1
|
Scheim DE, Vottero P, Santin AD, Hirsh AG. Sialylated Glycan Bindings from SARS-CoV-2 Spike Protein to Blood and Endothelial Cells Govern the Severe Morbidities of COVID-19. Int J Mol Sci 2023; 24:17039. [PMID: 38069362 PMCID: PMC10871123 DOI: 10.3390/ijms242317039] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Consistent with well-established biochemical properties of coronaviruses, sialylated glycan attachments between SARS-CoV-2 spike protein (SP) and host cells are key to the virus's pathology. SARS-CoV-2 SP attaches to and aggregates red blood cells (RBCs), as shown in many pre-clinical and clinical studies, causing pulmonary and extrapulmonary microthrombi and hypoxia in severe COVID-19 patients. SARS-CoV-2 SP attachments to the heavily sialylated surfaces of platelets (which, like RBCs, have no ACE2) and endothelial cells (having minimal ACE2) compound this vascular damage. Notably, experimentally induced RBC aggregation in vivo causes the same key morbidities as for severe COVID-19, including microvascular occlusion, blood clots, hypoxia and myocarditis. Key risk factors for COVID-19 morbidity, including older age, diabetes and obesity, are all characterized by markedly increased propensity to RBC clumping. For mammalian species, the degree of clinical susceptibility to COVID-19 correlates to RBC aggregability with p = 0.033. Notably, of the five human betacoronaviruses, the two common cold strains express an enzyme that releases glycan attachments, while the deadly SARS, SARS-CoV-2 and MERS do not, although viral loads for COVID-19 and the two common cold infections are similar. These biochemical insights also explain the previously puzzling clinical efficacy of certain generics against COVID-19 and may support the development of future therapeutic strategies for COVID-19 and long COVID patients.
Collapse
Affiliation(s)
- David E Scheim
- US Public Health Service, Commissioned Corps, Inactive Reserve, Blacksburg, VA 24060, USA
| | - Paola Vottero
- Department of Biomedical Engineering, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| | - Alessandro D Santin
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, P.O. Box 208063, New Haven, CT 06520, USA
| | | |
Collapse
|
2
|
Workman AM, McDaneld TG, Harhay GP, Das S, Loy JD, Hause BM. Recent Emergence of Bovine Coronavirus Variants with Mutations in the Hemagglutinin-Esterase Receptor Binding Domain in U.S. Cattle. Viruses 2022; 14:2125. [PMID: 36298681 PMCID: PMC9607061 DOI: 10.3390/v14102125] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/22/2022] [Accepted: 09/22/2022] [Indexed: 12/04/2022] Open
Abstract
Bovine coronavirus (BCoV) has spilled over to many species, including humans, where the host range variant coronavirus OC43 is endemic. The balance of the opposing activities of the surface spike (S) and hemagglutinin-esterase (HE) glycoproteins controls BCoV avidity, which is critical for interspecies transmission and host adaptation. Here, 78 genomes were sequenced directly from clinical samples collected between 2013 and 2022 from cattle in 12 states, primarily in the Midwestern U.S. Relatively little genetic diversity was observed, with genomes having >98% nucleotide identity. Eleven isolates collected between 2020 and 2022 from four states (Nebraska, Colorado, California, and Wisconsin) contained a 12 nucleotide insertion in the receptor-binding domain (RBD) of the HE gene similar to one recently reported in China, and a single genome from Nebraska collected in 2020 contained a novel 12 nucleotide deletion in the HE gene RBD. Isogenic HE proteins containing either the insertion or deletion in the HE RBD maintained esterase activity and could bind bovine submaxillary mucin, a substrate enriched in the receptor 9-O-acetylated-sialic acid, despite modeling that predicted structural changes in the HE R3 loop critical for receptor binding. The emergence of BCoV with structural variants in the RBD raises the possibility of further interspecies transmission.
Collapse
Affiliation(s)
- Aspen M. Workman
- United States Department of Agriculture (USDA) Agricultural Research Service (ARS), US Meat Animal Research Center (USMARC), State Spur 18D, Clay Center, NE 68933, USA
| | - Tara G. McDaneld
- United States Department of Agriculture (USDA) Agricultural Research Service (ARS), US Meat Animal Research Center (USMARC), State Spur 18D, Clay Center, NE 68933, USA
| | - Gregory P. Harhay
- United States Department of Agriculture (USDA) Agricultural Research Service (ARS), US Meat Animal Research Center (USMARC), State Spur 18D, Clay Center, NE 68933, USA
| | - Subha Das
- Veterinary & Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA
| | - John Dustin Loy
- Nebraska Veterinary Diagnostic Center, School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, 4040 East Campus Loop N, Lincoln, NE 68503, USA
| | - Benjamin M. Hause
- Veterinary & Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA
| |
Collapse
|
3
|
Scheim DE. A Deadly Embrace: Hemagglutination Mediated by SARS-CoV-2 Spike Protein at Its 22 N-Glycosylation Sites, Red Blood Cell Surface Sialoglycoproteins, and Antibody. Int J Mol Sci 2022; 23:2558. [PMID: 35269703 PMCID: PMC8910562 DOI: 10.3390/ijms23052558] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/11/2022] [Accepted: 02/18/2022] [Indexed: 02/06/2023] Open
Abstract
Rouleaux (stacked clumps) of red blood cells (RBCs) observed in the blood of COVID-19 patients in three studies call attention to the properties of several enveloped virus strains dating back to seminal findings of the 1940s. For COVID-19, key such properties are: (1) SARS-CoV-2 binds to RBCs in vitro and also in the blood of COVID-19 patients; (2) although ACE2 is its target for viral fusion and replication, SARS-CoV-2 initially attaches to sialic acid (SA) terminal moieties on host cell membranes via glycans on its spike protein; (3) certain enveloped viruses express hemagglutinin esterase (HE), an enzyme that releases these glycan-mediated bindings to host cells, which is expressed among betacoronaviruses in the common cold strains but not the virulent strains, SARS-CoV, SARS-CoV-2 and MERS. The arrangement and chemical composition of the glycans at the 22 N-glycosylation sites of SARS-CoV-2 spike protein and those at the sialoglycoprotein coating of RBCs allow exploration of specifics as to how virally induced RBC clumping may form. The in vitro and clinical testing of these possibilities can be sharpened by the incorporation of an existing anti-COVID-19 therapeutic that has been found in silico to competitively bind to multiple glycans on SARS-CoV-2 spike protein.
