1
|
Wilson SE. Defective perlecan-associated basement membrane regeneration and altered modulation of transforming growth factor beta in corneal fibrosis. Cell Mol Life Sci 2022; 79:144. [PMID: 35188596 PMCID: PMC8972081 DOI: 10.1007/s00018-022-04184-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/14/2022] [Accepted: 02/01/2022] [Indexed: 02/06/2023]
Abstract
In the cornea, the epithelial basement membrane (EBM) and corneal endothelial Descemet's basement membrane (DBM) critically regulate the localization, availability and, therefore, the functions of transforming growth factor (TGF)β1, TGFβ2, and platelet-derived growth factors (PDGF) that modulate myofibroblast development. Defective regeneration of the EBM, and notably diminished perlecan incorporation, occurs via several mechanisms and results in excessive and prolonged penetration of pro-fibrotic growth factors into the stroma. These growth factors drive mature myofibroblast development from both corneal fibroblasts and bone marrow-derived fibrocytes, and then the persistence of these myofibroblasts and the disordered collagens and other matrix materials they produce to generate stromal scarring fibrosis. Corneal stromal fibrosis often resolves completely if the inciting factor is removed and the BM regenerates. Similar defects in BM regeneration are likely associated with the development of fibrosis in other organs where perlecan has a critical role in the modulation of signaling by TGFβ1 and TGFβ2. Other BM components, such as collagen type IV and collagen type XIII, are also critical regulators of TGF beta (and other growth factors) in the cornea and other organs. After injury, BM components are dynamically secreted and assembled through the cooperation of neighboring cells-for example, the epithelial cells and keratocytes for the corneal EBM and corneal endothelial cells and keratocytes for the corneal DBM. One of the most critical functions of these reassembled BMs in all organs is to modulate the pro-fibrotic effects of TGFβs, PDGFs and other growth factors between tissues that comprise the organ.
Collapse
Affiliation(s)
- Steven E Wilson
- Cole Eye Institute, I-32, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH, USA.
| |
Collapse
|
2
|
Abstract
Recent advances in the field of glycobiology have exposed a multitude of biological processes that are controlled or influenced by proteoglycans, in both physiological and pathological conditions ranging from early embryonic development, inflammation, and fibrosis to tumor invasion and metastasis. The first part of this article reviews the biosynthesis of proteoglycans and their multifunctional roles in health and disease; the second part of this review focuses on their putative roles in peritoneal homeostasis and peritoneal inflammation and fibrosis in the context of chronic peritoneal dialysis and peritonitis.
Collapse
Affiliation(s)
- Susan Yung
- Department of Medicine, University of Hong Kong, Hong Kong
| | - Tak Mao Chan
- Department of Medicine, University of Hong Kong, Hong Kong
| |
Collapse
|
3
|
Carrara N, Weaver M, Piedade WP, Vöcking O, Famulski JK. Temporal characterization of optic fissure basement membrane composition suggests nidogen may be an initial target of remodeling. Dev Biol 2019; 452:43-54. [PMID: 31034836 DOI: 10.1016/j.ydbio.2019.04.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/08/2019] [Accepted: 04/23/2019] [Indexed: 01/26/2023]
Abstract
Fusion of the optic fissure is necessary to complete retinal morphogenesis and ensure proper function of the optic stalk. Failure of this event leads to congenital coloboma, one of the leading causes of pediatric blindness. Mechanistically it is widely accepted that the basement membrane (BM) surrounding the maturing retina needs to be remodeled within the fissure in order to facilitate subsequent epithelial sheet fusion. However, the mechanism driving BM remodeling has yet to be elucidated. As a first step to understanding this critical molecular event we comprehensively characterized the core composition of optic fissure BMs in the zebrafish embryos. Zebrafish optic fissure BMs were found to express laminin a1, a4, b1a, c1 and c3, nidogen 1a, 1b and 2a, collagen IV a1 and a2 as well as perlecan. Furthermore, we observed that laminin, perlecan and collagen IV expression persists in the fissure during fusion, up to 56 hpf, while nidogen expression is downregulated upon initiation of fusion, at 36 hpf. Using immunohistochemistry we also show that nidogen is removed from the BM prior to that of laminin, indicating that remodeling of the BM is an ordered event. Lastly, we characterized retinal morphogenesis in the absence of nidogen function and documented retinal malformation similar to what is observed in laminin mutants. Taken together, we propose a model of BM remodeling where nidogen acts as a linchpin during initiation of optic fissure fusion.
Collapse
Affiliation(s)
| | - Megan Weaver
- Department of Biology, University of Kentucky, USA
| | | | | | - J K Famulski
- Department of Biology, University of Kentucky, USA.
| |
Collapse
|
4
|
Poluzzi C, Iozzo RV, Schaefer L. Endostatin and endorepellin: A common route of action for similar angiostatic cancer avengers. Adv Drug Deliv Rev 2016; 97:156-73. [PMID: 26518982 DOI: 10.1016/j.addr.2015.10.012] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 10/15/2015] [Accepted: 10/16/2015] [Indexed: 12/17/2022]
Abstract
Traditional cancer therapy typically targets the tumor proper. However, newly-formed vasculature exerts a major role in cancer development and progression. Autophagy, as a biological mechanism for clearing damaged proteins and oxidative stress products released in the tumor milieu, could help in tumor resolution by rescuing cells undergoing modifications or inducing autophagic-cell death of tumor blood vessels. Cleaved fragments of extracellular matrix proteoglycans are emerging as key players in the modulation of angiogenesis and endothelial cell autophagy. An essential characteristic of cancer progression is the remodeling of the basement membrane and the release of processed forms of its constituents. Endostatin, generated from collagen XVIII, and endorepellin, the C-terminal segment of the large proteoglycan perlecan, possess a dual activity as modifiers of both angiogenesis and endothelial cell autophagy. Manipulation of these endogenously-processed forms, located in the basement membrane within tumors, could represent new therapeutic approaches for cancer eradication.
Collapse
Affiliation(s)
- Chiara Poluzzi
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Renato V Iozzo
- Department of Pathology, Anatomy and Cell Biology, and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Liliana Schaefer
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany.
| |
Collapse
|
5
|
|
6
|
Abstract
SIGNIFICANCE Diabetes is a widespread disease with many clinical pathologies. Despite numerous pharmaceutical strategies for treatment, the incidence of diabetes continues to increase. Hyperglycemia, observed in diabetes, causes endothelial injury resulting in microvascular and macrovascular complications such as nephropathy, retinopathy, neuropathy, and increased atherosclerosis. RECENT ADVANCES Proteoglycans are chemically diverse macromolecules consisting of a protein core with glycosaminoglycans (GAGs) attached. Heparan sulfate proteoglycans are important compounds found on the endothelial cell membrane and in the extracellular matrix, which play an important role in growth regulation and serve as a reservoir for cytokines and other bioactive molecules. Endothelial cells are altered in hyperglycemia by a reduction in heparan sulfate and upregulation and secretion of heparanase, an enzyme that degrades heparan sulfate GAGs on proteoglycans. Reactive oxygen species, increased in diabetes, also destroy GAGs. CRITICAL ISSUES Preservation of heparan sulfate proteoglycans on endothelial cells may be a strategy to prevent angiopathy associated with diabetes. The use of GAGs and GAG-like compounds may increase endothelial heparan sulfate and prevent an increase in the heparanase enzyme. FUTURE DIRECTIONS Elucidating the mechanisms of GAG depletion and its significance in endothelial health may help to further understand, prevent, and treat cardiovascular complications associated with diabetes. Further studies examining the role of GAGs and GAG-like compounds in maintaining endothelial health, including their effect on heparanase, will determine the feasibility of these compounds in diabetes treatment. Preservation of heparan sulfate by decreasing heparanase may have important implications not only in diabetes, but also in cardiovascular disease and tumor biology.
