1
|
Lawson KE, Evans MN, Dekle JK, Adamczyk AJ. Computing the Differences between Asn-X and Gln-X Deamidation and Their Impact on Pharmaceutical and Physiological Proteins: A Theoretical Investigation Using Model Dipeptides. J Phys Chem A 2023; 127:57-70. [PMID: 36549007 DOI: 10.1021/acs.jpca.2c06511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Protein deamidation is a degradation mechanism that significantly impacts both pharmaceutical and physiological proteins. Deamidation impacts two amino acids, Asn and Gln, where the net neutral residues are converted into their acidic forms. While there are multiple similarities between the reaction mechanisms of the two residues, the impact of Gln deamidation has been noted to be most significant on physiological proteins while Asn deamidation has been linked to both pharmaceutical and physiological proteins. For this purpose, we sought to analyze the thermochemical and kinetic properties of the different reactions of Gln deamidation relative to Asn deamidation. In this study, we mapped the deamidation of Gln-X dipeptides into Glu-X dipeptides using density functional theory (DFT). Full network mapping facilitated the prediction of reaction selectivity between the two primary pathways, as well as between the two products of Gln-X deamidation as a function of solvent dielectric. To achieve this analysis, we studied a total of 77 dipeptide reactions per solvent dielectric (308 total reactions). Modeled at a neutral pH and using quantum chemical and statistical thermodynamic methods, we computed the following values: enthalpy of reaction (ΔHRXN), entropy (ΔSRXN), Gibbs free energy of reaction (ΔGRXN), activation energy (EA), and the Arrhenius preexponential factor (log(A)) for each dipeptide. Additionally, using chemical reaction principles, we generated a database of computed rate coefficients for all possible N-terminus Gln-X deamidation reactions at a neutral pH, predicted the most likely deamidation reaction mechanism for each dipeptide reaction, analyzed our results against our prior study on Asn-X deamidation, and matched our results against qualitative trends previously noted by experimental literature.
Collapse
Affiliation(s)
- Katherine E Lawson
- Department of Chemical Engineering, Auburn University, Auburn, Alabama36830, United States
| | - Megan N Evans
- Department of Chemical Engineering, Auburn University, Auburn, Alabama36830, United States
| | - Joseph K Dekle
- Department of Chemical Engineering, Auburn University, Auburn, Alabama36830, United States
| | - Andrew J Adamczyk
- Department of Chemical Engineering, Auburn University, Auburn, Alabama36830, United States
| |
Collapse
|
2
|
Tan EM, Smolen JS. Historical observations contributing insights on etiopathogenesis of rheumatoid arthritis and role of rheumatoid factor. J Exp Med 2016; 213:1937-50. [PMID: 27621417 PMCID: PMC5030811 DOI: 10.1084/jem.20160792] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 08/25/2016] [Indexed: 12/11/2022] Open
Abstract
When studies on rheumatoid arthritis (RA) that were made many decades ago and could be considered "historical" in nature are analyzed in the context of recent observations, important insights on RA and on the function of rheumatoid factor (RF) become apparent. RF in the role of antibody to immune complexes (ICs) appears to be involved in activation of the complement system and in the production of chemotactic and inflammatory mediators, creating a condition that can be sustained and reinitiated. In the synovial cavity, a state of nonresolving inflammation is produced with the formation of citrullinated protein antigen-antibody complexes or other forms of ICs. This is followed by a second wave of IC production in the form of RF acting as antibody reactive with the initial ICs. Both of these processes are associated with complement consumption and production of inflammatory mediators. We present a model of an initiation phase of RA that might represent an example of repetitive formation of ICs and complement-mediated inflammation. Targeting therapy at this phase of RA to break the cycles of recurrent inflammation might be a novel approach to aid in further control of the disease.
Collapse
Affiliation(s)
- Eng M Tan
- The Scripps Research Institute, La Jolla, CA 92037
| | - Josef S Smolen
- Division of Rheumatology, Department of Medicine 3, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
3
|
Török K, Dezső B, Bencsik A, Uzonyi B, Erdei A. Complement receptor type 1 (CR1/CD35) expressed on activated human CD4+ T cells contributes to generation of regulatory T cells. Immunol Lett 2015; 164:117-24. [PMID: 25742728 DOI: 10.1016/j.imlet.2015.02.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 02/18/2015] [Accepted: 02/19/2015] [Indexed: 11/25/2022]
Abstract
The role of complement in the regulation of T cell immunity has been highlighted recently by several groups. We were prompted to reinvestigate the role of complement receptor type 1 (CR1, CD35) [corrected] in human T cells based on our earlier data showing that activated human T cells produce C3 (Torok et al. (2012) [48]) and also by results demonstrating that engagement of Membrane Cofactor Protein (MCP, CD46) induces a switch of anti-CD35-activated [corrected] helper T cells into regulatory T cells (Kemper et al. (2003) [17]). We demonstrate here that co-ligation of CD46 and CD35, [corrected] the two C3b-binding structures present on activated CD4+ human T cells significantly enhances CD25 expression, elevates granzyme B production and synergistically augments cell proliferation. The role of CR1 in the development of the Treg phenotype was further confirmed by demonstrating that its engagement enhances IL-10 production and reduces IFNγ release by the activated CD4+ T cells in the presence of excess IL-2. The functional in vivo relevance of our findings was highlighted by the immunohistochemical staining of tonsils, revealing the presence of CD4/CD35 [corrected] double positive lymphocytes mainly in the inter-follicular regions where direct contact between CD4+ T cells and B lymphocytes occurs. Regarding the in vivo relevance of the complement-dependent generation of regulatory T cells in secondary lymphoid organs we propose a scenario shown in the figure. The depicted process involves the sequential binding of locally produced C3 fragments to CD46 and CD35 [corrected] expressed on activated T cells, which - in the presence of excess IL-2 - leads to the development of Treg cells.
Collapse
Affiliation(s)
- Katalin Török
- MTA-ELTE Immunology Research Group, Budapest, Hungary
| | - Balázs Dezső
- Department of Pathology, Medical Center, University of Debrecen, Hungary
| | | | | | - Anna Erdei
- MTA-ELTE Immunology Research Group, Budapest, Hungary; Department of Immunology, Eötvös Loránd University, Budapest, Hungary.
| |
Collapse
|
4
|
Complement Regulation and the Host Response to Infection. Xenotransplantation 2014. [DOI: 10.1128/9781555818043.ch8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
Manipulation of the Humoral Immune System and the Host Immune Response to Infection. Xenotransplantation 2014. [DOI: 10.1128/9781555818043.ch7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Complement components as potential therapeutic targets for asthma treatment. Respir Med 2014; 108:543-9. [PMID: 24468195 DOI: 10.1016/j.rmed.2014.01.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 12/06/2013] [Accepted: 01/07/2014] [Indexed: 01/21/2023]
Abstract
Asthma is the most common respiratory disorder, and is characterized by distal airway inflammation and hyperresponsiveness. This disease challenges human health because of its increasing prevalence, severity, morbidity, and the lack of a proper and complete cure. Asthma is characterized by T(H)2-skewed inflammation with elevated pulmonary levels of IL-4, IL-5, and IL-13 levels. Although there are early forays into targeting T(H)2 immunity, less-specific corticosteroid therapy remains the immunomodulator of choice. Innate immune injury mediated by complement components also act as potent mediators of the allergic inflammatory responses and offer a new and exciting possibility for asthma immunotherapy. The complement cascade consists of a number of plasma- and membrane-bound proteins, and the cleavage products of these proteins (C3 and C5) regulate the magnitude of adaptive immune responses. Complement protein are responsible for many pathophysiological features of asthma, including inflammatory cell infiltration, mucus secretion, increases in vascular permeability, and smooth muscle cell contraction. This review highlights the complement-mediated injury during asthma inflammation, and how blockade of active complement mediators may have therapeutic application.
