1
|
Trigeminal Sensory Supply Is Essential for Motor Recovery after Facial Nerve Injury. Int J Mol Sci 2022; 23:ijms232315101. [PMID: 36499425 PMCID: PMC9740813 DOI: 10.3390/ijms232315101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/27/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Recovery of mimic function after facial nerve transection is poor. The successful regrowth of regenerating motor nerve fibers to reinnervate their targets is compromised by (i) poor axonal navigation and excessive collateral branching, (ii) abnormal exchange of nerve impulses between adjacent regrowing axons, namely axonal crosstalk, and (iii) insufficient synaptic input to the axotomized facial motoneurons. As a result, axotomized motoneurons become hyperexcitable but unable to discharge. We review our findings, which have addressed the poor return of mimic function after facial nerve injuries, by testing the hypothesized detrimental component, and we propose that intensifying the trigeminal sensory input to axotomized and electrophysiologically silent facial motoneurons improves the specificity of the reinnervation of appropriate targets. We compared behavioral, functional, and morphological parameters after single reconstructive surgery of the facial nerve (or its buccal branch) with those obtained after identical facial nerve surgery, but combined with direct or indirect stimulation of the ipsilateral infraorbital nerve. We found that both methods of trigeminal sensory stimulation, i.e., stimulation of the vibrissal hairs and manual stimulation of the whisker pad, were beneficial for the outcome through improvement of the quality of target reinnervation and recovery of vibrissal motor performance.
Collapse
|
2
|
Events Occurring in the Axotomized Facial Nucleus. Cells 2022; 11:cells11132068. [PMID: 35805151 PMCID: PMC9266054 DOI: 10.3390/cells11132068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 01/27/2023] Open
Abstract
Transection of the rat facial nerve leads to a variety of alterations not only in motoneurons, but also in glial cells and inhibitory neurons in the ipsilateral facial nucleus. In injured motoneurons, the levels of energy metabolism-related molecules are elevated, while those of neurofunction-related molecules are decreased. In tandem with these motoneuron changes, microglia are activated and start to proliferate around injured motoneurons, and astrocytes become activated for a long period without mitosis. Inhibitory GABAergic neurons reduce the levels of neurofunction-related molecules. These facts indicate that injured motoneurons somehow closely interact with glial cells and inhibitory neurons. At the same time, these events allow us to predict the occurrence of tissue remodeling in the axotomized facial nucleus. This review summarizes the events occurring in the axotomized facial nucleus and the cellular and molecular mechanisms associated with each event.
Collapse
|
3
|
Pastor AM, Blumer R, de la Cruz RR. Extraocular Motoneurons and Neurotrophism. ADVANCES IN NEUROBIOLOGY 2022; 28:281-319. [PMID: 36066830 DOI: 10.1007/978-3-031-07167-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Extraocular motoneurons are located in three brainstem nuclei: the abducens, trochlear and oculomotor. They control all types of eye movements by innervating three pairs of agonistic/antagonistic extraocular muscles. They exhibit a tonic-phasic discharge pattern, demonstrating sensitivity to eye position and sensitivity to eye velocity. According to their innervation pattern, extraocular muscle fibers can be classified as singly innervated muscle fiber (SIF), or the peculiar multiply innervated muscle fiber (MIF). SIF motoneurons show anatomical and physiological differences with MIF motoneurons. The latter are smaller and display lower eye position and velocity sensitivities as compared with SIF motoneurons.
Collapse
Affiliation(s)
- Angel M Pastor
- Departamento de Fisiología, Universidad de Sevilla, Seville, Spain.
| | - Roland Blumer
- Center of Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
4
|
Paasila PJ, Fok SYY, Flores‐Rodriguez N, Sajjan S, Svahn AJ, Dennis CV, Holsinger RMD, Kril JJ, Becker TS, Banati RB, Sutherland GT, Graeber MB. Ground state depletion microscopy as a tool for studying microglia-synapse interactions. J Neurosci Res 2021; 99:1515-1532. [PMID: 33682204 PMCID: PMC8251743 DOI: 10.1002/jnr.24819] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 02/02/2021] [Accepted: 02/06/2021] [Indexed: 01/09/2023]
Abstract
Ground state depletion followed by individual molecule return microscopy (GSDIM) has been used in the past to study the nanoscale distribution of protein co-localization in living cells. We now demonstrate the successful application of GSDIM to archival human brain tissue sections including from Alzheimer's disease cases as well as experimental tissue samples from mouse and zebrafish larvae. Presynaptic terminals and microglia and their cell processes were visualized at a resolution beyond diffraction-limited light microscopy, allowing clearer insights into their interactions in situ. The procedure described here offers time and cost savings compared to electron microscopy and opens the spectrum of molecular imaging using antibodies and super-resolution microscopy to the analysis of routine formalin-fixed paraffin sections of archival human brain. The investigation of microglia-synapse interactions in dementia will be of special interest in this context.
Collapse
Affiliation(s)
- Patrick Jarmo Paasila
- Faculty of Medicine and HealthCharles Perkins Centre and School of Medical SciencesThe University of SydneyCamperdownNSWAustralia
| | - Sandra Y. Y. Fok
- Biomedical Imaging FacilityMark Wainwright Analytical CentreUniversity of New South Wales SydneyKensingtonNSWAustralia
| | - Neftali Flores‐Rodriguez
- Charles Perkins CentreSydney Microscopy and MicroanalysisThe University of SydneyCamperdownNSWAustralia
| | - Sujata Sajjan
- Faculty of Medicine and HealthBrain and Mind CentreThe University of SydneyCamperdownNSWAustralia
| | - Adam J. Svahn
- Faculty of Medicine and HealthBrain and Mind CentreThe University of SydneyCamperdownNSWAustralia
| | - Claude V. Dennis
- Faculty of Medicine and HealthCharles Perkins Centre and School of Medical SciencesThe University of SydneyCamperdownNSWAustralia
| | - R. M. Damian Holsinger
- Faculty of Medicine and HealthBrain and Mind CentreThe University of SydneyCamperdownNSWAustralia
| | - Jillian J. Kril
- Faculty of Medicine and HealthCharles Perkins Centre and School of Medical SciencesThe University of SydneyCamperdownNSWAustralia
| | - Thomas S. Becker
- Faculty of Medicine and HealthBrain and Mind CentreThe University of SydneyCamperdownNSWAustralia
| | - Richard B. Banati
- Faculty of Medicine and HealthBrain and Mind CentreThe University of SydneyCamperdownNSWAustralia
- Life SciencesAustralian Nuclear Science and Technology OrganisationKirraweeNSWAustralia
| | - Greg T. Sutherland
- Faculty of Medicine and HealthCharles Perkins Centre and School of Medical SciencesThe University of SydneyCamperdownNSWAustralia
| | - Manuel B. Graeber
- Faculty of Medicine and HealthBrain and Mind CentreThe University of SydneyCamperdownNSWAustralia
| |
Collapse
|
5
|
Alvarez FJ, Rotterman TM, Akhter ET, Lane AR, English AW, Cope TC. Synaptic Plasticity on Motoneurons After Axotomy: A Necessary Change in Paradigm. Front Mol Neurosci 2020; 13:68. [PMID: 32425754 PMCID: PMC7203341 DOI: 10.3389/fnmol.2020.00068] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/08/2020] [Indexed: 12/12/2022] Open
Abstract
Motoneurons axotomized by peripheral nerve injuries experience profound changes in their synaptic inputs that are associated with a neuroinflammatory response that includes local microglia and astrocytes. This reaction is conserved across different types of motoneurons, injuries, and species, but also displays many unique features in each particular case. These reactions have been amply studied, but there is still a lack of knowledge on their functional significance and mechanisms. In this review article, we compiled data from many different fields to generate a comprehensive conceptual framework to best interpret past data and spawn new hypotheses and research. We propose that synaptic plasticity around axotomized motoneurons should be divided into two distinct processes. First, a rapid cell-autonomous, microglia-independent shedding of synapses from motoneuron cell bodies and proximal dendrites that is reversible after muscle reinnervation. Second, a slower mechanism that is microglia-dependent and permanently alters spinal cord circuitry by fully eliminating from the ventral horn the axon collaterals of peripherally injured and regenerating sensory Ia afferent proprioceptors. This removes this input from cell bodies and throughout the dendritic tree of axotomized motoneurons as well as from many other spinal neurons, thus reconfiguring ventral horn motor circuitries to function after regeneration without direct sensory feedback from muscle. This process is modulated by injury severity, suggesting a correlation with poor regeneration specificity due to sensory and motor axons targeting errors in the periphery that likely render Ia afferent connectivity in the ventral horn nonadaptive. In contrast, reversible synaptic changes on the cell bodies occur only while motoneurons are regenerating. This cell-autonomous process displays unique features according to motoneuron type and modulation by local microglia and astrocytes and generally results in a transient reduction of fast synaptic activity that is probably replaced by embryonic-like slow GABA depolarizations, proposed to relate to regenerative mechanisms.
Collapse
Affiliation(s)
- Francisco J Alvarez
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, United States
| | - Travis M Rotterman
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, United States.,Department of Biomedical Engineering, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Erica T Akhter
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, United States
| | - Alicia R Lane
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, United States
| | - Arthur W English
- Department of Cellular Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Timothy C Cope
- Department of Biomedical Engineering, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| |
Collapse
|
6
|
Age-Related Macular Degeneration: New Paradigms for Treatment and Management of AMD. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:8374647. [PMID: 29484106 PMCID: PMC5816845 DOI: 10.1155/2018/8374647] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 12/06/2017] [Indexed: 12/03/2022]
Abstract
Age-related macular degeneration (AMD) is a well-characterized and extensively studied disease. It is currently considered the leading cause of visual disability among patients over 60 years. The hallmark of early AMD is the formation of drusen, pigmentary changes at the macula, and mild to moderate vision loss. There are two forms of AMD: the “dry” and the “wet” form that is less frequent but is responsible for 90% of acute blindness due to AMD. Risk factors have been associated with AMD progression, and they are taking relevance to understand how AMD develops: (1) advanced age and the exposition to environmental factors inducing high levels of oxidative stress damaging the macula and (2) this damage, which causes inflammation inducing a vicious cycle, altogether causing central vision loss. There is neither a cure nor treatment to prevent AMD. However, there are some treatments available for the wet form of AMD. This article will review some molecular and cellular mechanisms associated with the onset of AMD focusing on feasible treatments for each related factor in the development of this pathology such as vascular endothelial growth factor, oxidative stress, failure of the clearance of proteins and organelles, and glial cell dysfunction in AMD.