Collapse
Affiliation(s)
- Linda M Hiebert
- 1 Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan , Saskatoon, Canada
| | | | | |
Collapse
|
7
|
Siegel G, Malmsten M, Ermilov E. Anionic biopolyelectrolytes of the syndecan/perlecan superfamily: physicochemical properties and medical significance. Adv Colloid Interface Sci 2014; 205:275-318. [PMID: 24534475 DOI: 10.1016/j.cis.2014.01.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 01/18/2014] [Accepted: 01/19/2014] [Indexed: 11/19/2022]
Abstract
In the review article presented here, we demonstrate that the connective tissue is more than just a matrix for cells and a passive scaffold to provide physical support. The extracellular matrix can be subdivided into proteins (collagen, elastin), glycoconjugates (structural glycoproteins, proteoglycans) and glycosaminoglycans (hyaluronan). Our main focus rests on the anionic biopolyelectrolytes of the perlecan/syndecan superfamily which belongs to extracellular matrix and cell membrane integral proteoglycans. Though the extracellular domain of the syndecans may well be performing a structural role within the extracellular matrix, a key function of this class of membrane intercalated proteoglycans may be to act as signal transducers across the plasma membrane and thus be more appropriately included in the group of cell surface receptors. Nevertheless, there is a continuum in functions of syndecans and perlecans, especially with respect to their structural role and biomedical significance. HS/CS proteoglycans are receptor sites for lipoprotein binding thus intervening directly in lipid metabolism. We could show that among all lipoproteins, HDL has the highest affinity to these proteoglycans and thus instals a feedforward forechecking loop against atherogenic apoB100 lipoprotein deposition on surface membranes and in subendothelial spaces. Therefore, HDL is not only responsible for VLDL/IDL/LDL cholesterol exit but also controls thoroughly the entry. This way, it inhibits arteriosclerotic nanoplaque formation. The ternary complex 'lipoprotein receptor (HS/CS-PG) - lipoprotein (LDL, oxLDL, Lp(a)) - calcium' may be interpreted as arteriosclerotic nanoplaque build-up on the molecular level before any cellular reactivity, possibly representing the arteriosclerotic primary lesion combined with endothelial dysfunction. With laser-based ellipsometry we could demonstrate that nanoplaque formation is a Ca(2+)-driven process. In an in vitro biosensor application of HS-PG coated silica surfaces we tested nanoplaque formation and size in clinical trials with cardiovascular high-risk patients who underwent treatment with ginkgo or fluvastatin. While ginkgo reduced nanoplaque formation (size) by 14.3% (23.4%) in the isolated apoB100 lipid fraction at a normal blood Ca(2+) concentration, the effect of the statin with a reduction of 44.1% (25.4%) was more pronounced. In addition, ginkgo showed beneficial effects on several biomarkers of oxidative stress and inflammation. Besides acting as peripheral lipoprotein binding receptor, HS/CS-PG is crucially implicated in blood flow sensing. A sensor molecule has to fulfil certain mechanochemical and mechanoelectrical requirements. It should possess viscoelastic and cation binding properties capable of undergoing conformational changes caused both mechanically and electrostatically. Moreover, the latter should be ion-specific. Under no-flow conditions, the viscoelastic polyelectrolyte at the endothelium - blood interface assumes a random coil form. Blood flow causes a conformational change from the random coil state to the directed filament structure state. This conformational transition effects a protein unfurling and molecular elongation of the GAG side chains like in a 'stretched' spring. This configuration is therefore combined with an increase in binding sites for Na(+) ions. Counterion migration of Na(+) along the polysaccharide chain is followed by transmembrane Na(+) influx into the endothelial cell and by endothelial cell membrane depolarization. The simultaneous Ca(2+) influx releases NO and PGI2, vasodilatation is the consequence. Decrease in flow reverses the process. Binding of Ca(2+) and/or apoB100 lipoproteins (nanoplaque formation) impairs the flow sensor function. The physicochemical and functional properties of proteoglycans are due to their amphiphilicity and anionic polyelectrolyte character. Thus, they potently interact with cations, albeit in a rather complex manner. Utilizing (23)Na(+) and (39)K(+) NMR techniques, we could show that, both in HS-PG solutions and in native vascular connective tissue, the mode of interaction for monovalent cations is competition. Mg(2+) and Ca(2+) ions, however, induced a conformational change leading to an increased allosteric, cooperative K(+) and Na(+) binding, respectively. Since extracellular matrices and basement membranes form a tight-fitting sheath around the cell membrane of muscle and Schwann cells, in particular around sinus node cells of the heart, and underlie all epithelial and endothelial cell sheets and tubes, a release of cations from or an adsorption to these polyanionic macromolecules can transiently lead to fast and drastic activity changes in these tiny extracellular tissue compartments. The ionic currents underlying pacemaker and action potential of sinus node cells are fundamentally modulated. Therefore, these polyelectrolytic ion binding characteristics directly contribute to and intervene into heart rhythm.
Collapse
Affiliation(s)
- G Siegel
- Charité - University Clinic Berlin, 10117 Berlin, Germany; University of Uppsala Biomedical Center, 751 23 Uppsala, Sweden.
| | - M Malmsten
- University of Uppsala Biomedical Center, 751 23 Uppsala, Sweden; Charité - University Clinic Berlin, 10117 Berlin, Germany
| | - E Ermilov
- Charité - University Clinic Berlin, 10117 Berlin, Germany
| |
Collapse
|
8
|
Hurst DR, Welch DR. Metastasis suppressor genes at the interface between the environment and tumor cell growth. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 286:107-80. [PMID: 21199781 DOI: 10.1016/b978-0-12-385859-7.00003-3] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The molecular mechanisms and genetic programs required for cancer metastasis are sometimes overlapping, but components are clearly distinct from those promoting growth of a primary tumor. Every sequential, rate-limiting step in the sequence of events leading to metastasis requires coordinated expression of multiple genes, necessary signaling events, and favorable environmental conditions or the ability to escape negative selection pressures. Metastasis suppressors are molecules that inhibit the process of metastasis without preventing growth of the primary tumor. The cellular processes regulated by metastasis suppressors are diverse and function at every step in the metastatic cascade. As we gain knowledge into the molecular mechanisms of metastasis suppressors and cofactors with which they interact, we learn more about the process, including appreciation that some are potential targets for therapy of metastasis, the most lethal aspect of cancer. Until now, metastasis suppressors have been described largely by their function. With greater appreciation of their biochemical mechanisms of action, the importance of context is increasingly recognized especially since tumor cells exist in myriad microenvironments. In this chapter, we assemble the evidence that selected molecules are indeed suppressors of metastasis, collate the data defining the biochemical mechanisms of action, and glean insights regarding how metastasis suppressors regulate tumor cell communication to-from microenvironments.