Collapse
|
7
|
Membrane-bound complement regulatory proteins as biomarkers and potential therapeutic targets for SLE. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 735:55-81. [PMID: 23402019 DOI: 10.1007/978-1-4614-4118-2_4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
For the last two decades, there had been remarkable advancement in understanding the role of complement regulatory proteins in autoimmune disorders and importance of complement inhibitors as therapeutics. Systemic lupus erythematosus is a prototype of systemic autoimmune disorders. The disease, though rare, is potentially fatal and afflicts women at their reproductive age. It is a complex disease with multiorgan involvement, and each patient presents with a different set of symptoms. The diagnosis is often difficult and is based on the diagnostic criteria set by the American Rheumatology Association. Presence of antinuclear antibodies and more specifically antidouble-stranded DNA indicates SLE. Since the disease is multifactorial and its phenotypes are highly heterogeneous, there is a need to identify multiple noninvasive biomarkers for SLE. Lack of validated biomarkers for SLE disease activity or response to treatment is a barrier to the efficient management of the disease, drug discovery, as well as development of new therapeutics. Recent studies with gene knockout mice have suggested that membrane-bound complement regulatory proteins (CRPs) may critically determine the sensitivity of host tissues to complement injury in autoimmune and inflammatory disorders. Case-controlled and followup studies carried out in our laboratory suggest an intimate relation between the level of DAF, MCP, CR1, and CD59 transcripts and the disease activity in SLE. Based on comparative evaluation of our data on these four membrane-bound complement regulatory proteins, we envisaged CR1 and MCP transcripts as putative noninvasive disease activity markers and the respective proteins as therapeutic targets for SLE. Following is a brief appraisal on membrane-bound complement regulatory proteins DAF, MCP, CR1, and CD59 as biomarkers and therapeutic targets for SLE.
Collapse
|
8
|
Daha NA, Banda NK, Roos A, Beurskens FJ, Bakker JM, Daha MR, Trouw LA. Complement activation by (auto-) antibodies. Mol Immunol 2011; 48:1656-65. [DOI: 10.1016/j.molimm.2011.04.024] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 04/15/2011] [Accepted: 04/20/2011] [Indexed: 12/24/2022]
|
9
|
Kozlov LV, Burdelev OO, Bureeva SV, Kaplun AP. Artificial inhibition of the complement system. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2007; 33:485-510. [DOI: 10.1134/s1068162007050020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Mulakala C, Lambris JD, Kaznessis Y. A simple, yet highly accurate, QSAR model captures the complement inhibitory activity of compstatin. Bioorg Med Chem 2006; 15:1638-44. [PMID: 17188878 PMCID: PMC1995432 DOI: 10.1016/j.bmc.2006.12.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2006] [Revised: 11/27/2006] [Accepted: 12/11/2006] [Indexed: 11/19/2022]
Abstract
Compstatin is a 13-residue cyclic peptide inhibitor of complement activation that was originally identified through phage-mediated presentation of a peptide library to C3b. Recent efforts to improve its activity have led to a rich dataset of complement analogs, with the most active analog being approximately 260 times more active than the parent compstatin. In the present work, a highly transparent quantitative structure-activity relationship model (Radj2=0.89) with four parameters is presented that captures important physico-chemical and geometrical properties of the analog molecules with regard to activity. The number of aromatic bonds and hydrophobicity of the fourth residue of compstatin correlated strongly with activity. Also important were the hydrophobic patch size near the disulfide bond and the solvent-accessible surface area occupied by nitrogen atoms of basic amino acid residues.
Collapse
Affiliation(s)
- Chandrika Mulakala
- Department of Chemical Engineering and Materials Science, and the Digital Technology Center, University of Minnesota, Minneapolis, Minnesota, 55455, USA
| | - John D. Lambris
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, 19104, USA
| | - Yiannis Kaznessis
- Department of Chemical Engineering and Materials Science, and the Digital Technology Center, University of Minnesota, Minneapolis, Minnesota, 55455, USA
- *Correspondence author. Tel: +1 612 624 4197; Fax: +1 612 626 7246;
| |
Collapse
|
11
|
Abstract
The complement system provides natural immunity against microbes and is an effector arm of antibody-mediated humoral immunity. It promotes the inflammatory process by activating cells and facilitates microbial destruction through opsonisation and lysis. Given this tissue damaging potential, it is not surprising that nearly half of the proteins of the complement system are regulators. The complement system can mediate undesirable cellular damage in autoantibody-mediated conditions, for example myasthenia gravis, immune-complex excess syndromes, such as systemic lupus erythaematosus, ischaemia-reperfusion states, hyperacute rejection of transplants, organ failure conditions (e.g., adult respiratory distress syndrome [ARDS]), Alzheimer's disease (AD) and related neurodegenerative disorders. A complement inhibitor has been lacking in the therapeutic arsenal. However, there are now several such agents being assessed in clinical trials and others under development. Current approaches include soluble versions of membrane regulatory proteins, humanised antibodies to components, small molecule inhibitors at various stages of the pathway and transgenic animals expressing human complement regulators for xenotransplantation. These and other strategies should lead to an effective means with which to inhibit complement activation in clinical medicine.
Collapse
Affiliation(s)
- M K Liszewski
- Department of Medicine, Washington University School of Medicine, 660 South Euclid, Box 8045, St Louis, MO 63110, USA
| | | |
Collapse
|
12
|
Song MK, Kim SY, Lee J. Understanding the structural characteristics of compstatin by conformational space annealing. Biophys Chem 2005; 115:201-7. [PMID: 15752605 DOI: 10.1016/j.bpc.2004.12.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2004] [Revised: 11/01/2004] [Accepted: 12/10/2004] [Indexed: 10/25/2022]
Abstract
The structural characteristics of the 13-residue compstatin molecule are investigated using the conformational space annealing (CSA) method with CHARMM force field and the GBSA continuum solvent model. In order to sample conformations in the energy range of the minimized NMR structures, we have used the stopping criterion to the CSA search when a conformation whose energy is less than -490 kcal/mol is found. With this stopping criterion, a great variety of conformations are generated around experimentally known structures. Twenty independent CSA runs starting from random states find 1000 representative conformations in the energy landscape of the compstatin, which are classified into thirty-one structural families. The majority of the conformations (94.4%) are in the coil state. Other conformers containing a 3(10)-helix, a pi-helix, a beta-hairpin, and an alpha-helix are also found.