Collapse
|
7
|
Yrondi A, Aouizerate B, El-Hage W, Moliere F, Thalamas C, Delcourt N, Sporer M, Taib S, Schmitt L, Arlicot N, Meligne D, Sommet A, Salabert AS, Guillaume S, Courtet P, Galtier F, Mariano-Goulart D, Champfleur NMD, Bars EL, Desmidt T, Lemaire M, Camus V, Santiago-Ribeiro MJ, Cottier JP, Fernandez P, Meyer M, Dousset V, Doumy O, Delhaye D, Capuron L, Leboyer M, Haffen E, Péran P, Payoux P, Arbus C. Assessment of Translocator Protein Density, as Marker of Neuroinflammation, in Major Depressive Disorder: A Pilot, Multicenter, Comparative, Controlled, Brain PET Study (INFLADEP Study). Front Psychiatry 2018; 9:326. [PMID: 30087626 PMCID: PMC6066663 DOI: 10.3389/fpsyt.2018.00326] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 06/29/2018] [Indexed: 12/28/2022] Open
Abstract
Background: Major depressive disorder (MDD) is a serious public health problem with high lifetime prevalence (4.4-20%) in the general population. The monoamine hypothesis is the most widespread etiological theory of MDD. Also, recent scientific data has emphasized the importance of immuno-inflammatory pathways in the pathophysiology of MDD. The lack of data on the magnitude of brain neuroinflammation in MDD is the main limitation of this inflammatory hypothesis. Our team has previously demonstrated the relevance of [18F] DPA-714 as a neuroinflammation biomarker in humans. We formulated the following hypotheses for the current study: (i) Neuroinflammation in MDD can be measured by [18F] DPA-714; (ii) its levels are associated with clinical severity; (iii) it is accompanied by anatomical and functional alterations within the frontal-subcortical circuits; (iv) it is a marker of treatment resistance. Methods: Depressed patients will be recruited throughout 4 centers (Bordeaux, Montpellier, Tours, and Toulouse) of the French network from 13 expert centers for resistant depression. The patient population will be divided into 3 groups: (i) experimental group-patients with current MDD (n = 20), (ii) remitted depressed group-patients in remission but still being treated (n = 20); and, (iii) control group without any history of MDD (n = 20). The primary objective will be to compare PET data (i.e., distribution pattern of neuroinflammation) between the currently depressed group and the control group. Secondary objectives will be to: (i) compare neuroinflammation across groups (currently depressed group vs. remitted depressed group vs. control group); (ii) correlate neuroinflammation with clinical severity across groups; (iii) correlate neuroinflammation with MRI parameters for structural and functional integrity across groups; (iv) correlate neuroinflammation and peripheral markers of inflammation across groups. Discussion: This study will assess the effects of antidepressants on neuroinflammation as well as its role in the treatment response. It will contribute to clarify the putative relationships between neuroinflammation quantified by brain neuroimaging techniques and peripheral markers of inflammation. Lastly, it is expected to open innovative and promising therapeutic perspectives based on anti-inflammatory strategies for the management of treatment-resistant forms of MDD commonly seen in clinical practice. Clinical trial registration (reference: NCT03314155): https://www.clinicaltrials.gov/ct2/show/NCT03314155?term=neuroinflammation&cond=depression&cntry=FR&rank=1.
Collapse
Affiliation(s)
- Antoine Yrondi
- Service de Psychiatrie et de Psychologie Médicale de l'Adulte, Centre Expert Dépression Résistante FondaMental, CHRU de Toulouse, Hôpital Purpan, ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Bruno Aouizerate
- Pôle de Psychiatrie Générale et Universitaire, Centre Expert Dépression Résistante FondaMental, CH Charles Perrens, UMR INRA 1286, NutriNeuro, Université de Bordeaux, Bordeaux, France
| | - Wissam El-Hage
- CHRU de Tours, Centre Expert Dépression Résistante FondaMental, Inserm U1253 iBrain, Inserm CIC 1415, Tours, France
| | - Fanny Moliere
- Department of Emergency Psychiatry and Postacute Care, Lapeyronie Hospital, CHU Montpellier, Expert Center for Resistant Depression, Fondation Fondamental, Montpellier, France
| | - Claire Thalamas
- CIC 1436, Service de Pharmacologie Clinique, CHU de Toulouse, INSERM, Université de Toulouse, UPS, Toulouse, France
| | - Nicolas Delcourt
- Centre Anti Poison CHU Toulouse Purpan, ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Marie Sporer
- Service de Psychiatrie et de Psychologie Médicale de l'Adulte, Centre Expert Dépression Résistante FondaMental, CHRU de Toulouse, Hôpital Purpan, Toulouse, France
| | - Simon Taib
- Service de Psychiatrie et de Psychologie Médicale de l'Adulte, Centre Expert Dépression Résistante FondaMental, CHRU de Toulouse, Hôpital Purpan, Toulouse, France
| | - Laurent Schmitt
- Service de Psychiatrie et de Psychologie Médicale de l'Adulte, Centre Expert Dépression Résistante FondaMental, CHRU de Toulouse, Hôpital Purpan, Toulouse, France
| | - Nicolas Arlicot
- CHRU de Tours, Unité de Radiopharmacie, Tours, France.,UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,INSERM CIC 1415, University Hospital, Tours, France
| | - Deborah Meligne
- Institut des handicaps des Handicaps Neurologiques, Psychiatriques et Sensoriels, FHU HoPeS, CHU Toulouse, France
| | - Agnes Sommet
- CIC 1436, Service de Pharmacologie Clinique, CHU de Toulouse, INSERM, Université de Toulouse, UPS, Toulouse, France.,Unité de Soutien Méthodologique à la Recherche Clinique (USMR), CHU de Toulouse, Toulouse, France
| | - Anne S Salabert
- Departement de Médecine Nucléaire, CHU Toulouse, Toulouse, France.,ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Sebastien Guillaume
- Department of Emergency Psychiatry and Postacute Care, Lapeyronie Hospital, CHU Montpellier, Expert Center for Resistant Depression, Fondation Fondamental, Montpellier, France.,INSERM U1061, Université de Montpellier, Montpellier, France
| | - Philippe Courtet
- Department of Emergency Psychiatry and Postacute Care, Lapeyronie Hospital, CHU Montpellier, Expert Center for Resistant Depression, Fondation Fondamental, Montpellier, France.,INSERM U1061, Université de Montpellier, Montpellier, France
| | - Florence Galtier
- Centre Hospitalier Régional Universitaire Montpellier, Montpellier, France
| | - Denis Mariano-Goulart
- PhyMedExp, Université de Montpellier, INSERM U1046, CNRS UMR 9214, Montpellier, France.,Département de Médecine Nucléaire, CHU de Montpellier, Montpellier, France
| | - Nicolas Menjot De Champfleur
- Département de Neuroradiologie, Hôpital Gui de Chauliac, Centre Hospitalier Régional Universitaire de Montpellier, Montpellier, France.,Institut d'Imagerie Fonctionnelle Humaine, Hôpital Gui de Chauliac, Centre Hospitalier Régional Universitaire de Montpellier, Montpellier, France.,Laboratoire Charles Coulomb, CNRS UMR 5221, Université de Montpellier, Montpellier, France.,Département d'Imagerie Médicale, Centre Hospitalier Universitaire Caremeau, Nîmes, France
| | - Emmanuelle Le Bars
- Département de Neuroradiologie, Hôpital Gui de Chauliac, Centre Hospitalier Régional Universitaire de Montpellier, Montpellier, France.,Institut d'Imagerie Fonctionnelle Humaine, Hôpital Gui de Chauliac, Centre Hospitalier Régional Universitaire de Montpellier, Montpellier, France
| | - Thomas Desmidt
- CHRU de Tours, INSERM U1253, Université François Rabelais de Tours, Tours, France
| | - Mathieu Lemaire
- CHRU de Tours, INSERM U1253, Université François Rabelais de Tours, Tours, France
| | - Vincent Camus
- CHRU de Tours, INSERM U1253, Université François Rabelais de Tours, Tours, France
| | - Maria J Santiago-Ribeiro
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,INSERM CIC 1415, University Hospital, Tours, France.,Service de Médecine Nucléaire, CHRU Tours, Tours, France
| | - Jean P Cottier
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,Service de Neuro radiologie, CHRU Tours, Tours, France
| | - Philippe Fernandez
- Departement de Médecine Nucléaire, Hopital Pellegrin, Bordeaux, France.,Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (UMR-5287), Université de Bordeaux, Bordeaux, France
| | - Marie Meyer
- Departement de Médecine Nucléaire, Hopital Pellegrin, Bordeaux, France.,Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (UMR-5287), Université de Bordeaux, Bordeaux, France
| | - Vincent Dousset
- CHU Bordeaux Neurocentre Magendie, INSERM U1215, Université de Bordeaux, Bordeaux, France
| | - Olivier Doumy
- Pôle de Psychiatrie Générale et Universitaire, Centre Expert Dépression Résistante FondaMental, CH Charles Perrens, UMR INRA 1286, NutriNeuro, Université de Bordeaux, Bordeaux, France
| | - Didier Delhaye
- Pôle de Psychiatrie Générale et Universitaire, Centre Expert Dépression Résistante FondaMental, CH Charles Perrens, Bordeaux, France
| | - Lucile Capuron
- INRA, Nutrition and Integrative Neurobiology (NutriNeuro), UMR 1286, University of Bordeaux, Bordeaux, France
| | - Marion Leboyer
- Pôle de Psychiatrie des Hôpitaux Universitaires, Centre Expert Dépression Résistante FondaMental, Hôpital Henri Mondor-Albert Chenevier, AP-HP, Créteil, France.,INSERM U955, Translational Psychiatry, Paris-Est University, Créteil, France
| | - Emmanuel Haffen
- Department of Clinical Psychiatry, Clinical Investigation Center 1431-INSERM, EA 481 Neurosciences, University of Bourgogne Franche-Comté, University Hospital of Besancon and FondaMental Foundation, Créteil, France
| | - Patrice Péran
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Pierre Payoux
- Departement de Médecine Nucléaire, CHU Toulouse, Toulouse, France.,ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Christophe Arbus
- Service de Psychiatrie et de Psychologie Médicale de l'Adulte, Centre Expert Dépression Résistante FondaMental, CHRU de Toulouse, Hôpital Purpan, ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| |
Collapse
|
8
|
Yrondi A, Sporer M, Péran P, Schmitt L, Arbus C, Sauvaget A. Electroconvulsive therapy, depression, the immune system and inflammation: A systematic review. Brain Stimul 2017; 11:29-51. [PMID: 29111078 DOI: 10.1016/j.brs.2017.10.013] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/13/2017] [Accepted: 10/15/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The management and treatment of major depressive disorder are major public health challenges, the lifetime prevalence of this illness being 4.4%-20% in the general population. Major depressive disorder and treatment resistant depression appear to be, in part, related to a dysfunction of the immune response. Among the treatments for depression ECT occupies an important place. The underlying cerebral mechanisms of ECT remain unclear. OBJECTIVES/HYPOTHESIS The aim of this review is to survey the potential actions of ECT on the immuno-inflammatory cascade activated during depression. METHODS A systematic search of the literature was carried out, using the bibliographic search engines PubMed and Embase. The search covered articles published up until october 2017. The following MESH terms were used: Electroconvulsive therapy AND (inflammation OR immune OR immunology). RESULTS Our review shows that there is an acute immuno-inflammatory response immediately following an ECT session. There is an acute stress reaction. Studies show an increase in the plasma levels of cortisol and of interleukins 1 and 6. However, at the end of the course of treatment, ECT produces, in the long term, a fall in the plasma level of cortisol, a reduction in the levels of TNF alpha and interleukin 6. LIMITATIONS One of the limitations of this review is that a large number of studies are relatively old, with small sample sizes and methodological bias. CONCLUSION Advances in knowledge of the immuno-inflammatory component of depression seem to be paving the way towards models to explain the mechanism of action of ECT.
