1
|
Date AA, Kates M, Yoshida T, Babu T, Afzal U, Kanvinde P, Baras A, Anders N, He P, Rudek M, Hanes J, Bivalacqua TJ, Ensign LM. Preclinical evaluation of a hypotonic docetaxel nanosuspension formulation for intravesical treatment of non-muscle-invasive bladder cancer. Drug Deliv Transl Res 2021; 11:2085-2095. [PMID: 33164163 PMCID: PMC10921980 DOI: 10.1007/s13346-020-00870-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2020] [Indexed: 10/23/2022]
Abstract
Intravesical chemotherapy is a key approach for treating refractory non-muscle-invasive bladder cancer (NMIBC). However, the effectiveness of intravesical chemotherapy is limited by bladder tissue penetration and retention. Here, we describe the development of a docetaxel nanosuspension that, when paired with a low osmolality (hypotonic) vehicle, demonstrates increased uptake by the bladder urothelium with minimal systemic exposure. We compare the bladder residence time and efficacy in an immune-competent rat model of NMIBC to the clinical comparator, solubilized docetaxel (generic Taxotere) diluted for intravesical administration. We found that only the intravesical docetaxel nanosuspension significantly decreased cell proliferation compared to untreated tumor tissues. The results presented here suggest that the combination of nanoparticle-based chemotherapy and a hypotonic vehicle can provide more efficacious local drug delivery to bladder tissue for improved treatment of refractory NMIBC.
Collapse
Affiliation(s)
- Abhijit A Date
- The Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 N Broadway, Baltimore, USA
- Department of Ophthalmology, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 N. Broadway, Baltimore, USA
- Present address: The Daniel K. Inouye College of Pharmacy, University of Hawaii Hilo, 200 W. Kawili Street, Hilo, HI, USA
| | - Max Kates
- Brady Urological Institute, Johns Hopkins Medical Institutions, Baltimore, USA
- Greenberg Bladder Cancer Institute, Johns Hopkins Medical Institutions, Baltimore, USA
| | - Takahiro Yoshida
- Brady Urological Institute, Johns Hopkins Medical Institutions, Baltimore, USA
| | - Taarika Babu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Umara Afzal
- The Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 N Broadway, Baltimore, USA
- Department of Biochemistry, PMAS-Arid Agriculture University, Muree Road, Shamsabad Rawalpindi, Pakistan
| | - Pranjali Kanvinde
- The Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 N Broadway, Baltimore, USA
| | - Alexander Baras
- Brady Urological Institute, Johns Hopkins Medical Institutions, Baltimore, USA
- Greenberg Bladder Cancer Institute, Johns Hopkins Medical Institutions, Baltimore, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Nicole Anders
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, USA
| | - Ping He
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, USA
| | - Michelle Rudek
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, USA
| | - Justin Hanes
- The Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 N Broadway, Baltimore, USA
- Department of Ophthalmology, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 N. Broadway, Baltimore, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, USA
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Trinity J Bivalacqua
- Brady Urological Institute, Johns Hopkins Medical Institutions, Baltimore, USA.
- Greenberg Bladder Cancer Institute, Johns Hopkins Medical Institutions, Baltimore, USA.
| | - Laura M Ensign
- The Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 N Broadway, Baltimore, USA.
- Department of Ophthalmology, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 N. Broadway, Baltimore, USA.
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, USA.
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, USA.
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, USA.
| |
Collapse
|
2
|
Dalghi MG, Montalbetti N, Carattino MD, Apodaca G. The Urothelium: Life in a Liquid Environment. Physiol Rev 2020; 100:1621-1705. [PMID: 32191559 PMCID: PMC7717127 DOI: 10.1152/physrev.00041.2019] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 03/02/2020] [Accepted: 03/14/2020] [Indexed: 02/08/2023] Open
Abstract
The urothelium, which lines the renal pelvis, ureters, urinary bladder, and proximal urethra, forms a high-resistance but adaptable barrier that surveils its mechanochemical environment and communicates changes to underlying tissues including afferent nerve fibers and the smooth muscle. The goal of this review is to summarize new insights into urothelial biology and function that have occurred in the past decade. After familiarizing the reader with key aspects of urothelial histology, we describe new insights into urothelial development and regeneration. This is followed by an extended discussion of urothelial barrier function, including information about the roles of the glycocalyx, ion and water transport, tight junctions, and the cellular and tissue shape changes and other adaptations that accompany expansion and contraction of the lower urinary tract. We also explore evidence that the urothelium can alter the water and solute composition of urine during normal physiology and in response to overdistension. We complete the review by providing an overview of our current knowledge about the urothelial environment, discussing the sensor and transducer functions of the urothelium, exploring the role of circadian rhythms in urothelial gene expression, and describing novel research tools that are likely to further advance our understanding of urothelial biology.
Collapse
Affiliation(s)
- Marianela G Dalghi
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Nicolas Montalbetti
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Marcelo D Carattino
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Gerard Apodaca
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
3
|
Regulation of TrkB cell surface expression-a mechanism for modulation of neuronal responsiveness to brain-derived neurotrophic factor. Cell Tissue Res 2020; 382:5-14. [PMID: 32556728 PMCID: PMC7529634 DOI: 10.1007/s00441-020-03224-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/27/2020] [Indexed: 12/27/2022]
Abstract
Neurotrophin signaling via receptor tyrosine kinases is essential for the development and function of the nervous system in vertebrates. TrkB activation and signaling show substantial differences to other receptor tyrosine kinases of the Trk family that mediate the responses to nerve growth factor and neurotrophin-3. Growing evidence suggests that TrkB cell surface expression is highly regulated and determines the sensitivity of neurons to brain-derived neurotrophic factor (BDNF). This translocation of TrkB depends on co-factors and modulators of cAMP levels, N-glycosylation, and receptor transactivation. This process can occur in very short time periods and the resulting rapid modulation of target cell sensitivity to BDNF could represent a mechanism for fine-tuning of synaptic plasticity and communication in complex neuronal networks. This review focuses on those modulatory mechanisms in neurons that regulate responsiveness to BDNF via control of TrkB surface expression.
Collapse
|
4
|
Linz G, Djeljadini S, Steinbeck L, Köse G, Kiessling F, Wessling M. Cell barrier characterization in transwell inserts by electrical impedance spectroscopy. Biosens Bioelectron 2020; 165:112345. [PMID: 32513645 DOI: 10.1016/j.bios.2020.112345] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/12/2020] [Accepted: 05/31/2020] [Indexed: 11/19/2022]
Abstract
We describe an impedance-based method for cell barrier integrity testing. A four-electrode electrical impedance spectroscopy (EIS) setup can be realized by simply connecting a commercial chopstick-like electrode (STX-1) to a potentiostat allowing monitoring cell barriers cultivated in transwell inserts. Subsequent electric circuit modeling of the electrical impedance results the capacitive properties of the barrier next to the well-known transepithelial electrical resistance (TEER). The versatility of the new method was analyzed by the EIS analysis of a Caco-2 monolayer in response to (a) different membrane coating materials, (b) two different permeability enhancers ethylene glycol-bis(2-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA) and saponin, and (c) sonoporation. For the different membrane coating materials, the TEERs of the standard and new protocol coincide and increase during cultivation, while the capacitance shows a distinct maximum for three different surface materials (no coating, Matrigel®, and collagen I). The permeability enhancers cause a decline in the TEER value, but only saponin alters the capacitance of the cell layer by two orders of magnitude. Hence, cell layer capacitance and TEER represent two independent properties characterizing the monolayer. The use of commercial chopstick-like electrodes to access the impedance of a barrier cultivated in transwell inserts enables remarkable insight into the behavior of the cellular barrier with no extra work for the researcher. This simple method could evolve into a standard protocol used in cell barrier research.
Collapse
Affiliation(s)
- Georg Linz
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074 Aachen, Germany; RWTH Aachen University, Aachener Verfahrenstechnik-Chemical Process Engineering, Forckenbeckstrasse 51, 52074, Aachen, Germany
| | - Suzana Djeljadini
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074 Aachen, Germany; RWTH Aachen University, Aachener Verfahrenstechnik-Chemical Process Engineering, Forckenbeckstrasse 51, 52074, Aachen, Germany
| | - Lea Steinbeck
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074 Aachen, Germany; RWTH Aachen University, Aachener Verfahrenstechnik-Chemical Process Engineering, Forckenbeckstrasse 51, 52074, Aachen, Germany
| | - Gurbet Köse
- Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany
| | - Matthias Wessling
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074 Aachen, Germany; RWTH Aachen University, Aachener Verfahrenstechnik-Chemical Process Engineering, Forckenbeckstrasse 51, 52074, Aachen, Germany.
| |
Collapse
|
5
|
Janssen DAW, Schalken JA, Heesakkers JPFA. Urothelium update: how the bladder mucosa measures bladder filling. Acta Physiol (Oxf) 2017; 220:201-217. [PMID: 27804256 DOI: 10.1111/apha.12824] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/18/2016] [Accepted: 10/26/2016] [Indexed: 12/20/2022]
Abstract
AIM This review critically evaluates the evidence on mechanoreceptors and pathways in the bladder urothelium that are involved in normal bladder filling signalling. METHODS Evidence from in vitro and in vivo studies on (i) signalling pathways like the adenosine triphosphate pathway, cholinergic pathway and nitric oxide and adrenergic pathway, and (ii) different urothelial receptors that are involved in bladder filling signalling like purinergic receptors, sodium channels and TRP channels will be evaluated. Other potential pathways and receptors will also be discussed. RESULTS Bladder filling results in continuous changes in bladder wall stretch and exposure to urine. Both barrier and afferent signalling functions in the urothelium are constantly adapting to cope with these dynamics. Current evidence shows that the bladder mucosa hosts essential pathways and receptors that mediate bladder filling signalling. Intracellular calcium ion increase is a dominant factor in this signalling process. However, there is still no complete understanding how interacting receptors and pathways create a bladder filling signal. Currently, there are still novel receptors investigated that could also be participating in bladder filling signalling. CONCLUSIONS Normal bladder filling sensation is dependent on multiple interacting mechanoreceptors and signalling pathways. Research efforts need to focus on how these pathways and receptors interact to fully understand normal bladder filling signalling.