Collapse
Affiliation(s)
- Mee Kyung Song
- School of Computational Sciences, Korea Institute for Advanced Study, 207-43 Cheongnyangni 2-dong, Dongdaemun-gu, Seoul 130-722, Korea
| | | | | |
Collapse
|
13
|
Elliott MK, Jarmi T, Ruiz P, Xu Y, Holers VM, Gilkeson GS. Effects of complement factor D deficiency on the renal disease of MRL/lpr mice. Kidney Int 2004; 65:129-38. [PMID: 14675043 DOI: 10.1111/j.1523-1755.2004.00371.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND The alternative complement pathway (AP) is activated in individuals with lupus nephritis and in murine models of systemic lupus erythematosus, including MRL/lpr mice. A previous study from our laboratory evaluated the development of renal disease in MRL/lpr mice genetically deficient in factor B (Bf-/-), a protein necessary for AP activation. MRL/lpr Bf-/- mice developed less renal disease and had improved survival; however, these mice were also a different major histocompatibility complex (MHC) haplotype (H-2b) than their wild-type littermates (H-2k) due to the gene for Bf being located in the MHC gene complex. We undertook the current study to determine if the decreased renal disease in MRL/lpr Bf-/- mice was due to the lack of AP activation or the H-2b haplotype by studying the effects of factor D (Df) deficiency, a critical protein for AP activation, on disease development in MRL/lpr mice. METHODS Df-deficient mice were backcrossed with MRL/lpr mice for four to nine generations. MRL/lpr H-2k Df-/-, Df+/-, and Df+/+ littermates were evaluated for disease development. Lack of AP activation in MRL/lpr Df-/- mice was determined by the zymosan assay. Serum creatinine levels were measured using a creatinine kit. Proteinuria and autoantibody levels were determined by enzyme-linked immunosorbent assay (ELISA). Sections from one kidney were stained with fluorescein isothiocyanate (FITC) alpha-murine C3 or alpha-murine IgG to detect C3 and IgG deposition. The remaining kidney was cut in half with one half fixed, sectioned, and stained with hematoxylin and eosin and periodic acid-Schiff (PAS) to evaluate pathology and another half fixed in glutaraldehyde and examined via electron microscopy. RESULTS MRL/lpr Df-/- mice had similar glomerular IgG deposition, proteinuria and autoantibody levels, as Df+/+ and Df+/- littermates. However, glomerular C3 deposition, serum creatinine levels, and pathologic renal disease were significantly reduced in Df-/- mice. Despite the lack of renal disease in Df-/- mice, life span was not impacted by factor D deficiency. CONCLUSION The absence of Df and AP activation is protective against the development of proliferative renal disease in MRL/lpr mice suggesting the similar effect of Bf deficiency in MRL/lpr mice was also due to the lack of AP activation.
Collapse
Affiliation(s)
- Margaret K Elliott
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | | | | | | | | | | |
Collapse
|
14
|
Taube C, Rha YH, Takeda K, Park JW, Joetham A, Balhorn A, Dakhama A, Giclas PC, Holers VM, Gelfand EW. Inhibition of complement activation decreases airway inflammation and hyperresponsiveness. Am J Respir Crit Care Med 2003; 168:1333-41. [PMID: 14500265 DOI: 10.1164/rccm.200306-739oc] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Studies in murine models have suggested the involvement of the complement anaphylatoxins (C3a and C5a) in the development of allergic asthma. We investigated the effects of inhibiting complement activation after sensitization but before allergen challenge on the development of allergic airway inflammation and airway hyperresponsiveness. To prevent complement activation, we used a recombinant soluble form of the mouse membrane complement inhibitor complement receptor-related gene y (Crry) fused to the IgG1 hinge, CH2 and CH3 domains (Crry-Ig), which has decay-accelerating activity for both the classic and alternative pathways of complement as well as cofactor activity for factor I-mediated cleavage of C3b and C4b. C57BL/6 mice were sensitized (Days 1 and 14) and challenged (Days 24-26) with ovalbumin. Crry-Ig was administered after allergen sensitization either as an intraperitoneal injection or by nebulization before allergen challenge. Crry-Ig significantly prevented the development of airway hyperresponsiveness, decreased airway and lung eosinophilia as well as the numbers of lung lymphocytes, decreased levels of interleukin (IL)-4, IL-5, and IL-13 in bronchoalveolar lavage fluid and decreased serum ovalbumin-specific IgE and IgG1. These results suggest that prevention of complement activation may have a therapeutic role in the treatment of allergic airway inflammation and asthma in sensitized individuals.
Collapse
Affiliation(s)
- Christian Taube
- Department of Pediatrics, National Jewish Medical and Research Center, Denver, Colorado 80206, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Oh KS, Kweon MH, Rhee KH, Ho Lee K, Sung HC. Inhibition of complement activation by recombinant Sh-CRIT-ed1 analogues. Immunology 2003; 110:73-9. [PMID: 12941143 PMCID: PMC1783027 DOI: 10.1046/j.1365-2567.2003.01706.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sh-CRIT-ed1 is a potent anti-complement peptide that inhibits the classical complement-activation pathway by interfering with the formation of the C3-convertase complex, C4b2a. C2 is an essential serum glycoprotein that provides the catalytic subunit of the C3 and C5 convertases of the classical pathways of complement activation. Because only in its C4-bound state is C2a capable of cleaving its physiological protein substrates C3 and C5, the interaction of Sh-CRIT-ed1 with C2 plays a decisive role of inhibition in the classical complement-activation process. However, the role of individual Sh-CRIT-ed1 amino acid residues in C2 binding is not fully understood. We constructed nine recombinant Sh-CRIT-ed1 (rSh1) analogues, substituted at conserved residues, and evaluated their anti-complement and C2-binding activities. Results from glutathione S-transferase (GST) pull-down and haemolytic assays suggested that residues 10K, 17E, 19K and 26Y are critical for the interaction of rSh1 with C2. We then constructed an improved anti-complement peptide by duplicating Sh-CRIT-ed1 C-terminal motifs (17H-26Y). This linear homodimer (rH17d) was more potent than rSh1 with respect to binding to C2 and anti-complement activity (the 50% inhibitory concentration value was approximately equal 1.2 micro m versus approximately equal 6.02 micro m for rSh1). Furthermore, rH17d showed higher anti-complement activity in vivo, providing additional evidence that this duplication is a more effective inhibitor of complement activation than rSh1. Taken together, these results identify four key residues in rSh1 and strongly suggest that rH17d is a potent inhibitor of complement activation that may have therapeutic applications.
Collapse
Affiliation(s)
- Kwang-Seok Oh
- Graduate School of Biotechnology, Korea University, Seoul, Korea, Kolon Central Research Park, Yongin-city, Kyunggi-do, Korea.
| | | | | | | | | |
Collapse
|
16
|
Affiliation(s)
- V Michael Holers
- Department of Medicine and Immunology, Health Science Center, University of Colorado, Denver, CO 80262, USA.