Collapse
Affiliation(s)
- Douglas R Hurst
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | |
Collapse
|
9
|
Kalkhof S, Witte K, Ihling CH, Müller MQ, Keller MV, Haehn S, Smyth N, Paulsson M, Sinz A. A Novel Disulfide Pattern in Laminin-Type Epidermal Growth Factor-like (LE) Modules of Laminin β1 and γ1 Chains. Biochemistry 2010; 49:8359-66. [DOI: 10.1021/bi101187f] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Stefan Kalkhof
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, D-06120 Halle (Saale), Germany
| | - Konstanze Witte
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, D-06120 Halle (Saale), Germany
| | - Christian H. Ihling
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, D-06120 Halle (Saale), Germany
| | - Mathias Q. Müller
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, D-06120 Halle (Saale), Germany
| | - Manuel V. Keller
- Center for Biochemistry and Center for Molecular Medicine, Faculty of Medicine, University of Cologne, D-50931 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), D-50931 Cologne, Germany
| | - Sebastian Haehn
- Center for Biochemistry and Center for Molecular Medicine, Faculty of Medicine, University of Cologne, D-50931 Cologne, Germany
| | - Neil Smyth
- School of Biological Sciences, University of Southampton, East Southampton SO16 7PX, United Kingdom
| | - Mats Paulsson
- Center for Biochemistry and Center for Molecular Medicine, Faculty of Medicine, University of Cologne, D-50931 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), D-50931 Cologne, Germany
| | - Andrea Sinz
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, D-06120 Halle (Saale), Germany
| |
Collapse
|
10
|
Hamill KJ, Langbein L, Jones JCR, McLean WHI. Identification of a novel family of laminin N-terminal alternate splice isoforms: structural and functional characterization. J Biol Chem 2010; 284:35588-96. [PMID: 19773554 PMCID: PMC2790989 DOI: 10.1074/jbc.m109.052811] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The laminins are a family of heterotrimeric basement membrane proteins that play roles in cellular adhesion, migration, and tissue morphogenesis. Through in silico analysis of the laminin-encoding genes, we identified a novel family of alternate splice isoforms derived from the 5'-end of the LAMA3 and LAMA5 genes. These isoforms resemble the netrins in that they contain a laminin N-terminal domain followed by a short stretch of laminin-type epidermal growth factor-like repeats. We suggest the terms LaNt (laminin N terminus) alpha3 and LaNt alpha5, for the predicted protein products of these mRNAs. RT-PCR confirmed the presence of these transcripts at the mRNA level. Moreover, they exhibit differential, tissue-specific, expression profiles. To confirm the existence of LaNt alpha3 protein, we generated an antibody to a unique domain within the putative polypeptide. This antibody recognizes a protein at the predicted molecular mass of 64 kDa by immunoblotting. Furthermore, immunofluorescence analyses revealed a basement membrane staining in epithelial tissue for LaNt alpha3 and LaNt alpha3 localized along the substratum-associated surface of cultured keratinocytes. We have also tested the functionality LaNt alpha3 through RNAi-mediated knockdown. Keratinocytes exhibiting specific knockdown of LaNt alpha3 displayed impaired adhesion, stress resistance, and reduced ability to close scratch wounds in vitro.
Collapse
Affiliation(s)
- Kevin J Hamill
- Epithelial Genetics Group, Human Genetics Unit, Division of Pathology and Neuroscience, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, United Kingdom.
| | | | | | | |
Collapse
|
11
|
Bix G, Iozzo RV. Novel interactions of perlecan: unraveling perlecan's role in angiogenesis. Microsc Res Tech 2008; 71:339-48. [PMID: 18300285 DOI: 10.1002/jemt.20562] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Perlecan, a highly conserved and ubiquitous basement membrane heparan sulfate proteoglycan, is essential for life, inasmuch as its absence results in embryonic lethality in mice and C. elegans, and neonatal lethality in humans. Perlecan plays an essential role in vasculogenesis and chondrogenesis, as well as in pathological states where these processes are maladapted. Although a large body of evidence supports a pro-angiogenic role for perlecan, recent findings suggests that portions of the perlecan protein core can be antiangiogenic, requiring a further evaluation of the functioning of this complex molecule. This review is focused on the genetics of mammalian and nonmammalian perlecan, the elucidation of its novel interacting partners and its role in angiogenesis. By more fully understanding perlecan's functioning in angiogenesis, we may gain invaluable insight that could lead to therapeutic interventions in cancer and other pathologic states.
Collapse
Affiliation(s)
- Gregory Bix
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | |
Collapse
|
12
|
Mokkapati S, Baranowsky A, Mirancea N, Smyth N, Breitkreutz D, Nischt R. Basement membranes in skin are differently affected by lack of nidogen 1 and 2. J Invest Dermatol 2008; 128:2259-67. [PMID: 18356808 DOI: 10.1038/jid.2008.65] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nidogens have been proposed to play a key role in basement membrane (BM) formation. However, recent findings using genetic approaches and organotypic coculture models demonstrated distinct tissue requirements thus changing the classical view of BM assembly. Toward this end, we have analyzed the dermo-epidermal junction and the microvasculature in skin of nidogen-deficient mice for their BM composition and structural assembly. Histology of nidogen double-null embryos at embryonic day (E)18.5 revealed overall normal skin morphology with a regularly differentiated epidermis. However, in the dermis, numerous erythrocytes had extravasated out of the microvasculature. Residual composition and ultrastructure of the dermo-epidermal BM are not altered in the absence of nidogens, demonstrating that the deposition of laminin, collagen IV, and perlecan occurs and allows cutaneous BM formation. In contrast, in capillaries, BM formation is severely impaired in the absence of nidogens, showing an irregular, patchy distribution and a dramatically reduced deposition of collagen IV, perlecan, and particularly laminin-411. Ultrastructure revealed thin fragile walls in the small blood vessels next to the epidermis, completely lacking a distinct endothelial BM. In summary, our results indicate that in skin the laminin composition of the various BMs determines whether nidogens are required for their assembly and stabilization.
Collapse
|
13
|
Rodgers KD, Sasaki T, Aszodi A, Jacenko O. Reduced perlecan in mice results in chondrodysplasia resembling Schwartz-Jampel syndrome. Hum Mol Genet 2007; 16:515-28. [PMID: 17213231 DOI: 10.1093/hmg/ddl484] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Perlecan knock-in mice were developed to model Schwartz-Jampel syndrome (SJS), a skeletal disease resulting from decreased perlecan. Two mouse strains were generated: those carrying a C-to-Y mutation at residue 1532 and the neomycin cassette (C1532Yneo) and those harboring the mutation alone (C1532Y). Immunostaining, biochemistry, size measurements, skeletal studies and histology revealed Hspg2 transcriptional changes in C1532Yneo mice, leading to reduced perlecan secretion and a skeletal disease phenotype characteristic of SJS patients. Skeletal disease features include smaller size, impaired mineralization, misshapen bones, flat face and joint dysplasias reminiscent of osteoarthritis and osteonecrosis. Moreover, C1532Yneo mice displayed transient expansion of hypertrophic cartilage in the growth plate concomitant with radial trabecular bone orientation. In contrast, C1532Y mice, harboring only the mutation associated with SJS, displayed a mild phenotype, inconsistent with SJS. These studies question the C1532Y mutation as the sole causative factor of SJS in the human family harboring this alteration and imply that transcriptional changes leading to perlecan reduction may represent the disease mechanism for SJS.
Collapse
Affiliation(s)
- Kathryn D Rodgers
- Department of Animal Biology, University of Pennsylvania School of Veterinary Medicine, 3800 Spruce Street, Rosenthal Room 152, Pennsylvania, PA 19104-6046, USA.