Collapse
Affiliation(s)
- David E Scheim
- US Public Health Service, Commissioned Officer, Inactive Reserve, Blacksburg, VA 24060, USA
| |
Collapse
|
4
|
Engin AB, Engin ED, Engin A. Dual function of sialic acid in gastrointestinal SARS-CoV-2 infection. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 79:103436. [PMID: 32562764 PMCID: PMC7833001 DOI: 10.1016/j.etap.2020.103436] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 06/15/2020] [Indexed: 05/11/2023]
Abstract
Recent analysis concerning the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)- angiotensin converting enzyme (ACE) receptor interaction in enterocytes, the definition of gut-lung axis, as well as the molecular basis of sialic acid-related dual recognition concept in gastrointestinal SARS-CoV-2 infection, have brought a new perspective to potential therapeutic targets. In this review evolving research and clinical data on gastrointestinal SARS-CoV-2 infection are discussed in the context of viral fusion and entry mechanisms, focusing on the different triggers used by coronaviruses. Furthermore, it is emphasized that the viral spike protein is prevented from binding gangliosides, which are composed of a glycosphingolipid with one or more sialic acids, in the presence of chloroquine or hydroxychloroquine. In gastrointestinal SARS-CoV-2 infection the efficiency of these repositioned drugs is debated.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Gazi University, Faculty of Pharmacy, Department of Toxicology, Ankara, Turkey.
| | - Evren Doruk Engin
- Ankara University, Biotechnology Institute, Gumusdere Campus, Kecioren, Ankara, Turkey
| | - Atilla Engin
- Gazi University, Faculty of Medicine, Department of General Surgery, Ankara, Turkey
| |
Collapse
|
5
|
SARS-CoV-2 Evolutionary Adaptation toward Host Entry and Recognition of Receptor O-Acetyl Sialylation in Virus-Host Interaction. Int J Mol Sci 2020; 21:ijms21124549. [PMID: 32604730 PMCID: PMC7352545 DOI: 10.3390/ijms21124549] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/15/2020] [Accepted: 06/22/2020] [Indexed: 02/06/2023] Open
Abstract
The recently emerged SARS-CoV-2 is the cause of the global health crisis of the coronavirus disease 2019 (COVID-19) pandemic. No evidence is yet available for CoV infection into hosts upon zoonotic disease outbreak, although the CoV epidemy resembles influenza viruses, which use sialic acid (SA). Currently, information on SARS-CoV-2 and its receptors is limited. O-acetylated SAs interact with the lectin-like spike glycoprotein of SARS CoV-2 for the initial attachment of viruses to enter into the host cells. SARS-CoV-2 hemagglutinin-esterase (HE) acts as the classical glycan-binding lectin and receptor-degrading enzyme. Most β-CoVs recognize 9-O-acetyl-SAs but switched to recognizing the 4-O-acetyl-SA form during evolution of CoVs. Type I HE is specific for the 9-O-Ac-SAs and type II HE is specific for 4-O-Ac-SAs. The SA-binding shift proceeds through quasi-synchronous adaptations of the SA-recognition sites of the lectin and esterase domains. The molecular switching of HE acquisition of 4-O-acetyl binding from 9-O-acetyl SA binding is caused by protein–carbohydrate interaction (PCI) or lectin–carbohydrate interaction (LCI). The HE gene was transmitted to a β-CoV lineage A progenitor by horizontal gene transfer from a 9-O-Ac-SA–specific HEF, as in influenza virus C/D. HE acquisition, and expansion takes place by cross-species transmission over HE evolution. This reflects viral evolutionary adaptation to host SA-containing glycans. Therefore, CoV HE receptor switching precedes virus evolution driven by the SA-glycan diversity of the hosts. The PCI or LCI stereochemistry potentiates the SA–ligand switch by a simple conformational shift of the lectin and esterase domains. Therefore, examination of new emerging viruses can lead to better understanding of virus evolution toward transitional host tropism. A clear example of HE gene transfer is found in the BCoV HE, which prefers 7,9-di-O-Ac-SAs, which is also known to be a target of the bovine torovirus HE. A more exciting case of such a switching event occurs in the murine CoVs, with the example of the β-CoV lineage A type binding with two different subtypes of the typical 9-O-Ac-SA (type I) and the exclusive 4-O-Ac-SA (type II) attachment factors. The protein structure data for type II HE also imply the virus switching to binding 4-O acetyl SA from 9-O acetyl SA. Principles of the protein–glycan interaction and PCI stereochemistry potentiate the SA–ligand switch via simple conformational shifts of the lectin and esterase domains. Thus, our understanding of natural adaptation can be specified to how carbohydrate/glycan-recognizing proteins/molecules contribute to virus evolution toward host tropism. Under the current circumstances where reliable antiviral therapeutics or vaccination tools are lacking, several trials are underway to examine viral agents. As expected, structural and non-structural proteins of SARS-CoV-2 are currently being targeted for viral therapeutic designation and development. However, the modern global society needs SARS-CoV-2 preventive and therapeutic drugs for infected patients. In this review, the structure and sialobiology of SARS-CoV-2 are discussed in order to encourage and activate public research on glycan-specific interaction-based drug creation in the near future.
Collapse
|
6
|
Abstract
Sialic acid linked to glycoproteins and gangliosides is used by many viruses as a receptor for cell entry. These viruses include important human and animal pathogens, such as influenza, parainfluenza, mumps, corona, noro, rota, and DNA tumor viruses. Attachment to sialic acid is mediated by receptor binding proteins that are constituents of viral envelopes or exposed at the surface of non-enveloped viruses. Some of these viruses are also equipped with a neuraminidase or a sialyl-O-acetyl-esterase. These receptor-destroying enzymes promote virus release from infected cells and neutralize sialic acid-containing soluble proteins interfering with cell surface binding of the virus. Variations in the receptor specificity are important determinants for host range, tissue tropism, pathogenicity, and transmissibility of these viruses.