| |
Collapse
|
17
|
Schuurman HJ, Greenstein JL. Solid Organ Xenotransplantation: Experience in the Pig-to-Primate Transplantation Model. Eur Surg 2002. [DOI: 10.1046/j.1563-2563.2002.02009.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
McInnes EF, Jarrett RF, Langford G, Atkinson C, Horsley J, Goddard MJ, Cozzi E, Schuurman HJ. Posttransplant lymphoproliferative disorder associated with primate gamma-herpesvirus in cynomolgus monkeys used in pig-to-primate renal xenotransplantation and primate renal allotransplantation. Transplantation 2002; 73:44-52. [PMID: 11792976 DOI: 10.1097/00007890-200201150-00008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND A series of immunosuppressed cynomolgus monkeys were used in porcine-to-primate and primate-to-primate renal transplantation. In a number of animals nodal and extranodal lymphomas as well as areas of lymphoid hyperplasia in multiple organs (posttransplant lymphoproliferative disorder, PTLD) were recorded. METHODS PTLD was characterized with respect to manifestation sites, histopathology, immunophenotype, and association with primate Epstein Barr-like Virus by in situ hybridization and quantitative polymerase chain reaction. RESULTS PTLD was observed in 10 of 245 xenotransplanted and 9 of 231 allotransplanted monkeys; its detection in xenotransplanted animals was significantly earlier after transplantation than that in allo-transplanted animals (median, 40 and 104 days, respectively; P<0.001). In the xenotransplanted animals, four cases showed a B-cell lymphoma and six cases were nonneoplastic (lymphoid hyperplasia). All nine PTLD cases from allotransplanted animals were diagnosed as lymphoma. There was no clear relationship between the use of a particular drug or drug combination in maintenance immunosuppression and the occurrence of PTLD. Fourteen of 19 animals (six of the cases from xenotransplants, eight from the allotransplant series) were positive by in situ hybridization with oligonucleotide probes detecting primate gamma-herpesvirus. CONCLUSION These data indicate that PTLD in the xeno- and allotransplanted cynomolgus monkeys are associated with primate gamma-herpesvirus-induced B-cell proliferation.
Collapse
|
19
|
Monsinjon T, Richard V, Fontaine M. Complement and its implications in cardiac ischemia/reperfusion: strategies to inhibit complement. Fundam Clin Pharmacol 2001; 15:293-306. [PMID: 11903498 DOI: 10.1046/j.1472-8206.2001.00040.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Although reperfusion of the ischemic myocardium is an absolute necessity to salvage tissue from eventual death, it is also associated with pathologic changes that represent either an acceleration of processes initiated during ischemia or new pathophysiological changes that were initiated after reperfusion. This so-called "reperfusion injury" is accompanied by a marked inflammatory reaction, which contributes to tissue injury. In addition to the well known role of oxygen free radicals and white blood cells, activation of the complement system probably represents one of the major contributors of the inflammatory reaction upon reperfusion. The complement may be activated through three different pathways: the classical, the alternative, and the lectin pathway. During reperfusion, complement may be activated by exposure to intracellular components such as mitochondrial membranes or intermediate filaments. Two elements of the activated complement contribute directly or indirectly to damages: anaphylatoxins (C3a and C5a) and the membrane attack complex (MAC). C5a, the most potent chemotactic anaphylatoxin, may attract neutrophils to the site of inflammation, leading to superoxide production, while MAC is deposited over endothelial cells and smooth vessel cells, leading to cell injury. Experimental evidence suggests that tissue salvage may be achieved by inhibition of the complement pathway. As the complement is composed of a cascade of proteins, it provides numerous sites for pharmacological interventions during acute myocardial infarction. Although various strategies aimed at modulating the complement system have been tested, the ideal approach probably consists of maintaining the activity of C3 (a central protein of the complement cascade) and inhibiting the later events implicated in ischemia/reperfusion and also in targeting inhibition in a tissue-specific manner.
Collapse
|
20
|
Sahu A, Soulika AM, Morikis D, Spruce L, Moore WT, Lambris JD. Binding kinetics, structure-activity relationship, and biotransformation of the complement inhibitor compstatin. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:2491-9. [PMID: 10946275 DOI: 10.4049/jimmunol.165.5.2491] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We have previously identified a 13-residue cyclic peptide, Compstatin, that binds to complement component C3 and inhibits complement activation. Herein, we describe the binding kinetics, structure-activity relationship, and biotransformation of Compstatin. Biomolecular interaction analysis using surface-plasmon resonance showed that Compstatin bound to native C3 and its fragments C3b and C3c, but not C3d. While binding of Compstatin to native C3 was biphasic, binding to C3b and C3c followed the 1:1 Langmuir binding model; the affinities of Compstatin for C3b and C3c were 22- and 74-fold lower, respectively, than that of native C3. Analysis of Compstatin analogs synthesized for structure-function studies indicated that 1) the 11-membered ring between disulfide-linked Cys2-Cys12 constitutes a minimal structure required for optimal activity; 2) retro-inverso isomerization results in loss of inhibitory activity; and 3) some residues of the type I beta-turn segment also interact with C3. In vitro studies of Compstatin in human blood indicated that a major pathway of biotransformation was the removal of Ile1, which could be blocked by N-acetylation of the peptide. These findings indicate that acetylated Compstatin is stable against enzymatic degradation and that the type I beta-turn segment is not only critical for preservation of the conformational stability, but also involved in intermolecular recognition.
Collapse
Affiliation(s)
- A Sahu
- Protein Chemistry Laboratory, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
21
|
Sahu A, Lambris JD. Complement inhibitors: a resurgent concept in anti-inflammatory therapeutics. IMMUNOPHARMACOLOGY 2000; 49:133-48. [PMID: 10904113 DOI: 10.1016/s0162-3109(00)80299-4] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In addition to its essential role in immune defense, the complement system contributes to tissue damage in many clinical conditions. Thus, there is a pressing need to develop therapeutically effective complement inhibitors to prevent these adverse effects. This concept, though old, received little scientific attention until recently. Data from animal models of diseases that have been produced using complement-deficient, knockout, and transgenic animals, as well as data demonstrating that complement proteins are produced in many important tissue sites (including the brain) have attracted the interest of many basic research scientists and applied scientists from the biotechnology field and larger pharmaceutical firms. This resurgence of interest has generated a wealth of new information in the field of complement inhibition. In this article, we comprehensively review up-to-date information in the field of complement inhibitors.
Collapse
Affiliation(s)
- A Sahu
- Protein Chemistry Laboratory, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia 19104, USA
| | | |
Collapse
|
22
|
Tracing uptake of C3dg-conjugated antigen into B cells via complement receptor type 2 (CR2, CD21). Blood 2000. [DOI: 10.1182/blood.v95.8.2617] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractElectron microscopy was used to study the internalization and delivery of ligands for complement receptor type 2 (CR2, CD21) to endocytic compartments of B-lymphoblastoid Raji cells. Opsonized antigen was mimicked with purified C3dg conjugated to colloidal gold. C3dg-gold bound specifically to the cell surface in a time-dependent manner, and preincubation of the cells with a monoclonal antibody blocking the CR2 ligand-binding site completely inhibited any C3dg-gold binding. Notably, the binding of C3d-gold was confined to cell surface protrusions, eg, microvilli. C3dg-gold was apparently internalized through coated pits located at the bases of microvilli and could be traced to different compartments of the endocytic pathway. The morphologic characteristics and intracellular distribution of these multivesicular or multilaminar structures were compatible with those of compartments known to harbor major histocompatibility complex (MHC) class II molecules. Immunolabeling showed that the internalized C3dg-gold colocalized with MHC class II in these structures. These data provide the first ultrastructural evidence that complement-coated antigens are endocytosed by antigen-nonspecific B cells by CR2 and are delivered to the compartments in which peptide loading for antigen presentation occurs. They support the notion that CR2 may play a role in antigen presentation by B cells regardless of B-cell receptor specificity.