Collapse
Affiliation(s)
- Antoine Yrondi
- Psychiatric Department, CHU Toulouse-Purpan, 330 Avenue de Grande Bretagne, 31059 Toulouse, France; Toulouse NeuroImaging Center, ToNIC, University of Toulouse, Inserm, UPS, France.
| | - Marie Sporer
- Psychiatric Department, CHU Toulouse-Purpan, 330 Avenue de Grande Bretagne, 31059 Toulouse, France
| | - Patrice Péran
- Toulouse NeuroImaging Center, ToNIC, University of Toulouse, Inserm, UPS, France
| | - Laurent Schmitt
- Psychiatric Department, CHU Toulouse-Purpan, 330 Avenue de Grande Bretagne, 31059 Toulouse, France
| | - Christophe Arbus
- Psychiatric Department, CHU Toulouse-Purpan, 330 Avenue de Grande Bretagne, 31059 Toulouse, France; Toulouse NeuroImaging Center, ToNIC, University of Toulouse, Inserm, UPS, France
| | - Anne Sauvaget
- CHU Nantes, Addictology and Liaison Psychiatry Department, Neuromodulation Unit in Psychiatry, Nantes, France
| |
Collapse
|
9
|
Hou L, Zhou X, Zhang C, Wang K, Liu X, Che Y, Sun F, Li H, Wang Q, Zhang D, Hong JS. NADPH oxidase-derived H 2O 2 mediates the regulatory effects of microglia on astrogliosis in experimental models of Parkinson's disease. Redox Biol 2017; 12:162-170. [PMID: 28237879 PMCID: PMC5328707 DOI: 10.1016/j.redox.2017.02.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 02/12/2017] [Accepted: 02/21/2017] [Indexed: 12/17/2022] Open
Abstract
Astrogliosis has long been recognized in Parkinson's disease (PD), the most common neurodegenerative movement disorder. However, the mechanisms of how astroglia become activated remain unclear. Reciprocal interactions between microglia and astroglia play a pivotal role in regulating the activities of astroglia. The purpose of this study is to investigate the mechanism by which microglia regulate astrogliosis by using lipopolysaccharide (LPS) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse PD models. We found that the activation of microglia preceded astroglia in the substantia nigra of mice treated with either LPS or MPTP. Furthermore, suppression of microglial activation by pharmacological inhibition or genetic deletion of NADPH oxidase (NOX2) in mice attenuated astrogliosis. The important role of NOX2 in microglial regulation of astrogliosis was further mirrored in a mixed-glia culture system. Mechanistically, H2O2, a product of microglial NOX2 activation, serves as a direct signal to regulate astrogliosis. Astrogliosis was induced by H2O2 through a process in which extracellularly generated H2O2 diffused into the cytoplasm and subsequently stimulated activation of transcription factors, STAT1 and STAT3. STAT1/3 activation regulated the immunological functions of H2O2-induced astrogliosis since AG490, an inhibitor of STAT1/3, attenuated the gene expressions of both proinflammatory and neurotrophic factors in H2O2-treated astrocyte. Our findings indicate that microglial NOX2-generated H2O2 is able to regulate the immunological functions of astroglia via a STAT1/3-dependent manner, providing additional evidence for the immune pathogenesis and therapeutic studies of PD. Microglia are capable of regulating the immunological functions of astrogliosis in Parkinson's disease. NADPH oxidase-derived H2O2 is recognized as a paracrine signal for microglial regulation of astrogliosis. Transcription factors STAT1 and STAT3 play pivotal roles in H2O2-induced astroglial activation.
Collapse
Affiliation(s)
- Liyan Hou
- Department of Occupational and Environmental Health, School of Public Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China
| | - Xueying Zhou
- Department of Occupational and Environmental Health, School of Public Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China
| | - Cong Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China
| | - Ke Wang
- Department of Nutrition, Second Hospital, Dalian Medical University, Dalian 116023, China
| | - Xiaofang Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China
| | - Yuning Che
- Department of Occupational and Environmental Health, School of Public Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China
| | - Fuqiang Sun
- Department of Occupational and Environmental Health, School of Public Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China
| | - Huihua Li
- Department of Nutrition and Food Hygiene, School of Public Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China
| | - Qingshan Wang
- Department of Occupational and Environmental Health, School of Public Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China.
| | - Dan Zhang
- State Key Laboratory of Natural Products and Functions, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jau-Shyong Hong
- Laboratory of Neurobiology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| |
Collapse
|
10
|
Yeh TY, Wang SM, Tseng GF, Liu PH. Differential regulation of glial reactions in the central facial tract and the facial nucleus after facial neurorrhaphy. J Chem Neuroanat 2017; 79:38-50. [DOI: 10.1016/j.jchemneu.2016.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 10/01/2016] [Accepted: 11/14/2016] [Indexed: 01/01/2023]
|
11
|
Takezawa Y, Baba O, Kohsaka S, Nakajima K. Accumulation of glycogen in axotomized adult rat facial motoneurons. J Neurosci Res 2015; 93:913-21. [DOI: 10.1002/jnr.23546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 11/25/2014] [Accepted: 11/30/2014] [Indexed: 11/11/2022]
Affiliation(s)
- Yosuke Takezawa
- Department of Bioinformatics; Faculty of Engineering, Soka University; Tokyo Japan
| | - Otto Baba
- Department of Oral Function and Molecular Biology; School of Dentistry, Ohu University; Koriyamashi Japan
| | - Shinichi Kohsaka
- Department of Neurochemistry; National Institute of Neuroscience; Tokyo Japan
| | - Kazuyuki Nakajima
- Department of Bioinformatics; Faculty of Engineering, Soka University; Tokyo Japan
| |
Collapse
|
12
|
Takezawa Y, Kohsaka S, Nakajima K. Transient down-regulation and restoration of glycogen synthase levels in axotomized rat facial motoneurons. Brain Res 2014; 1586:34-45. [PMID: 25152465 DOI: 10.1016/j.brainres.2014.08.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 08/15/2014] [Accepted: 08/16/2014] [Indexed: 11/19/2022]
Abstract
In adult rats, transection of the facial nerve causes a functional down-regulation of motoneurons and glial activation/proliferation. It has not been clear how energy-supplying systems are regulated in an axotomized facial nucleus. Here we investigated the regulation of molecules involved in glycogen degradation/synthesis in axotomized facial nuclei in rats. Immunoblotting revealed that the amounts of glycogen phosphorylase in the contralateral and ipsilateral nuclei were unchanged for the first 14 days, whereas the amount of glycogen synthase in the axotomized facial nuclei was significantly decreased from days 7-14 post-insult. A quantitative analysis estimated that the glycogen synthase levels in the transected nucleus were reduced to approx. 50% at 14 days post-injury. An immunohistochemical study showed that the injured motoneurons had decreased expressions of glycogen synthase proteins. The glycogen synthase levels in the axotomized facial nucleus had returned to control levels by 5 weeks post-insult, as had the cholinergic markers. The immunohistochemical study also revealed the recovery of glycogen synthase levels at the later stage. The glycogen phosphorylase levels in the injured nucleus were not significantly changed during weeks 3-5 post-insult. Taken together, these results demonstrated that the injured facial motoneurons transiently reduced glycogen synthase levels at around 1-2 weeks post-insult, but restored the levels at 4-5 weeks post-insult.
Collapse
Affiliation(s)
- Yosuke Takezawa
- Department of Bioinformatics, Faculty of Engineering, Soka University, Tokyo 192-8577, Japan
| | - Shinichi Kohsaka
- Department of Neurochemistry, National Institute of Neuroscience, Tokyo 187-8502, Japan
| | - Kazuyuki Nakajima
- Department of Bioinformatics, Faculty of Engineering, Soka University, Tokyo 192-8577, Japan.
| |
Collapse
|
13
|
Sajjan S, Holsinger RMD, Fok S, Ebrahimkhani S, Rollo JL, Banati RB, Graeber MB. Up-regulation of matrix metallopeptidase 12 in motor neurons undergoing synaptic stripping. Neuroscience 2014; 274:331-40. [PMID: 24907602 DOI: 10.1016/j.neuroscience.2014.05.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 05/21/2014] [Accepted: 05/23/2014] [Indexed: 01/07/2023]
Abstract
Axotomy of the rodent facial nerve represents a well-established model of synaptic plasticity. Post-traumatic "synaptic stripping" was originally discovered in this system. We report upregulation of matrix metalloproteinase MMP12 in regenerating motor neurons of the mouse and rat facial nucleus. Matrix metalloproteinases (matrix metallopeptidases, MMPs) are zinc-binding proteases capable of degrading components of the extracellular matrix and of regulating extracellular signaling networks including within synapses. MMP12 protein expression in facial motor neurons was enhanced following axotomy and peaked at day 3 after the operation. The peak of neuronal MMP12 expression preceded the peak of experimentally induced synaptic plasticity. At the same time, MMP12 redistributed intracellularly and became predominantly localized beneath the neuronal somatic cytoplasmic membrane. Both findings point to a role of MMP12 in the neuronal initiation of the synaptic stripping process. MMP12 is the first candidate molecule for such a trigger function and has potential as a therapeutic target. Moreover, since statins have been shown to increase the expression of MMP12, interference with synaptic stability may represent one mechanism by which these widely used drugs exert their side effects on higher CNS functions.
Collapse
Affiliation(s)
- S Sajjan
- Brain Tumor Research and Molecular Neuroscience & Neuropathology Laboratories, Brain and Mind Research Institute, Faculty of Medicine and Faculty of Health Sciences, The University of Sydney, Camperdown, NSW, Australia
| | - R M D Holsinger
- Brain Tumor Research and Molecular Neuroscience & Neuropathology Laboratories, Brain and Mind Research Institute, Faculty of Medicine and Faculty of Health Sciences, The University of Sydney, Camperdown, NSW, Australia; Discipline of Biomedical Science, School of Medical Sciences, Sydney Medical School, The University of Sydney, Lidcombe, NSW, Australia
| | - S Fok
- Brain Tumor Research and Molecular Neuroscience & Neuropathology Laboratories, Brain and Mind Research Institute, Faculty of Medicine and Faculty of Health Sciences, The University of Sydney, Camperdown, NSW, Australia
| | - S Ebrahimkhani
- Brain Tumor Research and Molecular Neuroscience & Neuropathology Laboratories, Brain and Mind Research Institute, Faculty of Medicine and Faculty of Health Sciences, The University of Sydney, Camperdown, NSW, Australia
| | - J L Rollo
- Brain Tumor Research and Molecular Neuroscience & Neuropathology Laboratories, Brain and Mind Research Institute, Faculty of Medicine and Faculty of Health Sciences, The University of Sydney, Camperdown, NSW, Australia
| | - R B Banati
- Discipline of Medical Radiation Sciences, Faculty of Health Sciences, The University of Sydney, Cumberland, NSW, Australia; Ramaciotti Imaging Center, Brain and Mind Research Institute, The University of Sydney, Camperdown, NSW, Australia; Australian Nuclear Science and Technology Organization, Lucas Heights, NSW, Australia
| | - M B Graeber
- Brain Tumor Research and Molecular Neuroscience & Neuropathology Laboratories, Brain and Mind Research Institute, Faculty of Medicine and Faculty of Health Sciences, The University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|
14
|
Fuentes-Santamaría V, Alvarado JC, Gabaldón-Ull MC, Manuel Juiz J. Upregulation of insulin-like growth factor and interleukin 1β occurs in neurons but not in glial cells in the cochlear nucleus following cochlear ablation. J Comp Neurol 2014; 521:3478-99. [PMID: 23681983 DOI: 10.1002/cne.23362] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Revised: 04/30/2013] [Accepted: 05/03/2013] [Indexed: 12/30/2022]
Abstract
One of the main mechanisms used by neurons and glial cells to promote repair following brain injury is to upregulate activity-dependent molecules such as insulin-like growth factor 1 (IGF-1) and interleukin-1β (IL-1β). In the auditory system, IGF-1 is crucial for restoring synaptic transmission following hearing loss; however, whether IL-1β is also involved in this process is unknown. In this study, we evaluated the expression of IGF-1 and IL-1β within neurons and glial cells of the ventral cochlear nucleus in adult rats at 1, 7, 15, and 30 days following bilateral cochlear ablation. After the lesion, significant increases in both the overall mean gray levels of IGF-1 immunostaining and the mean gray levels within cells of the cochlear nucleus were observed at 1, 7, and 15 days compared with control animals. The expression and distribution of IL-1β in the ventral cochlear nucleus of ablated animals was temporally and spatially correlated with IGF-1. We also observed a lack of colocalization between IGF-1 and IL-1β with either astrocytes or microglia at any of the time points following ablation. These results suggest that the upregulation of IGF-1 and IL-1β levels within neurons-but not within glial cells-may reflect a plastic mechanism involved in repairing synaptic homeostasis of the overall cellular environment of the cochlear nucleus following bilateral cochlear ablation.