Collapse
Affiliation(s)
| | - Philippe Delannoy
- Lille University of Science and Technology, Villeneuve d'Ascq Cedex, France
| | - Mark von Itzstein
- Institute for Glycomics, Griffith University, Southport, Queensland Australia
| |
Collapse
|
7
|
Marcus-Sekura C, Richardson JC, Harston RK, Sane N, Sheets RL. Evaluation of the human host range of bovine and porcine viruses that may contaminate bovine serum and porcine trypsin used in the manufacture of biological products. Biologicals 2011; 39:359-69. [PMID: 22000165 PMCID: PMC3206158 DOI: 10.1016/j.biologicals.2011.08.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 08/10/2011] [Accepted: 08/11/2011] [Indexed: 11/16/2022] Open
Abstract
Current U.S. requirements for testing cell substrates used in production of human biological products for contamination with bovine and porcine viruses are U.S. Department of Agriculture (USDA) 9CFR tests for bovine serum or porcine trypsin. 9CFR requires testing of bovine serum for seven specific viruses in six families (immunofluorescence) and at least 2 additional families non-specifically (cytopathicity and hemadsorption). 9CFR testing of porcine trypsin is for porcine parvovirus. Recent contaminations suggest these tests may not be sufficient. Assay sensitivity was not the issue for these contaminations that were caused by viruses/virus families not represented in the 9CFR screen. A detailed literature search was undertaken to determine which viruses that infect cattle or swine or bovine or porcine cells in culture also have human host range [ability to infect humans or human cells in culture] and to predict their detection by the currently used 9CFR procedures. There are more viruses of potential risk to biological products manufactured using bovine or porcine raw materials than are likely to be detected by 9CFR testing procedures; even within families, not all members would necessarily be detected. Testing gaps and alternative methodologies should be evaluated to continue to ensure safe, high quality human biologicals.
Collapse
Affiliation(s)
- Carol Marcus-Sekura
- Biotechnology Assessment Services Inc., 7413 Ottenbrook Terrace, Rockville, MD 20855, USA.
| | | | | | | | | |
Collapse
|
8
|
Oue Y, Ishihara R, Edamatsu H, Morita Y, Yoshida M, Yoshima M, Hatama S, Murakami K, Kanno T. Isolation of an equine coronavirus from adult horses with pyrogenic and enteric disease and its antigenic and genomic characterization in comparison with the NC99 strain. Vet Microbiol 2011; 150:41-8. [PMID: 21273011 PMCID: PMC7117184 DOI: 10.1016/j.vetmic.2011.01.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 12/09/2010] [Accepted: 01/03/2011] [Indexed: 10/28/2022]
Abstract
A new equine coronavirus was isolated from the feces of adult horses with pyrogenic and enteric disease. The disease outbreak was mainly observed among 2- to 4-year-old horses living in stables of a draft-horse racetrack in Japan. On comparing the isolated virus (isolate Tokachi09) with the equine coronavirus NC99 strain, no significant differences were observed in several biological properties such as hemagglutinating activity, antigenicity (in indirect immunofluorescence and neutralization tests), and one-step growth (in cell culture). The sequences of the nucleocapsid and spike genes of isolate Tokachi09 showed identical size (1341 and 4092 nucleotides, 446 and 1363 amino acids, respectively) and high similarity (98.0% and 99.0% at the nucleotides, 97.3% and 99.0% at the amino acids, respectively) to those of strain NC99. However, the isolate had a 185-nucleotide deletion from four bases after the 3'-terminal end of the spike gene, resulting in the absence of the open reading frame predicted to encode a 4.7-kDa nonstructural protein in strain NC99. These results suggest that the 4.7-kDa nonstructural protein is not essential for viral replication, at least in cell culture, and that the Japanese strain probably originated from a different lineage to the North American strain. This is the first equine coronavirus to be isolated from adult horses with pyrogenic and enteric disease.
Collapse
Affiliation(s)
- Yasuhiro Oue
- Hokkaido Tokachi Livestock Hygiene Service Center, 59-6, Kisen, Kawanishicho, Obihiro, Hokkaido 089-1182, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Cleavage of the SARS coronavirus spike glycoprotein by airway proteases enhances virus entry into human bronchial epithelial cells in vitro. PLoS One 2009; 4:e7870. [PMID: 19924243 PMCID: PMC2773421 DOI: 10.1371/journal.pone.0007870] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2009] [Accepted: 10/21/2009] [Indexed: 11/22/2022] Open
Abstract
Background Entry of enveloped viruses into host cells requires the activation of viral envelope glycoproteins through cleavage by either intracellular or extracellular proteases. In order to gain insight into the molecular basis of protease cleavage and its impact on the efficiency of viral entry, we investigated the susceptibility of a recombinant native full-length S-protein trimer (triSpike) of the severe acute respiratory syndrome coronavirus (SARS-CoV) to cleavage by various airway proteases. Methodology/Principal Findings Purified triSpike proteins were readily cleaved in vitro by three different airway proteases: trypsin, plasmin and TMPRSS11a. High Performance Liquid Chromatography (HPLC) and amino acid sequencing analyses identified two arginine residues (R667 and R797) as potential protease cleavage site(s). The effect of protease-dependent enhancement of SARS-CoV infection was demonstrated with ACE2 expressing human bronchial epithelial cells 16HBE. Airway proteases regulate the infectivity of SARS-CoV in a fashion dependent on previous receptor binding. The role of arginine residues was further shown with mutant constructs (R667A, R797A or R797AR667A). Mutation of R667 or R797 did not affect the expression of S-protein but resulted in a differential efficacy of pseudotyping into SARS-CoVpp. The R667A SARS-CoVpp mutant exhibited a lack of virus entry enhancement following protease treatment. Conclusions/Significance These results suggest that SARS S-protein is susceptible to airway protease cleavage and, furthermore, that protease mediated enhancement of virus entry depends on specific conformation of SARS S-protein upon ACE2 binding. These data have direct implications for the cell entry mechanism of SARS-CoV along the respiratory system and, furthermore expand the possibility of identifying potential therapeutic agents against SARS-CoV.
Collapse
|
10
|
Park SJ, Kim GY, Choy HE, Hong YJ, Saif LJ, Jeong JH, Park SI, Kim HH, Kim SK, Shin SS, Kang MI, Cho KO. Dual enteric and respiratory tropisms of winter dysentery bovine coronavirus in calves. Arch Virol 2007; 152:1885-900. [PMID: 17564760 PMCID: PMC7087358 DOI: 10.1007/s00705-007-1005-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Accepted: 05/04/2007] [Indexed: 11/29/2022]
Abstract
Although winter dysentery (WD), which is caused by the bovine coronavirus (BCoV) is characterized by the sudden onset of diarrhea in many adult cattle in a herd, the pathogenesis of the WD-BCoV is not completely understood. In this study, colostrum-deprived calves were experimentally infected with a Korean WD-BCoV strain and examined for viremia, enteric and nasal virus shedding as well as for viral antigen expression and virus-associated lesions in the small and large intestines and the upper and lower respiratory tract from 1 to 8 days after an oral infection. The WD-BCoV-inoculated calves showed gradual villous atrophy in the small intestine and a gradual increase in the crypt depth of the large intestine. The WD-BCoV-infected animals showed epithelial damage in nasal turbinates, trachea and lungs, and interstitial pneumonia. The WD-BCoV antigen was detected in the epithelium of the small and large intestines, nasal turbinates, trachea and lungs. WD-BCoV RNA was detected in the serum from post-inoculation day 3. These results show that the WD-BCoV has dual tropism and induces pathological changes in both the digestive and respiratory tracts of calves. To our knowledge, this is the first detailed report of dual enteric and respiratory tropisms of WD-BCoV in calves. Comprehensive studies of the dual tissue pathogenesis of the BCoV might contribute to an increased understanding of similar pneumoenteric CoV infections in humans.