Collapse
|
23
|
Tracing uptake of C3dg-conjugated antigen into B cells via complement receptor type 2 (CR2, CD21). Blood 2000. [DOI: 10.1182/blood.v95.8.2617.008k20_2617_2623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Electron microscopy was used to study the internalization and delivery of ligands for complement receptor type 2 (CR2, CD21) to endocytic compartments of B-lymphoblastoid Raji cells. Opsonized antigen was mimicked with purified C3dg conjugated to colloidal gold. C3dg-gold bound specifically to the cell surface in a time-dependent manner, and preincubation of the cells with a monoclonal antibody blocking the CR2 ligand-binding site completely inhibited any C3dg-gold binding. Notably, the binding of C3d-gold was confined to cell surface protrusions, eg, microvilli. C3dg-gold was apparently internalized through coated pits located at the bases of microvilli and could be traced to different compartments of the endocytic pathway. The morphologic characteristics and intracellular distribution of these multivesicular or multilaminar structures were compatible with those of compartments known to harbor major histocompatibility complex (MHC) class II molecules. Immunolabeling showed that the internalized C3dg-gold colocalized with MHC class II in these structures. These data provide the first ultrastructural evidence that complement-coated antigens are endocytosed by antigen-nonspecific B cells by CR2 and are delivered to the compartments in which peptide loading for antigen presentation occurs. They support the notion that CR2 may play a role in antigen presentation by B cells regardless of B-cell receptor specificity.
Collapse
|
24
|
Quigg RJ, He C, Hack BK, Alexander JJ, Morgan BP. Production and functional analysis of rat CD59 and chimeric CD59-Crry as active soluble proteins in Pichia pastoris. Immunology 2000; 99:46-53. [PMID: 10651940 PMCID: PMC2327136 DOI: 10.1046/j.1365-2567.2000.00945.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Crry (CR1-related gene/protein) is a rodent complement regulator that inhibits C3 convertases. CD59 is a conserved protein inhibitor active towards C8 and C9. We have previously produced rat Crry as a recombinant soluble (rs) protein in Pichia pastoris. In this study we produced functionally active rat rsCD59 and a chimeric rsCD59-Crry protein in P. pastoris. The GPI anchor addition site of rat CD59 (Asn-79) was replaced either by a stop codon to produce rsCD59, or with the sequence of the first five short consensus repeats of Crry to produce rsCD59-Crry. Proteins were generated by fermentation and purified by affinity chromatography on an anti-CD59 column. In a standard classical pathway haemolysis assay, all three rs proteins had inhibitory activity, with 50% inhibition at 0.5 microM (rsCrry and rsCD59-Crry) and 4.4 microM (rsCD59). In an assay examining inhibition of C5b-9, in which C5b-7 was first formed, followed by purified C8 and C9, rsCD59 and rsCD59-Crry were active with 50% inhibition at 0.8 microM (rsCD59-Crry) and 1.3 microM (rsCD59). The degree of inhibition was independent of whether the C8 and C9 were of rat or human origin. Therefore, we have produced rsCD59 and rsCD59-Crry in P. pastoris. The rsCD59 retains its inhibitory activity towards C5b-9, while rsCD59-Crry appears to have the combined activities of Crry and CD59. In a haemolytic assay, the inclusion of CD59 to Crry is of no additional benefit to Crry, which may illustrate the overall importance of the C3 convertase step. Yet, inclusion of Crry to CD59 increases the potency of CD59 towards C5b-9.
Collapse
Affiliation(s)
- R J Quigg
- Department of Medicine, Section of Nephrology, The University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | |
Collapse
|
25
|
Kirkitadze MD, Dryden DT, Kelly SM, Price NC, Wang X, Krych M, Atkinson JP, Barlow PN. Co-operativity between modules within a C3b-binding site of complement receptor type 1. FEBS Lett 1999; 459:133-8. [PMID: 10508932 DOI: 10.1016/s0014-5793(99)01205-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Complement receptor type 1 (CR1) has 30 modules in its extracellular portion. An understanding of structure-function relationships within CR1 is being assembled gradually from studies of overlapping protein fragments. A CR1 fragment corresponding to modules 16 and 17 was expressed recombinantly as a non-glycosylated protein and its stability and unfolding characteristics studied using biophysical techniques. The results were compared with data collected previously on a CR1 fragment encompassing modules 15, 16 and 17 which together constitute a C3b-binding site (Kirkitadze, M.D., Krych, M., Uhrin, D. , Dryden, D.T.F., Smith, B.O., Wang, X., Hauhart, R., Atkinson, J.P. and Barlow, P.N. (1999) Biochemistry 38, 7019-7031). Modules within CR1 were found to co-operate during unfolding. The folding, stability and flexibility of this protein is therefore likely to be a complex function, and not just the sum, of contributions from individual modules.
Collapse
Affiliation(s)
- M D Kirkitadze
- The Edinburgh Centre for Protein Technology, Department of Chemistry, University of Edinburgh, West Mains Road, Edinburgh, UK
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Complement activation has been implicated as a pathological process in a number of inflammatory and autoimmune disorders including chronic rheumatoid arthritis (RA). Animal models of experimental arthritis have been widely used to investigate the pathogenesis of RA and also in the development of novel therapies. Many of these models are complement-dependent and both incidence and progression of disease can be influenced by complement inhibition. In certain situations, local inhibition is of greater therapeutic benefit than systemic decomplementation. An increasing awareness and availability of a wide range of naturally occurring complement regulatory proteins can now offer a more targeted approach to complement inhibition while the availability of novel engineering strategies has also improved the efficiency of this process. The success of complement inhibition in the experimental models described should offer a novel therapeutic approach to the treatment of human inflammatory arthritis.
Collapse
Affiliation(s)
- S M Linton
- Department of Medical Biochemistry, University of Wales College of Medicine, Cardiff, UK.
| | | |
Collapse
|
27
|
Alexander JJ, Lim A, He C, MacDonald RL, Holers VM, Quigg RJ. Renal, central nervous system and pancreatic overexpression of recombinant soluble Crry in transgenic mice. A novel means of protection from complement-mediated injury. IMMUNOPHARMACOLOGY 1999; 42:245-54. [PMID: 10408385 DOI: 10.1016/s0162-3109(99)00010-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Crry is a potent complement regulator that inhibits classical and alternative pathway C3 convertases in rodents. We have produced transgenic animals expressing Crry as a recombinant soluble protein driven by the broadly active metallothionein-I promoter. These animals have high serum and urinary levels of rsCrry leading to inhibition of complement activity. In nephrotoxic serum nephritis (NSN), injected antibodies bind to glomeruli, leading to complement activation and subsequent glomerular injury and albuminuria. We have shown that rsCrry can block such injury and reduce albuminuria by as much as 75%. Corresponding to the reduction in albuminuria was the complete absence of C3 staining in glomeruli by immunofluorescence microscopy in 17/20 transgene positive animals. Support for a local source of protective rsCrry in this model is provided by the demonstration of Crry transgene mRNA in the glomerulus and a very high fractional excretion of rsCrry in the urine. Therefore, rsCrry expression markedly ameliorates an antibody-induced disease model in vivo. In addition, local synthesis of Crry in other organs that are targets of immune injury has been found. For example, Crry transgene mRNA is present throughout the central nervous system and in pancreatic islets. Thus, continuous complement inhibition at the C3 convertase step appears to be feasible and is effective in complement-mediated injury states. A number of disease models affecting these target organs can be tested using these mice.