Collapse
Affiliation(s)
- Verónica Fuentes-Santamaría
- Institute for Research on Neurological Disorders (IDINE), Faculty of Medicine, University of Castilla-La Mancha, 02006, Albacete, Spain
| | | | | | | |
Collapse
|
15
|
Rodgers KM, Deming YK, Bercum FM, Chumachenko SY, Wieseler JL, Johnson KW, Watkins LR, Barth DS. Reversal of established traumatic brain injury-induced, anxiety-like behavior in rats after delayed, post-injury neuroimmune suppression. J Neurotrauma 2014; 31:487-97. [PMID: 24041015 PMCID: PMC3934516 DOI: 10.1089/neu.2013.3090] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Abstract Traumatic brain injury (TBI) increases the risk of neuropsychiatric disorders, particularly anxiety disorders. Yet, there are presently no therapeutic interventions to prevent the development of post-traumatic anxiety or effective treatments once it has developed. This is because, in large part, of a lack of understanding of the underlying pathophysiology. Recent research suggests that chronic neuroinflammatory responses to injury may play a role in the development of post-traumatic anxiety in rodent models. Acute peri-injury administration of immunosuppressive compounds, such as Ibudilast (MN166), have been shown to prevent reactive gliosis associated with immune responses to injury and also prevent lateral fluid percussion injury (LFPI)-induced anxiety-like behavior in rats. There is evidence in both human and rodent studies that post-traumatic anxiety, once developed, is a chronic, persistent, and drug-refractory condition. In the present study, we sought to determine whether neuroinflammation is associated with the long-term maintenance of post-traumatic anxiety. We examined the efficacy of an anti-inflammatory treatment in decreasing anxiety-like behavior and reactive gliosis when introduced at 1 month after injury. Delayed treatment substantially reduced established LFPI-induced freezing behavior and reactive gliosis in brain regions associated with anxiety and continued neuroprotective effects were evidenced 6 months post-treatment. These results support the conclusion that neuroinflammation may be involved in the development and maintenance of anxiety-like behaviors after TBI.
Collapse
Affiliation(s)
- Krista M. Rodgers
- Department of Psychology and Neuroscience, University of Colorado, Boulder, Colorado
| | - Yuetiva K. Deming
- Department of Psychology and Neuroscience, University of Colorado, Boulder, Colorado
| | - Florencia M. Bercum
- Department of Psychology and Neuroscience, University of Colorado, Boulder, Colorado
| | - Serhiy Y. Chumachenko
- Department of Psychology and Neuroscience, University of Colorado, Boulder, Colorado
| | - Julie L. Wieseler
- Department of Psychology and Neuroscience, University of Colorado, Boulder, Colorado
| | | | - Linda R. Watkins
- Department of Psychology and Neuroscience, University of Colorado, Boulder, Colorado
| | - Daniel S. Barth
- Department of Psychology and Neuroscience, University of Colorado, Boulder, Colorado
| |
Collapse
|
16
|
Wang M, Wong WT. Microglia-Müller cell interactions in the retina. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 801:333-8. [PMID: 24664715 DOI: 10.1007/978-1-4614-3209-8_42] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Microglia and Müller cells are cell types that feature prominently in responses to disease and injury in the retina. However, their mutual interactions have not been investigated in detail. Here, we review evidence that indicate that these two cell populations exchange functionally significant signals under uninjured conditions and during retinal inflammation. Under normal conditions, Müller cells constitute a potential source of extracellular ATP that mediates the activity-dependent regulation of microglial dynamic process motility. Following microglial activation in inflammation, microglia can signal to Müller cells, influencing their morphological, molecular, and functional responses. Microglia-Müller cell interactions appear to be a mode of bi-directional communications that help shape the overall injury response in the retina.
Collapse
Affiliation(s)
- Minhua Wang
- Unit on Neuron-Glia Interactions in Retinal Diseases, National Eye Institute, National Institutes of Health, 6 Center Drive, 6/215, 20892, Bethesda, MD, USA,
| | | |
Collapse
|
17
|
Raslan A, Ernst P, Werle M, Thieme H, Szameit K, Finkensieper M, Guntinas-Lichius O, Irintchev A. Reduced cholinergic and glutamatergic synaptic input to regenerated motoneurons after facial nerve repair in rats: potential implications for recovery of motor function. Brain Struct Funct 2013; 219:891-909. [DOI: 10.1007/s00429-013-0542-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Accepted: 03/12/2013] [Indexed: 02/02/2023]
|
18
|
Saghaei E, Abbaszadeh F, Naseri K, Ghorbanpoor S, Afhami M, Haeri A, Rahimi F, Jorjani M. Estradiol attenuates spinal cord injury-induced pain by suppressing microglial activation in thalamic VPL nuclei of rats. Neurosci Res 2013; 75:316-23. [PMID: 23419864 DOI: 10.1016/j.neures.2013.01.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Revised: 01/21/2013] [Accepted: 01/29/2013] [Indexed: 12/22/2022]
Abstract
In our previous study we showed that central pain syndrome (CPS) induced by electrolytic injury caused in the unilateral spinothalamic tract (STT) is a concomitant of glial alteration at the site of injury. Here, we investigated the activity of glial cells in thalamic ventral posterolateral nuclei (VPL) and their contribution to CPS. We also examined whether post-injury administration of a pharmacological dose of estradiol can attenuate CPS and associated molecular changes. Based on the results,in the ipsilateral VPL the microglial phenotype switched o hyperactive mode and Iba1 expression was increased significantly on days 21 and 28 post-injury. The same feature was observed in contralateral VPL on day 28 (P<.05). These changes were strongly correlated with the onset of CPS (r(2)=0.670). STT injury did not induce significant astroglial response in both ipsilateral and contralateral VPL. Estradiol attenuated bilateral mechanical hypersensitivity 14 days after STT lesion (P<.05). Estradiol also suppressed microglial activation in the VPL. Taken together, these findings indicate that selective STT lesion induces bilateral microglia activation in VPL which might contribute to mechanical hypersensitivity. Furthermore, a pharmacological dose of estradiol reduces central pain possibly via suppression of glial activity in VPL region.
Collapse
Affiliation(s)
- Elham Saghaei
- Department of Pharmacology, Shahid Beheshti University of Medical Sciences, Evin, Tehran, Iran.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Given the growing body of evidence for a role of glia in pain modulation, it is plausible that the exaggerated visceral pain in chronic conditions might be regulated by glial activation. In this study, we have investigated a possible role for microglia in rats with chronic visceral hypersensitivity and previously documented altered neuronal function. Experiments were performed on adult male Sprague-Dawley rats pre-treated with neonatal colon irritation (CI) and on control rats. Effects of fractalkine (FKN, a chemokine involved in neuron-to-microglia signaling) and of minocycline (an inhibitor of microglia) on visceral sensitivity were examined. Visceral sensitivity was assessed by recording the electromyographic (EMG) responses to graded colorectal distension (CRD) in mildly sedated rats. Responses to CRD were recorded before and after injection of FKN, minocycline or vehicle. Somatic thermal hyperalgesia was measured by latency of paw withdrawal to radiant heat. The pattern and intensity of microglial distribution at L6-S2 in the spinal cord was also compared in rats with CI and controls by fluorescence microscopy using OX-42. Results show that: (1) FKN significantly facilitated EMG responses to noxious CRD by >52% in control rats. FKN also induced thermal hyperalgesia in control rats, consistent with previous reports; (2) minocycline significantly inhibited EMG responses to noxious CRD by >70% in rats with CI compared to controls 60 min after injection. The anti-nociceptive effect of minocycline lasted for 180 min in rats with CI, reaching peak values 60 min after injection. Our results show that FKN enhances visceral and somatic nociception, whereas minocycline inhibits visceral hypersensitivity in chronically sensitized rats, which indicates a role for microglia in visceral hypersensitivity.
Collapse
|
20
|
Brisevac D, Bjelobaba I, Bajic A, Clarner T, Stojiljkovic M, Beyer C, Andjus P, Kipp M, Nedeljkovic N. Regulation of ecto-5′-nucleotidase (CD73) in cultured cortical astrocytes by different inflammatory factors. Neurochem Int 2012; 61:681-8. [DOI: 10.1016/j.neuint.2012.06.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2011] [Revised: 06/12/2012] [Accepted: 06/21/2012] [Indexed: 12/16/2022]
|
21
|
Mesnard NA, Sanders VM, Jones KJ. Differential gene expression in the axotomized facial motor nucleus of presymptomatic SOD1 mice. J Comp Neurol 2012; 519:3488-506. [PMID: 21800301 DOI: 10.1002/cne.22718] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Previously, we compared molecular profiles of one population of wild-type (WT) mouse facial motoneurons (FMNs) surviving with FMNs undergoing significant cell death after axotomy. Regardless of their ultimate fate, injured FMNs respond with a vigorous pro-survival/regenerative molecular response. In contrast, the neuropil surrounding the two different injured FMN populations contained distinct molecular differences that support a causative role for glial and/or immune-derived molecules in directing contrasting responses of the same cell types to the same injury. In the current investigation, we utilized the facial nerve axotomy model and a presymptomatic amyotrophic lateral sclerosis (ALS) mouse (SOD1) model to experimentally mimic the axonal die-back process observed in ALS pathogenesis without the confounding variable of disease onset. Presymptomatic SOD1 mice had a significant decrease in FMN survival compared with WT, which suggests an increased susceptibility to axotomy. Laser microdissection was used to accurately collect uninjured and axotomized facial motor nuclei of WT and presymptomatic SOD1 mice for mRNA expression pattern analyses of pro-survival/pro-regeneration genes, neuropil-specific genes, and genes involved in or responsive to the interaction of FMNs and non-neuronal cells. Axotomized presymptomatic SOD1 FMNs displayed a dynamic pro-survival/regenerative response to axotomy, similar to WT, despite increased cell death. However, significant differences were revealed when the axotomy-induced gene expression response of presymptomatic SOD1 neuropil was compared with WT. We propose that the increased susceptibility of presymptomatic SOD1 FMNs to axotomy-induced cell death and, by extrapolation, disease progression, is not intrinsic to the motoneuron, but rather involves a dysregulated response by non-neuronal cells in the surrounding neuropil.
Collapse
Affiliation(s)
- Nichole A Mesnard
- Neuroscience Program, Loyola University Medical Center, Maywood, Illinois, 60153, USA.
| | | | | |
Collapse
|
22
|
Rodgers KM, Bercum FM, McCallum DL, Rudy JW, Frey LC, Johnson KW, Watkins LR, Barth DS. Acute neuroimmune modulation attenuates the development of anxiety-like freezing behavior in an animal model of traumatic brain injury. J Neurotrauma 2012; 29:1886-97. [PMID: 22435644 PMCID: PMC3390983 DOI: 10.1089/neu.2011.2273] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Chronic anxiety is a common and debilitating result of traumatic brain injury (TBI) in humans. While little is known about the neural mechanisms of this disorder, inflammation resulting from activation of the brain's immune response to insult has been implicated in both human post-traumatic anxiety and in recently developed animal models. In this study, we used a lateral fluid percussion injury (LFPI) model of TBI in the rat and examined freezing behavior as a measure of post-traumatic anxiety. We found that LFPI produced anxiety-like freezing behavior accompanied by increased reactive gliosis (reflecting neuroimmune inflammatory responses) in key brain structures associated with anxiety: the amygdala, insula, and hippocampus. Acute peri-injury administration of ibudilast (MN166), a glial cell activation inhibitor, suppressed both reactive gliosis and freezing behavior, and continued neuroprotective effects were apparent several months post-injury. These results support the conclusion that inflammation produced by neuroimmune responses to TBI play a role in post-traumatic anxiety, and that acute suppression of injury-induced glial cell activation may have promise for the prevention of post-traumatic anxiety in humans.