Collapse
Affiliation(s)
- S J Park
- Biotherapy Human Resources Center, College of Veterinary Medicine, Chonnam National University, Gwangju, South Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Among coronaviruses, several members are able to interact with sialic acids. For bovine coronavirus (BCoV) and related viruses, binding to cell surface components containing
N-acetyl-9-
O-acetylneuraminic acid is essential for initiation of an infection. These viruses resemble influenza C viruses because they share not only the receptor determinant, but also the presence of an acetylesterase that releases the 9-
O-acetyl group from sialic acid and thus abolishes the ability of the respective sialoglycoconjugate to function as a receptor for BCoV. As in the case of influenza viruses, the receptor-destroying enzyme of BCoV is believed to facilitate the spread of virus infection by removing receptor determinants from the surface of infected cells and by preventing the formation of virus aggregates. Another coronavirus, porcine transmissible gastroenteritis virus (TGEV) preferentially recognizes
N-glycolylneuraminic acid. TGEV does not contain a receptor-destroying enzyme and does not depend on the sialic acid binding activity for infection of cultured cells. However, binding to sialic acids is required for the enteropathogenicity of TGEV. Interaction with sialoglycoconjugates may help the virus to pass through the sialic acid-rich mucus layer that covers the viral target cells in the epithelium of the small intestine. We discuss that the BCoV group of viruses may have evolved from a TGEV-like ancestor by acquiring an acetylesterase gene through heterologous recombination.
Collapse
Affiliation(s)
- Christel Schwegmann-Weßels
- Institut für Virologie, Stiftung Tierärztliche Hochschule Hannover, Bünteweg 17, 30559 Hannover, Germany
| | - Georg Herrler
- Institut für Virologie, Stiftung Tierärztliche Hochschule Hannover, Bünteweg 17, 30559 Hannover, Germany
| |
Collapse
|
12
|
Han MG, Cheon DS, Zhang X, Saif LJ. Cross-protection against a human enteric coronavirus and a virulent bovine enteric coronavirus in gnotobiotic calves. J Virol 2006; 80:12350-6. [PMID: 16971444 PMCID: PMC1676286 DOI: 10.1128/jvi.00402-06] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
A group 2 human coronavirus designated HECV-4408 was isolated from a child with acute diarrhea and is antigenically and genetically more closely related to bovine coronavirus (BCoV) than to human coronavirus OC43 (X. M. Zhang, W. Herbst, K. G. Kousoulas, and J. Storz, J. Med. Virol. 44:152-161, 1994). To determine whether HECV-4408 infects gnotobiotic calves and induces cross-protective immunity against the virulent enteric BCoV DB2 strain, gnotobiotic calves (n = 4) were orally inoculated with HECV-4408 and then challenged with BCoV DB2 at postinoculation day (PID) 21. All calves inoculated with HECV-4408 developed diarrhea at PID 3 to 4 lasting 5 to 9 days. Fecal and nasal virus shedding were first detected by reverse transcription-PCR at PID 3 to 4 and at PID 2 to 4, respectively. After challenge with bovine coronavirus, no diarrhea or virus shedding was detected in calves inoculated with HECV-4408, but a mock-inoculated calf developed diarrhea and fecal and nasal shedding. Fecal immunoglobulin A (IgA) and serum IgG antibodies were first detected at PID 7 and PID 14, respectively. At postchallenge day 7, serum IgG and fecal IgA antibody titers remained the same or increased only twofold compared to prechallenge titers. An additional two gnotobiotic calves were inoculated with HECV-4408 and euthanized at PID 5. Moderate villous atrophy was observed in the small intestines, and viral antigen was detected in villous enterocytes of the small and large intestines by immunohistochemistry. These results support and extend the previous report that HECV-4408 is likely a variant of bovine coronavirus. They confirm its infectivity for calves and complete cross-protection against a bovine coronavirus (DB2 strain) showing 98.2% amino acid identity to HECV-4408 in the S protein.
Collapse
Affiliation(s)
- Myung Guk Han
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691, USA
| | | | | | | |
Collapse
|
13
|
Ko CK, Kang MI, Lim GK, Kim GY, Yoon SS, Park JT, Jeong C, Park SH, Park SJ, Kim YJ, Jeong JH, Kim SK, Park SI, Kim HH, Kim KY, Cho KO. Molecular characterization of HE, M, and E genes of winter dysentery bovine coronavirus circulated in Korea during 2002-2003. Virus Genes 2006; 32:129-36. [PMID: 16604443 PMCID: PMC7089456 DOI: 10.1007/s11262-005-6867-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Accepted: 07/13/2005] [Indexed: 11/25/2022]
Abstract
The different bovine coronavirus (BCoV) strains or isolates exhibited various degrees of substitutions, resulting in altered antigenicity and pathogenicity of the virus. In the previous our study, we demonstrated that the spike glycoprotein gene of Korean winter dysentery (WD) BCoV had a genetic property of both enteric (EBCV) and respiratory BCoV (RBCV) and were significantly distinct from the ancestral enteric strains. In the present study, therefore, we analyzed the other structure genes, the hemagglutinin/esterase (HE) protein, the transmembrane (M) protein and the small membrane (E) protein to characterize 10 WD BCoV circulated in Korea during 2002-2003 and compared the nucleotide and deduced amino acid sequences with the other known BCoV. Phylogenetic analysis indicated that the HE gene among BCoV could be divided into three groups. The first group included only RBCV, while the second group contained calf diarrhea BCoV, RBCV, WD and EBCV, respectively. The third group possessed only all Korean WD strains which were more homologous to each other and were sharply distinct from the other known BCoV, suggesting Korean WD strains had evolutionary distinct pathway. In contrast, the relative conservation of the M and E proteins of BCoV including Korean WD strains and the other coronaviruses suggested that structural constraints on these proteins are rigid, resulting in more limited evolution of these proteins. In addition, BCoV and human coronavirus HCV-OC43 contained four potential O-glycosylation sites in the M gene. However, the M gene sequence of both BCoV and HCV-OC43 might not contain a signal peptide, suggesting the M protein might be unlikely to be exposed to the O-glycosylation machinery in vivo.
