adenylate kinase ratio was also lower in atria than in the other tissues, suggesting a greater contribution of adenylate kinase to adenine nucleotide compartmentation in this tissue. The functional differences between mi CK in the two cardiac tissues seem to imply a specific arrangement of the proteins in the intermembrane space rather than the expression of specific isoforms.
Collapse
Affiliation(s)
- K Anflous
- U-446 INSERM, Faculté de Pharmacie, Université Paris-Sud, Châtenay-Malabry, France
| | | | | | | | | | | |
Collapse
|
24
|
Steeghs K, Heerschap A, de Haan A, Ruitenbeek W, Oerlemans F, van Deursen J, Perryman B, Pette D, Brückwilder M, Koudijs J, Jap P, Wieringa B. Use of gene targeting for compromising energy homeostasis in neuro-muscular tissues: the role of sarcomeric mitochondrial creatine kinase. J Neurosci Methods 1997; 71:29-41. [PMID: 9125373 DOI: 10.1016/s0165-0270(96)00124-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We have introduced a single knock-out mutation in the mitochondrial creatine kinase gene (ScCKmit) in the mouse germ line via targeted mutagenesis in mouse embryonic stem (ES) cells. Surprisingly, ScCKmit -/- muscles, unlike muscles of mice with a deficiency of cytosolic M-type creatine kinase (M-CK -/-; Van Deursen et al. (1993) Cell 74, 621-631), display no altered morphology, performance or oxidative phosphorylation capacity. Also, the levels of high energy phosphate metabolites were essentially unaltered in ScCKmit mutants. Our results challenge some of the present concepts about the strict coupling between CKmit function and aerobic respiration.
Collapse
Affiliation(s)
- K Steeghs
- Department of Cell Biology and Histology, Faculty of Medical Sciences, University of Nijmegen, Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Beutner G, Ruck A, Riede B, Welte W, Brdiczka D. Complexes between kinases, mitochondrial porin and adenylate translocator in rat brain resemble the permeability transition pore. FEBS Lett 1996; 396:189-95. [PMID: 8914985 DOI: 10.1016/0014-5793(96)01092-7] [Citation(s) in RCA: 240] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In vitro incubation of isolated hexokinase isozyme I or isolated dimer of mitochondrial creatine kinase with the outer mitochondrial membrane pore led to high molecular weight complexes of enzyme oligomers. Similar complexes of hexokinase and mitochondrial creatine kinase could be extracted by 0.5% Triton X-100 from homogenates of rat brain. Hexokinase and creatine kinase complexes could be separated by subsequent chromatography on DEAE anion exchanger. The molecular weight, as determined by gel-permeation chromatography, was approximately 400 kDa for both complexes. The Mr suggested tetramers of hexokinase (monomer 100 kDa) and creatine kinase (active enzyme is a dimer of 80 kDa). The composition of the complexes was further characterised by specific antibodies. Besides either hexokinase or creatine kinase molecules the complexes contained porin and adenylate translocator. It was possible to incorporate the complexes into artificial bilayer membranes and to measure conductance in 1 M KCI. The incorporating channels had a high conductance of 6 nS that was asymmetrically voltage dependent. The complexes were also reconstituted in phospholipid vesicles that were loaded with ATP. Complex containing vesicles retained ATP while vesicles reconstituted with pure porin were leaky. The internal ATP could be used by creatine kinase and hexokinase in the complex to phosphorylate external creatine or glucose. This process was inhibited by atractyloside. The hexokinase complex containing vesicles were furthermore loaded with malate or ATP that was gradually released by addition of Ca2+ between 100 and 600 microM. The liberation of malate or ATP by Ca2+ could be inhibited by N-methylVal-4-cyclosporin, suggesting that the porin translocator complex constitutes the permeability transition pore. The results show the physiological existence of kinase porin translocator complexes at the mitochondrial surface. It is assumed that such complexes between inner and outer membrane components are the molecular basis of contact sites observed by electron microscopy. Kinase complex formation may serve three regulatory functions, firstly regulation of the kinase activity, secondly stimulation of oxidative phosphorylation and thirdly regulation of the permeability transition pore.