Collapse
Affiliation(s)
- J J Alexander
- Department of Medicine, The University of Chicago, IL 60637, USA
| | | | | | | | | | | |
Collapse
|
28
|
|
29
|
|
30
|
Prodinger WM. Complement receptor type two (CR2,CR21): a target for influencing the humoral immune response and antigen-trapping. Immunol Res 1999; 20:187-94. [PMID: 10741859 DOI: 10.1007/bf02790402] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cellular receptors for complement C3 fragments deposited on antigens are important bricks in the wall defending against microbial pathogens. The part of complement receptor type 2 (CR2; CD21) deals with enhancing humoral immune responses and with long-term trapping of C3d-coated antigen by follicular dendritic cells. CR2 is also pivotal for Epstein-Barr virus (EBV) infection. Here, the current understanding, how CR2 interacts with its ligands C3d, EBV, and CD23 is summarized. The potential to target CR2 for clinical therapy or immunization purposes are discussed.
Collapse
Affiliation(s)
- W M Prodinger
- Institut für Hygiene, University of Innsbruck, Austria.
| |
Collapse
|
31
|
Schiller B, He C, Salant DJ, Lim A, Alexander JJ, Quigg RJ. Inhibition of complement regulation is key to the pathogenesis of active Heymann nephritis. J Exp Med 1998; 188:1353-8. [PMID: 9763614 PMCID: PMC2212493 DOI: 10.1084/jem.188.7.1353] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/1998] [Indexed: 11/17/2022] Open
Abstract
Crry (complement receptor 1-related protein/gene y) is a key cellular complement regulator in rodents. It is also present in Fx1A, the renal tubular preparation used to immunize rats to induce active Heymann nephritis (HN), a model of membranous nephropathy. We hypothesized that rats immunized with anti-Fx1A develop autoantibodies (auto-Abs) to Crry as well as to the megalin-containing HN antigenic complex, and that anti-Crry Abs promote the development of injury in HN by neutralizing the complement regulatory activity of Crry. Rats immunized with Fx1A lacking Crry remained free of proteinuria and glomerular deposits of C3 during a 10-wk follow-up despite typical granular immunoglobulin (Ig)G deposits in glomeruli. Anti-Fx1A auto-Abs were present in their sera at levels that were not different from sera pooled from proteinuric rats with HN induced with nephritogenic Fx1A. Passive administration of sheep anti-Crry Abs to rats immunized with Crry-deficient Fx1A led to proteinuria and glomerular C3 deposition, which were not seen in such rats injected with preimmune IgG, nor in rats with collagen-induced arthritis injected with anti-Crry IgG. To directly examine the role of Crry in HN, rats were immunized with Crry-deficient Fx1A reconstituted with rCrry. This led to typical HN, with 8 out of 15 rats developing proteinuria within 14 wk. Moreover, the extent of glomerular C3 deposition correlated with proteinuria, and anti-Crry Abs were present in glomerular eluates. Thus, Crry is a key nephritogenic immunogen in Fx1A. Formation of neutralizing auto-Abs to Crry impairs its function, leading to unrestricted complement activation by Abs reactive with the HN antigenic complex on the epithelial cell surface.
Collapse
Affiliation(s)
- B Schiller
- Department of Medicine, Section of Nephrology, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | |
Collapse
|
32
|
Quigg RJ, He C, Lim A, Berthiaume D, Alexander JJ, Kraus D, Holers VM. Transgenic mice overexpressing the complement inhibitor crry as a soluble protein are protected from antibody-induced glomerular injury. J Exp Med 1998; 188:1321-31. [PMID: 9763611 PMCID: PMC2212499 DOI: 10.1084/jem.188.7.1321] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/1998] [Revised: 07/02/1998] [Indexed: 11/24/2022] Open
Abstract
Complement receptor 1-related gene/protein y (Crry) is a potent murine membrane complement regulator that inhibits classical and alternative pathway C3 convertases. In nephrotoxic serum (NTS) nephritis, injected antibodies (Abs) bind to glomeruli, leading to complement activation and subsequent glomerular injury and albuminuria. To study the phenotypic effects of continuous complement pathway blockade, transgenic mice were created that express recombinant soluble (rs) Crry directed by the broadly active and heavy metal-inducible metallothionein-I promoter. One transgenic line expressing high levels of rsCrry was propagated. Serum rsCrry levels were 18.7 +/- 2.7 microg/ml (n = 5) at basal level and increased to 118.1 +/- 20.6 microg/ml 4 d after addition of zinc to the drinking water. By reverse transcription polymerase chain reaction (RT-PCR), transgene messenger (m)RNA was present in liver, kidney, brain, lung, and spleen, but not in heart. By in situ RT-PCR analysis of kidneys, transgene mRNA was widely expressed both in renal glomeruli and tubules. Urinary excretion of rsCrry was 113.4 +/- 22.4 microg/ml with a fractional excretion relative to creatinine of 13.2 +/- 2.7%, consistent with local renal production of rsCrry and secretion into urine. The founder and all transgene positive adult animals have remained healthy with no mortality or apparent phenotypic abnormalities, including infection or immune complex disease. To determine whether rsCrry blocked complement-mediated injury, NTS nephritis was induced by injection of NTS immunoglobulin (Ig)G, followed by an 18-h urine collection to quantitate the excretion of albumin as a measure of glomerular injury. In transgene-negative littermates (n = 15), transgene-positive animals (n = 10), and transgene-positive animals fed zinc (n = 10), albuminuria was 4,393 +/- 948, 1,783 +/- 454, and 1,057 +/- 277 microg/mg creatinine, respectively (P < 0.01 by ANOVA). Glomerular C3 was evident by immunofluorescence staining in 12/15 transgene-negative animals, but in none of the transgene-positive animals fed zinc. Thus, we have produced the first transgenic animals that overexpress a soluble C3 convertase inhibitor. rsCrry expression markedly ameliorates an Ab-induced disease model in vivo. These results support the hypothesis that continuous complement inhibition at the C3 convertase step is feasible and effective in complement-mediated injury states.
Collapse
Affiliation(s)
- R J Quigg
- Department of Medicine, Section of Nephrology, The University of Chicago, Chicago, Illinois 60637, USA.
| | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
A chronically activated immune system can kill host cells, and accumulating evidence suggests that this mechanism plays an important role in many degenerative diseases. It may be of importance in CNS conditions such as Alzheimer's disease, ischaemia and even Parkinson's disease, as well as in peripheral disorders such as myocardial ischaemia and xenotransplantation. The complement system plays a key role in the immune reaction and can kill host tissue directly, by action of the membrane attack complex (MAC) of complement, or indirectly, through activation of macrophages which produce abundant amounts of oxygen radicals and other potentially toxic products. Endogenous regulators for many steps in the complement cascade have been identified, and these and some analogues are being explored as possible agents for the prevention of the toxic effects of complement activation. Numerous reports have attested to the protective effects of such inhibitors in animal models of immune disorders, particularly of transplant rejection and ischaemia-reperfusion injury. There have been a few clinical trials in peripheral disorders and, although not yet tried in neurological disease, it seems probable that this general approach will lead to therapeutic agents capable of specific modulation of the central immune response.