Collapse
Affiliation(s)
- Chin-Koo Ko
- Veterinary Medical Research Center, College of Veterinary Medicine, Chonnam National University, Gwangju, South Korea.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Lin XQ, O'Reilly KL, Storz J. Antibody responses of cattle with respiratory coronavirus infections during pathogenesis of shipping fever pneumonia are lower with antigens of enteric strains than with those of a respiratory strain. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2002; 9:1010-3. [PMID: 12204951 PMCID: PMC120065 DOI: 10.1128/cdli.9.5.1010-1013.2002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2002] [Revised: 05/17/2002] [Accepted: 06/03/2002] [Indexed: 11/20/2022]
Abstract
The serum antibody responses of cattle with respiratory coronavirus infections during the pathogenesis of shipping fever pneumonia were analyzed with different bovine coronavirus antigens, including those from a wild-type respiratory bovine coronavirus (RBCV) strain (97TXSF-Lu 15-2) directly isolated from lung tissue from a fatally infected bovine, a wild-type enteropathogenic bovine coronavirus (EBCV) strain (Ly 138-3), and the highly cell culture-adapted, enteric prototype strain (EBCV L9-81). Infectivity-neutralizing (IN) and hemagglutinin-inhibiting (HAI) activities were tested. Sequential serum samples, collected during the onset of the respiratory coronavirus infection and at weekly intervals for 5 weeks thereafter, had significantly higher IN and HAI titers for antigens of RBCV strain 97TXSF-Lu15-2 than for the wild-type and the highly cell culture-adapted EBCV strains, with P values ranging from <0.0001 to 0.0483. The IN and HAI antibody responses against the two EBCV strains did not differ significantly, but the lowest titers were detected with EBCV strain L9-81.
Collapse
Affiliation(s)
- Xiao-Qing Lin
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | | | | |
Collapse
|
15
|
Popova R, Zhang X. The spike but not the hemagglutinin/esterase protein of bovine coronavirus is necessary and sufficient for viral infection. Virology 2002; 294:222-36. [PMID: 11886280 PMCID: PMC7131450 DOI: 10.1006/viro.2001.1307] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The spike (S) and hemagglutinin/esterase (HE) of bovine coronavirus (BCV) are the two envelope proteins that recognize the same receptor-determinant of 9-O-acetylneuraminic acid on host cells. However, the precise and relative roles of the two proteins in BCV infectivity remain elusive. To unequivocally determine their roles in viral cytopathogenicity, we developed a system in which phenotypically chimeric viruses were generated by infecting a closely related mouse hepatitis virus (MHV) in cells that stably express an individual BCV protein (S or HE). The chimeric viruses were then used to infect human rectal tumor (HRT)-18 cells that are permissive to BCV but are nonsusceptible to MHV. Using this approach, we found that the chimeric virus containing the BCV S protein on the virion surface entered and replicated in HRT-18 cells; this was specifically blocked by prior treatment of the virus with a neutralizing antibody specific to the BCV S protein, indicating that the BCV S protein is responsible for initiating chimeric virus infection. In contrast, chimeric viruses that contain biologically active and functional BCV HE protein on the surface failed to enter HRT-18 cells, indicating that the BCV HE protein alone is not sufficient for BCV infection. Taken together, these results demonstrate that the S protein but not the HE protein of BCV is necessary and sufficient for infection of the chimeric viruses in HRT-18 cells, suggesting that BCV likely uses the S protein as a primary vehicle to infect permissive cells.
Collapse
Affiliation(s)
- Rada Popova
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA
| | | |
Collapse
|
16
|
Gélinas AM, Boutin M, Sasseville AM, Dea S. Bovine coronaviruses associated with enteric and respiratory diseases in Canadian dairy cattle display different reactivities to anti-HE monoclonal antibodies and distinct amino acid changes in their HE, S and ns4.9 protein. Virus Res 2001; 76:43-57. [PMID: 11376845 PMCID: PMC7127236 DOI: 10.1016/s0168-1702(01)00243-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Bovine coronavirus isolates associated with recent outbreaks of respiratory disease in Ontario and Quebec dairy farms were compared to reference strains known to be responsible for neonatal calf diarrhea (NCD) or winter dysentery (WD) of adult cattle. In respect to their hemagglutinating properties and their higher RDE activities with rat erythrocytes, WDBCoV strains differed from NCDBCoV strains and respiratory bovine coronaviruses RBCoV strains. Serologically, three MAbs directed to the HE glycoprotein of the WDBCoV strain BCQ.2590 recognized two serogroups amongst NCDBCoV strains by hemagglutination inhibition, whereas only one of the MAbs failed to react toward three of the four RBCoV isolates tested. Sequencing analysis of the S (S1 portion), HE, ORF4 and ORF5 genes of BCoV isolates associated with different clinical syndromes indicated that neither insertions or deletions could explain their distinct tropism. For the HE glycoprotein, a total of 15 amino acids (aa) substitutions were identified by comparing field isolates to the prototype Mebus strain. Two specific proline substitutions were identified for virulent strains being located in the signal peptides (aa 5) and aa position 367; one specific aa change was revealed at position 66 for RBCoV field isolates. Analysis of the S1 portion of the S glycoprotein revealed a total of eight aa changes specific to enteropathogenic (EBCoV) strains and eight aa changes specific to RBCoV strains. For all BCoV isolates studied, the region located between the S and M genes (ORF4) apparently encodes for two non-structural (ns) proteins of 4.9 and 4.8 kDa. A specific non-sense mutation was identified for the nucleotide at position 88 of the putative 4.9 kDa protein gene of RBCoV isolates resulting in 29 rather that 43 aa residues. The ORF5, which encodes a 12.7 ns protein and the 9.5 kDa E protein, was highly conserved amongst the BCoV field isolates.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Viral/immunology
- Antigens, Viral/chemistry
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Canada
- Cattle
- Cattle Diseases/immunology
- Cattle Diseases/virology
- Coronavirus Infections/immunology
- Coronavirus Infections/veterinary
- Coronavirus Infections/virology
- Coronavirus, Bovine/chemistry
- Coronavirus, Bovine/genetics
- Coronavirus, Bovine/immunology
- Coronavirus, Bovine/isolation & purification
- Cross Reactions/immunology
- Diarrhea/immunology
- Diarrhea/veterinary
- Diarrhea/virology
- Dysentery/immunology
- Dysentery/veterinary
- Dysentery/virology
- Hemagglutinins, Viral/chemistry
- Hemagglutinins, Viral/genetics
- Hemagglutinins, Viral/immunology
- Mice
- Milk
- Molecular Sequence Data
- Mutation, Missense/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Viral Proteins/chemistry
- Viral Proteins/genetics
- Viral Proteins/immunology
Collapse
Affiliation(s)
- A M Gélinas
- Centre de Microbiologie and Biotechnologie, INRS-Institut Armand Frappier, Université du Québec, 531 boulevard des Prairies, Québec, H7V 1B7, Laval, Canada
| | | | | | | |
Collapse
|
17
|