Collapse
Affiliation(s)
- Krista M. Rodgers
- Department of Psychology and Neuroscience, University of Colorado–Boulder, Boulder, Colorado
| | - Florencia M. Bercum
- Department of Psychology and Neuroscience, University of Colorado–Boulder, Boulder, Colorado
| | - Danielle L. McCallum
- Department of Psychology and Neuroscience, University of Colorado–Boulder, Boulder, Colorado
| | - Jerry W. Rudy
- Department of Psychology and Neuroscience, University of Colorado–Boulder, Boulder, Colorado
| | - Lauren C. Frey
- Department of Neurology, University of Colorado–Denver, and Colorado Injury Control Research Center, Denver, Colorado
| | | | - Linda R. Watkins
- Department of Psychology and Neuroscience, University of Colorado–Boulder, Boulder, Colorado
| | - Daniel S. Barth
- Department of Psychology and Neuroscience, University of Colorado–Boulder, Boulder, Colorado
| |
Collapse
|
23
|
Wang M, Ma W, Zhao L, Fariss RN, Wong WT. Adaptive Müller cell responses to microglial activation mediate neuroprotection and coordinate inflammation in the retina. J Neuroinflammation 2011; 8:173. [PMID: 22152278 PMCID: PMC3251543 DOI: 10.1186/1742-2094-8-173] [Citation(s) in RCA: 169] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 12/07/2011] [Indexed: 12/12/2022] Open
Abstract
Purpose Microglia and Müller cells are prominent participants in retinal responses to injury and disease that shape eventual tissue adaptation or damage. This investigation examined how microglia and Müller cells interact with each other following initial microglial activation. Methods Mouse Müller cells were cultured alone, or co-cultured with activated or unactivated retinal microglia, and their morphological, molecular, and functional responses were evaluated. Müller cell-feedback signaling to microglia was studied using Müller cell-conditioned media. Corroborative in vivo analyses of retinal microglia-Müller cell interactions in the mouse retina were also performed. Results Our results demonstrate that Müller cells exposed to activated microglia, relative to those cultured alone or with unactivated microglia, exhibit marked alterations in cell morphology and gene expression that differed from those seen in chronic gliosis. These Müller cells demonstrated in vitro (1) an upregulation of growth factors such as GDNF and LIF, and provide neuroprotection to photoreceptor cells, (2) increased pro-inflammatory factor production, which in turn increased microglial activation in a positive feedback loop, and (3) upregulated chemokine and adhesion protein expression, which allowed Müller cells to attract and adhere to microglia. In vivo activation of microglia by intravitreal injection of lipopolysaccharide (LPS) also induced increased Müller cell-microglia adhesion, indicating that activated microglia may translocate intraretinally in a radial direction using Müller cell processes as an adhesive scaffold. Conclusion Our findings demonstrate that activated microglia are able to influence Müller cells directly, and initiate a program of bidirectional microglia-Müller cell signaling that can mediate adaptive responses within the retina following injury. In the acute aftermath following initial microglia activation, Müller cell responses may serve to augment initial inflammatory responses across retinal lamina and to guide the intraretinal mobilization of migratory microglia using chemotactic cues and adhesive cell contacts. Understanding adaptive microglia-Müller cell interactions in injury responses can help discover therapeutic cellular targets for intervention in retinal disease.
Collapse
Affiliation(s)
- Minhua Wang
- Unit on Neuron-Glia Interactions in Retinal Diseases, Office of the Scientific Director, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | |
Collapse
|
24
|
Yamada J, Jinno S. Alterations in neuronal survival and glial reactions after axotomy by ceftriaxone and minocycline in the mouse hypoglossal nucleus. Neurosci Lett 2011; 504:295-300. [PMID: 21970974 DOI: 10.1016/j.neulet.2011.09.051] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2011] [Revised: 08/26/2011] [Accepted: 09/19/2011] [Indexed: 10/17/2022]
Abstract
Some antibiotics are suggested to exert neuroprotective effects via regulation of glial responses. Attenuation of microglial activation by minocycline prevents neuronal death in a variety of experimental models for neurological diseases, such as cerebral ischemia, Parkinson's and Huntington's disease. Ceftriaxone delays loss of neurons in genetic animal models of amyotrophic lateral sclerosis through upregulation of astrocytic glutamate transporter expression (GLT-1). However, it remains largely unknown whether these antibiotics are able to protect neurons in axotomy models for progressive motor neuron diseases. Recent studies have shown that the axotomized motoneurons of the adult rat can survive, whereas those of the adult mouse undergo neuronal degeneration. We thus examined the possible effects of ceftriaxone and minocycline on neuronal loss and glial reactions in the mouse hypoglossal nucleus after axotomy. The survival rate of lesioned motoneurons at 28 days after axotomy (D28) was significantly improved by ceftriaxone and minocycline treatment. There were no significant differences in the cellular densities of astrocytes between ceftriaxone-treated and saline-treated animals. Ceftriaxone administration increased the expression of GLT-1 in the hypoglossal nucleus, while it suppressed the reactive increase of glial fibrillary acidic protein (GFAP) expression to control level. The cellular densities of microglia at D28 were significantly lower in minocycline-treated mice than in saline-treated mice. The time course analysis showed that immediate increase in microglia at D3 and D7 was not suppressed by minocycline. The present observations show that minocycline and ceftriaxone promote survival of lesioned motoneurons in the mouse hypoglossal nucleus, and also suggest that alterations in glial responses might be involved in neuroprotective actions of antibiotics.
Collapse
Affiliation(s)
- Jun Yamada
- Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka 812-8582, Japan
| | | |
Collapse
|
25
|
LeBlanc BW, Zerah ML, Kadasi LM, Chai N, Saab CY. Minocycline injection in the ventral posterolateral thalamus reverses microglial reactivity and thermal hyperalgesia secondary to sciatic neuropathy. Neurosci Lett 2011; 498:138-42. [DOI: 10.1016/j.neulet.2011.04.077] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 04/28/2011] [Accepted: 04/29/2011] [Indexed: 12/14/2022]
|
26
|
Non-invasive stimulation of the vibrissal pad improves recovery of whisking function after simultaneous lesion of the facial and infraorbital nerves in rats. Exp Brain Res 2011; 212:65-79. [PMID: 21526334 DOI: 10.1007/s00221-011-2697-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 04/12/2011] [Indexed: 01/30/2023]
Abstract
We have recently shown that manual stimulation of target muscles promotes functional recovery after transection and surgical repair to pure motor nerves (facial: whisking and blink reflex; hypoglossal: tongue position). However, following facial nerve repair, manual stimulation is detrimental if sensory afferent input is eliminated by, e.g., infraorbital nerve extirpation. To further understand the interplay between sensory input and motor recovery, we performed simultaneous cut-and-suture lesions on both the facial and the infraorbital nerves and examined whether stimulation of the sensory afferents from the vibrissae by a forced use would improve motor recovery. The efficacy of 3 treatment paradigms was assessed: removal of the contralateral vibrissae to ensure a maximal use of the ipsilateral ones (vibrissal stimulation; Group 2), manual stimulation of the ipsilateral vibrissal muscles (Group 3), and vibrissal stimulation followed by manual stimulation (Group 4). Data were compared to controls which underwent surgery but did not receive any treatment (Group 1). Four months after surgery, all three treatments significantly improved the amplitude of vibrissal whisking to 30° versus 11° in the controls of Group 1. The three treatments also reduced the degree of polyneuronal innervation of target muscle fibers to 37% versus 58% in Group 1. These findings indicate that forced vibrissal use and manual stimulation, either alone or sequentially, reduce target muscle polyinnervation and improve recovery of whisking function when both the sensory and the motor components of the trigemino-facial system regenerate.
Collapse
|
27
|
Mesnard NA, Alexander TD, Sanders VM, Jones KJ. Use of laser microdissection in the investigation of facial motoneuron and neuropil molecular phenotypes after peripheral axotomy. Exp Neurol 2010; 225:94-103. [PMID: 20570589 DOI: 10.1016/j.expneurol.2010.05.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 05/13/2010] [Accepted: 05/24/2010] [Indexed: 11/19/2022]
Abstract
The mechanism underlying axotomy-induced motoneuron loss is not fully understood, but appears to involve molecular changes within the injured motoneuron and the surrounding local microenvironment (neuropil). The mouse facial nucleus consists of six subnuclei which respond differentially to facial nerve transection at the stylomastoid foramen. The ventromedial (VM) subnucleus maintains virtually full facial motoneuron (FMN) survival following axotomy, whereas the ventrolateral (VL) subnucleus results in significant FMN loss with the same nerve injury. We hypothesized that distinct molecular phenotypes of FMN existed within the two subregions, one responsible for maintaining cell survival and the other promoting cell death. In this study, we used laser microdissection to isolate VM and VL facial subnuclear regions for molecular characterization. We discovered that, regardless of neuronal fate after injury, FMN in either subnuclear region respond vigorously to injury with a characteristic "regenerative" profile and additionally, the surviving VL FMN appear to compensate for the significant FMN loss. In contrast, significant differences in the expression of pro-inflammatory cytokine mRNA in the surrounding neuropil response were found between the two subnuclear regions of the facial nucleus that support a causative role for glial and/or immune-derived molecules in directing the contrasting responses of the FMN to axonal transection.
Collapse
Affiliation(s)
- Nichole A Mesnard
- Neuroscience Program, Loyola University Medical Center, Maywood, IL 60153, USA.
| | | | | | | |
Collapse
|
28
|
Zhang D, Hu X, Qian L, O'Callaghan JP, Hong JS. Astrogliosis in CNS pathologies: is there a role for microglia? Mol Neurobiol 2010; 41:232-41. [PMID: 20148316 PMCID: PMC3629545 DOI: 10.1007/s12035-010-8098-4] [Citation(s) in RCA: 224] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Accepted: 01/07/2010] [Indexed: 12/18/2022]
Abstract
Astrogliosis, a cellular reaction with specific structural and functional characteristics, represents a remarkably homotypic response of astrocytes to all kinds of central nervous system (CNS) pathologies. Astrocytes play diverse functions in the brain, both harmful and beneficial. Mounting evidence indicates that astrogliosis is an underlying component of a diverse range of diseases and associated neuropathologies. The mechanisms that lead to astrogliosis are not fully understood, nevertheless, damaged neurons have long been reported to induce astrogliosis and astrogliosis has been used as an index for underlying neuronal damage. As the predominant source of proinflammatory factors in the CNS, microglia are readily activated under certain pathological conditions. An increasing body of evidence suggests that release of cytokines and other soluble products by activated microglia can significantly influence the subsequent development of astrogliosis and scar formation in CNS. It is well known that damaged neurons activate microglia very quickly, therefore, it is possible that activated microglia contribute factors/mediators through which damaged neuron induce astrogliosis. The hypothesis that activated microglia initiate and maintain astrogliosis suggests that suppression of microglial overactivation might effectively attenuate reactive astrogliosis. Development of targeted anti-microglial activation therapies might slow or halt the progression of astrogliosis and, therefore, help achieve a more beneficial environment in various CNS pathologies.
Collapse
Affiliation(s)
- Dan Zhang
- Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA,
| | | | | | | | | |
Collapse
|
29
|
Pavlov SP, Grosheva M, Streppel M, Guntinas-Lichius O, Irintchev A, Skouras E, Angelova SK, Kuerten S, Sinis N, Dunlop SA, Angelov DN. Manually-stimulated recovery of motor function after facial nerve injury requires intact sensory input. Exp Neurol 2008; 211:292-300. [PMID: 18381213 DOI: 10.1016/j.expneurol.2008.02.019] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Revised: 01/20/2008] [Accepted: 02/12/2008] [Indexed: 12/23/2022]
Abstract
We have recently shown in rat that daily manual stimulation (MS) of vibrissal muscles promotes recovery of whisking and reduces polyinnervation of muscle fibers following repair of the facial nerve (facial-facial anastomosis, FFA). Here, we examined whether these positive effects were: (1) correlated with alterations of the afferent connections of regenerated facial motoneurons, and (2) whether they were achieved by enhanced sensory input through the intact trigeminal nerve. First, we quantified the extent of total synaptic input to motoneurons in the facial nucleus using synaptophysin immunocytochemistry following FFA with and without subsequent MS. We found that, without MS, this input was reduced compared to intact animals. The number of synaptophysin-positive terminals returned to normal values following MS. Thus, MS appears to counteract the deafferentation of regenerated facial motoneurons. Second, we performed FFA and, in addition, eliminated the trigeminal sensory input to facial motoneurons by extirpation of the ipsilateral infraorbital nerve (IONex). In this paradigm, without MS, vibrissal motor performance and pattern of end-plate reinnervation were as aberrant as after FFA without MS. MS did not influence the reinnervation pattern after IONex and functional recovery was even worse than after IONex without MS. Thus, when the sensory system is intact, MS restores normal vibrissal function and reduces the degree of polyinnervation. When afferent inputs are abolished, these effects are eliminated or even reversed. We conclude that rehabilitation strategies must be carefully designed to take into account the extent of motor and/or sensory damage.