Collapse
Affiliation(s)
- D. A. W. Janssen
- Department of Urology; Radboud University Nijmegen Medical Centre; Nijmegen The Netherlands
| | - J. A. Schalken
- Department of Urology; Radboud University Nijmegen Medical Centre; Nijmegen The Netherlands
| | - J. P. F. A. Heesakkers
- Department of Urology; Radboud University Nijmegen Medical Centre; Nijmegen The Netherlands
| |
Collapse
|
6
|
Moulton DE, Sulzer V, Apodaca G, Byrne HM, Waters SL. Mathematical modelling of stretch-induced membrane traffic in bladder umbrella cells. J Theor Biol 2016; 409:115-132. [PMID: 27590325 DOI: 10.1016/j.jtbi.2016.08.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 03/21/2016] [Accepted: 08/24/2016] [Indexed: 12/11/2022]
Abstract
The bladder is a complex organ that is highly adaptive to its mechanical environment. The umbrella cells in the bladder uroepithelium are of particular interest: these cells actively change their surface area through exo- and endocytosis of cytoplasmic vesicles, and likely form a critical component in the mechanosensing process that communicates the sense of 'fullness' to the nervous system. In this paper we develop a first mechanical model for vesicle trafficking in umbrella cells in response to membrane tension during bladder filling. Recent experiments conducted on a disc of uroepithelial tissue motivate our model development. These experiments subject bladder tissue to fixed pressure differences and exhibit counterintuitive area changes. Through analysis of the mathematical model and comparison with experimental data in this setup, we gain an intuitive understanding of the biophysical processes involved and calibrate the vesicle trafficking rate parameters in our model. We then adapt the model to simulate in vivo bladder filling and investigate the potential effect of abnormalities in the vesicle trafficking machinery on bladder pathologies.
Collapse
Affiliation(s)
- D E Moulton
- Mathematical Institute, University of Oxford, Oxford, UK.
| | - V Sulzer
- Mathematical Institute, University of Oxford, Oxford, UK
| | - G Apodaca
- Departments of Medicine and Cell Biology, University of Pittsburgh, USA
| | - H M Byrne
- Mathematical Institute, University of Oxford, Oxford, UK
| | - S L Waters
- Mathematical Institute, University of Oxford, Oxford, UK
| |
Collapse
|
7
|
Membrane lipids and proteins as modulators of urothelial endocytic vesicles pathways. Histochem Cell Biol 2013; 140:507-20. [PMID: 23624723 DOI: 10.1007/s00418-013-1095-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2013] [Indexed: 10/26/2022]
Abstract
The increased studies on urinary bladder umbrella cells as an important factor for maintaining the permeability barrier have suggested new pathways for the discoidal/fusiform endocytic vesicles which is one of the main features of the umbrella cells. The biological role of these vesicles was defined, for many years, as a membrane reservoir for the umbrella cell apical plasma membrane which are subject to an increased tension during the filling phase of the micturition cycle and, therefore, the vesicles are fused with the apical membrane. Upon voiding, the added membrane is reinserted via a non-clathrin or caveolin-dependant endocytosis thereby restoring the vesicle cytoplasmic pool. However, in the last decade, new evidence appeared indicating alternative pathways of the endocytic vesicles different than the cycling process of exocytosis/endocytosis. The purpose of this review is to analyze the molecular modulators, such as membrane lipids and proteins, in the permeability of endocytic vesicles, the sorting of endocytosed material to lysosomal degradation pathway and recycling of both membrane and fluid phases.
Collapse
|
8
|
Urothelial endocytic vesicle recycling and lysosomal degradative pathway regulated by lipid membrane composition. Histochem Cell Biol 2012; 139:249-65. [DOI: 10.1007/s00418-012-1034-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2012] [Indexed: 10/27/2022]
|
9
|
Dunning-Davies BM, Fry CH, Mansour D, Ferguson DR. The regulation of ATP release from the urothelium by adenosine and transepithelial potential. BJU Int 2012; 111:505-13. [PMID: 22882496 DOI: 10.1111/j.1464-410x.2012.11421.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
UNLABELLED WHAT'S KNOWN ON THE SUBJECT? AND WHAT DOES THE STUDY ADD?: Stretch of the urothelium, as occurs during bladder filling, is associated with a release of ATP that is postulated to act as a sensory neurotransmitter. The regulation of ATP release is poorly understood and in particular if there is a feedback mechanism provided by ATP itself. Adenosine, a breakdown product of ATP, is a potent inhibitor of stretch-induced ATP release, acting through and A1 receptor; endogenous levels are about 0.6μM. Data are consistent with ATP release relying on the rise of intracellular Ca2+. Transepithelial potential also controls ATP release, also acting via an A1 receptor-dependent pathway. OBJECTIVES To test the hypothesis that distension-induced ATP release from the bladder urothelium is regulated by adenosine as well as changes to transurothelial potential (TEP). To examine the role of changes to intracellular [Ca(2+) ] in ATP release. MATERIALS AND METHODS Rabbit urothelium/suburothelium membranes were used in an Ussing chamber system. Distension was induced by fluid removal from the chamber bathing the serosal (basolateral) membrane face. The TEP and short-circuit current were measured. ATP was measured in samples aspirated from the serosal chamber by a luciferin-luciferase assay. Intracellular [Ca(2+) ] was measured in isolated urothelial cells using the fluorochrome Fura-2. All experiments were performed at 37°C. RESULTS Distension-induced ATP release was decreased by adenosine (1-10 μm) and enhanced by adenosine deaminase and A1- (but not A2-) receptor antagonists. Distension-induced ATP release was reduced by 2-APB, nifedipine and capsazepine; capsaicin induced ATP release in the absence of distension. ATP and capsaicin, but not adenosine, generated intracellular Ca(2+) transients; adenosine did not affect the ATP-generated Ca(2+) transient. ATP release was dependent on a finite transepithelial potential. Changes to TEP, in the absence of distension, generated ATP release that was in turn reduced by adenosine. CONCLUSION Adenosine exerts a powerful negative feedback control of ATP release from the urothelium via A1 receptor activation. Distension-induced ATP release may be mediated by a rise of the intracellular [Ca(2+) ]. Modulation of distension-induced ATP release by adenosine and TEP may have a common pathway.
Collapse
|
10
|
Hudoklin S, Jezernik K, Neumüller J, Pavelka M, Romih R. Electron tomography of fusiform vesicles and their organization in urothelial cells. PLoS One 2012; 7:e32935. [PMID: 22427911 PMCID: PMC3299716 DOI: 10.1371/journal.pone.0032935] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 02/01/2012] [Indexed: 11/19/2022] Open
Abstract
The formation of fusiform vesicles (FVs) is one of the most distinctive features in the urothelium of the urinary bladder. FVs represent compartments for intracellular transport of urothelial plaques, which modulate the surface area of the superficial urothelial (umbrella) cells during the distension-contraction cycle. We have analysed the three-dimensional (3D) structure of FVs and their organization in umbrella cells of mouse urinary bladders. Compared to chemical fixation, high pressure freezing gave a new insight into the ultrastructure of urothelial cells. Electron tomography on serial sections revealed that mature FVs had a shape of flattened discs, with a diameter of up to 1.2 µm. The lumen between the two opposing asymmetrically thickened membranes was very narrow, ranging from 5 nm to 10 nm. Freeze-fracturing and immunolabelling confirmed that FVs contain two opposing urothelial plaques connected by a hinge region that made an omega shaped curvature. In the central cytoplasm, 4-15 FVs were often organized into stacks. In the subapical cytoplasm, FVs were mainly organized as individual vesicles. Distension-contraction cycles did not affect the shape of mature FVs; however, their orientation changed from parallel in distended to perpendicular in contracted bladder with respect to the apical plasma membrane. In the intermediate cells, shorter and more dilated immature FVs were present. The salient outcome from this research is the first comprehensive, high resolution 3D view of the ultrastructure of FVs and how they are organized differently depending on their location in the cytoplasm of umbrella cells. The shape of mature FVs and their organization into tightly packed stacks makes them a perfect storage compartment, which transports large amounts of urothelial plaques while occupying a small volume of umbrella cell cytoplasm.
Collapse
Affiliation(s)
- Samo Hudoklin
- Faculty of Medicine, Institute of Cell Biology, University of Ljubljana, Ljubljana, Slovenia
| | - Kristijan Jezernik
- Faculty of Medicine, Institute of Cell Biology, University of Ljubljana, Ljubljana, Slovenia
| | - Josef Neumüller
- Department of Cell Biology and Ultrastructure Research, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Margit Pavelka
- Department of Cell Biology and Ultrastructure Research, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Rok Romih
- Faculty of Medicine, Institute of Cell Biology, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
11
|
Hudoklin S, Jezernik K, Neumüller J, Pavelka M, Romih R. Urothelial plaque formation in post-Golgi compartments. PLoS One 2011; 6:e23636. [PMID: 21887288 PMCID: PMC3161059 DOI: 10.1371/journal.pone.0023636] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Accepted: 07/21/2011] [Indexed: 11/26/2022] Open
Abstract
Urothelial plaques are specialized membrane domains in urothelial superficial (umbrella) cells, composed of highly ordered uroplakin particles. We investigated membrane compartments involved in the formation of urothelial plaques in mouse umbrella cells. The Golgi apparatus did not contain uroplakins organized into plaques. In the post-Golgi region, three distinct membrane compartments containing uroplakins were characterized: i) Small rounded vesicles, located close to the Golgi apparatus, were labelled weakly with anti-uroplakin antibodies and they possessed no plaques; we termed them "uroplakin-positive transporting vesicles" (UPTVs). ii) Spherical-to-flattened vesicles, termed "immature fusiform vesicles" (iFVs), were uroplakin-positive in their central regions and contained small urothelial plaques. iii) Flattened "mature fusiform vesicles" (mFVs) contained large plaques, which were densely labelled with anti-uroplakin antibodies. Endoytotic marker horseradish peroxidase was not found in these post-Golgi compartments. We propose a detailed model of de novo urothelial plaque formation in post-Golgi compartments: UPTVs carrying individual 16-nm particles detach from the Golgi apparatus and subsequently fuse into iFV. Concentration of 16-nm particles into plaques and removal of uroplakin-negative membranes takes place in iFVs. With additional fusions and buddings, iFVs mature into mFVs, each carrying two urothelial plaques toward the apical surface of the umbrella cell.