Lin X, O'Reilly KL, Burrell ML, Storz J. Infectivity-neutralizing and hemagglutinin-inhibiting antibody responses to respiratory coronavirus infections of cattle in pathogenesis of shipping fever pneumonia. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2001; 8:357-62. [PMID: 11238222 PMCID: PMC96063 DOI: 10.1128/cdli.8.2.357-362.2001] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2000] [Accepted: 12/21/2000] [Indexed: 11/20/2022]
Abstract
Respiratory bovine coronaviruses (RBCV) emerged as an infectious agent most frequently isolated from respiratory tract samples of cattle with acute respiratory tract diseases. Infectivity-neutralizing (IN) and hemagglutinin-inhibiting (HAI) antibodies induced by RBCV infections were monitored in sequential serum samples collected from cattle during a naturally evolving and experimentally monitored epizootic of shipping fever pneumonia (SFP). Cattle nasally shedding RBCV at the beginning of the epizootic started with low levels of serum IN and HAI antibodies. An increase in serum IN antibody after day 7 led to reduction of virus shedding in nasal secretions by the majority of the cattle between days 7 and 14. A substantial rise in the serum HAI antibody was observed during the initial phase among the sick but not the clinically normal cattle which were infected with RBCV. The RBCV isolation-positive cattle that developed fatal SFP had minimal serum IN and HAI antibodies during the course of disease development. Cattle that remained negative in RBCV isolation tests entered this epizootic with high levels of serum IN and HAI antibodies, which dramatically increased during the next two weeks. Protection against SFP was apparently associated with significantly higher levels of serum IN antibodies at the beginning of the epizootic. The RBCV-neutralizing activity is associated with serum immunoglobulin G (IgG), particularly the IgG2 subclass, while RBCV-specific HAI antibody is related to both serum IgG and IgM fractions.
Collapse
Affiliation(s)
- X Lin
- Department of Veterinary Microbiology and Parasitology, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA 70803, USA
| | | | | | | |
Collapse
|
18
|
Storz J, Lin X, Purdy CW, Chouljenko VN, Kousoulas KG, Enright FM, Gilmore WC, Briggs RE, Loan RW. Coronavirus and Pasteurella infections in bovine shipping fever pneumonia and Evans' criteria for causation. J Clin Microbiol 2000; 38:3291-8. [PMID: 10970373 PMCID: PMC87376 DOI: 10.1128/jcm.38.9.3291-3298.2000] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2000] [Accepted: 06/29/2000] [Indexed: 11/20/2022] Open
Abstract
Respiratory tract infections with viruses and Pasteurella spp. were determined sequentially among 26 cattle that died during two severe epizootics of shipping fever pneumonia. Nasal swab and serum samples were collected prior to onset of the epizootics, during disease progression, and after death, when necropsies were performed and lung samples were collected. Eighteen normal control cattle also were sampled at the beginning of the epizootics as well as at weekly intervals for 4 weeks. Respiratory bovine coronaviruses (RBCV) were isolated from nasal secretions of 21 and 25 cattle before and after transport. Two and 17 cattle nasally shed Pasteurella spp. before and after transport, respectively. RBCV were isolated at titers of 1 x 10(3) to 1.2 x 10(7) PFU per g of lung tissue from 18 cattle that died within 7 days of the epizootics, but not from the lungs of the remaining cattle that died on days 9 to 36. Twenty-five of the 26 lung samples were positive for Pasteurella spp., and their CFU ranged between 4.0 x 10(5) and 2.3 x 10(9) per g. Acute and subacute exudative, necrotizing lobar pneumonia characterized the lung lesions of these cattle with a majority of pneumonic lung lobes exhibiting fibronecrotic and exudative changes typical of pneumonic pasteurellosis, but other lung lobules had histological changes consisting of bronchiolitis and alveolitis typical of virus-induced changes. These cattle were immunologically naive to both infectious agents at the onset of the epizootics, but those that died after day 7 had rising antibody titers against RBCV and Pasteurella haemolytica. In contrast, the 18 clinically normal and RBCV isolation-negative cattle had high hemagglutinin inhibition antibody titers to RBCV from the beginning, while their antibody responses to P. haemolytica antigens were delayed. Evans' criteria for causation were applied to our findings because of the multifactorial nature of shipping fever pneumonia. This analysis identified RBCV as the primary inciting cause in these two epizootics. These viruses were previously not recognized as a causative agent in this complex respiratory tract disease of cattle.
Collapse
Affiliation(s)
- J Storz
- Department of Veterinary Microbiology and Parasitology, School of Veterinary Medicine, Louisiana State University, Baton Rouge 70803, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Storz J, Purdy CW, Lin X, Burrell M, Truax RE, Briggs RE, Frank GH, Loan RW. Isolation of respiratory bovine coronavirus, other cytocidal viruses, and Pasteurella spp from cattle involved in two natural outbreaks of shipping fever. J Am Vet Med Assoc 2000; 216:1599-604. [PMID: 10825949 DOI: 10.2460/javma.2000.216.1599] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To identify cytocidal viruses and Pasteurella spp that could be isolated from cattle involved in 2 natural outbreaks of shipping fever. ANIMALS 105 and 120 castrated male 4- to 8-month-old feedlot cattle involved in 1997 and 1998 outbreaks, respectively. PROCEDURES Nasal swab specimens and blood samples were collected, and cattle were vaccinated on arrival at an order-buyer barn from 4 local auction houses. Four days later, they were transported to a feedlot, and additional nasal swab specimens and blood samples were collected. Nasal swab specimens were submitted for virus isolation and bacterial culture; blood samples were submitted for measurement of respiratory bovine coronavirus (RBCV) hemagglutinin inhibition titers. RESULTS 93 of 105 cattle and 106 of 120 cattle developed signs of respiratory tract disease during 1997 and 1998, respectively, and RBCV was isolated from 81 and 89 sick cattle, respectively, while at the order-buyer's barn or the day after arrival at the feedlot. During the 1997 outbreak, bovine herpesvirus 1 was isolated from 2 cattle at the order-buyer's barn and from 5 cattle 7 and 14 days after arrival at the feedlot, and parainfluenza virus 3 was isolated from 4 cattle 14 days after arrival at the feedlot. During the 1998 outbreak, bovine herpesvirus 1 was isolated from 2 cattle at the order-buyer's barn and on arrival at the feedlot and from 5 cattle 7 and 14 days after arrival at the feedlot, and parainfluenza virus 3 was isolated from 1 animal the day of, and from 18 cattle 7 and 14 days after, arrival at the feedlot. Pasteurella spp was cultured from 4 and 6 cattle at the order-buyer's barn and from 92 and 72 cattle on arrival at the feedlot during the 1997 and 1998 outbreaks, respectively. CONCLUSIONS AND CLINICAL RELEVANCE Results suggest that RBCV may play a causative role in outbreaks of shipping fever in cattle. More than 80% of the sick cattle shed RBCV at the beginning of 2 outbreaks when the Pasteurella spp infection rate was low.