| | | | | | | |
Collapse
|
14
|
Soulintzi N, Zagris N. Spatial and Temporal Expression of Perlecan in the Early Chick Embryo. Cells Tissues Organs 2007; 186:243-56. [PMID: 17785960 DOI: 10.1159/000107948] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2007] [Indexed: 11/19/2022] Open
Abstract
Perlecan is a major heparan sulfate proteoglycan that binds growth factors and interacts with various extracellular matrix proteins and cell surface molecules. The expression and spatiotemporal distribution of perlecan was studied by RT-PCR, immunoprecipitation and immunofluorescence in the chick embryo from stages X (morula) to HH17 (29 somites). Combined RT-PCR and immunohistochemistry demonstrated the expression of perlecan as early as stage X and its presence may be fundamental to the first basement membrane assembly on the epiblast ventral surface at stage XIII (blastula). Perlecan fluorescence was intense in the cells ingressing through the primitive streak and was strong lining the epiblast ventral surface lateral to the streak at stage HH3-4 (gastrula). At stage HH5-6 (neurula), perlecan fluorescence was low in the neuroepithelium and stronger in the apical surface of the neural plate. At stage HH10-11 (12 somites), perlecan fluorescence was intense in the neuroepithelium and was then essentially nondetectable in the neuroepithelium, and the intensity had shifted to the basement membranes of encephalic vesicles by stage HH17. Perlecan immunofluorescence was intense in neural crest cells, strong in pharyngeal arches, intense in thymus and lung rudiments, intense in aortic arches and in dorsal aorta, strong in lens and retina and intense in intraretinal space and in optic stalk, strong in the dorsal mesocardium, myocardium and endocardium, strong in dermomyotome, low in sclerotome in somites, intense in mesonephric duct and tubule rudiments, intense in the lining of the gut luminal surface. Inhibition of the function of perlecan by blocking antibodies showed that perlecan is crucial for maintaining basement membrane integrity which mediates the epithelialization, adhesive separation and maintenance of neuroepithelium in brain, somite epithelialization, and tissue architecture during morphogenesis of the heart tube, dorsal aorta and gut. An intriguing possibility is that perlecan, as a signaling molecule that modulates the activity of growth factors and cytokines, participates in the signaling pathways that guide gastrulation movements and neural crest cell migration, proliferation and survival, cardiac cell proliferation and paraxial mesoderm (somitic) cell proliferation and segmentation.
Collapse
Affiliation(s)
- Nikolitsa Soulintzi
- Division of Genetics and Cell and Developmental Biology, Department of Biology, University of Patras, Patras, Greece
| | | |
Collapse
|
15
|
Allen JM, Bateman JF, Hansen U, Wilson R, Bruckner P, Owens RT, Sasaki T, Timpl R, Fitzgerald J. WARP is a novel multimeric component of the chondrocyte pericellular matrix that interacts with perlecan. J Biol Chem 2006; 281:7341-9. [PMID: 16407285 DOI: 10.1074/jbc.m513746200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
WARP is a novel member of the von Willebrand factor A domain superfamily of extracellular matrix proteins that is expressed by chondrocytes. WARP is restricted to the presumptive articular cartilage zone prior to joint cavitation and to the articular cartilage and fibrocartilaginous elements in the joint, spine, and sternum during mouse embryonic development. In mature articular cartilage, WARP is highly specific for the chondrocyte pericellular microenvironment and co-localizes with perlecan, a prominent component of the chondrocyte pericellular region. WARP is present in the guanidine-soluble fraction of cartilage matrix extracts as a disulfide-bonded multimer, indicating that WARP is a strongly interacting component of the cartilage matrix. To investigate how WARP is integrated with the pericellular environment, we studied WARP binding to mouse perlecan using solid phase and surface plasmon resonance analysis. WARP interacts with domain III-2 of the perlecan core protein and the heparan sulfate chains of the perlecan domain I with K(D) values in the low nanomolar range. We conclude that WARP forms macromolecular structures that interact with perlecan to contribute to the assembly and/or maintenance of "permanent" cartilage structures during development and in mature cartilages.
Collapse
Affiliation(s)
- Justin M Allen
- Cell and Matrix Biology Research Unit, Murdoch Childrens Research Institute and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Lu L, Lin M, Xu M, Zhou ZM, Sha JH. Gene functional research using polyethylenimine-mediated in vivo gene transfection into mouse spermatogenic cells. Asian J Androl 2006; 8:53-9. [PMID: 16372119 DOI: 10.1111/j.1745-7262.2006.00089.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
AIM To study polyethylenimine (PEI)-mediated in vivo gene transfection into testis cells and preliminary functional research of spermatogenic cell-specific gene NYD-SP12 using this method. METHODS PEI/DNA complexes were introduced into the seminiferous tubules of mouse testes using intratesticular injection. Transfection efficiency and speciality were analyzed on the third day of transfection with fluorescent microscopy and hematoxylin staining. The long-lasting expression of the GFP-NYD-SP12 fusion protein and its subcellular localization in spermatogenic cells at different stages were analyzed with fluorescent microscopy and propidium iodide staining. RESULTS With the mediation of PEI, the GFP-NYD-SP12 fusion gene was efficiently transferred and expressed in the germ cells (especially in primary spermatocytes). Transfection into Sertoli cells was not observed. The subcellular localization of the GFP-NYD-SP2 fusion protein showed dynamic shifts in spermatogenic cells at different stages during spermatogenesis. CONCLUSION PEI can efficiently mediate gene transfer into spermatocytes. Thus, it might be useful for the functional research of spermatogenic-cell specific genes such as the NYD-SP12 gene. In our study, the NYD-SP12 protein was visualized and was involved in the formation of acrosome during spermatogenesis. Our research will continue into the detailed function of NYD-SP12 in spermatocytes.
Collapse
Affiliation(s)
- Li Lu
- Laboratory of Reproductive Medicine, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, China
| | | | | | | | | |
Collapse
|
17
|
Edovitsky E, Lerner I, Zcharia E, Peretz T, Vlodavsky I, Elkin M. Role of endothelial heparanase in delayed-type hypersensitivity. Blood 2005; 107:3609-16. [PMID: 16384929 PMCID: PMC1444937 DOI: 10.1182/blood-2005-08-3301] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Heparanase is an endoglycosidase that cleaves heparan sulfate (HS), the main polysaccharide of the basement membrane (BM). HS is responsible for BM integrity and barrier function. Hence, enzymatic degradation of HS in the vascular subendothelial BM is a prerequisite for extravasation of immune cells and plasma components during inflammation. Here, we demonstrate a highly coordinated local heparanase induction upon elicitation of delayed-type hypersensitivity (DTH) reaction in the mouse ear. By monitoring in vivo activation of luciferase gene driven by the heparanase promoter, we demonstrate activation of heparanase transcription at an early stage of DTH. We report that heparanase is produced locally by the endothelium at the site of DTH-associated inflammation. Key DTH mediators, tumor necrosis factor-alpha and interferon-gamma, were found to induce heparanase in cultured endothelial cells. Endothelium emerges as an essential cellular source of heparanase enzymatic activity that, in turn, allows for remodeling of the vascular BM, increased vessel permeability, and extravasation of leukocytes and plasma proteins. In vivo administration of antiheparanase siRNA or an inhibitor of heparanase enzymatic activity effectively halted DTH inflammatory response. Collectively, our results highlight the decisive role of endothelial heparanase in DTH inflammation and its potential as a promising target for anti-inflammatory drug development.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Capillary Permeability
- Cell Line
- DNA, Complementary/genetics
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/enzymology
- Endothelium, Vascular/immunology
- Enzyme Induction/drug effects
- Female
- Gene Silencing
- Glucuronidase/biosynthesis
- Glucuronidase/genetics
- Glucuronidase/metabolism
- Humans
- Hypersensitivity, Delayed/enzymology
- Hypersensitivity, Delayed/immunology
- Hypersensitivity, Delayed/pathology
- In Vitro Techniques
- Inflammation/enzymology
- Inflammation/immunology
- Inflammation/pathology
- Interferon-gamma/pharmacology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Transgenic
- Promoter Regions, Genetic
- RNA, Small Interfering/genetics
- Recombinant Proteins
- Tumor Necrosis Factor-alpha/pharmacology
Collapse
Affiliation(s)
- Evgeny Edovitsky
- Cancer and Vascular Biology Research Center, Bruce Rappaport Faculty of Medicine, Technion, PO Box 9649, Haifa, 31096, Israel
| | | | | | | | | | | |
Collapse
|
18
|
Whitelock JM, Iozzo RV. Heparan Sulfate: A Complex Polymer Charged with Biological Activity. Chem Rev 2005; 105:2745-64. [PMID: 16011323 DOI: 10.1021/cr010213m] [Citation(s) in RCA: 314] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- John M Whitelock
- Graduate School of Biomedical Engineering, University of New South Wales, Kensington, Sydney, New South Wales 2052, Australia.