Collapse
Affiliation(s)
- G Beutner
- Faculty of Biology, University of Konstanz, Constance, Germany
| | | | | | | | | |
Collapse
|
26
|
O'Gorman E, Beutner G, Wallimann T, Brdiczka D. Differential effects of creatine depletion on the regulation of enzyme activities and on creatine-stimulated mitochondrial respiration in skeletal muscle, heart, and brain. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1276:161-70. [PMID: 8816948 DOI: 10.1016/0005-2728(96)00074-6] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Guanidinopropionic acid (GPA), an analogue of creatine (Cr), is known to inhibit Cr uptake by cells. The metabolic effects of chronic Cr depletion on brain, heart and soleus muscle of rats were studied. In GPA hearts and soleus muscle, total specific creatine kinase (CK) activity was decreased by approx. 40% compared to controls, whereas in brain this same activity was elevated by a factor of two. Immunoblot analysis of soleus mitochondria from GPA rats showed an approximate 4-fold increase in Mi-CK protein and a concomitant 3-fold increase in adenine nucleotide translocator (ANT) protein, when compared to control. In GPA-fed rats, the specific activities of adenylate kinase (ADK) and succinate dehydrogenase were significantly higher in brain and soleus (2-fold), but heart remained the same. However, hexokinase (HK) decreased by approx. 50% both in heart and soleus, indicating that muscle and brain follow different strategies to compensate the energy deficit caused by creatine depletion. Skinned muscle fibres from Cr-depleted soleus attained approx. only 70% maximum state 3 respiration with 0.1 M ADP in the presence of 10 mM Cr compared to 100% in control fibres. This defect in Cr stimulated respiration was also seen in isolated heart mitochondria, but was normal in those from brain. The observed deficit of Cr-stimulated respiration, the significant accumulation of Mib-CK and ANT, concomitant with the formation of Mib-CK rich intra-mitochondrial inclusions shown by electron microscopy, indicate that Mib-CK function and coupling to oxidative phosphorylation (OXPHOS), is impaired in these abnormal mitochondria. In addition, our results show tissue-specific metabolic compensations to Cr depletion.
Collapse
Affiliation(s)
- E O'Gorman
- Institute for Cell Biology, Swiss Federal Institute of Technology, Zürich, Switzerland
| | | | | | | |
Collapse
|
27
|
Laterveer FD, Nicolay K, Gellerich FN. ADP delivery from adenylate kinase in the mitochondrial intermembrane space to oxidative phosphorylation increases in the presence of macromolecules. FEBS Lett 1996; 386:255-9. [PMID: 8647294 DOI: 10.1016/0014-5793(96)00455-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Macromolecules were added to isolated rat liver mitochondria to mimic cytosolic macromolecules and tested for their effects on the ADP delivery from adenylate kinase in the intermembrane space to oxidative phosphorylation. In the presence of 10% (w/v) dextran M20 or bovine serum albumin, approximately 60% of the maximal ADP flux from adenylate kinase to oxidative phosphorylation was not accessible to an extramitochondrial ADP scavenger. In the absence of macromolecules this was 34%. ADP determinations from incubations with macromolecules demonstrated the existence of flux-dependent ADP concentration gradients across the outer membrane which can be as high as 12 microM.
Collapse
Affiliation(s)
- F D Laterveer
- Department of in vivo NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | | | | |
Collapse
|
28
|
Kamp G, Büsselmann G, Lauterwein J. Spermatozoa: models for studying regulatory aspects of energy metabolism. EXPERIENTIA 1996; 52:487-94. [PMID: 8641386 DOI: 10.1007/bf01919321] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Spermatozoa are highly specialized cells, and they offer advantages for studying several basic aspects of metabolic control such as the role of adenosine triphosphate-(ATP)-homeostasis for cell function, the mechanisms of fatigue and metabolic depression, the metabolic channelling through the cytoplasm and the organization and regulation of glycolytic enzymes. Spermatozoa of four species with different reproductive modes are introduced and the first results are presented: Spermatozoa of the marine worm Arenicola marina are well adapted to external fertilization in sea water with fluctuating oxygen tension: they are motile for several hours in oxygen-free sea water, even when the ATP level is dramatically reduced. Anaerobic ATP production occurs by alanine, acetate and propionate fermentation probably by the same pathways known from somatic cells of this species. Under aerobic conditions the phosphagen system might function like a shuttle for energy-rich phosphate from mitochondria to the dynein-ATPases. Storage of turkey and carp spermatozoa for several hours without exogenous substrates and oxygen results in the degradation of phosphocreatine and ATP to inorganic phosphate and adenosine monophosphate (AMP), respectively. Despite low energy charges, stored spermatozoa of both species are capable of progressive movements. In carp spermatozoa fatigue of motility is not accompanied by the dramatic acidosis one discusses as an important effect in muscle fatigue. Energy metabolism of boar spermatozoa is typically based on glycolysis consuming extracellular carbohydrates and producing lactate and protons. The sperm seem to tolerate low intracellular pH (< 6.5). The lack of a phosphagen system (no energy shuttle from mitochondria to the distal dynein-ATPases) is probably compensated by a high glycolytic ATP-production in the mitochondria-free piece of the flagellum.