Collapse
Affiliation(s)
- Samo Hudoklin
- Faculty of Medicine, Institute of Cell Biology, University of Ljubljana, Ljubljana, Slovenia.
| | | | | | | | | |
Collapse
|
12
|
Grasso E, Bongiovanni G, Pérez R, Calderón R. Pre-cancerous changes in urothelial endocytic vesicle leakage, fatty acid composition, and As and associated element concentrations after arsenic exposure. Toxicology 2011; 284:26-33. [DOI: 10.1016/j.tox.2011.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 03/14/2011] [Accepted: 03/17/2011] [Indexed: 10/18/2022]
|
13
|
|
14
|
Birder LA, Wolf-Johnston AS, Chib MK, Buffington CA, Roppolo JR, Hanna-Mitchell AT. Beyond neurons: Involvement of urothelial and glial cells in bladder function. Neurourol Urodyn 2010; 29:88-96. [PMID: 20025015 DOI: 10.1002/nau.20747] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AIM The urothelium, or epithelial lining of the lower urinary tract (LUT), is likely to play an important role in bladder function by actively communicating with bladder nerves, smooth muscle, and cells of the immune and inflammatory systems. Recent evidence supports the importance of non-neuronal cells that may extend to both the peripheral and central processes of the neurons that transmit normal and nociceptive signals from the urinary bladder. Using cats diagnosed with a naturally occurring syndrome termed feline interstitial cystitis (FIC), we investigated whether changes in physiologic parameters occur within 3 cell types associated with sensory transduction in the urinary bladder: 1) the urothelium, 2) identified bladder dorsal root ganglion (DRG) neurons and 3) grey matter astrocytes in the lumbosacral (S1) spinal cord. As estrogen fluctuations may modulate the severity of many chronic pelvic pain syndromes, we also examined whether 17beta-estradiol (E2) alters cell signaling in rat urothelial cells. RESULTS We have identified an increase in nerve growth factor (NGF) and substance P (SP) in urothelium from FIC cats over that seen in urothelium from unaffected (control) bladders. The elevated NGF expression by FIC urothelium is a possible cause for the increased cell body size of DRG neurons from cats with FIC, reported in this study. At the level of the spinal cord, astrocytic GFAP immuno-intensity was significantly elevated and there was evidence for co-expression of the primitive intermediate filament, nestin (both indicative of a reactive state) in regions of the FIC S1 cord (superficial and deep dorsal horn, central canal and laminae V-VIl) that receive input from pelvic afferents. Finally, we find that E2 triggers an estrus-modifiable activation of p38 MAPK in rat urothelial cells. There were cyclic variations with E2-mediated elevation of p38 MAPK at both diestrus and estrus, and inhibition of p38 MAPK in proestrous urothelial cells. CONCLUSION Though urothelial cells are often viewed as bystanders in the processing of visceral sensation, these and other findings support the view that these cells function as primary transducers of some physical and chemical stimuli. In addition, the pronounced activation of spinal cord astrocytes in an animal model for bladder pain syndrome (BPS) may play an important role in the pain syndrome and open up new potential approaches for drug intervention.
Collapse
Affiliation(s)
- Lori A Birder
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Kozera L, White E, Calaghan S. Caveolae act as membrane reserves which limit mechanosensitive I(Cl,swell) channel activation during swelling in the rat ventricular myocyte. PLoS One 2009; 4:e8312. [PMID: 20011535 PMCID: PMC2788708 DOI: 10.1371/journal.pone.0008312] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Accepted: 11/14/2009] [Indexed: 12/22/2022] Open
Abstract
Background Many ion channels are preferentially located in caveolae where compartmentalisation/scaffolding with signal transduction components regulates their activity. Channels that are mechanosensitive may be additionally dependent on caveolar control of the mechanical state of the membrane. Here we test which mechanism underlies caveolar-regulation of the mechanosensitive ICl,swell channel in the adult cardiac myocyte. Methodology/Principal Findings Rat ventricular myocytes were exposed to solution of 0.02 tonicity (T; until lysis), 0.64T for 10–15 min (swelling), and/or methyl-β-cyclodextrin (MBCD; to disrupt caveolae). MBCD and 0.64T swelling reduced the number of caveolae visualised by electron microscopy by 75 and 50% respectively. MBCD stimulated translocation of caveolin 3 from caveolae-enriched buoyant membrane fractions, but both caveolin 1 and 3 remained in buoyant fractions after swelling. ICl,swell inhibition in control cells decreased time to half-maximal volume (t0.5,vol; 0.64T), consistent with a role for ICl,swell in volume regulation. MBCD-treated cells showed reduced time to lysis (0.02T) and t0.5,vol (0.64T) compared with controls. The negative inotropic response to swelling (an index of ICl,swell activation) was enhanced by MBCD. Conclusions/Significance These data show that disrupting caveolae removes essential membrane reserves, which speeds swelling in hyposmotic conditions, and thereby promotes activation of ICl,swell. They illustrate a general principle whereby caveolae as a membrane reserve limit increases in membrane tension during stretch/swelling thereby restricting mechanosensitive channel activation.
Collapse
Affiliation(s)
- Lukasz Kozera
- Institute of Membrane and Systems Biology, University of Leeds, Leeds, United Kingdom
| | - Ed White
- Institute of Membrane and Systems Biology, University of Leeds, Leeds, United Kingdom
| | - Sarah Calaghan
- Institute of Membrane and Systems Biology, University of Leeds, Leeds, United Kingdom
- * E-mail:
| |
Collapse
|
16
|
Khandelwal P, Abraham SN, Apodaca G. Cell biology and physiology of the uroepithelium. Am J Physiol Renal Physiol 2009; 297:F1477-501. [PMID: 19587142 DOI: 10.1152/ajprenal.00327.2009] [Citation(s) in RCA: 267] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The uroepithelium sits at the interface between the urinary space and underlying tissues, where it forms a high-resistance barrier to ion, solute, and water flux, as well as pathogens. However, the uroepithelium is not simply a passive barrier; it can modulate the composition of the urine, and it functions as an integral part of a sensory web in which it receives, amplifies, and transmits information about its external milieu to the underlying nervous and muscular systems. This review examines our understanding of uroepithelial regeneration and how specializations of the outermost umbrella cell layer, including tight junctions, surface uroplakins, and dynamic apical membrane exocytosis/endocytosis, contribute to barrier function and how they are co-opted by uropathogenic bacteria to infect the uroepithelium. Furthermore, we discuss the presence and possible functions of aquaporins, urea transporters, and multiple ion channels in the uroepithelium. Finally, we describe potential mechanisms by which the uroepithelium can transmit information about the urinary space to the other tissues in the bladder proper.
Collapse
|
17
|
Urinary bladder membrane permeability differentially induced by membrane lipid composition. Mol Cell Biochem 2009; 330:163-9. [PMID: 19412731 DOI: 10.1007/s11010-009-0129-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Accepted: 04/16/2009] [Indexed: 10/20/2022]
Abstract
The permeability barrier of the urothelium (covering the mammalian urinary tract) has stimulated interest in the role of the luminal membrane in the barrier function. To know how membrane lipids may affect the permeability barrier we prepare endocytic vesicles of different lipid composition entrapping a fluorescent dye (HPTS) and its quencher (DPX) using a dietary strategy (rats fed with commercial, oleic acid- or linoleic acid-enriched diets) followed by endocytosis induction. Vesicular leakage was measured by a fluorescence requenching technique. The results showed (1) endocytosed vesicles can release their content; (2) a linoleic acid-rich diet did not change either the mechanism of leakage or the amount of released material relative to the control; and (3) a oleic acid-rich diet greatly affected the mechanism of release. Thus, the dietary fatty acids can modify the urothelial cell physiology altering the pathway of endocytosed urinary fluid.
Collapse
|
18
|
Yu W, Khandelwal P, Apodaca G. Distinct apical and basolateral membrane requirements for stretch-induced membrane traffic at the apical surface of bladder umbrella cells. Mol Biol Cell 2008; 20:282-95. [PMID: 18987341 DOI: 10.1091/mbc.e08-04-0439] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Epithelial cells respond to mechanical stimuli by increasing exocytosis, endocytosis, and ion transport, but how these processes are initiated and coordinated and the mechanotransduction pathways involved are not well understood. We observed that in response to a dynamic mechanical environment, increased apical membrane tension, but not pressure, stimulated apical membrane exocytosis and ion transport in bladder umbrella cells. The exocytic response was independent of temperature but required the cytoskeleton and the activity of a nonselective cation channel and the epithelial sodium channel. The subsequent increase in basolateral membrane tension had the opposite effect and triggered the compensatory endocytosis of added apical membrane, which was modulated by opening of basolateral K(+) channels. Our results indicate that during the dynamic processes of bladder filling and voiding apical membrane dynamics depend on sequential and coordinated mechanotransduction events at both membrane domains of the umbrella cell.