| | | |
Collapse
|
19
|
Matsunaga N, Ozeki H, Hirabayashi Y, Shimada S, Ogura Y. HISTOPATHOLOGIC EVALUATION OF THE INTERNAL LIMITING MEMBRANE SURGICALLY EXCISED FROM EYES WITH DIABETIC MACULOPATHY. Retina 2005; 25:311-6. [PMID: 15805908 DOI: 10.1097/00006982-200504000-00010] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE To histopathologically evaluate the internal limiting membrane (ILM) in diabetic eyes with macular edema as compared to nondiabetic controls. METHODS The authors ultrastructurally and immunohistochemically studied ILM specimens that were intentionally peeled from five eyes with diabetic maculopathy, comprising four with diffuse diabetic macular edema and one with macular hole accompanying diabetic retinopathy (DM group), and five with nondiabetic idiopathic macular hole (MH group). They compared ultrastructural and immunohistochemical findings between the two groups. RESULTS A larger amount of cellular elements was observed on the vitreous side of the ILM in the DM group. The thickness of the ILM in the DM group was significantly increased (mean 4.8 +/- 1.6 microm) compared with that in the MH group (1.8 +/- 0.6 microm) (P < 0.0001). Immunoreactions for heparan sulfate proteoglycan in the ILM were more abundant in the DM group than in the MH group. CONCLUSION The ILM thickening and cell abundance on the vitreous surface might contribute to the course and the pathogenesis of diabetic maculopathy.
Collapse
Affiliation(s)
- Noriko Matsunaga
- Department of Ophthalmology and Visual Science, Nagoya City University Graduate School of Medical Sciences, Japan.
| | | | | | | | | |
Collapse
|
20
|
Rauch U, Zhou XH, Roos G. Extracellular matrix alterations in brains lacking four of its components. Biochem Biophys Res Commun 2005; 328:608-17. [PMID: 15694392 DOI: 10.1016/j.bbrc.2005.01.026] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Indexed: 11/24/2022]
Abstract
The organization of the brain extracellular matrix appears to be based on aggregates of hyaluronan and proteoglycans, connected by oligomeric glycoproteins. Mild phenotypical consequences were reported from several mouse strains lacking components of this matrix such as neurocan, brevican, tenascin-R, and tenascin-C. To further challenge the flexibility of the extracellular matrix network of the brain, mice lacking all four brain extracellular matrix molecules were generated, which were found to be viable and fertile. Analysis of the brains of 1-month-old quadruple KO mice revealed increased protein levels of fibulin-1 and fibulin-2. Histochemical analysis showed an unusual parenchymal deposition of these fibulins. The quadruple KO mice also displayed obvious changes in the pattern of deposition of hyaluronan. Further, an almost quadruple knockout like extracellular environment was noticed in the brains of triple knockout mice lacking both tenascins and brevican, since these brains had strongly reduced levels of neurocan.
Collapse
Affiliation(s)
- Uwe Rauch
- Department of Experimental Pathology, University Hospital, Lunds University, Lund, Sweden.
| | | | | |
Collapse
|
21
|
Camici M. Renal glomerular permselectivity and vascular endothelium. Biomed Pharmacother 2005; 59:30-7. [PMID: 15740933 DOI: 10.1016/j.biopha.2004.06.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2004] [Revised: 06/09/2004] [Accepted: 06/15/2004] [Indexed: 11/18/2022] Open
Abstract
The glomerular barrier is the kidney's physical block to the unrestricted flow of molecules from the plasma into the urinary space. Its exquisite selectivity allows solutes and water in the glomerular capillaries to pass through but it prevents the bulk of plasma proteins, most notably albumin, from crossing. Classically the barrier consists of three components: glomerular endothelium, glomerular basement membrane and glomerular epithelium (podocytes) with slit diaphragm. A lot of investigations are experimental but they are sufficient to show the pivotal role of endothelium in glomerular proteinuria. In this study the author discuss glomerular endothelium with particular emphasis on the barrier presumed to be imparted by endothelium-glomerular basement membrane-podocyte interactions. By specialized glomerular endothelial structure (caveolae, tight junctions, endothelium glycocalyx) and by circulating permeability factors (albumin, orosomucoid, apolipoproteins, Amadori's products). Concluding remarks underline the significance to study the glomerular vascular endothelial dysfunction.
Collapse
Affiliation(s)
- Marcello Camici
- Internal Medicine Department, Pisa University, Via Roma, 6, 56126 Pisa, Italy.
| |
Collapse
|
22
|
Abrink M, Grujic M, Pejler G. Serglycin is essential for maturation of mast cell secretory granule. J Biol Chem 2004; 279:40897-905. [PMID: 15231821 DOI: 10.1074/jbc.m405856200] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
To address the biological function of the scarcely studied intracellular proteoglycans, we targeted the gene for serglycin (SG), the only known committed intracellular proteoglycan. SG-/- mice developed normally and were fertile, but their mast cells (MCs) were severely affected. In peritoneum there was a complete absence of normal granulated MCs. Furthermore, peritoneal cells and ear tissue from SG-/- animals were devoid of the various MC-specific proteases. However, mRNA for the proteases was present in SG+/+, SG+/-, and SG-/- tissues, indicating that SG is essential for the storage, but not expression, of the MC proteases. Experiments, in which the differentiation of bone marrow stem cells into mature MCs was followed, showed that secretory granule maturation was compromised in SG-/- cells. Moreover, SG+/+ and SG+/- cells, but not SG-/- cells, synthesized proteoglycans of high anionic charge density. Taken together, we demonstrate a key role for SG proteoglycan in MC function.
Collapse
Affiliation(s)
- Magnus Abrink
- Swedish University of Agricultural Sciences, Department of Molecular Biosciences, the Biomedical Centre, Box 575, 751 23 Uppsala, Sweden
| | | | | |
Collapse
|
23
|
Siegel G, Malmsten M, Pietzsch J, Schmidt A, Buddecke E, Michel F, Ploch M, Schneider W. The effect of garlic on arteriosclerotic nanoplaque formation and size. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2004; 11:24-35. [PMID: 14971718 DOI: 10.1078/0944-7113-00377] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
OBJECTIVE In an in vitro biosensor model (PCT/EP 97/05212), the interplay between different lipoproteins in arteriosclerotic nanoplaque formation, as well as aqueous garlic extract (0.2-5.0 g/l from LI 111 powder) as a possible candidate drug against arterio/atherosclerosis were tested within the frame of a high throughput screening. METHODS The processes described below were studied by ellipsometric techniques quantifying the adsorbed amount (nanoplaque formation) and layer thickness (nanoplaque size). A thorough description of the experimental setup has been given previously. RESULTS Proteoheparan sulfate (HS-PG) adsorption to hydrophobic silica was monoexponential and after approximately 30 min constant. The addition of 2.52 mmol/l Ca2+ led to a further increase in HS-PG adsorption because Ca2+ was bound to the polyanionic glycosaminoglycan (GAG) chains thus screening their negative fixed charges and turning the whole molecule more hydrophobic. Incubation with 0.2 g/l aqueous garlic extract (GE) for 30 min did not change the adsorption of HS-PG. However, the following addition of Ca2+ ions reduced the increase in adsorption by 50.8% within 40 min. The adsorption of a second Ca2+ step to 10.08 mmol/l was reduced by even 82.1% within the next 40 min. Having detected this inhibition of receptor calcification, it could be expected that the build-up of the ternary nanoplaque complex is also affected by garlic. The LDL plasma fraction (100 mg/dl) from a healthy probationer showed beginning arteriosclerotic nanoplaque formation already at a normal blood Ca2+ concentration, with a strong increase at higher Ca2+ concentrations. GE, preferably in a concentration of 1 g/l, applied acutely in the experiment, markedly slowed down this process of ternary aggregational nanoplaque complexation at all Ca2+ concentrations used. In a normal blood Ca2+ concentration of 2.52 mmol/l, the garlic induced reduction of nanoplaque formation and molecular size amounted to 14.8% and 3.9%, respectively, as compared to the controls. Furthermore, after ternary complex build-up, GE similar to HDL, was able to reduce nanoplaque formation and size. The incubation time for HDL and garlic was only 30 min each in these experiments. Nevertheless, after this short time the deposition of the ternary complex decreased by 6.2% resp. 16.5%, i.e. the complex aggregates were basically resolvable. CONCLUSIONS These experiments clearly proved that garlic extract strongly inhibits Ca2+ binding to HS-PG. In consequence, the formation of the ternary HS-PG/LDL/Ca2+ complex, initially responsible for the 'nanoplaque' composition and ultimately for the arteriosclerotic plaque generation, is decisively blunted.