Collapse
Affiliation(s)
- G Kamp
- Institut für Zoophysiologie der Universität Münster, Germany
| | | | | |
Collapse
|
29
|
Huizing M, Ruitenbeek W, Thinnes FP, DePinto V, Wendel U, Trijbels FJ, Smit LM, ter Laak HJ, van den Heuvel LP. Deficiency of the voltage-dependent anion channel: a novel cause of mitochondriopathy. Pediatr Res 1996; 39:760-5. [PMID: 8726225 DOI: 10.1203/00006450-199605000-00003] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A patient with a deficient voltage-dependent anion channel (VDAC) is reported, presenting clinically with psychomotor retardation and minor dysmorphic features. Biochemical studies on muscle mitochondria showed impaired rates of pyruvate oxidation and ATP production; however, no specific deficient activity of one of the mitochondrial enzymes was involved. Western blotting experiments indicated an almost complete VDAC deficiency in skeletal muscle. The only moderately decreased VDAC content in the patient's fibroblasts might indicate that VDAC is expressed in a tissue-specific manner. The deficiency is likely caused by a mutation in the HVDAC1 gene or by a distributed posttranslational modification. This is the first described deficiency of a component of the outer mitochondrial membrane associated with the pyruvate oxidation pathway. Defects in this membrane should be considered as a possible cause of otherwise unexplained mitochondrial disorders.
Collapse
Affiliation(s)
- M Huizing
- Department of Pediatrics, University Hospital, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Huizing M, DePinto V, Ruitenbeek W, Trijbels FJ, van den Heuvel LP, Wendel U. Importance of mitochondrial transmembrane processes in human mitochondriopathies. J Bioenerg Biomembr 1996; 28:109-14. [PMID: 9132408 DOI: 10.1007/bf02110640] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In a substantial group of subjects suspected to have a mitochondriopathy no defect in the mitochondrial energy metabolism (pyruvate dehydrogenase complex or respiratory chain complexes) can be demonstrated. At least in some of these subjects it seems justified to consider a defect in one of the proteins which mediate the transport of several ions and substrates across the mitochondrial membranes. Of particular interest are proteins which are directly involved in the process of oxidative phosphorylation, such as the adenine nucleotide translocator (ANT) and the phosphate carrier (PiC). However, defects in transmembrane ion transporters also may induce impaired energy metabolism probably as a result of osmotic disturbances within the mitochondrial matrix. In this respect, the voltage-dependent anion channel (VDAC) and other ion channels have to be taken into consideration. Here we review the still incomplete knowledge of the occurrence of ANT, PiC, VDAC, cation channels, and a few substrate carriers in human tissues, as well as their possible role in pathology.
Collapse
Affiliation(s)
- M Huizing
- Department of Pediatrics, University Hospital, Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
31
|
Veer FDL, Gellerich FN, Nicolay K. Macromolecules Increase the Channeling of ADP from Externally Associated Hexokinase to the Matrix of Mitochondria. ACTA ACUST UNITED AC 1995. [DOI: 10.1111/j.1432-1033.1995.569zz.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
32
|
Khuchua Z, Belikova Y, Kuznetsov AV, Gellerich FN, Schild L, Neumann HW, Kunz WS. Caffeine and Ca2+ stimulate mitochondrial oxidative phosphorylation in saponin-skinned human skeletal muscle fibers due to activation of actomyosin ATPase. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1188:373-9. [PMID: 7803452 DOI: 10.1016/0005-2728(94)90058-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The rate of mitochondrial oxidative phosphorylation of saponin-skinned human muscle fibers from m. vastus lateralis in the presence of glutamate, malate and ATP is reported to be sensitive to caffeine and to changes of free calcium ion concentration. An approximately twofold increase in respiration was observed by the addition of 15 mM caffeine, because of the efflux of calcium from sarcoplasmic reticulum. Direct addition of a Ca2+/CaEGTA buffer, containing 1.5 microM free calcium ions had a similar effect. The ATP-splitting activity of skinned fibers was also stimulated by caffeine or calcium. These observations can be explained exclusively by the calcium-induced activation of actomyosin ATPase. (i) Thapsigargin, an inhibitor of the sarcoplasmic reticulum Ca(2+)-ATPase, had no influence. (ii) In myosin-extracted 'ghost' fibers containing intact mitochondria and an intact sarcoplasmic reticulum caffeine had a negligible effect on oxidative phosphorylation. (iii) The caffeine-induced increase in rate of fiber respiration was concomitant with a decrease in mitochondrial membrane potential and a decrease in the redox state of the mitochondrial NAD system. (iv) The calcium ionophore A 23187 caused a stimulation of respiration and ATP-splitting activity, similar to caffeine. (v) The calcium dependencies of respiration and ATP splitting activity of saponin-skinned human muscle fibers were in experimental error identical. Therefore it is concluded that calcium efflux from sarcoplasmic reticulum affects oxidative phosphorylation in skeletal muscle mostly via the stimulation of actomyosin ATPase.
Collapse
Affiliation(s)
- Z Khuchua
- Neurobiochemisches Labor der Klinik für Neurologie, Otto-von-Guericke Universität Magdeburg, Germany
| | | | | | | | | | | | | |
Collapse
|