Collapse
Affiliation(s)
- Weiqun Yu
- Laboratory of Epithelial Cell Biology and Renal Electrolyte Division of the Department of Medicine, Department of Bioengineering, University of Pittsburgh, PA 15261, USA
| | | | | |
Collapse
|
19
|
Impact of mechanical stress on ion transport in native lung epithelium (Xenopus laevis): short-term activation of Na+, Cl (-) and K+ channels. Pflugers Arch 2008; 456:1109-20. [PMID: 18581136 DOI: 10.1007/s00424-008-0486-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Revised: 01/31/2008] [Accepted: 02/27/2008] [Indexed: 01/11/2023]
Abstract
Epithelia, in general, and the lung epithelium, in particular, are exposed to mechanical forces, but little is known about their impact on pulmonary ion transport. In our present study, we employed transepithelial ion transport measurements on Xenopus lung preparations using custom-built Ussing chambers. Tissues were exposed to mechanical stress by increasing the water column (5 cm) at one side of the tissues. Apical exposure to hydrostatic pressure significantly decreased the short circuit current (I (SC): 24 +/- 1%, n = 152), slightly decreased the transepithelial resistance (R (T): 7 +/- 2%, n = 152), but increased the apical membrane capacitance (C (M): 16 +/- 6%, n = 9). The pressure-induced effect was sensitive to Na+ (amiloride), Cl(-) (DIDS, NFA, NPPB) and K+ channel blockers (Ba2+), glibenclamide). Further on, it was accompanied by increased extracellular ATP levels. The results show that mechanical stress leads to an activation of Na+, Cl(-), and K+ conductances in a native pulmonary epithelium resulting in a net decrease of ion absorption. This could be of considerable interest, since an altered ion transport may contribute to pathophysiological conditions, e.g., the formation of pulmonary edema during artificial ventilation.
Collapse
|
20
|
Studeny S, Cheppudira BP, Meyers S, Balestreire EM, Apodaca G, Birder LA, Braas KM, Waschek JA, May V, Vizzard MA. Urinary bladder function and somatic sensitivity in vasoactive intestinal polypeptide (VIP)-/- mice. J Mol Neurosci 2008; 36:175-87. [PMID: 18561033 DOI: 10.1007/s12031-008-9100-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Accepted: 05/09/2008] [Indexed: 12/18/2022]
Abstract
Vasoactive intestinal polypeptide (VIP) is an immunomodulatory neuropeptide widely distributed in neural pathways that regulate micturition. VIP is also an endogenous anti-inflammatory agent that has been suggested for the development of therapies for inflammatory disorders. In the present study, we examined urinary bladder function and hindpaw and pelvic sensitivity in VIP(-/-) and littermate wildtype (WT) controls. We demonstrated increased bladder mass and fewer but larger urine spots on filter paper in VIP(-/-) mice. Using cystometry in conscious, unrestrained mice, VIP(-/-) mice exhibited increased void volumes and shorter intercontraction intervals with continuous intravesical infusion of saline. No differences in transepithelial resistance or water permeability were demonstrated between VIP(-/-) and WT mice; however, an increase in urea permeability was demonstrated in VIP(-/-) mice. With the induction of bladder inflammation by acute administration of cyclophosphamide, an exaggerated or prolonged bladder hyperreflexia and hindpaw and pelvic sensitivity were demonstrated in VIP(-/-) mice. The changes in bladder hyperreflexia and somatic sensitivity in VIP(-/-) mice may reflect increased expression of neurotrophins and/or proinflammatory cytokines in the urinary bladder. Thus, these changes may further regulate the neural control of micturition.
Collapse
Affiliation(s)
- Simon Studeny
- Department of Neurology, University of Vermont College of Medicine, D415A Given Research Building, Burlington, VT 05405, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
An important, but not well understood, function of epithelial cells is their ability to sense changes in their extracellular environment and then communicate these changes to the underlying nervous, connective, and muscular tissues. This communication is likely to be important for tube- and sac-shaped organs such as blood vessels, the lungs, the gut, and the bladder, whose normal function can be modulated by stimuli initiated within the epithelium. We propose that the uroepithelium, which lines the renal pelvis, ureters, and inner surface of the bladder, functions as an integral part of a 'sensory web.' Through uroepithelial-associated channels and receptors, the uroepithelium receives sensory 'inputs' such as changes in hydrostatic pressure and binding of mediators including adenosine triphosphate (ATP). These input signals stimulate membrane turnover in the outermost umbrella cell layer and release of sensory 'outputs' from the uroepithelium in the form of neurotransmitters and other mediators that communicate changes in the uroepithelial milieu to the underlying tissues, altering their function. The global consequence of this sensory web is the coordinated function of the bladder during the cycles of filling and voiding, and disruption of this web is likely to lead to bladder dysfunction.
Collapse
Affiliation(s)
- G Apodaca
- Laboratory of Epithelial Cell Biology, Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| | | | | |
Collapse
|
22
|
Balestreire EM, Apodaca G. Apical epidermal growth factor receptor signaling: regulation of stretch-dependent exocytosis in bladder umbrella cells. Mol Biol Cell 2007; 18:1312-23. [PMID: 17287395 PMCID: PMC1838979 DOI: 10.1091/mbc.e06-09-0842] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The apical surface of polarized epithelial cells receives input from mediators, growth factors, and mechanical stimuli. How these stimuli are coordinated to regulate complex cellular functions such as polarized membrane traffic is not understood. We analyzed the requirement for growth factor signaling and mechanical stimuli in umbrella cells, which line the mucosal surface of the bladder and dynamically insert and remove apical membrane in response to stretch. We observed that stretch-stimulated exocytosis required apical epidermal growth factor (EGF) receptor activation and that activation occurred in an autocrine manner downstream of heparin-binding EGF-like growth factor precursor cleavage. Long-term changes in apical exocytosis depended on protein synthesis, which occurred upon EGF receptor-dependent activation of mitogen-activated protein kinase signaling. Our results indicate a novel physiological role for the EGF receptor that couples upstream mechanical stimuli to downstream apical EGF receptor activation that may regulate apical surface area changes during bladder filling.
Collapse
Affiliation(s)
- Elena M. Balestreire
- Laboratory of Epithelial Cell Biology, Departments of Medicine and Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Gerard Apodaca
- Laboratory of Epithelial Cell Biology, Departments of Medicine and Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, PA 15261
| |
Collapse
|
23
|
Abstract
Recent reports have proposed that the urothelium can sense mechanical stretch and communicate this information to sensory afferent neurons by the release of ATP into the vicinity of P2X-containing neurons. This report investigates the bidirectional release of ATP by in vitro rabbit urothelium. ATP was measured using the luciferin-luciferase assay. Immediately after washing of both sides of the epithelium, there was a linear increase in ATP content in the mucosal compartment with a rate of 23 +/- 6.5 fmol x min(-1) x cm(-2) (n = 18). Serosal ATP content increased as a saturating exponential function, suggesting a constant rate of release and degradation of ATP by ectonucleotidases/exonucleotidases. The presence of a serosal ectonucleotidase/exonucleotidases was demonstrated by the time-dependent decrease in exogenously added ATP. The maximum rate of hydrolysis was 11 pmol x min(-1) x cm(-2) with a K(m) of 0.49 microM. The time course of serosal ATP release was modeled as a constant rate of release (d: mol x min(-1) x cm(-2)) and rate constant of hydrolysis (k(h): min(-)). In control conditions d was 18 fmol x min(-1) x cm(-2) and k(h) of 0.056 +/- 0.01 min(-) (n = 18). Steady-state serosal chamber content is 370 +/- 90 fmol/cm(2), and concentration is 50 +/- 1.2 x 10(-12) M. Stretching the tissue resulted in a transient fivefold increase in the rate of mucosal ATP release and a transient sixfold increase in serosal ATP release. Half-osmotic strength solutions increased mucosal release by 10-fold and serosal release by 5-fold. Tissue damage resulted in a step-increase in mucosal chamber ATP content by 6.6 +/- 1 pmol/cm(2) and serosal chamber ATP by 0.1 +/- 0.06 pmol/cm(2) (n = 5).
Collapse
Affiliation(s)
- Simon A Lewis
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston 77555-1069, USA.
| | | |
Collapse
|
24
|
Wang ECY, Lee JM, Ruiz WG, Balestreire EM, von Bodungen M, Barrick S, Cockayne DA, Birder LA, Apodaca G. ATP and purinergic receptor-dependent membrane traffic in bladder umbrella cells. J Clin Invest 2005; 115:2412-22. [PMID: 16110327 PMCID: PMC1187935 DOI: 10.1172/jci24086] [Citation(s) in RCA: 174] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2004] [Accepted: 06/07/2005] [Indexed: 01/08/2023] Open
Abstract
The umbrella cells that line the bladder are mechanosensitive, and bladder filling increases the apical surface area of these cells; however, the upstream signals that regulate this process are unknown. Increased pressure stimulated ATP release from the isolated uroepithelium of rabbit bladders, which was blocked by inhibitors of vesicular transport, connexin hemichannels, ABC protein family members, and nucleoside transporters. Pressure-induced increases in membrane capacitance (a measure of apical plasma membrane surface area where 1 microF approximately equals 1 cm2) were inhibited by the serosal, but not mucosal, addition of apyrase or the purinergic receptor antagonist PPADS. Upon addition of purinergic receptor agonists, increased capacitance was observed even in the absence of pressure. Moreover, knockout mice lacking expression of P2X2 and/or P2X3 receptors failed to show increases in apical surface area when exposed to hydrostatic pressure. Treatments that prevented release of Ca2+ from intracellular stores or activation of PKA blocked ATPgammaS-stimulated changes in capacitance. These results indicate that increased hydrostatic pressure stimulates release of ATP from the uroepithelium and that upon binding to P2X and possibly P2Y receptors on the umbrella cell, downstream Ca2+ and PKA second messenger cascades may act to stimulate membrane insertion at the apical pole of these cells.