Collapse
Affiliation(s)
- G Siegel
- Institute of Physiology, Charité, Campus Benjamin Franklin, Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Nahirney PC, Mikawa T, Fischman DA. Evidence for an extracellular matrix bridge guiding proepicardial cell migration to the myocardium of chick embryos. Dev Dyn 2003; 227:511-23. [PMID: 12889060 DOI: 10.1002/dvdy.10335] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During heart development, the proepicardium (PE) gives rise to cells of the epicardial epithelium, connective tissue of the subepicardium and the myocardium, and smooth muscle, endothelium, and connective tissue of the coronary arteries. The PE arises as an outgrowth of the pericardial serosa at embryonic day 2 (Hamburger and Hamilton stage [HH] 14) of chick development. Between stages HH14 and HH17, multicellular villous projections extend from the PE toward the dorsal aspect of the lesser curvature of the myocardium. On reaching the atrioventricular (AV) junction, the cells spread over the myocardium, eventually enveloping the complete heart surface as a simple squamous epithelium. Although the lineage of the PE cells is well established, it remains uncertain how cells of the PE reach the myocardial surface and specifically target the AV junction. By using a combination of serial section reconstructions, immunofluorescence, and electron microscopy, we have identified an extracellular matrix bridge (ECMB) spanning the coelomic cavity between the PE and the myocardium. The ECMB is first detectable at HH14 and persists until the PE contacts the bare myocardial surface. This ECMB stains intensely with ruthenium red and Alcian blue, contains heparan sulfate and fibronectin, and exhibits both fibrillar and globular ultrastructure, reminiscent of proteoglycans. After PE attachment to the myocardium (HH16-HH17), the subepicardium exhibited strong staining for heparan sulfate. Heparinase injection into the pericardial coelom at HH15 resulted in aberrant development of the primordial epicardium. On the basis of these studies, we suggest that the ECMB may participate in migration and targeting of the PE to the myocardium.
Collapse
Affiliation(s)
- Patrick C Nahirney
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, New York 10021, USA
| | | | | |
Collapse
|
25
|
Abstract
In recent years, the basement membrane (BM)--a specialized form of extracellular matrix (ECM)--has been recognized as an important regulator of cell behaviour, rather than just a structural feature of tissues. The BM mediates tissue compartmentalization and sends signals to epithelial cells about the external microenvironment. The BM is also an important structural and functional component of blood vessels, constituting an extracellular microenvironment sensor for endothelial cells and pericytes. Vascular BM components have recently been found to be involved in the regulation of tumour angiogenesis, making them attractive candidate targets for potential cancer therapies.
Collapse
Affiliation(s)
- Raghu Kalluri
- Center for Matrix Biology, Department of Medicine, Dana 514, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, Boston, Massachusetts 02215, USA.
| |
Collapse
|
26
|
Mongiat M, Fu J, Oldershaw R, Greenhalgh R, Gown AM, Iozzo RV. Perlecan protein core interacts with extracellular matrix protein 1 (ECM1), a glycoprotein involved in bone formation and angiogenesis. J Biol Chem 2003; 278:17491-9. [PMID: 12604605 DOI: 10.1074/jbc.m210529200] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The goal of this study was to discover novel partners for perlecan, a major heparan sulfate proteoglycan of basement membranes, and to examine new interactions through which perlecan may influence cell behavior. We employed the yeast two-hybrid system and used perlecan domain V as bait to screen a human keratinocyte cDNA library. Among the strongest interacting clones, we isolated a approximately 1.6-kb cDNA insert that encoded extracellular matrix protein 1 (ECM1), a secreted glycoprotein involved in bone formation and angiogenesis. The sequencing of the clone revealed the existence of a novel splice variant that we name ECM1c. The interaction was validated by co-immunoprecipitation studies, using both cell-free systems and mammalian cells, and the specific binding site within each molecule was identified employing various deletion mutants. The C terminus of ECM1 interacted specifically with the epidermal growth factor-like modules flanking the LG2 subdomain of perlecan domain V. Perlecan and ECM1 were also co-expressed by a variety of normal and transformed cells, and immunohistochemical studies showed a partial expression overlap, particularly around dermal blood vessels and adnexal epithelia. ECM1 has been shown to regulate endochondral bone formation, stimulate the proliferation of endothelial cells, and induce angiogenesis. Similarly, perlecan plays an important role in chondrogenesis and skeletal development, as well as harboring pro- and anti-angiogenic activities. Thus, a physiological interaction could also occur in vivo during development and in pathological events, including tissue remodeling and tumor progression.
Collapse
Affiliation(s)
- Maurizio Mongiat
- Department of Pathology, Anatomy and Cell Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | |
Collapse
|
27
|
Siegel G, Abletshauser C, Malmsten M, Klüssendorf D. The effect of an HMG-CoA reductase inhibitor on arteriosclerotic nanoplaque formation and size in a biosensor model. Biosens Bioelectron 2003; 18:635-47. [PMID: 12706573 DOI: 10.1016/s0956-5663(03)00034-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Proteoheparan sulfate can be adsorbed to a methylated silica surface in a monomolecular layer via its transmembrane hydrophobic protein core domain. Due to electrostatic repulsion, its anionic glycosaminoglycan side chains are stretched out into the blood substitute solution, thereby representing a receptor site for specific lipoprotein binding through basic amino acid-rich residues within their apolipoproteins. The binding process was studied by ellipsometric techniques. Low-density lipoprotein (LDL) was found to deposit strongly at the proteoheparan sulfate-coated surface, particularly in the presence of Ca(2+), apparently through complex formation 'proteoglycan-LDL-calcium'. This ternary complex build-up may be interpreted as arteriosclerotic nanoplaque formation on the molecular level responsible for the arteriosclerotic primary lesion. HDL bound to heparan sulfate proteoglycan protected against LDL deposition and completely suppressed calcification of the proteoglycan-lipoprotein complex. In addition, HDL was able to decelerate the ternary complex deposition and to disrupt newly formed nanoplaques. Therefore, HDL attached to its proteoglycan receptor sites is thought to raise a multidomain barrier, selection and control motif for transmembrane and paracellular lipoprotein uptake into the arterial wall. The molecular arteriosclerosis model was tested on its reliability in a biosensor application in order to unveil possible acute pleiotropic effects of the lipid lowering drug fluvastatin. The very low-density lipoprotein (VLDL)/intermediate-density lipoprotein (IDL)/LDL and VLDL/IDL/LDL/HDL plasma fractions from a high-risk patient with dyslipoproteinemia and type 2 diabetes mellitus showed beginning arteriosclerotic nanoplaque formation already at a normal blood Ca(2+) concentration, with a strong increase at higher Ca(2+) concentrations. Nanoplaque formation and size of the HDL-containing lipid fraction remained well below that of the LDL-containing lipid fraction. Fluvastatin, whether applied acutely to the patient (one single 80 mg slow release matrix tablet) or in a 2-months medication regimen, markedly slowed down this process of ternary aggregational nanoplaque build-up and substantially inhibited nanoplaque size development at all Ca(2+) concentrations used. The acute action resulted without any significant change in lipid concentrations of the patient. Furthermore, after nanoplaque generation, fluvastatin, similar to HDL, was able to reduce nanoplaque formation and size. These immediate effects of fluvastatin have to be taken into consideration while interpreting the clinical outcome of long-term studies.