Collapse
Affiliation(s)
- Stoyan P Pavlov
- Department of Anatomy, Histology, Embryology, Medical University Varna, Bulgaria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Endogenous transforming growth factor beta 1 suppresses inflammation and promotes survival in adult CNS. J Neurosci 2007; 27:11201-13. [PMID: 17942715 DOI: 10.1523/jneurosci.2255-07.2007] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Transforming growth factor beta1 (TGFbeta1) is a pleiotropic cytokine with potent neurotrophic and immunosuppressive properties that is upregulated after injury, but also expressed in the normal nervous system. In the current study, we examined the regulation of TGFbeta1 and the effects of TGFbeta1 deletion on cellular response in the uninjured adult brain and in the injured and regenerating facial motor nucleus. To avoid lethal autoimmune inflammation within 3 weeks after birth in TGFbeta1-deficient mice, this study was performed on a T- and B-cell-deficient RAG2-/- background. Compared with wild-type siblings, homozygous deletion of TGFbeta1 resulted in an extensive inflammatory response in otherwise uninjured brain parenchyma. Astrocytes increased in GFAP and CD44 immunoreactivity; microglia showed proliferative activity, expression of phagocytosis-associated markers [alphaXbeta2, B7.2, and MHC1 (major histocompatibility complex type 1)], and reduced branching. Ultrastructural analysis revealed focal blockade of axonal transport, perinodal damming of axonal organelles, focal demyelination, and myelin debris in granule-rich, phagocytic microglia. After facial axotomy, absence of TGFbeta1 led to a fourfold increase in neuronal cell death (52 vs 13%), decreased central axonal sprouting, and significant delay in functional recovery. It also interfered with the microglial response, resulting in a diminished expression of early activation markers [ICAM1 (intercellular adhesion molecule 1), alpha6beta1, and alphaMbeta2] and reduced proliferation. In line with axonal and glial findings in the otherwise uninjured CNS, absence of endogenous TGFbeta1 also caused an approximately 10% reduction in the number of normal motoneurons, pointing to an ongoing and potent trophic role of this anti-inflammatory cytokine in the normal as well as in the injured brain.
Collapse
|
31
|
Yuan Q, Scott DE, So KF, Wu W. A subpopulation of reactive astrocytes at affected neuronal perikarya after hypophysectomy in adult rats. Brain Res 2007; 1159:18-27. [PMID: 17573051 DOI: 10.1016/j.brainres.2007.04.084] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Revised: 03/14/2007] [Accepted: 04/15/2007] [Indexed: 02/05/2023]
Abstract
Intermediate filaments (IFs) of nestin and vimentin are expressed in immature astrocytes. In this study, we examined the re-expression of these early glial traits in rat reactive astrocytes in affected neuronal perikarya in supraoptic (SON) and paraventricular (PVN) nuclei induced by hypophysectomy. Double-labeling immunofluorescence confocal laser microscopy demonstrated that by 7 days post-lesion, both nestin and vimentin were present intensely in hypertrophied GFAP-IR reactive astrocytes in the area of hypophysectomized magnocellular neurons in SON and PVN, while nestin and vimentin are absent in the normal or sham-operated animals. As the gliotic reaction progressed, the morphology of nestin or vimentin-positive reactive astrocytes in SON but not PVN changed from stellate form at 7 days to thin and elongated shape, morphologically compatible with radial glia during development, at 14 days post-lesion. By 28 days post-lesion, while vimentin-IR persisted in reactive astrocytes in SON and PVN, nestin-IR could hardly be detected. The spatiotemporal pattern of nestin-IR and/or vimentin-IR in reactive astrocytes suggests astrocytes attempt to revert to a more primitive glia form indicated by changes in morphology and phenotype following hypophysectomy, which may contribute to neuronal trophism and plasticity in the lesioned HNS favoring neuronal maintenance and fiber outgrowth.
Collapse
Affiliation(s)
- Qiuju Yuan
- Department of Anatomy, Development and Growth, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | | | | | | |
Collapse
|
32
|
Deboy CA, Xin J, Byram SC, Serpe CJ, Sanders VM, Jones KJ. Immune-mediated neuroprotection of axotomized mouse facial motoneurons is dependent on the IL-4/STAT6 signaling pathway in CD4+ T cells. Exp Neurol 2006; 201:212-24. [PMID: 16806176 DOI: 10.1016/j.expneurol.2006.04.028] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2005] [Revised: 03/13/2006] [Accepted: 04/05/2006] [Indexed: 12/12/2022]
Abstract
The CD4(+) T lymphocyte has recently been found to promote facial motoneuron (FMN) survival after nerve injury. Signal Transducer and Activator of Transcription (STAT)4 and STAT6 are key proteins involved in the CD4(+) T cell differentiation pathways leading to T helper type (Th)1 and Th2 cell development, respectively. To determine which CD4(+) T cell subset mediates FMN survival, the facial nerve axotomy paradigm was applied to STAT4-deficient (-/-) and STAT6-/- mice. A significant decrease in FMN survival 4 weeks after axotomy was observed in STAT6-/- mice compared to wild-type (WT) or STAT4-/- mice. Reconstituting STAT6-/- mice with CD4(+) T cells obtained from WT mice promoted WT levels of FMN survival after injury. Furthermore, rescue of FMN from axotomy-induced cell death in recombination activating gene (RAG)-2-/- mice (lacking T and B cells) could be achieved only by reconstitution with CD4(+) T cells expressing functional STAT6 protein. To determine if either the Th1 cytokine, interferon-gamma (IFN-gamma) or the Th2 cytokine IL-4 is involved in mediating FMN survival, facial nerve axotomy was applied to IFN-gamma-/- and IL-4-/- mice. A significant decrease in FMN survival after axotomy occurred in IL-4-/- but not in IFN-gamma-/- mice compared to WT mice, indicating that IL-4 but not IFN-gamma is important for FMN survival after nerve injury. In WT mice, intracellular IFN-gamma vs. IL-4 expression was examined in CD4(+) T cells from draining cervical lymph nodes 14 days after axotomy, and substantial increase in the production of both CD4(+) effector T cell subsets was found. Collectively, these data suggest that STAT6-mediated CD4(+) T cell differentiation into the Th2 subset is necessary for FMN survival. A hypothesis relevant to motoneuron disease progression is presented.
Collapse
Affiliation(s)
- Cynthia A Deboy
- Department of Cell Biology, Neurobiology, and Anatomy, Loyola University Chicago, 2160 S. 1st Avenue, Maywood, IL 60153, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Byram SC, Serpe CJ, DeBoy CA, Sanders VM, Jones KJ. Motoneurons and CD4+ effector T cell subsets: Neuroprotection and repair. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/j.cnr.2006.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
34
|
Owolabi SA, Saab CY. Fractalkine and minocycline alter neuronal activity in the spinal cord dorsal horn. FEBS Lett 2006; 580:4306-10. [PMID: 16842787 DOI: 10.1016/j.febslet.2006.06.087] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2006] [Revised: 06/27/2006] [Accepted: 06/28/2006] [Indexed: 12/01/2022]
Abstract
Fractalkine (FKN) evokes nociceptive behavior in nai ve rats, whereas minocycline attenuates pain acutely after neuronal injury. We show that, in nai ve rats, FKN causes hyperresponsiveness of lumbar wide dynamic range neurons to brush, pressure and pinch applied to the hindpaw. One day after spinal nerve ligation (SNL), minocycline attenuates after-discharge and responses to brush and pressure. In contrast, minocycline does not alter evoked neuronal responses 10 days after SNL or sciatic constriction, but increases spontaneous discharge. We speculate that microglia rapidly alter sensory neuronal activity in nai ve and neuropathic rats acutely, but not chronically, after injury.
Collapse
Affiliation(s)
- Samuel A Owolabi
- Department of Surgery, Rhode Island Hospital, Brown University School of Medicine, Providence, 02903, USA
| | | |
Collapse
|
35
|
Vassias I, Lecolle S, Vidal PP, de Waele C. Modulation of GABA receptor subunits in rat facial motoneurons after axotomy. ACTA ACUST UNITED AC 2005; 135:260-75. [PMID: 15857688 DOI: 10.1016/j.molbrainres.2004.12.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2004] [Revised: 12/17/2004] [Accepted: 12/20/2004] [Indexed: 10/25/2022]
Abstract
Facial nerve axotomy is a good model for studying neuronal plasticity and regeneration in the peripheral nervous system. In the present study, we investigated the effect of axotomy on the different subunits of GABA(A) and GABA(B) receptors of facial motoneurons. The facial nerve trunk was unilaterally sectioned and operated rats were sacrificed at 1, 3, 8, 30, and 60 days later. mRNAs coding for alpha1, beta2, and gamma2 of GABA(A) receptors and for GABA(1B) and GABA(B2) receptors were down-regulated by axotomy. This decrease began as soon as 1 or 3 days after axotomy, and the minimum was 8 days post-lesion; the mRNA levels remained lower than normal at day post-lesion 60. The abundance of mRNAs coding for the three other alpha2, beta1, and beta3 facial subunits of GABA(A) receptors and for the pre-synaptic GABA(B1A) subunit remained unchanged during the period 1-8 days post-lesion. Immunohistochemistry using specific antibodies against alpha1, gamma2 subunits of GABA(A) and against GABA(B2) subunits confirmed this down-regulation. Colchicine treatment and blockade of action potential by tetrodotoxin significantly decreased GABA(A)alpha1 immunoreactivity in the axotomized facial nucleus after 7 days. Finally, muscle destruction by cardiotoxin or facial palsy induced by botulinum toxin failed to change GABA(A)alpha1 subunit expression. Our data demonstrate that axotomy strongly reduced the amounts of alpha1, beta2, and gamma2 subunits of GABA(A) receptors and B(1B) and B(2) subunits of GABA(B) receptors in the axotomized facial motoneurons. The loss of GABA(A)alpha1 subunit was most probably induced by both the loss of trophic factors transported from the periphery and a positive injury signal. It also seems to be dependent on activity disruption.
Collapse
Affiliation(s)
- Isabelle Vassias
- UMR 7060 (CNRS-Paris 5), Centre Universitaire des Saints-Pères, 45 rue des Saints-Pères, 75270 Paris Cedex 06, France
| | | | | | | |
Collapse
|
36
|
Eleore L, Vassias I, Vidal PP, Triller A, de Waele C. Modulation of glycine receptor subunits and gephyrin expression in the rat facial nucleus after axotomy. Eur J Neurosci 2005; 21:669-78. [PMID: 15733085 DOI: 10.1111/j.1460-9568.2005.03887.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the last decade, numerous studies have investigated molecular changes in excitatory glutamatergic receptors in axotomized motoneurons, but few data are available concerning the modulation of inhibitory amino acid receptors. We report here the effect of axotomy on the expression of glycine receptors, gephyrin, vesicular inhibitory amino acid transporter (VIAAT) and synapsin I in rat facial motor neurons as demonstrated by in situ hybridization and immunohistochemistry. The facial nerve trunk was sectioned unilaterally and rats were killed 1, 3, 8, 30 or 60 days after surgery. We investigated the mechanisms underlying the changes in production of these proteins following axotomy by perfusing the facial nerve with colchicine or tetrodotoxin, and injecting cardiotoxin or botulinum toxin independently and unilaterally into the whisker pads of normal rats. Animals were killed 8 days later and processed for immunohistochemistry. The abundance of GlyR subunits and gephyrin fell sharply in the axotomized facial nucleus. This decrease began 1 day after axotomy and was lowest at 8 days, with protein levels returning to normal by day 60. Abnormal synapsin immunolabelling was also observed between days 8 and 60 after axotomy but we detected no change in VIAAT immunoreactivity. The effect of colchicine was similar to, but weaker than, that of axotomy. In contrast, tetrodotoxin, cardiotoxin and botulinum toxin had no significant effect. Thus, axotomy-induced changes probably resulted from a loss of trophic factor transported from the periphery or a positive injury signal, or both. They did not seem to depend on the disruption of activity.