Collapse
Affiliation(s)
- E G McGeer
- Kinsmen Laboratory of Neurological Research, University of British Columbia, Vancouver, Canada.
| | | |
Collapse
|
34
|
Quigg RJ, Kozono Y, Berthiaume D, Lim A, Salant DJ, Weinfeld A, Griffin P, Kremmer E, Holers VM. Blockade of Antibody-Induced Glomerulonephritis with Crry-Ig, a Soluble Murine Complement Inhibitor. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.160.9.4553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
A recombinant soluble form of the mouse membrane complement inhibitor Crry (complement receptor-related gene y) fused to IgG1 hinge, CH2, and CH3 domains has been created and designated Crry-Ig. Crry has been used because, similar to human soluble CR1, it demonstrates decay-accelerating activity for both the classical and alternative pathways of complement as well as cofactor activity for factor I-mediated cleavage of C3b and C4b. The mouse IgG1 isotype was incorporated because it is a noncomplement-activating isotype and, when fused to Crry, results in a complement inhibitor that should not be recognized as foreign when used chronically in murine models. Crry-Ig demonstrated complement-inhibitory activity in both the fluid phase and on target surfaces. Following in vivo injection, Crry-Ig manifested a two-phase serum elimination profile, a rapid initial loss most likely reflecting tissue redistribution and a second more prolonged decline with a t1/2 of 40 h. Inhibition of complement activation in mice following injection of Crry-Ig was demonstrated by a marked decrease in the ability of serum from treated mice to be activated by zymosan particles in vitro. Finally, in vivo efficacy of Crry-Ig was demonstrated by its ability to substantially diminish renal injury induced by complement-fixing nephrotoxic Ab. The use of Crry-Ig in vivo in murine models of chronic inflammatory and autoimmune disease should allow further insight into the potential therapeutic effects and possible untoward complications of continuous blockade of complement using inhibitors that act on activation products of C4 and C3.
Collapse
Affiliation(s)
- Richard J. Quigg
- *Department of Medicine, Section of Nephrology, The University of Chicago, Chicago, IL 60637
| | - Yuko Kozono
- †Departments of Medicine and Immunology, Division of Rheumatology, University of Colorado Health Sciences Center, Denver, CO 80262
| | - Dawn Berthiaume
- †Departments of Medicine and Immunology, Division of Rheumatology, University of Colorado Health Sciences Center, Denver, CO 80262
| | - Alice Lim
- *Department of Medicine, Section of Nephrology, The University of Chicago, Chicago, IL 60637
| | - David J. Salant
- ‡Department of Medicine, Renal Section, Boston University Medical Center, Boston, MA 02118; and
| | - Andrew Weinfeld
- †Departments of Medicine and Immunology, Division of Rheumatology, University of Colorado Health Sciences Center, Denver, CO 80262
| | - Patricia Griffin
- †Departments of Medicine and Immunology, Division of Rheumatology, University of Colorado Health Sciences Center, Denver, CO 80262
| | - Elisabeth Kremmer
- §GSF-National Research Center for Environment and Health, Institute of Immunology, Munich, Germany
| | - V. Michael Holers
- †Departments of Medicine and Immunology, Division of Rheumatology, University of Colorado Health Sciences Center, Denver, CO 80262
| |
Collapse
|
35
|
Hammerberg C, Katiyar SK, Carroll MC, Cooper KD. Activated complement component 3 (C3) is required for ultraviolet induction of immunosuppression and antigenic tolerance. J Exp Med 1998; 187:1133-8. [PMID: 9529329 PMCID: PMC2212216 DOI: 10.1084/jem.187.7.1133] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/1997] [Revised: 02/04/1998] [Indexed: 11/29/2022] Open
Abstract
Complement component 3 (C3), a critical regulator of innate immunity, may also play a role in the regulation of cognate immunity, such as contact sensitivity responses. Because ultraviolet (UV) radiation also activates C3 in the skin, we determined whether the immunosuppressed state that results when a contact sensitizer is applied through UVB-exposed skin requires the presence and activation of C3. This question was addressed through the use of C3-deficient mice, blockade of C3 cleavage to C3b, and accelerated degradation of iC3b by soluble complement receptor 1 (sCR1). Both C3-modulated systems totally reversed the failure to induce a contact sensitivity response to dinitrofluorobenzene (DNFB) upon primary sensitization at the UV-exposed site, as well as immunologic tolerance to a second DNFB immunization through normal skin. Treatment with sCR1 reduced the infiltration of CD11b+ leukocytes into the epidermis and dermis of UV-irradiated skin but did not reverse the UV-induced depletion of epidermal class II MHC+CD11blo Langerhans cells. These data, taken together with previous results showing abrogation of locally induced UV immunosuppression by in vivo anti-CD11b treatment, suggest a novel mechanism by which ligation of the leukocyte beta2 integrin, CD11b, by iC3b molecules formed from C3 activation in UV-exposed skin, modifies cutaneous CD11b+ cells such that skin antigen-presenting cells are unable to sensitize in a primary immune response, but actively induce antigenic tolerance.
Collapse
Affiliation(s)
- C Hammerberg
- Department of Dermatology, Case Western Reserve University, and University Hospitals of Cleveland, Cleveland, Ohio 44106, USA
| | | | | | | |
Collapse
|
36
|
Morikis D, Assa-Munt N, Sahu A, Lambris JD. Solution structure of Compstatin, a potent complement inhibitor. Protein Sci 1998; 7:619-27. [PMID: 9541394 PMCID: PMC2143948 DOI: 10.1002/pro.5560070311] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The third component of complement, C3, plays a central role in activation of the classical, alternative, and lectin pathways of complement activation. Recently, we have identified a 13-residue cyclic peptide (named Compstatin) that specifically binds to C3 and inhibits complement activation. To investigate the topology and the contribution of each critical residue to the binding of Compstatin to C3, we have now determined the solution structure using 2D NMR techniques; we have also synthesized substitution analogues and used these to study the structure-function relationships involved. Finally, we have generated an ensemble of a family of solution structures of the peptide with a hybrid distance geometry-restrained simulated-annealing methodology, using distance, dihedral angle, and 3J(NH-Halpha)-coupling constant restraints. The Compstatin structure contained a type I beta-turn comprising the segment Gln5-Asp6-Trp7-Gly8. Preference for packing of the hydrophobic side chains of Val3, Val4, and Trp7 was observed. The generated structure was also analyzed for consistency using NMR parameters such as NOE connectivity patterns, 3J(NH-Halpha)-coupling constants, and chemical shifts. Analysis of Ala substitution analogues suggested that Val3, Gln5, Asp6, Trp7, and Gly8 contribute significantly to the inhibitory activity of the peptide. Substitution of Gly8 caused a 100-fold decrease in inhibitory potency. In contrast, substitution of Val4, His9, His10, and Arg11 resulted in minimal change in the activity. These findings indicate that specific side-chain interactions and the beta-turn are critical for preservation of the conformational stability of Compstatin and they might be significant for maintaining the functional activity of Compstatin.
Collapse
Affiliation(s)
- D Morikis
- The Burnham Institute, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
37
|
Sahu A, Sunyer JO, Moore WT, Sarrias MR, Soulika AM, Lambris JD. Structure, functions, and evolution of the third complement component and viral molecular mimicry. Immunol Res 1998; 17:109-21. [PMID: 9479573 DOI: 10.1007/bf02786436] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The third component of the complement system, C3, is a common denominator in the activation of the classical, alternative, and lectin pathways. The ability of C3 molecule to interact with at least 20 different proteins makes it the most versatile component of this system. Since these interactions are important for phagocytic, immunoregulatory, and immune evasion mechanisms, the analysis of its structure and functions has been a subject of intense research. Here we review our current work on the C3-ligand interactions, C3-related viral molecular mimicry, evolution of the complement system, and identification of C3-based complement inhibitors.