Collapse
Affiliation(s)
- G Siegel
- Institute of Physiology, Biophysical Research Group, The Free University of Berlin, Arnimallee 22, DE-14195, Berlin, Germany.
| | | | | | | |
Collapse
|
28
|
Mongiat M, Sweeney SM, San Antonio JD, Fu J, Iozzo RV. Endorepellin, a novel inhibitor of angiogenesis derived from the C terminus of perlecan. J Biol Chem 2003; 278:4238-49. [PMID: 12435733 DOI: 10.1074/jbc.m210445200] [Citation(s) in RCA: 254] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Perlecan, a ubiquitous basement membrane heparan sulfate proteoglycan, plays key roles in blood vessel growth and structural integrity. We discovered that the C terminus of perlecan potently inhibited four aspects of angiogenesis: endothelial cell migration, collagen-induced endothelial tube morphogenesis, and blood vessel growth in the chorioallantoic membrane and in Matrigel plug assays. The C terminus of perlecan was active at nanomolar concentrations and blocked endothelial cell adhesion to fibronectin and type I collagen, without directly binding to either protein; henceforth we have named it "endorepellin." We also found that endothelial cells possess a significant number of high affinity (K(d) of 11 nm) binding sites for endorepellin and that endorepellin binds endostatin and counteracts its anti-angiogenic effects. Thus, endorepellin represents a novel anti-angiogenic product, which may retard tumor neovascularization and hence tumor growth in vivo.
Collapse
Affiliation(s)
- Maurizio Mongiat
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | |
Collapse
|
29
|
Abletshauser C, Klüssendorf D, Schmidt A, Winkler K, März W, Buddecke E, Malmsten M, Siegel G. Biosensing of arteriosclerotic nanoplaque formation and interaction with an HMG-CoA reductase inhibitor. ACTA PHYSIOLOGICA SCANDINAVICA 2002; 176:131-45. [PMID: 12354173 DOI: 10.1046/j.1365-201x.2002.01020.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Proteoheparan sulphate can be adsorbed to a methylated silica surface in a monomolecular layer via its transmembrane hydrophobic protein core domain. As a result of electrostatic repulsion, its anionic glycosaminoglycan side chains are stretched out into the blood substitute solution, thereby representing one receptor site for specific lipoprotein binding through basic amino acid-rich residues within their apolipoproteins. The binding process was studied by ellipsometric techniques suggesting that high-density lipoprotein (HDL) has a high binding affinity and a protective effect on interfacial heparan sulphate proteoglycan layers with respect to low-density lipoprotein (LDL) and Ca2+ complexation. Low-density lipoprotein was found to deposit strongly at the proteoheparan sulphate-coated surface, particularly in the presence of Ca2+, apparently through complex formation 'proteoglycan-LDL-calcium'. This ternary complex build-up may be interpreted as arteriosclerotic nanoplaque formation on the molecular level responsible for the arteriosclerotic primary lesion. On the other hand, HDL bound to heparan sulphate proteoglycan protected against LDL deposition and completely suppressed calcification of the proteoglycan-lipoprotein complex. In addition, HDL was able to decelerate the ternary complex deposition. Therefore, HDL attached to its proteoglycan receptor sites is thought to raise a multidomain barrier, selection and control motif for transmembrane and paracellular lipoprotein uptake into the arterial wall. Although much remains unclear regarding the mechanism of lipoprotein depositions at proteoglycan-coated surfaces, it seems clear that the use of such systems offers possibilities for investigating lipoprotein deposition at a 'nanoscopic' level under close to physiological conditions. In particular, Ca2+-promoted LDL deposition and the protective effect of HDL even at high Ca2+ and LDL concentrations agree well with previous clinical observations regarding risk and beneficial factors for early stages of atherosclerosis. Considering this, the system was tested on its reliability in a biosensor application in order to unveil possible acute pleiotropic effects of the lipid lowering drug fluvastatin. The very low-density lipoprotein (VLDL)/intermediate-density lipoprotein (IDL)/LDL plasma fraction from a high risk patient with dyslipoproteinaemia and type 2 diabetes mellitus showed beginning arteriosclerotic nanoplaque formation already at a normal blood Ca2+ concentration, with a strong increase at higher Ca2+ concentrations. Fluvastatin, whether applied to the patient (one single 80 mg slow release matrix tablet) or acutely in the experiment (2.2 micromol L-1), markedly slowed down this process of ternary aggregational nanoplaque complexation at all Ca2+ concentrations used. This action resulted without any significant change in lipid concentrations of the patient. Furthermore, after ternary complex build-up, fluvastatin, similar to HDL, was able to reduce nanoplaque adsorption and size. These immediate effects of fluvastatin have to be taken into consideration while interpreting the clinical outcome of long-term studies.
Collapse
Affiliation(s)
- C Abletshauser
- Institute of Physiology, Biophysical Research Group, The Free University of Berlin, Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Quondamatteo F. Assembly, stability and integrity of basement membranes in vivo. THE HISTOCHEMICAL JOURNAL 2002; 34:369-81. [PMID: 12814184 DOI: 10.1023/a:1023675619251] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Basement membranes are layered structures of the extracellular matrix which separate cells of various kinds from the surrounding stroma. One of the frequently recurring questions about basement membranes is how these structures are formed in vivo. Up to a few years ago, it was thought that basement membranes were formed spontaneously by a process of self-assembly of their components. However, it has now become clear that cell membrane receptors for basement membrane components are essential factors for the formation and stability of basement membranes in vivo. The present review highlights the modern concepts of basement membrane formation.
Collapse
Affiliation(s)
- Fabio Quondamatteo
- Department of Histology, University of Göttingen, Kreuzbergring 36, D-37075, Göttingen, Germany
| |
Collapse
|
31
|
Abstract
Malaria sporozoites are rapidly targeted to the liver where they pass through Kupffer cells and infect hepatocytes, their initial site of replication in the mammalian host. We show that sporozoites, as well as their major surface proteins, the CS protein and TRAP, recognize distinct cell type-specific surface proteoglycans from primary Kupffer cells, hepatocytes and stellate cells, but not from sinusoidal endothelia. Recombinant Plasmodium falciparum CS protein and TRAP bind to heparan sulphate on hepatocytes and both heparan and chondroitin sulphate proteoglycans on stellate cells. On Kupffer cells, CS protein predominantly recognizes chondroitin sulphate, whereas TRAP binding is glycosaminoglycan independent. Plasmodium berghei sporozoites attach to heparan sulphate on hepatocytes and stellate cells, whereas Kupffer cell recognition involves both chondroitin sulphate and heparan sulphate proteoglycans. CS protein also interacts with secreted proteoglycans from stellate cells, the major producers of extracellular matrix in the liver. In situ binding studies using frozen liver sections indicate that the majority of the CS protein binding sites are associated with these matrix proteoglycans. Our data suggest that sporozoites are first arrested in the sinusoid by binding to extracellular matrix proteoglycans and then recognize proteoglycans on the surface of Kupffer cells, which they use to traverse the sinusoidal cell barrier.