Collapse
Affiliation(s)
- Lyndell Eleore
- LNRS (CNRS-Paris V), Centre Universitaire des Saints-Pères, 45 rue des Saints-Pères, 75270 Paris Cedex 06, France
| | | | | | | | | |
Collapse
|
37
|
Barbeito LH, Pehar M, Cassina P, Vargas MR, Peluffo H, Viera L, Estévez AG, Beckman JS. A role for astrocytes in motor neuron loss in amyotrophic lateral sclerosis. ACTA ACUST UNITED AC 2004; 47:263-74. [PMID: 15572176 DOI: 10.1016/j.brainresrev.2004.05.003] [Citation(s) in RCA: 243] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2004] [Indexed: 12/31/2022]
Abstract
A strong glial reaction typically surrounds the affected upper and lower motor neurons and degenerating descending tracts of ALS patients. Reactive astrocytes in ALS contain protein inclusions, express inflammatory makers such as the inducible forms of nitric oxide synthase (iNOS) and cyclooxygenase (COX-2), display nitrotyrosine immunoreactivity and downregulate the glutamate transporter EAAT2. In this review, we discuss the evidence sustaining an active role for astrocytes in the induction and propagation of motor neuron loss in ALS. Available evidence supports the view that glial activation could be initiated by proinflammatory mediators secreted by motor neurons in response to injury, axotomy or muscular pathology. In turn, reactive astrocytes produce nitric oxide and peroxynitrite, which cause mitochondrial damage in cultured neurons and trigger apoptosis in motor neurons. Astrocytes may also contribute to the excitotoxic damage of motor neurons by decreasing glutamate transport or actively releasing the excitotoxic amino acid. In addition, reactive astrocytes secrete pro-apoptotic mediators, such as nerve growth factor (NGF) or Fas-ligand, a mechanism that may serve to eliminate vulnerable motor neurons. The comprehensive understanding of the interactions between motor neurons and glia in ALS may lead to a more accurate theory of the pathogenesis of the disease.
Collapse
Affiliation(s)
- Luis H Barbeito
- Departamento de Neurobiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318-CP 11600, Montevideo, Uruguay.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
McPhail LT, Fernandes KJL, Chan CCM, Vanderluit JL, Tetzlaff W. Axonal reinjury reveals the survival and re-expression of regeneration-associated genes in chronically axotomized adult mouse motoneurons. Exp Neurol 2004; 188:331-40. [PMID: 15246833 DOI: 10.1016/j.expneurol.2004.04.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2004] [Revised: 04/08/2004] [Accepted: 04/12/2004] [Indexed: 12/16/2022]
Abstract
Recently, we reported that chronically axotomized rubrospinal neurons survive for up to 1 year in an atrophied state. This finding contrasted previous work suggesting the death of up to 50% of the neurons over time. In the adult mouse, the majority of facial motoneurons appear to be lost as a result of chronic nerve resection. Here, we sought to determine if chronically resected adult mouse facial motoneurons, like rubrospinal neurons, survive in an atrophied state. To test this hypothesis, we asked whether a second nerve injury, 10 weeks after an initial nerve resection, could stimulate a regenerative cell body response. After chronic resection (10 weeks), mouse facial motoneurons underwent atrophy resulting in a loss of countable neuronal cell bodies. In addition, the motoneurons failed to maintain their initial increase in expression of GAP-43 and alpha-tubulin mRNA. Reinjury of 10-week chronically resected facial motoneurons by the removal of the neuroma reversed the atrophy of the cell bodies and increased the percentage of identifiable cell bodies from 36% of contralateral to 79% in C57BL/6-C3H mice and from 28% of contralateral to 40% in Balb/c mice. Moreover, the reinjured motoneurons displayed an increase in GAP-43 and alpha-tubulin mRNA expression. The results of this study indicate that a second axon injury stimulates regenerative cell body responses in chronically resected mouse facial motoneurons and suggest previous studies using this model may have overestimated the number of dying motoneurons.
Collapse
Affiliation(s)
- Lowell T McPhail
- International Collaboration On Repair Discoveries, University of British Columbia, Vancouver, Canada V6T 1Z4
| | | | | | | | | |
Collapse
|
39
|
Tanga FY, Raghavendra V, DeLeo JA. Quantitative real-time RT-PCR assessment of spinal microglial and astrocytic activation markers in a rat model of neuropathic pain. Neurochem Int 2004; 45:397-407. [PMID: 15145554 DOI: 10.1016/j.neuint.2003.06.002] [Citation(s) in RCA: 288] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2003] [Revised: 06/11/2003] [Accepted: 06/11/2003] [Indexed: 12/01/2022]
Abstract
Activated spinal glial cells have been strongly implicated in the development and maintenance of persistent pain states following a variety of stimuli including traumatic nerve injury. The present study was conducted to characterize the time course of surface markers indicative of microglial and astrocytic activation at the transcriptional level following an L5 nerve transection that results in behavioral hypersensitivity. Male Sprague-Dawley rats were divided into a normal group, a sham surgery group with an L5 spinal nerve exposure and an L5 spinal nerve transected group. Mechanical allodynia (heightened response to a non-noxious stimulus) of the ipsilateral hind paw was assessed throughout the study. Spinal lumbar mRNA levels of glial fibrillary acidic protein (GFAP), integrin alpha M (ITGAM), toll-like receptor 4 (TLR4) and cluster determinant 14 (CD14) were assayed using real-time reverse transcription polymerase chain reaction (RT-PCR) at 4 h, 1, 4, 7, 14 and 28 days post surgery. The spinal lumbar mRNA expression of ITGAM, TLR4, and CD14 was upregulated at 4 h post surgery, CD14 peaked 4 days after spinal nerve transection while ITGAM and TLR4 continued to increase until day 14 and returned to almost normal levels by postoperative day 28. In contrast, spinal GFAP mRNA did not significantly increase until postoperative day 4 and then continued to increase over the duration of the study. Our optimized real-time RT-PCR method was highly sensitive, specific and reproducible at a wide dynamic range. This study demonstrates that peripheral nerve injury induces an early spinal microglial activation that precedes astrocytic activation using mRNA for surface marker expression; the delayed but sustained expression of mRNA coding for GFAP implicates astrocytes in the maintenance phase of persistent pain states. In summary, these data demonstrate a distinct spinal glial response following nerve injury using real-time RT-PCR.
Collapse
Affiliation(s)
- F Y Tanga
- Department of Anesthesiology, Dartmouth-Hitchcock Medical Center, HB 7125, One Medical Center Drive, Lebanon, NH 03756, USA.
| | | | | |
Collapse
|
40
|
Abstract
Experimental models such as the facial nerve axotomy paradigm in rodents allow the systematic and detailed study of the response of neurones and their microenvironment to various types of challenges. Well-studied experimental examples include peripheral nerve trauma, the retrograde axonal transport of neurotoxins and locally enhanced inflammation following the induction of experimental autoimmune encephalomyelitis in combination with axotomy. These studies have led to novel insights into the regeneration programme of the motoneurone, the role of microglia and astrocytes in synaptic plasticity and the biology of glial cells. Importantly, many of the findings obtained have proven to be valid in other functional systems and even across species barriers. In particular, microglial expression of major histocompatibility complex molecules has been found to occur in response to various types of neuronal damage and is now regarded as a characteristic component of "glial inflammation". It is found in the context of numerous neurodegenerative disorders including Parkinson's and Alzheimer's disease. The detachment of afferent axonal endings from the surface membrane of regenerating motoneurones and their subsequent displacement by microglia ("synaptic stripping") and long-lasting insulation by astrocytes have also been confirmed in humans. The medical implications of these findings are significant. Also, the facial nerve system of rats and mice has become the best studied and most widely used test system for the evaluation of neurotrophic factors.
Collapse
Affiliation(s)
- Linda B Moran
- Department of Neuropathology, Division of Neuroscience and Psychological Medicine, Faculty of Medicine, Imperial College London, Charing Cross Campus, Fulham Palace Road, London W6 8RF, UK
| | | |
Collapse
|
41
|
Benítez-Temiño B, de la Cruz RR, Pastor AM. Grafting of a new target prevents synapse loss in abducens internuclear neurons induced by axotomy. Neuroscience 2003; 118:611-26. [PMID: 12710971 DOI: 10.1016/s0306-4522(03)00003-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The loss of afferent synaptic boutons is a prominent alteration induced by axotomy on adult central neurons. In this work we attempted to prove whether synapse loss could be reverted by reconnection with a new target. We severed the medial longitudinal fascicle of adult cats and then transplanted embryonic cerebellar primordia at the lesion site immediately after lesion. As previously shown, the transected axons from abducens internuclear neurons penetrate and reinnervate the graft [J Comp Neurol 444 (2002) 324]. By immunocytochemistry and electron microscopy we studied the synaptology of abducens internuclear neurons under three conditions: control, axotomy and transplant (2 months of survival time). Semithin sections of the abducens nucleus were immunostained against calretinin, to identify abducens internuclear neurons, and either synaptophysin (SF), to label synaptic terminals, or glial fibrillary acidic protein (GFAP) to detect the astrocytic reaction. Optical and linear density of SF and GFAP immunostaining were measured. Data revealed a significant decrease in the density of SF-labeled terminals with a parallel increase in GFAP-immunoreactive elements after axotomy. On the contrary, in the transplant group, the density of SF-labeled terminals was found similar to control, and the astrocytic reaction induced by lesion was significantly reduced. At the ultrastructural level, synaptic coverage and linear density of boutons were measured around the somata of abducens internuclear neurons. Whereas a significant reduction in both parameters was found after axotomy, cells of the transplant group received a normal density of synaptic endings. The ratio between F- and S-type boutons was found similar in the three groups. Therefore, these findings indicate that the grafting of a new target can prevent the loss of afferent synaptic boutons produced by the axotomy.
Collapse
Affiliation(s)
- B Benítez-Temiño
- Departamento de Fisiología y Zoología, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| | | | | |
Collapse
|
42
|
Liu PH, Wang YJ, Tseng GF. Close axonal injury of rubrospinal neurons induced transient perineuronal astrocytic and microglial reaction that coincided with their massive degeneration. Exp Neurol 2003; 179:111-26. [PMID: 12504873 DOI: 10.1006/exnr.2002.8057] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To learn more about the pathophysiology of axonal injury and the significance of axon collaterals on the survival of axotomized cord-projection central neurons, we studied the survival rate, surrounding astrocytic and microglial reactions, and bouton coverage on rat rubrospinal cell bodies following their axonal lesion at the brain stem and upper cervical level. The brain stem lesion disconnected most rubrospinal neurons from all their targets, while the upper cervical lesion spared their supraspinal collaterals. Much higher cell loss accompanied by robust astrocytic and microglial reaction was found following brain stem than upper cervical lesion starting 4 days postaxotomy. The reaction of astrocytes had subsided while microglial reaction remained relatively robust by 10 weeks postaxotomy when the cell loss had slowed down. Ultrastructural observation revealed that reactive astrocytes covered 40%, an increase from the 20% of control, of brain stem-axotomized rubrospinal cell body surface at 4 days and 2 weeks and returned to normal levels by 10 weeks postlesion. An increase of apposition by axons and dendrites and a moderate decrease of round and flattened vesicle-containing bouton contacts at 4 days and 2 weeks and returning to normal levels at 10 weeks postaxotomy accompanied this. It appears that although axotomy induced robust astrocytic reaction around cord-projection central neurons, this, unlike their periphery-projection counterparts, failed to effectively strip their somatic synapses. In effect, this might in part determine neuronal fate following axonal injury.