Collapse
Affiliation(s)
- Edward C Y Wang
- Renal-Electrolyte Division and Laboratory of Epithelial Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Monteiro RAF, Henrique RMF, Oliveira MH, Silva MW, Rocha E. Postnatal cerebellar granule cells of the white rat (Rattus norvegicus): a quantitative study, using design-based stereology. Ann Anat 2005; 187:161-73. [PMID: 15900702 DOI: 10.1016/j.aanat.2004.08.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A stereological study was carried out on postnatal cerebellar granule cells of rats aged 6 and 10 days, for detecting whether and how much they would differ from those of young adult rats. The following parameters were estimated: number-weighted mean volume of the nucleus and of the soma; mean total surface area of the soma; mean absolute volumes per cell of total cytoplasm, mitochondria, Golgi apparatus, and cytosol; mean surface density of the rough endoplasmic reticulum (RER); mean total surface area of the RER. These values were compared between the two postnatal ages. In addition, those values were also analysed in comparison to the ones depicted in young adult rats (60 days), already published by our team, in order to detect similarities between them. It was noticed that, between 6 and 10 days, the mean surface density of the RER was the only parameter that did not change significantly. The comparison of each of the postnatal ages with 60 days revealed that, with the exception of the absolute volume of Golgi apparatus, significant differences were displayed concerning other organelles and cellular compartments. It was concluded that, although fine structural differences have been disclosed, from the stereological point of view postnatal granule cells at 10 days were practically similar to the young adult ones at 60 days. Some potential physiological implications have been considered.
Collapse
Affiliation(s)
- R A F Monteiro
- Laboratory of Histology and Embryology, Institute of Biomedical Sciences (ICBAS), University of Oporto, 4099-003 Porto, Portugal.
| | | | | | | | | |
Collapse
|
26
|
Jenkins D, Bitner-Glindzicz M, Malcolm S, Hu CCA, Allison J, Winyard PJD, Gullett AM, Thomas DFM, Belk RA, Feather SA, Sun TT, Woolf AS. De novo Uroplakin IIIa heterozygous mutations cause human renal adysplasia leading to severe kidney failure. J Am Soc Nephrol 2005; 16:2141-9. [PMID: 15888565 DOI: 10.1681/asn.2004090776] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Human renal adysplasia usually occurs sporadically, and bilateral disease is the most common cause of childhood end-stage renal failure, a condition that is lethal without intervention using dialysis or transplantation. De novo heterozygous mutations in Uroplakin IIIa (UPIIIa) are reported in four of 17 children with kidney failure caused by renal adysplasia in the absence of an overt urinary tract obstruction. One girl and one boy in unrelated kindreds had a missense mutation at a CpG dinucleotide in the cytoplasmic domain of UPIIIa (Pro273Leu), both of whom had severe vesicoureteric reflux, and the girl had persistent cloaca; two other patients had de novo mutations in the 3' UTR (963 T-->G; 1003 T-->C), and they had renal adysplasia in the absence of any other anomaly. The mutations were absent in all sets of parents and in siblings, none of whom had radiologic evidence of renal adysplasia, and mutations were absent in two panels of 192 ethnically matched control chromosomes. UPIIIa was expressed in nascent urothelia in ureter and renal pelvis of human embryos, and it is suggested that perturbed urothelial differentiation may generate human kidney malformations, perhaps by altering differentiation of adjacent smooth muscle cells such that the metanephros is exposed to a functional obstruction of urine flow. With advances in renal replacement therapy, children with renal failure, who would otherwise have died, are surviving to adulthood. Therefore, although the mechanisms of action of the UPIIIa mutations have yet to be determined, these findings have important implications regarding genetic counseling of affected individuals who reach reproductive age.
Collapse
Affiliation(s)
- Dagan Jenkins
- Nephro-Urology Unit, Institute of Child Health, University College London, 30 Guilford Street, London WC1E 1EH, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Mo L, Cheng J, Lee EYHP, Sun TT, Wu XR. Gene deletion in urothelium by specific expression of Cre recombinase. Am J Physiol Renal Physiol 2005; 289:F562-8. [PMID: 15840768 DOI: 10.1152/ajprenal.00368.2004] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Urothelium that lines almost the entire urinary tract acts as a permeability barrier and is involved in the pathogenesis of major urinary diseases, including urothelial carcinoma, urinary tract infection, and interstitial cystitis. However, investigation of urothelial biology and diseases has been hampered by the lack of tissue-specific approaches. To address this deficiency, we sought to develop a urothelium-specific knockout system using the Cre/loxP strategy. Transgenic mouse lines were generated in which a 3.6-kb mouse uroplakin II (UPII) promoter was used to drive the expression of Cre recombinase (Cre). Among the multiple tissues analyzed, Cre was found to be expressed exclusively in the urothelia of the transgenic mice. Crossing a UPII-Cre transgenic line with a ROSA26-LacZ reporter line, in which LacZ expression depends on Cre-mediated deletion of a floxed "stop" sequence, led to LacZ expression only in the urothelium. Gene recombination was also observed when the UPII-Cre line was crossed to an independent line in which a part of the p53 gene was flanked by the loxP sequences (floxed p53). Truncation of the p53 gene and mRNA was observed exclusively in the urothelia of double transgenic mice harboring both the UPII-Cre transgene and the floxed p53 allele. These results demonstrate for the first time the feasibility and potentially wide applicability of the UPII-Cre transgenic mice to inactivate any genes of interest in the urothelium.
Collapse
Affiliation(s)
- Lan Mo
- Dept. of Urology, New York University Cancer Institute, New York Univ. School of Medicine, New York, New York, USA
| | | | | | | | | |
Collapse
|
28
|
Abstract
The uroepithelium lines the inner surface of the renal pelvis, the ureters, and the urinary bladder, where it forms a tight barrier that allows for retention of urine, while preventing the unregulated movement of ions, solutes, and toxic metabolites across the epithelial barrier. In the case of the bladder, the permeability barrier must be maintained even as the organ undergoes cyclical changes in pressure as it fills and empties. Beyond furthering our understanding of barrier function, new analysis of the uroepithelium is providing information about how detergent-insoluble membrane/protein domains called plaques are formed at the apical plasma membrane of the surface umbrella cells, how mechanical stimuli such as pressure alter exocytic and endocytic traffic in epithelial cells such as umbrella cells, and how changes in pressure are communicated to the underlying nervous system.
Collapse
Affiliation(s)
- Gerard Apodaca
- Renal-Electrolyte Division of the Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
29
|
Browning KN, Kalyuzhny AE, Travagli RA. Mu-opioid receptor trafficking on inhibitory synapses in the rat brainstem. J Neurosci 2004; 24:7344-52. [PMID: 15317860 PMCID: PMC3062490 DOI: 10.1523/jneurosci.1676-04.2004] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Whole-cell recordings were made from identified gastric-projecting rat dorsal motor nucleus of the vagus (DMV) neurons. The amplitude of evoked IPSCs (eIPSCs) was unaffected by perfusion with met-enkephalin (ME) or by mu-, delta-, or kappa-opioid receptor selective agonists, namely D-Ala2-N-Me-Phe4-Glycol5-enkephalin (DAMGO), cyclic [D-Pen2-D-Pen5]-enkephalin, or trans-3,4-dichloro-N-methyl-N-[2-(1-pyrolytinil)-cyclohexyl]-benzeneacetamide methane sulfonate (U50,488), respectively. Brief incubation with the adenylate cyclase activator forskolin or the nonhydrolysable cAMP analog 8-bromo-cAMP, thyrotropin releasing hormone, or cholecystokinin revealed the ability of ME and DAMGO to inhibit IPSC amplitude; this inhibition was prevented by pretreatment with the mu-opioid receptor (MOR1) selective antagonist D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2. Conversely, incubation with the adenylate cyclase inhibitor dideoxyadenosine, with the protein kinase A (PKA) inhibitor N-[2-(p-Bromocinnamyl-amino)ethyl]-5-isoquinolinesulfonamide dihydrochloride (H89), or with the Golgi-disturbing agent brefeldin A, blocked the ability of forskolin to facilitate the inhibitory actions of ME. Immunocytochemical experiments revealed that under control conditions, MOR1 immunoreactivity (MOR1-IR) was colocalized with glutamic acid decarboxylase (GAD)-IR in profiles apposing DMV neurons only after stimulation of the cAMP-PKA pathway. Pretreatment with H89 or brefeldin A or incubation at 4 degrees C prevented the forskolin-mediated insertion of MOR1 on GAD-IR-positive profiles. These results suggest that the cAMP-PKA pathway regulates trafficking of mu-opioid receptors into the cell surface of GABAergic nerve terminals. By consequence, the inhibitory actions of opioid peptides in the dorsal vagal complex may depend on the state of activation of brainstem vagal circuits.
Collapse
Affiliation(s)
- Kirsteen N Browning
- Department of Internal Medicine-Gastroenterology, University of Michigan Medical Center, Ann Arbor, Michigan 48109, USA
| | | | | |
Collapse
|
30
|
Wang ECY, Lee JM, Johnson JP, Kleyman TR, Bridges R, Apodaca G. Hydrostatic pressure-regulated ion transport in bladder uroepithelium. Am J Physiol Renal Physiol 2003; 285:F651-63. [PMID: 12770841 DOI: 10.1152/ajprenal.00403.2002] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The effect of hydrostatic pressure on ion transport in the bladder uroepithelium was investigated. Isolated rabbit uroepithelium was mounted in modified Ussing chambers and mechanically stimulated by applying hydrostatic pressure across the mucosa. Increased hydrostatic pressure led to increased mucosal-to-serosal Na+ absorption across the uroepithelium via the amiloride-sensitive epithelial Na+ channel. In addition to this previously characterized pathway for Na+ absorption, hydrostatic pressure also induced the secretion of Cl- and K+ into the mucosal bathing solution under short-circuit conditions, which was confirmed by a net serosal-to-mucosal flux of 36Cl- and 86Rb+. K+ secretion was likely via a stretch-activated nonselective cation channel sensitive to 100 microM amiloride, 10 mM tetraethylammonium, 3 mM Ba2+, and 1 mM Gd3+. Hydrostatic pressure-induced ion transport in the uroepithelium may play important roles in electrolyte homeostasis, volume regulation, and mechanosensory transduction.