Collapse
Affiliation(s)
- J Storz
- Department of Veterinary Microbiology and Parasitology, School of Veterinary Medicine, Louisiana State University, Baton Rouge 70803, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Kapil S, Richardson KL, Maag TR, Goyal SM. Characterization of bovine coronavirus isolates/from eight different states in the USA. Vet Microbiol 1999; 67:221-30. [PMID: 10418876 PMCID: PMC7117495 DOI: 10.1016/s0378-1135(99)00042-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Bovine coronavirus isolates from eight different states of the USA were compared for their antigenic properties and susceptibility to hygromycin B. Antigenic differences were observed among the isolates in a one-way hemagglutination-inhibition (HI) test using a polyclonal antiserum against the Mebus bovine coronavirus isolate. Differences were observed on isoelectric focusing among viral proteins with isoelectric points between 4.45-4.65. Most of the BCV isolates were susceptible to hygromycin B (0.5 mM) whereas a few hygromycin B resistant isolates were also found.
Collapse
Affiliation(s)
- S Kapil
- Department of Diagnostic Medicine-Pathobiology College of Veterinary Medicine, Kansas State University, Manhattan 66506, USA.
| | | | | | | |
Collapse
|
21
|
da Silva MR, O'Reilly KL, Lin X, Stine L, Storz J. Sensitivity comparison for detection of respiratory bovine coronaviruses in nasal samples from feedlot cattle by ELISA and isolation with the G clone of HRT-18 cells. J Vet Diagn Invest 1999; 11:15-9. [PMID: 9925206 DOI: 10.1177/104063879901100102] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A monoclonal antibody-based capture enzyme-linked immunosorbent assay (ELISA) was developed to detect respiratory bovine coronavirus (RBCV) antigens in nasal swabs collected from cattle showing signs of respiratory tract disease following shipping. These samples had been previously tested for RBCV by inoculation of G clone cultures of human rectal tumor cells (HRT-18G) and for bovine herpes virus 1, parainfluenza virus 3, bovine adenovirus, bovine respiratory syncytial virus, and bovine viral diarrhea virus on other specifically permissive cell cultures. RBCV has not previously been recognized as an important etiological factor in the bovine respiratory disease complex of feedlot cattle. Thirty of 100 samples tested positive for RBCV antigen by capture ELISA in contrast to 38 of 100 samples that yielded RBCV isolates in G clone cells. Samples yielding other bovine respiratory viruses in the absence of RBCV were negative in the capture ELISA, which was based on the use of a single monoclonal antibody that recognizes one RBCV epitope on the S glycoprotein with the broadest reactivity with different strains of RBCV tested. Some RBCV strains may not be detected by this ELISA, which may account for the higher percentage of RBCV-infected cattle detected by RBCV isolation. However, the ELISA was simple to perform, sensitive, and specific and was more rapid than virus isolation. This assay will be useful for processing large numbers of field samples in future epidemiologic and diagnostic studies of RBCV infections of cattle.
Collapse
Affiliation(s)
- M R da Silva
- Department of Veterinary Microbiology and Parasitology, School of Veterinary Medicine, Louisiana State University, Baton Rouge 70803, USA
| | | | | | | | | |
Collapse
|
22
|
Chouljenko VN, Kousoulas KG, Lin X, Storz J. Nucleotide and predicted amino acid sequences of all genes encoded by the 3' genomic portion (9.5 kb) of respiratory bovine coronaviruses and comparisons among respiratory and enteric coronaviruses. Virus Genes 1998; 17:33-42. [PMID: 9778786 PMCID: PMC7089133 DOI: 10.1023/a:1008048916808] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The 3'-ends of the genomes (9538 bp) of two wild-type respiratory bovine coronavirus (RBCV) isolates LSU and OK were obtained by cDNA sequencing. In addition, the 3'-end of the genome (9545) of the wild-type enteric bovine coronavirus (EBCV) strain LY-138 was assembled from available sequences and by cDNA sequencing of unknown genomic regions. Comparative analyses of RBCV and EBCV nucleotide and deduced amino acid sequences revealed that RBCV-specific nucleotide and amino acid differences were disproportionally concentrated within the S gene and the genomic region between the S and E genes. Comparisons among virulent and avirulent BCV strains revealed that virulence-specific nucleotide and amino acid changes were located within the S and E genes, and the 32 kDa open reading frame.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Cattle
- Coronavirus, Bovine/genetics
- Coronavirus, Bovine/pathogenicity
- DNA, Viral/chemistry
- DNA, Viral/genetics
- Digestive System/virology
- Genes, Viral/genetics
- Humans
- Membrane Glycoproteins/genetics
- Molecular Sequence Data
- Open Reading Frames/genetics
- Phylogeny
- Respiratory System/virology
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
- Species Specificity
- Spike Glycoprotein, Coronavirus
- Tumor Cells, Cultured
- Viral Envelope Proteins/genetics
- Viral Proteins/genetics
- Viral Structural Proteins/genetics
- Virulence
Collapse
Affiliation(s)
- V N Chouljenko
- Department of Veterinary Microbiology and Parasitology, School of Veterinary Medicine, Louisiana State University, Baton Rouge 70803, USA
| | | | | | | |
Collapse
|
23
|
Tsunemitsu H, el-Kanawati ZR, Smith DR, Reed HH, Saif LJ. Isolation of coronaviruses antigenically indistinguishable from bovine coronavirus from wild ruminants with diarrhea. J Clin Microbiol 1995; 33:3264-9. [PMID: 8586714 PMCID: PMC228685 DOI: 10.1128/jcm.33.12.3264-3269.1995] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Diarrheal feces from three sambar deer and one waterbuck in a wild animal habitat and one white-tailed deer on a wildlife farm in Ohio contained coronavirus particles which were agglutinated by antiserum to bovine coronavirus (BCV) in immune electron microscopy. Three coronavirus strains were isolated in human rectal tumor cells from the feces of the sambar and white-tailed deer and the waterbuck, respectively. Hemagglutination, receptor-destroying enzyme activity, indirect immunofluorescence, hemagglutination inhibition, virus neutralization, and Western blot (immunoblot) tests showed close biological and antigenic relationships among the isolates and with selected BCV strains. Gnotobiotic and colostrum-deprived calves inoculated with each of these isolates developed diarrhea and shed coronavirus in their feces and from their nasal passages. In a serological survey of coronavirus infections among wild deer, 8.7 and 6.6% of sera from mule deer in Wyoming and from white-tailed deer in Ohio, respectively, were seropositive against both of the isolates and selected BCV isolates by indirect immunofluorescence tests. These results confirm the existence of coronaviruses in wild ruminants and suggest that these species may harbor coronavirus strains transmissible to cattle.