Collapse
Affiliation(s)
- Pei-Hsin Liu
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | |
Collapse
|
43
|
Valero-Cabré A, Navarro X. H reflex restitution and facilitation after different types of peripheral nerve injury and repair. Brain Res 2001; 919:302-12. [PMID: 11701142 DOI: 10.1016/s0006-8993(01)03052-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study addresses the restitution of monosynaptic H reflex after nerve injuries and their role in the recovery of walking. Adult rats were submitted to sciatic crush, complete section repaired by aligned or crossed fascicular suture, or an 8-mm resection repaired by autograft or tube repair. The sciatic nerve was stimulated proximal to the injury site and the M and H waves were recorded from gastrocnemius (GCm) and plantar (PLm) muscles at monthly intervals during 3 months postoperation. Walking track tests were also carried out and the sciatic functional index (SFI) calculated to assess gait recovery. The M and H waves reappeared in all the animals at the end of the follow-up. The H/M amplitude ratio increased during the first stages of regeneration and tended to decrease to control values as muscle reinnervation progressed. However, final values of the H/M ratio for the PLm remained significantly higher in all the groups except that with a nerve crush. The walking track pattern showed an appreciable recovery only after crush injury. Final SFI values correlated positively with the M wave amplitude and negatively with the H/M ratio. In conclusion, H reflex is facilitated after peripheral nerve injury and regeneration and tends to return to normal excitability with time. Changes in the H reflex circuitry and excitability correlated positively with the deficient recovery of walking pattern after severe nerve injury.
Collapse
Affiliation(s)
- A Valero-Cabré
- Department of Cell Biology, Physiology and Immunology, Faculty of Medicine, Universitat Autònoma de Barcelona, 01893 Bellaterra, Spain
| | | |
Collapse
|
44
|
Galiano M, Liu ZQ, Kalla R, Bohatschek M, Koppius A, Gschwendtner A, Xu S, Werner A, Kloss CU, Jones LL, Bluethmann H, Raivich G. Interleukin-6 (IL6) and cellular response to facial nerve injury: effects on lymphocyte recruitment, early microglial activation and axonal outgrowth in IL6-deficient mice. Eur J Neurosci 2001; 14:327-41. [PMID: 11553283 DOI: 10.1046/j.0953-816x.2001.01647.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Nerve injury triggers numerous changes in the injured neurons and surrounding non-neuronal cells. Of particular interest are molecular signals that play a role in the overall orchestration of this multifaceted cellular response. Here we investigated the function of interleukin-6 (IL6), a multifunctional neurotrophin and cytokine rapidly expressed in the injured nervous system, using the facial axotomy model in IL6-deficient mice and wild-type controls. Transgenic deletion of IL6 caused a massive decrease in the recruitment of CD3-positive T-lymphocytes and early microglial activation during the first 4 days after injury in the axotomized facial nucleus. This was accompanied by a more moderate reduction in peripheral regeneration at day 4, lymphocyte recruitment (day 14) and enhanced perikaryal sprouting (day 14). Motoneuron cell death, phagocytosis by microglial cells and recruitment of granulocytes and macrophages into injured peripheral nerve were not affected. In summary, IL6 lead to a variety of effects on the cellular response to neural trauma. However, the particularly strong actions on lymphocytes and microglia suggest that this cytokine plays a central role in the initiation of immune surveillance in the injured central nervous system.
Collapse
Affiliation(s)
- M Galiano
- Department of Neuromorphology, Max-Planck Institute for Neurobiology, Am Klopferspitz 18A, D-82152 Martinsried, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Kalla R, Liu Z, Xu S, Koppius A, Imai Y, Kloss CU, Kohsaka S, Gschwendtner A, Möller JC, Werner A, Raivich G. Microglia and the early phase of immune surveillance in the axotomized facial motor nucleus: Impaired microglial activation and lymphocyte recruitment but no effect on neuronal survival or axonal regeneration in macrophage-colony stimulating factor-defici. J Comp Neurol 2001. [DOI: 10.1002/cne.1060] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
46
|
Pastor AM, Delgado-García JM, Martínez-Guijarro FJ, López-García C, de La Cruz RR. Response of abducens internuclear neurons to axotomy in the adult cat. J Comp Neurol 2000; 427:370-90. [PMID: 11054700 DOI: 10.1002/1096-9861(20001120)427:3<370::aid-cne5>3.0.co;2-m] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The highly specific projection of abducens internuclear neurons on the medial rectus motoneurons of the oculomotor nucleus constitutes an optimal model for investigating the effects of axotomy in the central nervous system. We have analyzed the morphological changes induced by this lesion on both the cell bodies and the transected axons of abducens internuclear neurons in the adult cat. Axotomy was performed by the transection of the medial longitudinal fascicle. Cell counts of Nissl-stained material and calretinin-immunostained abducens internuclear neurons revealed no cell death by 3 months postaxotomy. Ultrastructural examination of these cells at 6, 14, 24, and 90 days postaxotomy showed normal cytological features. However, the surface membrane of axotomized neurons appeared contacted by very few synaptic boutons compared to controls. This change was quantified by measuring the percentage of synaptic coverage of the cell bodies and the linear density of boutons. Both parameters decreased significantly after axotomy, with the lowest values at 90 days postlesion ( approximately 70% reduction). We also explored axonal regrowth and the possibility of reinnervation of a new target by means of anterograde labeling with biocytin. At all time intervals analyzed, labeled axons were observed to be interrupted at the caudal limit of the lesion; in no case did they cross the scar tissue to reach the distal part of the tract. Nonetheless, a conspicuous axonal sprouting was present at the caudal aspect of the lesion site. Structures suggestive of axonal growth were found, such as large terminal clubs, from which short filopodium-like branches frequently emerged. Similar findings were obtained after parvalbumin and calretinin immunostaining. At the electron microscopy level, biocytin-labeled boutons originating from the sprouts appeared surrounded by either extracellular space, which was extremely dilated at the lesion site, or by glial processes. The great majority of labeled boutons examined were, thus, devoid of neuronal contact, indicating absence of reinnervation of a new target. Altogether, these data indicate that abducens internuclear neurons survive axotomy in the adult cat and show some form of axonal regrowth, even in the absence of target connection.
Collapse
Affiliation(s)
- A M Pastor
- Laboratorio de Neurociencia, Facultad de Biología, Universidad de Sevilla, 41012-Sevilla, Spain
| | | | | | | | | |
Collapse
|
47
|
Lurie DI, Durham D. Neuronal death, not axonal degeneration, results in significant gliosis within the cochlear nucleus of adult chickens. Hear Res 2000; 149:178-88. [PMID: 11033257 DOI: 10.1016/s0378-5955(00)00181-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Injury to the central nervous system initiates a series of events that leads to neuronal cell death and glial activation. Astrocytes respond to damage and disease by becoming hyperplastic and hypertrophied. This 'reactive gliosis' is also accompanied by the upregulation of the intermediate filament protein glial fibrillary acidic protein, the release of growth factors and the formation of the glial scar. However, the signaling cascades which regulate these events, and the molecular mechanisms that give rise to this diverse response, have not been fully elucidated. For example, the role played by degenerating neurons vs. degenerating axons in the activation of astrocytes remains to be determined. To investigate the influence of neuronal cell death vs. axonal degeneration on gliosis, the current study examines the astrocyte response to cochlea removal in two different breeds of adult chickens, one of which exhibits neuronal cell death within the brainstem nucleus magnocellularis (NM) following the lesion and one which does not. Our results indicate that degeneration of NM neurons leads to large increases in both glial proliferation and hypertrophy, while eighth nerve degeneration without NM cell death results in very small increases in glial proliferation.
Collapse
Affiliation(s)
- D I Lurie
- Department of Pharmaceutical Sciences, The University of Montana, Missoula, MT 58912, USA.
| | | |
Collapse
|
48
|
Jones LL, Liu Z, Shen J, Werner A, Kreutzberg GW, Raivich G. Regulation of the cell adhesion molecule CD44 after nerve transection and direct trauma to the mouse brain. J Comp Neurol 2000; 426:468-92. [PMID: 10992250 DOI: 10.1002/1096-9861(20001023)426:3<468::aid-cne9>3.0.co;2-i] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
CD44 is a cell surface glycoprotein involved in cell adhesion during neurite outgrowth, leukocyte homing, and tumor metastasis. In the current study, we examined the regulation of this molecule 4 days after neural trauma in different forms of central and peripheral injury. Transection of the hypoglossal, vagus, or sciatic nerve led to the appearance of CD44-immunoreactivity (CD44-IR) on the surface of the affected motoneurons, their dendrites, and their axons. Fimbria fornix transection led to CD44-IR on a subpopulation of cholinergic neurons in the ipsi- and contralateral medial septum and diagonal band of Broca and colocalized with galanin-IR. Central projections of axotomized sensory neurons to the spinal cord (substantia gelatinosa, Clarke's column) also showed an increase in CD44-IR, which was abolished by spinal root transection. Nonneuronal CD44-IR was mainly restricted to sites of direct injury. In the crushed sciatic nerve, CD44-IR was found on the demyelinating Schwann cells and on infiltrating monocytes and granulocytes. Direct parasagittal transection of the cerebral cortex led to CD44-IR on resident astrocytes and on leukocytes entering the injured forebrain tissue. CD44-IR also increased on reactive retinal astrocytes and microglia after the optic nerve crush. Additional time points in the retina and hypoglossal nucleus (days 1, 2, and 14) and cerebral cortex (day 2) injury models also showed the same cell type pattern for the CD44-IR. Finally, polymerase chain reaction analysis confirmed the posttraumatic expression of CD44 mRNA and detected only the standard haematopoietic CD44 splice isoform both in direct and indirect brain injury models. Overall, the current study shows the widespread, graded appearance of CD44-IR on neurons and on nonneuronal cells, depending on the form of neural injury. Here, the ability of CD44 to bind to a variety of extracellular matrix and cell adhesion proteins and its common presence in different forms of brain pathology could suggest an important role for this cell surface glycoprotein in the neuronal, glial, and leukocyte response to trauma and in the repair of the damaged nervous system.
Collapse
Affiliation(s)
- L L Jones
- Department of Neuromorphology, Max-Planck-Institute of Neurobiology, D-82152 Martinsried, Germany
| | | | | | | | | | | |
Collapse
|
49
|
Holtzer CA, Feirabend HK, Marani E, Thomeer RT. Ultrastructural and quantitative motoneuronal changes after ventral root avulsion favor early surgical repair. Arch Physiol Biochem 2000; 108:293-309. [PMID: 11094383 DOI: 10.1076/1381345520000710831zft293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
This study assesses qualitative and quantitative morphological changes that occur in motoneurons after ventral root avulsion. The motoneuronal perikaryal changes in the ventral horn of the cat's C7 cord segment were studied after survival times of 2, 8, 14, 30, 60 and 90 days. Generally, large motoneurons showed a light type of reaction, and the small ones either light or dark. In addition, neurons with a normal ultrastructural appearance were found. These latter are considered to be in a 'steady state', which may be associated with regenerative potency. All these types of neuron reactions were present at all survival times, but the number of cells marked by a specific reaction depends on the time of survival. Qualitative and quantitative evidence is given for cell death in 36% of the motoneuronal population between 2 and 14 days after avulsion. This reduction primarily concerns large, presumably alpha motoneurons with the light type reaction. Small, presumably gamma motoneurons become seriously affected after 14 days. These findings suggest that early surgical repair may have the better chances for clinical recovery.
Collapse
Affiliation(s)
- C A Holtzer
- Dept. of Neurosurgery, Leiden University Medical Center, The Netherlands
| | | | | | | |
Collapse
|
50
|
Lurie DI, Solca F, Fischer EH, Rubel EW. Tyrosine phosphatase SHP-1 immunoreactivity increases in a subset of astrocytes following deafferentation of the chicken auditory brainstem. J Comp Neurol 2000. [DOI: 10.1002/(sici)1096-9861(20000529)421:2<199::aid-cne6>3.0.co;2-g] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|