Collapse
Affiliation(s)
- Edward C Y Wang
- Department of Medicine, University of Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | |
Collapse
|
31
|
Wang E, Truschel S, Apodaca G. Analysis of hydrostatic pressure-induced changes in umbrella cell surface area. Methods 2003; 30:207-17. [PMID: 12798135 DOI: 10.1016/s1046-2023(03)00027-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
All cells experience and respond to external mechanical stimuli including shear stress, compression, and hydrostatic pressure. Cellular responses can include changes in exocytic and endocytic traffic. An excellent system to study how extracellular forces govern membrane trafficking events is the bladder umbrella cell, which lines the inner surface of the mammalian urinary bladder. It is hypothesized that umbrella cells modulate their apical plasma membrane surface area in response to hydrostatic pressure. Understanding the mechanics of this process is hampered by the lack of a suitable model system. We describe a pressure chamber that allows one to increase hydrostatic pressure in a physiological manner while using capacitance to monitor real-time changes in the apical surface area of the umbrella cell. It is demonstrated that application of hydrostatic pressure results in an increase in umbrella cell apical surface area and a change in the morphology of umbrella cells from roughly cuboidal to squamous. This process is dependent on increases in cytoplasmic Ca(2+). This system will be useful in further dissecting the mechanotransduction pathways involved in cell shape change and regulation of exocytic and endocytic traffic in umbrella cells.
Collapse
Affiliation(s)
- Edward Wang
- Department of Medicine, University of Pittsburgh, 982 Scaife Hall, 3550 Terrace Street, Pittsburgh, PA 15261, USA
| | | | | |
Collapse
|
32
|
Born M, Pahner I, Ahnert-Hilger G, Jöns T. The maintenance of the permeability barrier of bladder facet cells requires a continuous fusion of discoid vesicles with the apical plasma membrane. Eur J Cell Biol 2003; 82:343-50. [PMID: 12924629 DOI: 10.1078/0171-9335-00326] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The luminal surface of the bladder epithelium is continuously exposed to urine that differs from blood in its ionic composition and osmolality. The apical plasma membrane of facet or umbrella cells, facing the urine, is covered with rigid-looking plaques consisting of hexagonal uroplakin particles. Together with tight junctions these plaques form a specialized membrane compartment that represents one of the tightest and most impermeable barriers in the body. Plaques also occur in the membrane of cytoplasmic discoid vesicles. Here it is shown shown that synaptobrevin, SNAP23 and syntaxin are perfectly colocalized with uroplakin III at the apical plasma membrane as well as with membranes of discoid vesicles. Such a distribution suggests that discoid vesicles in facet cells may gain access to the apical plasma membrane probably by combination of homotypic and heterotypic fusion events. Furthermore, we detected uroplakin III-containing membranes of different sizes in the urine of healthy humans and rats. Probably facet cells maintain their permeability barrier by a process of continuous membrane regeneration that includes the cutting off of areas of the apical membrane and its replacement by newly fused discoid vesicles.
Collapse
Affiliation(s)
- Martin Born
- Institut für Anatomie der Charité, Humboldt-Universität zu Berlin, Berlin, Germany
| | | | | | | |
Collapse
|
33
|
Hu P, Meyers S, Liang FX, Deng FM, Kachar B, Zeidel ML, Sun TT. Role of membrane proteins in permeability barrier function: uroplakin ablation elevates urothelial permeability. Am J Physiol Renal Physiol 2002; 283:F1200-7. [PMID: 12388410 DOI: 10.1152/ajprenal.00043.2002] [Citation(s) in RCA: 179] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although water, small nonelectrolytes, and gases are freely permeable through most biological membranes, apical membranes of certain barrier epithelia exhibit extremely low permeabilities to these substances. The role of integral membrane proteins in this barrier function has been unclear. To study this problem, we have ablated the mouse gene encoding uroplakin III (UPIII), one of the major protein subunits in urothelial apical membranes, and measured the permeabilities of these membranes. Ablation of the UPIII gene greatly diminishes the amounts of uroplakins on the apical urothelial membrane (Hu P, Deng FM, Liang FX, Hu CM, Auerbach AB, Shapiro E, Wu XR, Kachar B, and Sun TT. J Cell Biol 151: 961-972, 2000). Our results indicate that normal mouse urothelium exhibits high transepithelial resistance and low urea and water permeabilities. The UPIII-deficient urothelium exhibits a normal transepithelial resistance (normal 2,024 +/- 122, knockout 2,322 +/- 114 Omega. cm(2); P > 0.5). However, the UPIII-deficient apical membrane has a significantly elevated water permeability (normal 0.91 +/- 0.06, knockout 1.83 +/- 0.14 cm/s x 10(-5); P < 0.05). The urea permeability of the UPIII-deficient membrane also increased, although to a lesser extent (normal 2.22 +/- 0.24, knockout 2.93 +/- 0.31 cm/s x 10(-6); P = 0.12). These results indicate that reduced targeting of uroplakins to the apical membrane does not significantly alter the tight junctional barrier but does double the water permeability. We provide the first demonstration that integral membrane proteins contribute to the apical membrane permeability barrier function of urothelium.
Collapse
Affiliation(s)
- Ping Hu
- Ronald O. Perelman Department of Dermatology, Kaplan Comprehensive Cancer Center, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Burton TJ, Edwardson JM, Ingham J, Tempest HV, Ferguson DR. Regulation of Na+ channel density at the apical surface of rabbit urinary bladder epithelium. Eur J Pharmacol 2002; 448:215-23. [PMID: 12144944 DOI: 10.1016/s0014-2999(02)01912-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We have investigated the effects of various manipulations on Na(+) transport across the rabbit urinary bladder epithelium. After bladders were mounted in Ussing chambers there was a spontaneous and significant (>4-fold) increase in amiloride-sensitive short-circuit current (equivalent to net Na(+) transport) over a 6-h period. The increase in current was almost abolished by brefeldin A, an inhibitor of anterograde vesicular transport, and reduced after a 3-h delay by cycloheximide, an inhibitor of protein synthesis. The spontaneous increase in short-circuit current was potentiated by treatment of bladders with either forskolin, which causes an elevation in cAMP levels, or aldosterone. Acting together, these two agents produced a significant synergistic effect on short-circuit current. The short-circuit current recovered rapidly after reduction in intracellular Na(+) levels, achieved either by lowering the extracellular Na(+) concentration or blockade of epithelial Na(+) channels with the sulphydryl modifying reagent p-chloromercuribenzenesulphonic acid (PCMBS). Recovery after PCMBS treatment was partially sensitive to brefeldin A. Short-circuit current saturated as the extracellular Na(+) concentration was increased (EC(50) = 51 mM). Saturation occurred over a range of Na(+) concentrations in which single channel permeability is known to remain constant, indicating that it depends on a reduction in epithelial Na(+) channel density at the apical plasma membrane. Exposure of bladders to a high Na(+) concentration caused an increase in endocytotic activity, detected through an increase in the uptake of the fluid-phase marker fluorescein isothiocyanate (FITC)-dextran into vesicles located beneath the apical plasma membrane. We conclude that the urinary bladder epithelium is able to respond rapidly and efficiently to changes in its environment by regulating the density of epithelial Na(+) channels in its apical surface.
Collapse
Affiliation(s)
- Timothy J Burton
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| | | | | | | | | |
Collapse
|
35
|
Truschel ST, Wang E, Ruiz WG, Leung SM, Rojas R, Lavelle J, Zeidel M, Stoffer D, Apodaca G. Stretch-regulated exocytosis/endocytosis in bladder umbrella cells. Mol Biol Cell 2002; 13:830-46. [PMID: 11907265 PMCID: PMC99602 DOI: 10.1091/mbc.01-09-0435] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The epithelium of the urinary bladder must maintain a highly impermeable barrier despite large variations in urine volume during bladder filling and voiding. To study how the epithelium accommodates these volume changes, we mounted bladder tissue in modified Ussing chambers and subjected the tissue to mechanical stretch. Stretching the tissue for 5 h resulted in a 50% increase in lumenal surface area (from approximately 2900 to 4300 microm(2)), exocytosis of a population of discoidal vesicles located in the apical cytoplasm of the superficial umbrella cells, and release of secretory proteins. Surprisingly, stretch also induced endocytosis of apical membrane and 100% of biotin-labeled membrane was internalized within 5 min after stretch. The endocytosed membrane was delivered to lysosomes and degraded by a leupeptin-sensitive pathway. Last, we show that the exocytic events were mediated, in part, by a cyclic adenosine monophosphate, protein kinase A-dependent process. Our results indicate that stretch modulates mucosal surface area by coordinating both exocytosis and endocytosis at the apical membrane of umbrella cells and provide insight into the mechanism of how mechanical forces regulate membrane traffic in non-excitable cells.
Collapse
Affiliation(s)
- Steven T Truschel
- Renal-Electrolyte Division, Department of Medicine, Laboratory of Epithelial Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
The simplest cell-like structure, the lipid bilayer vesicle, can respond to mechanical deformation by elastic membrane dilation/thinning and curvature changes. When a protein is inserted in the lipid bilayer, an energetic cost may arise because of hydrophobic mismatch between the protein and bilayer. Localized changes in bilayer thickness and curvature may compensate for this mismatch. The peptides alamethicin and gramicidin and the bacterial membrane protein MscL form mechanically gated (MG) channels when inserted in lipid bilayers. Their mechanosensitivity may arise because channel opening is associated with a change in the protein's membrane-occupied area, its hydrophobic mismatch with the bilayer, excluded water volume, or a combination of these effects. As a consequence, bilayer dilation/thinning or changes in local membrane curvature may shift the equilibrium between channel conformations. Recent evidence indicates that MG channels in specific animal cell types (e.g., Xenopus oocytes) are also gated directly by bilayer tension. However, animal cells lack the rigid cell wall that protects bacteria and plants cells from excessive expansion of their bilayer. Instead, a cortical cytoskeleton (CSK) provides a structural framework that allows the animal cell to maintain a stable excess membrane area (i.e., for its volume occupied by a sphere) in the form of membrane folds, ruffles, and microvilli. This excess membrane provides an immediate membrane reserve that may protect the bilayer from sudden changes in bilayer tension. Contractile elements within the CSK may locally slacken or tighten bilayer tension to regulate mechanosensitivity, whereas membrane blebbing and tight seal patch formation, by using up membrane reserves, may increase membrane mechanosensitivity. In specific cases, extracellular and/or CSK proteins (i.e., tethers) may transmit mechanical forces to the process (e.g., hair cell MG channels, MS intracellular Ca(2+) release, and transmitter release) without increasing tension in the lipid bilayer.