Collapse
Affiliation(s)
- H Tsunemitsu
- Food Animal Health Research Program, Ohio State University, Wooster 44691, USA
| | | | | | | | | |
Collapse
|
24
|
Tsunemitsu H, Saif LJ. Antigenic and biological comparisons of bovine coronaviruses derived from neonatal calf diarrhea and winter dysentery of adult cattle. Arch Virol 1995; 140:1303-11. [PMID: 7646362 PMCID: PMC7087169 DOI: 10.1007/bf01322757] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The antigenic and biological properties of 6 strains of bovine coronavirus (BCV) derived from neonatal calf diarrhea (CD) and 8 strains of BCV from winter dysentery (WD) of adult cattle, propagated in HRT-18 cells, were compared to determine if CD and WD strains belong to distinct serotypes or subtypes of BCV. All strains hemagglutinated both mouse and chicken erythrocytes at 4 degrees C, but the ratios of hemagglutination titers with mouse erythrocytes compared to chicken erythrocytes showed diversity for both CD and WD strains. Some CD and WD strains did not hemagglutinate chicken erythrocytes at 37 degrees C and showed receptor-destroying enzyme activity against chicken erythrocytes. Hyperimmune antisera were produced in guinea pigs against 3 and 7 strains of BCV from CD and WD, respectively. No significant differences in antibody titers against these strains were observed by indirect immunofluorescence tests. However, in virus neutralization tests, antisera to 1 CD and 2 WD strains had 16-fold or lower antibody titers against 3 WD and 1 CD strains than against the homologous strains, and this variation reflected low antigenic relatedness values (R = 13-25%), suggesting the presence of different subtypes among BCV. In hemagglutination inhibition tests, some one-way antigenic variations among strains were also observed. These results suggest that some antigenic and biological diversity exists among BCV strains, but these variations were unrelated to the clinical source of the strains; i.e. CD or WD.
Collapse
Affiliation(s)
- H Tsunemitsu
- Ohio Agricultural Research and Development Center, Ohio State University, Wooster, USA
| | | |
Collapse
|
25
|
Millane G, Michaud L, Dea S. Biological and molecular differentiation between coronaviruses associated with neonatal calf diarrhoea and winter dysentery in adult cattle. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1995; 380:29-33. [PMID: 8830495 DOI: 10.1007/978-1-4615-1899-0_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cytopathic coronaviruses were isolated in HRT-18 cells from bloody faecal samples collected from cows in Québec dairy herds with classical winter dysentery (WD). The formation of polykaryons in the infected cell cultures was found to be dependent on the presence of trypsin in the medium. Virus identification was confirmed by indirect immunofluorescence and indirect protein A-gold immunoelectron microscopy using rabbit hyperimmune serum, as well as monoclonal antibodies directed against the spike (S) and hemagglutinin-esterase (HE) glycoproteins of the prototype Mebus strain of bovine coronavirus (BCV-Meb). Four WD isolates differed from BCV-Meb by their ability to agglutinate rat erythrocytes at 4 and 37 degrees C, their higher receptor destroying enzyme activity, but lower acetylesterase activity. The WD isolates were serologically indistinguishable from the reference BCV-Meb strain by virus neutralization and Western immunoblotting, but could be differentiated by hemagglutination-inhibition. Sequence analysis of the PCR-amplified HE gene of a plaque-purified WD isolate (BCQ-2590) revealed sufficient number of nucleotide and amino acid substitutions which may explain this antigenic variability.
Collapse
Affiliation(s)
- G Millane
- Centre De Recherche en Virologie, Institut Armand Frappier, Universite Du Québec, Laval, Canada
| | | | | |
Collapse
|
26
|
Zhang XM, Herbst W, Kousoulas KG, Storz J. Biological and genetic characterization of a hemagglutinating coronavirus isolated from a diarrhoeic child. J Med Virol 1994; 44:152-61. [PMID: 7852955 PMCID: PMC7166597 DOI: 10.1002/jmv.1890440207] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The coronavirus strain HECV-4408 was isolated from diarrhea fluid of a 6-year-old child with acute diarrhea and propagated in human rectal tumor (HRT-18) cells. Electron microscopy revealed coronavirus particles in the diarrhea fluid sample and the infected HRT-18 cell cultures. This virus possessed hemagglutinating and acetylesterase activities and caused cytopathic effects in HRT-18 cells but not in MDBK, GBK and FE cells. One of four S-specific monoclonal antibodies reacted in Western blots with HECV-4408, BCV-L9 and BCV-LY138 but not with HCV-OC43, and two reacted with BCV-L9 but not with HECV-4408, BCV-LY138 and HCV-OC43. One S-specific and two N-specific monoclonal antibodies reacted with all of these strains. cDNA encompassing the 3' 8.5 kb of the viral RNA genome was isolated by reverse transcription followed by polymerase chain reaction amplification had size and restriction endonuclease patterns similar to those of BCV-L9 and BCV-LY138. In contrast, the M gene of HCV-OC43 differed in restriction patterns from HECV-4408 and BCV. A genomic deletion located between the S and M within the non-structural genes of HCV-OC43 was not detected in HECV-4408. DNA sequence analyses of the S and HE genes revealed more than 99% nucleotide and deduced amino acid homologies between HECV-4408 and the virulent wild-type BCV. Forty-nine nucleotide and 22 amino acid differences were found between the HE genes of HECV-4408 and HCV-OC43, while only 16 nucleotide and 3 amino acid differences occurred between the HE genes of HECV-4408 and BCV-LY138. We thus conclude that the strain HECV-4408 is a hemagglutinating enteric coronavirus that is biologically, antigenically and genomically more closely related to the virulent BCV-LY138 than to HCV-OC43.
Collapse
Affiliation(s)
- X M Zhang
- Department of Veterinary Microbiology and Parasitology, School of Veterinary Medicine, Louisiana State University, Baton Rouge
| | | | | | | |
Collapse
|