Collapse
Affiliation(s)
- A Sahu
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia 19104, USA
| | | | | | | | | | | |
Collapse
|
38
|
Lindsberg PJ, Ohman J, Lehto T, Karjalainen-Lindsberg ML, Paetau A, Wuorimaa T, Carpén O, Kaste M, Meri S. Complement activation in the central nervous system following blood-brain barrier damage in man. Ann Neurol 1996; 40:587-96. [PMID: 8871578 DOI: 10.1002/ana.410400408] [Citation(s) in RCA: 113] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The central nervous system (CNS) is virtually isolated from circulating immunological factors such as complement (C), an important mediator of humoral immunity and inflammation. In circulation, C is constantly inhibited to prevent attack on host cells. Since a host of diseases produce an abnormal blood-brain/cerebrospinal fluid (blood-brain/CSF) permeability allowing C protein extravasation, we investigated if C activation occurs in CSF in vitro and in CNS in vivo during subarachnoid hemorrhage (SAH) or brain infarction. After SAH (n = 15), the terminal complement complex (TCC) concentration on days 0 to 2 was higher in the CSF, 210 +/- 61 ng/ml, than in the plasma, 63 +/- 17 ng/ml, but null in the CSF of controls (n = 8) or patients with an ischemic stroke (n = 7). TCC was eliminated from the CSF after SAH (24 +/- 10 ng/ml on days 7 to 10). Incubation of normal human CSF with serum in vitro also activated the terminal C pathway. In 10 fatal ischemic brain infarctions, immunohistochemical techniques demonstrated neuronal fragment-associated deposition of C9 accompanied by neutrophil infiltration. We conclude that the C system becomes activated intrathecally in SAH and focally in the brain parenchyma in ischemic stroke. By promoting chemotaxis and vascular perturbation, C activation may instigate nonimmune inflammation and aggravate CNS damage in diseases associated with plasma extravasation.
Collapse
Affiliation(s)
- P J Lindsberg
- Department of Neurology, University of Helsinki, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Davies A. Policing the membrane: cell surface proteins which regulate complement. RESEARCH IN IMMUNOLOGY 1996; 147:82-7. [PMID: 8792465 DOI: 10.1016/0923-2494(96)87178-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- A Davies
- MIP Unit, MRC Centre, Cambridge, UK
| |
Collapse
|
40
|
Ling M, Piddlesden SJ, Morgan BP. A component of the medicinal herb ephedra blocks activation in the classical and alternative pathways of complement. Clin Exp Immunol 1995; 102:582-8. [PMID: 8536376 PMCID: PMC1553381 DOI: 10.1111/j.1365-2249.1995.tb03856.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Extracts of the herb Ephedra sinica have long been used in traditional Chinese medicine for the treatment of, among other conditions, acute nephritis. In preliminary studies it was shown that extracts of ephedra caused inhibition of complement in vitro. We thus set out to isolate the active component(s) of this herb, to examine the complement-inhibiting capacity in sera from different species, and to characterize the mechanism(s) by which it inhibits complement. Aqueous extraction of the herb followed by fractionation using thin layer chromatography (TLC) demonstrated that complement-inhibiting activity resided within a single band, hereafter termed the complement-inhibiting component (CIC), which represents an as yet uncharacterized polyanionic carbohydrate molecule. TLC-purified CIC inhibited the classical complement pathway in all species tested (human, pig, guinea pig, rat and rabbit). Using erythrocyte intermediates and sera specifically depleted of individual components it was apparent that CIC inhibited C2. This finding was confirmed using purified human C2, CIC causing a dose-dependent loss of C2 haemolytic activity. At much higher doses, CIC also showed some inhibiting effect in the terminal pathway, and this was shown to be due to inhibition of C9. In the alternative pathway CIC also showed inhibitory activity, although its site of action in this pathway remains unresolved. In Chinese medicine the herb is taken orally, though no studies of complement levels in patients taking the herb have been reported. Preliminary data indicate that oral administration in rats causes a partial inhibition of serum complement activity. Given the current enthusiasm for complement inhibition as a therapy for inflammatory diseases, this non-toxic, naturally occurring agent might be of therapeutic value.
Collapse
Affiliation(s)
- M Ling
- Department of Medical Biochemistry, University of Wales College of Medicine, Cardiff, UK
| | | | | |
Collapse
|
41
|
Abstract
The complement system plays a key role in host defense and in the development of autoimmunity. Three types of animal models of complement-mediated disease have traditionally been used: they involve normal animals, animals with spontaneously arising genetic deficiency, and animals treated with complement-inactivating agents. All of these approaches have had partial success in our attempts to understand complement mechanisms. Most animal models of genetic deficiency have been studied relatively little, as the availability of such animals is limited. C4, C2, and partial C3 deficiency in the guinea pig are well characterized, although only C4 deficiency in the guinea pig has been exclusively studied. C3 deficiency in the dog and C6 deficiency in the rabbit are well described, although studies are limited in number. C6 deficiency in the rat has been described recently and C5 deficiency in inbred mice strains has been studied fairly extensively. Factor H deficiency in the Yorkshire pig has also been described. Relatively few agents that inhibit complement are in use. Most widely used in animal studies is cobra venom factor. This inactivates the alternative complement pathway in the fluid phase and thereby depletes complement protein levels. The antigenicity of this protein, purified from the venom of cobras, limits its duration of use in most animal models. Complement-inhibiting agents are rare and, as yet, not widely used. We recently described the use of intravenous immune globulin for inhibiting complement in animal studies and present data on its use in animals, including discordant xenograft rejection, and its potential use in human disease. New developments in molecular biology provide the potential for a vast new array of deficiency models. A limited number of laboratories are actively engaged in the production of animals with inactivated genes. For example, gene knockout mice with no C3, and with no factor B, have been generated. Several complement control proteins have been prepared by genetic molecular biological techniques. Most promising among these is CR1, which limits complement damage in several animal models. Transgenic animals, which complement regulatory proteins expressed on their cells, have been prepared. As complement control proteins tend to be more efficient at regulating complement of the same species type as the regulatory protein, these animals may be useful in such areas as xenograft transplantation. The various animal models are reviewed and their potential application to understanding of human disease is emphasized.
Collapse
Affiliation(s)
- M M Frank
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina 27710, USA
| |
Collapse
|
42
|
Abstract
The complement system comprises a family of at least 20 plasma and membrane proteins that interact in a tightly regulated cascade system to destroy invading bacteria and prevent the deposition of immune complexes in the tissues. This brief review addresses the basic mechanisms of complement activation and control and describes the active fragments produced during complement activation. The biological importance of the complement system is amply illustrated in patients with complement deficiencies, who are susceptible to bacterial infections and immune complex diseases. The involvement of complement in other immunological diseases is an expanding area of clinical research, supported by the development of new assays for the identification of complement activation. This area is discussed here with particular reference to neurological diseases. A promising new prospect involves the use of complement inhibitory molecules in therapy of complement-mediated disease and this exciting area is also discussed. Novel physiological roles of complement also are being revealed and new evidence that complement and complement receptors play an important role in reproduction is summarized. It is hoped that this brief overview will convey some of the enthusiasm currently pervading research in this underappreciated area of immunology.
Collapse
Affiliation(s)
- B P Morgan
- Department of Medical Biochemistry, University of Wales College of Medicine, Health Park, Cardiff
| |
Collapse
|