Collapse
Affiliation(s)
- O P Hamill
- Physiology and Biophysics, University Of Texas Medical Branch, Galveston, Texas 77555, USA.
| | | |
Collapse
|
37
|
Stiffler DF, Thornburg KL, Swanson RE. Structural and functional responses of the bullfrog urinary bladder to distension caused by hydrostatic pressure gradients. Arch Physiol Biochem 2000; 108:405-14. [PMID: 11262598 DOI: 10.1076/apab.108.5.405.4291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The responses to mucosal pressure elevation (physiological pressure: PP) were compared to responses to serosal pressure elevation (non-physiological pressure: NPP) in bullfrog urinary bladders (Rana catesbeiana). The bladders were mounted on vertical chambers as flat sheets. Distension was applied with 98.07 Pa. pressure gradients. PP resulted in increases in transepithelial electrical potential difference (TEP) and short-circuit current (SCC). Electrical resistance (R), urea permeability (P(urea)) and net water flux (J( v)) were not effected. NPP resulted in decreases in TEP (38%), SCC (13%), and R (36%). While P(urea) (97%) and J(v) (96%) increased. PP caused little or no change in the electron microscopic structure of frog bladder while NPP caused irreversible dilation of the lateral intercellular spaces. There were no observable changes in tight junctions under PP or NPP. The subepithelial elements of the bladder became detached from the epithelial layer during NPP suggesting a role for them during PP.
Collapse
Affiliation(s)
- D F Stiffler
- Biological Sciences Department, California State Polytechnic University, Pomona, CA 91768, USA.
| | | | | |
Collapse
|
38
|
Hill WG, Zeidel ML. Reconstituting the barrier properties of a water-tight epithelial membrane by design of leaflet-specific liposomes. J Biol Chem 2000; 275:30176-85. [PMID: 10903312 DOI: 10.1074/jbc.m003494200] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To define aspects of lipid composition and bilayer asymmetry critical to barrier function, we examined the permeabilities of liposomes that model individual leaflets of the apical membrane of a barrier epithelium, Madin-Darby canine kidney type 1 cells. Using published lipid compositions we prepared exofacial liposomes containing phosphatidylcholine, sphingomyelin, glycosphingolipids, and cholesterol; and cytoplasmic liposomes containing phosphatidylethanolamine, phosphatidylserine, and cholesterol. The osmotic permeability of cytoplasmic liposomes to water (P(f)), solutes, and NH(3) was 18-90-fold higher than for the exofacial liposomes (P(f(ex)) = 2.4 +/- 0.4 x 10(-4) cm/s, P(f(cy)) = 4.4 +/- 0.3 x 10(-3) cm/s; P(glycerol(ex)) = 2.5 +/- 0.3 x 10(-8) cm/s, P(glycerol(cy)) = 2.2 +/- 0.02 x 10(-6) cm/s; P(NH3(ex)) = 0. 13 +/- 0.4 x 10(-4) cm/s, P(NH3(cy)) = 7.9 +/- 1.0 x 10(-3) cm/s). By contrast, the apparent proton permeability of exofacial liposomes was 4-fold higher than cytoplasmic liposomes (P(H+(ex)) = 1.1 +/- 0. 1 x 10(-2) cm/s, P(H+(cy)) = 2.7 +/- 0.6 x 10(-3) cm/s). By adding single leaflet permeabilities, we calculated a theoretical P(f) for a Madin-Darby canine kidney apical membrane of 4.6 x 10(-4) cm/s, which compares favorably with experimentally determined values. In exofacial liposomes lacking glycosphingolipids or sphingomyelin, permeabilities were 2-7-fold higher, indicating that both species play a role in barrier function. Removal of cholesterol resulted in 40-280-fold increases in permeability. We conclude: 1) that we have reconstituted the biophysical properties of a barrier membrane, 2) that the barrier resides in the exofacial leaflet, 3) that both sphingomyelin and glycosphingolipids play a role in reducing membrane permeability but that there is an absolute requirement for cholesterol to mediate this effect, 4) that these results further validate the hypothesis that each leaflet offers an independent resistance to permeation, and 5) that proton permeation was enhanced by sphingolipid/cholesterol interactions.
Collapse
Affiliation(s)
- W G Hill
- Laboratory of Epithelial Cell Biology, Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | |
Collapse
|
39
|
Burton TJ, Elneil S, Nelson CP, Ferguson DR. Activation of epithelial Na(+) channel activity in the rabbit urinary bladder by cAMP. Eur J Pharmacol 2000; 404:273-80. [PMID: 10996592 DOI: 10.1016/s0014-2999(00)00597-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The rabbit urinary bladder actively absorbs Na(+) from the urine. The rate-limiting step in this process is the diffusion of Na(+) across the apical membrane of bladder epithelial cells, mediated by amiloride-sensitive epithelial Na(+) channels. We have investigated the effects of cAMP on epithelial Na(+) channel activity in the rabbit bladder by measuring the amiloride-sensitive short-circuit current across bladders mounted in Ussing chambers. Three agents that raise intracellular cAMP levels (forskolin, dibutyryl-cAMP and 3-isobutyl-1-methylxanthine (IBMX)) increased the amiloride-sensitive short-circuit current relative to control preparations. The forskolin-induced increase in amiloride-sensitive short-circuit current was significantly inhibited by the vesicle fusion inhibitor brefeldin A and the protein synthesis inhibitor cycloheximide. These findings, together with the magnitude and protracted time course of the cAMP effects, suggests that cAMP stimulates the insertion of new Na(+) channels into the apical membrane of the rabbit bladder epithelium.
Collapse
Affiliation(s)
- T J Burton
- Department of Pharmacology, University of Cambridge, Tennis Court Road, CB2 1QJ, Cambridge, UK.
| | | | | | | |
Collapse
|
40
|
Abstract
The ability of peripheral nervous system (PNS) but not central nervous system (CNS) neurons to regenerate their axons is a striking peculiarity of higher vertebrates. Much research has focused on the inhibitory signals produced by CNS glia that thwart regenerating axons. Less attention has been paid to the injury-induced loss of trophic stimuli needed to promote the survival and regeneration of axotomized neurons. Could differences in the mechanisms that control CNS and PNS neuronal survival and growth also contribute to the disparity in regenerative capacity? Here we review recent studies concerning the nature of the signals necessary to promote neuronal survival and growth, with an emphasis on their significance to regeneration after CNS injury.
Collapse
Affiliation(s)
- J L Goldberg
- Department of Neurobiology, Stanford University School of Medicine, California 94305-5125, USA.
| | | |
Collapse
|
41
|
Sun TT, Liang FX, Wu XR. Uroplakins as markers of urothelial differentiation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1999; 462:7-18; discussion 103-14. [PMID: 10599409 DOI: 10.1007/978-1-4615-4737-2_1] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- T T Sun
- Ronald Perelman Department of Dermatology, New York University Medical School, New York 10016, USA
| | | | | |
Collapse
|
42
|
Affiliation(s)
- D R Ferguson
- Department of Pharmacology, University of Cambridge, UK
| |
Collapse
|
43
|
Truschel ST, Ruiz WG, Shulman T, Pilewski J, Sun TT, Zeidel ML, Apodaca G. Primary uroepithelial cultures. A model system to analyze umbrella cell barrier function. J Biol Chem 1999; 274:15020-9. [PMID: 10329705 DOI: 10.1074/jbc.274.21.15020] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Despite almost 25 years of effort, the development of a highly differentiated and functionally equivalent cell culture model of uroepithelial cells has eluded investigators. We have developed a primary cell culture model of rabbit uroepithelium that consists of an underlying cell layer that interacts with a collagen substratum, an intermediate cell layer, and an upper cell layer of large (25-100 micrometer) superficial cells. When examined at the ultrastructural level, the superficial cells formed junctional complexes and had an asymmetric unit membrane, a hallmark of terminal differentiation in bladder umbrella cells. These cultured "umbrella" cells expressed uroplakins and a 27-kDa uroepithelial specific antigen that assembled into detergent-resistant asymmetric unit membrane particles. The cultures had low diffusive permeabilities for water (2.8 x 10(-4) cm/s) and urea (3.0 x 10(-7) cm/s) and high transepithelial resistance (>8000 Omega cm2) was achieved when 1 mM CaCl2 was included in the culture medium. The cell cultures expressed an amiloride-sensitive sodium transport pathway and increases in apical membrane capacitance were observed when the cultures were osmotically stretched. The described primary rabbit cell culture model mimics many of the characteristics of uroepithelium found in vivo and should serve as a useful tool to explore normal uroepithelial function as well as dysfunction as a result of disease.
Collapse
Affiliation(s)
- S T Truschel
- Renal-Electrolyte Division of the Department of Medicine and Laboratory of Epithelial Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Kachar B, Liang F, Lins U, Ding M, Wu XR, Stoffler D, Aebi U, Sun TT. Three-dimensional analysis of the 16 nm urothelial plaque particle: luminal surface exposure, preferential head-to-head interaction, and hinge formation. J Mol Biol 1999; 285:595-608. [PMID: 9878432 DOI: 10.1006/jmbi.1998.2304] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The luminal surface of mouse urothelium in contact with the urine is almost entirely covered with plaques consisting of uroplakin-containing particles that form p6 hexagonal crystals with a center-to-center distance of 16 nm. A combination of quick-freeze/deep-etch images and our previous negative staining data indicate that the head domain of the uroplakin particle, which is exposed without an extensive glycocalyx shield, interacts closely with the head domains of the neighboring particles, while the membrane-embedded tail domains are farther apart; and that urothelial particles and plaques are not rigid structures as they can change their configuration in response to mechanical perturbations. Based on these data, we have constructed three-dimensional models depicting the structural organization of urothelial particles and plaques. Our models suggest that the head-to-head interaction may play a key role in determining the shape and size of the urothelial plaques. These models can explain many properties of urothelial plaques including their unique shape, detergent-insolubility, and morphological changes during vesicle maturation.
Collapse
Affiliation(s)
- B Kachar
- National Institute on Deafness and other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Meyer-Franke A, Wilkinson GA, Kruttgen A, Hu M, Munro E, Hanson MG, Reichardt LF, Barres BA. Depolarization and cAMP elevation rapidly recruit TrkB to the plasma membrane of CNS neurons. Neuron 1998; 21:681-93. [PMID: 9808456 PMCID: PMC2693071 DOI: 10.1016/s0896-6273(00)80586-3] [Citation(s) in RCA: 431] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Here, we describe a novel mechanism for the rapid regulation of surface levels of the neurotrophin receptor TrkB. Unlike nodose ganglion neurons, both retinal ganglion cells (RGCs) and spinal motor neurons (SMNs) in culture display only low levels of surface TrkB, though high levels are present intracellularly. Within minutes of depolarization or cAMP elevation, surface TrkB levels increase by nearly 4-fold, and this increase is not blocked by cycloheximide. These findings suggest that activity and cAMP elevation rapidly recruit TrkB to the plasma membrane by translocation from intracellular stores. We propose that a fundamental difference between peripheral nervous system (PNS) and central nervous system (CNS) neurons is the activity dependence of CNS neurons for responsiveness to their peptide trophic factors and that differences in membrane compartmentalization of the receptors underlie this difference.
Collapse
Affiliation(s)
- A Meyer-Franke
- Stanford University School of Medicine, Department of Neurobiology, California 94305, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Smith PR, Mackler SA, Weiser PC, Brooker DR, Ahn YJ, Harte BJ, McNulty KA, Kleyman TR. Expression and localization of epithelial sodium channel in mammalian urinary bladder. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:F91-6. [PMID: 9458827 DOI: 10.1152/ajprenal.1998.274.1.f91] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The mammalian urinary bladder exhibits transepithelial Na+ absorption that contributes to Na+ gradients established by the kidney. Electrophysiological studies have demonstrated that electrogenic Na+ absorption across the urinary bladder is mediated in part by amiloride-sensitive Na+ channels situated within the apical membrane of the bladder epithelium. We have used a combination of in situ hybridization, Northern blot analysis, and immunocytochemistry to examine whether the recently cloned epithelial Na+ channel (ENaC) is expressed in the rat urinary bladder. In situ hybridization and Northern blot analyses indicate that alpha-, beta-, and gamma-rat ENaC (rENaC) are expressed in rat urinary bladder epithelial cells. Quantitation of the levels of alpha-, beta-, and gamma-rENaC mRNA expression in rat urinary bladder, relative to beta-actin mRNA expression, indicates that, although comparable levels of alpha- and beta-rENaC subunits are expressed in the urinary bladder of rats maintained on standard chow, the level of gamma-rENaC mRNA expression is 5- to 10-fold lower than alpha- or beta-rENaC mRNA. Immunocytochemistry, using an antibody directed against alpha-rENaC, revealed that ENaCs are predominantly localized to the luminal membrane of the bladder epithelium. Together, these data demonstrate that ENaC is expressed in the mammalian urinary bladder and suggest that amiloride-sensitive Na+ transport across the apical membrane of the mammalian urinary bladder epithelium is mediated primarily by ENaC.
Collapse
Affiliation(s)
- P R Smith
- Department of Physiology, Allegheny University of the Health Sciences, Philadelphia, Pennsylvania 19129, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Sehested J, Diernaes L, Laverty G, Møller PD, Skadhauge E. Methodological and Functional Aspects of the Isolated Bovine Rumen Epithelium in Ussing Chamber Flux Studies. ACTA AGR SCAND A-AN 1996. [DOI: 10.1080/09064709609415855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
48
|
Lin JH, Zhao H, Sun TT. A tissue-specific promoter that can drive a foreign gene to express in the suprabasal urothelial cells of transgenic mice. Proc Natl Acad Sci U S A 1995; 92:679-83. [PMID: 7846036 PMCID: PMC42683 DOI: 10.1073/pnas.92.3.679] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Uroplakins are a group of integral membrane proteins that are synthesized as the major differentiation products of urothelium. The luminal portions of these proteins form 12-nm protein particles arranged in a two-dimensional crystalline array. The expression of uroplakin genes is bladder specific and differentiation dependent; little is known, however, about their molecular regulation. Here we describe the cloning of mouse uroplakin II gene and demonstrate, in transgenic mouse experiments, that a 3.6-kb 5'-flanking sequence of this gene can drive a bacterial lacZ (reporter) gene to express in the suprabasal cell layers of the urothelium. The transgene was not expressed in any tested (nonurothelial) epithelial and other tissues (except hypothalamus). These results suggest that most of the cis elements that confer the bladder-specific and differentiation-dependent expression of mouse uroplakin II gene must reside in the 3.6-kb sequence. The availability of a promoter capable of delivering a foreign molecule to the differentiated cell layers of bladder epithelium opens avenues for studying normal and pathological urothelial differentiation in transgenic mice.
Collapse
Affiliation(s)
- J H Lin
- Ronald O. Perelman Department of Dermatology, Kaplan Comprehensive Cancer Center, New York University School of Medicine, NY 10016
| | | | | |
Collapse
|
49
|
Chang A, Hammond TG, Sun TT, Zeidel ML. Permeability properties of the mammalian bladder apical membrane. THE AMERICAN JOURNAL OF PHYSIOLOGY 1994; 267:C1483-92. [PMID: 7977709 DOI: 10.1152/ajpcell.1994.267.5.c1483] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The luminal surface of mammalian bladder is exposed to urine with a composition widely different from that of plasma that bathes the basolateral surface of epithelium. Therefore we predict that the bladder permeability barrier, which is likely located in the apical membrane (AM), will exhibit low permeabilities to water, urea, NH3, H+, and small nonelectrolytes. AM surface area increases as the bladder fills with urine and decreases during emptying, a process that involves cyclical endocytosis and reinsertion of membrane from a pool of AM endosomes (AME). Rigid-appearing plaques composed of three proteins, uroplakins, have been identified and occupy 70-90% of AM surface area. To determine permeability properties of the AM permeability barrier, we purified AME and measured their permeabilities. Rabbit urinary bladders were removed, and their apical surface was exposed to carboxyfluorescein (CF) or horseradish peroxidase (HRP). Exposure to hypotonic and then isotonic basolateral solutions induced endocytosis of luminal CF or HRP into AME. Electron microscopy of bladders after this treatment revealed HRP entrapped within AME bordered by plaques. AME were purified by differential and sucrose-gradient centrifugation, and CF-containing AME were purified 17.0 +/- 3-fold (SD) with respect to homogenate. Analysis of purified AME by flow cytometry showed that > 95% of vesicles contained CF entrapped from luminal solution and were selectively labeled with anti-uroplakin antibody. AME osmotic water permeability averaged 2.3 +/- 0.66 x 10(-4) cm/s and exhibited a high activation energy, indicating that AM contains no water channels. Permeability to urea and NH3 averaged 7.8 +/- 3.7 x 10(-7) and 1.5 +/- 0.3 x 10(-3) cm/s, respectively, which are exceptionally low and similar to permeabilities of other water-tight membranes, including toad urinary bladder and gastric mucosa. AME behaved as a single population in all permeability studies, which will permit future characterization of protein and lipid structure responsible for these unique permeability properties.
Collapse
Affiliation(s)
- A Chang
- Research Service, West Roxbury Veterans Affairs Medical Center, Massachusetts 02132
| | | | | | | |
Collapse
|
50
|
Yu J, Lin JH, Wu XR, Sun TT. Uroplakins Ia and Ib, two major differentiation products of bladder epithelium, belong to a family of four transmembrane domain (4TM) proteins. J Biophys Biochem Cytol 1994; 125:171-82. [PMID: 8138569 PMCID: PMC2120008 DOI: 10.1083/jcb.125.1.171] [Citation(s) in RCA: 153] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The mammalian bladder epithelium elaborates, as a terminal differentiation product, a specialized plasma membrane called asymmetric unit membrane (AUM) which is believed to play a role in strengthening and stabilizing the urothelial apical surface through its interactions with an underlying cytoskeleton. Previous studies indicate that the outer leaflet of AUM is composed of crystalline patches of 12-nm protein particles, and that bovine AUMs contain three major proteins: the 27- to 28-kD uroplakin I, the 15-kD uroplakin II and the 47-kD uroplakin III. As a step towards elucidating the AUM structure and function, we have cloned the cDNAs of bovine uroplakin I (UPI). Our results established the existence of two isoforms of bovine uroplakin I: a 27-kD uroplakin Ia and a 28-kD uroplakin Ib. These two glycoproteins are closely related with 39% identity in their amino acid sequences. Hydropathy plot revealed that both have four potential transmembrane domains (TMDs) with connecting loops of similar length. Proteolytic digestion of UPIa inserted in vitro into microsomal vesicles suggested that its two main hydrophilic loops are exposed to the luminal space, possibly involved in interacting with the luminal domains of other uroplakins to form the 12-nm protein particles. The larger loop connecting TMD3 and TMD4 of both UPIa and UPIb contains six highly conserved cysteine residues; at least one centrally located cysteine doublet in UPIa is involved in forming intramolecular disulfide bridges. The sequences of UPIa and UPIb (the latter is almost identical to a hypothetical, TGF beta-inducible, TI-1 protein of mink lung epithelial cells) are homologous to members of a recently described family all possessing four transmembrane domains (the "4TM family"); members of this family include many important leukocyte differentiation markers such as CD9, CD37, CD53, and CD63. The tissue-specific and differentiation-dependent expression as well as the naturally occurring crystalline state of uroplakin I molecules make them uniquely suitable, as prototype members of the 4TM family, for studying the structure and function of these integral membrane proteins.
Collapse
Affiliation(s)
- J Yu
- Ronald O. Perelman Department of Dermatology, New York University Medical School, New York 10016
| | | | | | | |
Collapse
|