Collapse
Affiliation(s)
- Gabriele Pradel
- Department of Medical and Molecular Parasitology, New York University School of Medicine, New York 10010, USA
| | | | | |
Collapse
|
32
|
Voigt A, Pflanz R, Schäfer U, Jäckle H. Perlecan participates in proliferation activation of quiescent Drosophila neuroblasts. Dev Dyn 2002; 224:403-12. [PMID: 12203732 DOI: 10.1002/dvdy.10120] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Drosophila neuroblasts act as stem cells. Their proliferation is controlled through cell cycle arrest and activation in a spatiotemporal pattern. Several genes have been identified that control the pattern of neuroblast quiescence and proliferation in the central nervous system (CNS), including anachronism (ana), even skipped (eve) and terribly reduced optic lobes (trol). eve acts in a non-cell-autonomous manner to produce a transacting factor in the larval body that stimulates cell division in the population of quiescent optic lobe neuroblasts. ana encodes a secreted glial glycoprotein proposed to repress premature proliferation of optic lobe and thoracic neuroblasts. trol was shown to act downstream of ana to activate proliferation of quiescent neuroblasts either by inactivating or bypassing ana-dependent repression. Here, we show that trol codes for Drosophila Perlecan, a large multidomain heparan sulfate proteoglycan originally identified in extracellular matrix structures of mammals. The results suggest that trol acts in the extracellular matrix and binds, stores, and sequesters external signals and, thereby, participates in the stage- and region-specific control of neuroblast proliferation.
Collapse
Affiliation(s)
- Aaron Voigt
- Abteilung Molekulare Entwicklungsbiologie, Max-Planck-Institut für biophysikalische Chemie, Am Fassberg, Göttingen, Germany
| | | | | | | |
Collapse
|
33
|
Condic ML, Lemons ML. Extracellular matrix in spinal cord regeneration: getting beyond attraction and inhibition. Neuroreport 2002; 13:A37-48. [PMID: 11930141 DOI: 10.1097/00001756-200203040-00002] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- M L Condic
- Department of Neurobiology and Anatomy, University of Utah, School of Medicine, 50 N. Medical Drive, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
34
|
Kirn-Safran CB, Julian J, Fongemie JE, Hoke DE, Czymmek KJC, Carson DD. Changes in the cytologic distribution of heparin/heparan sulfate interacting protein/ribosomal protein L29 (HIP/RPL29) during in vivo and in vitro mouse mammary epithelial cell expression and differentiation. Dev Dyn 2002; 223:70-84. [PMID: 11803571 DOI: 10.1002/dvdy.1226] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
HIP/RPL29 is a small, highly basic, heparin/heparan sulfate interacting protein identical to ribosomal protein L29 and present in most adult epithelia. In the present study, we show that mouse HIP/RPL29 is ubiquitously present in adult mammary epithelia and is significantly increased during pregnancy and lactation. We observed for the first time that HIP/RPL29 intracellular expression and distribution varies, depending on the growth/differentiation state of the luminal epithelium. HIP/RPL29 was detected at low levels in mammary glands of virgin animals, increased markedly during lactation, and was lost again during involution. HIP/RPL29, preferentially found in the expanded cytoplasm of mature epithelial cells secreting milk, is present also in the nucleus of proliferating and differentiating ductal and alveolar elements. We used COMMA-D cells as an in vitro model for mammary-specific differentiation and examined similar intracellular redistribution of HIP/RPL29 associated with functional differentiation. However, no changes in HIP/RPL29 expression levels were detected in response to lactogenic hormones. Finally, the cellular distribution of HIP/RPL29 in both nuclear and cytoplasmic compartments was confirmed by transfecting a normal mammary epithelial cell line, NMuMG, with a fusion protein of HIP/RPL29 and EGFP. Collectively, these data support the idea that HIP/RPL29 plays more than one role during adult mammary gland development.
Collapse
|
35
|
French MM, Gomes RR, Timpl R, Höök M, Czymmek K, Farach-Carson MC, Carson DD. Chondrogenic activity of the heparan sulfate proteoglycan perlecan maps to the N-terminal domain I. J Bone Miner Res 2002; 17:48-55. [PMID: 11771669 PMCID: PMC1774590 DOI: 10.1359/jbmr.2002.17.1.48] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
C3H10T1/2 cells differentiate along a chondrogenic pathway when plated onto the extracellular matrix (ECM) protein perlecan (Pln). To identify the region(s) within the large Pln molecule that provides a differentiation signal, recombinant Pln-sequence-based polypeptides representing distinct structural domains were assayed for their ability to promote chondrogenesis in C3H10T1/2 cells. Five distinct domains, along with structural variations, were tested. The N-terminal domain I was tested in two forms (IA and IB) that contain only heparan sulfate (HS) chains or both HS and chondroitin sulfate (CS) chains, respectively. A mutant form of domain I lacking attachment sites for both HS and CS (Pln I(mut)) was tested also. Other constructs consecutively designated Pln domains II, III(A-C), IV(A,B), and V(A,B) were used to complete the structure-function analysis. Cells plated onto Pln IA or Pln IB but no other domain rapidly assembled into cellular aggregates of 40-120 microm on average. Aggregate formation was dependent on the presence of glycosaminoglycan (GAG) chains, because Pln I-based polypeptides lacking GAG chains either by enzymatic removal or mutation of HS/CS attachment sites were inactive. Aggregates formed on GAG-bearing Pln IA stained with Alcian Blue and were recognized by antibodies to collagen type II and aggrecan but were not recognized by an antibody to collagen type X, a marker of chondrocyte hypertrophy. Collectively, these studies indicate that the GAG-bearing domain I of Pln provides a sufficient signal to trigger C3H10T1/2 cells to enter a chondrogenic differentiation pathway. Thus, this matrix proteoglycan (PG) found at sites of cartilage formation in vivo is likely to enhance early stage differentiation induced by soluble chondrogenic factors.
Collapse
Affiliation(s)
- Margaret M French
- Graduate School of Biomedical Sciences, University of Texas, Houston, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Yu L, Suh H, Koh JJ, Kim SW. Systemic administration of TerplexDNA system: pharmacokinetics and gene expression. Pharm Res 2001; 18:1277-83. [PMID: 11683240 DOI: 10.1023/a:1013081710135] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
PURPOSE The aim of this study is to extend our previous studies to investigate the TerplexDNA synthetic gene carrier system in pharmacokinetics, biodistribution, and gene expression in major organs after systemic administration. METHODS The stability of the TerplexDNA system was analyzed in vitro with a serum incubation assay. The TerplexDNA PK/PD studies were conducted by quantitation of Terplex/radiolabeled DNA [CTP alpha-32P] complexes after rat-tail vein injection. The effect of the TerplexDNA system on gene expression in mouse major organs was analyzed by measuring luciferase activities after systemic administration. RESULTS The TerplexDNA gene carrier showed significantly longer retention in the vascular space than naked plasmid DNA alone. At early time points (1 h postvenous injection), the lung was the major organ of the TerplexDNA distribution, followed by the liver as a major distribution organ at later time points (24 h postinjection). The major organs of transgene expression after intravenous injection were the liver and heart. CONCLUSION The TerplexDNA system has the potential for in vivo applications due to its higher bioavailability of plasmid DNA in the tissues, and due to its organ specific distribution.
Collapse
Affiliation(s)
- L Yu
- Center for Controlled Chemical Delivery, Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City 84112, USA
| | | | | | | |
Collapse
|
37
|
Winkler J, Wirbelauer C, Frank V, Laqua H. Quantitative distribution of glycosaminoglycans in young and senile (cataractous) anterior lens capsules. Exp Eye Res 2001; 72:311-8. [PMID: 11180980 DOI: 10.1006/exer.2000.0952] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The ocular lens is surrounded by the lens capsule, which is an elastic and unusually thick basal membrane. Anionic sites are thought to be responsible for charge-selective permeability barriers in basal membranes. We have used cationic colloidal gold as a tracer for anionic binding sites to investigate the distribution of glycosaminoglycans in young and senile (cataractous) lens capsules. Using electron microscopy, combined with the cationic colloidal gold post-embedding technique, glycosaminoglycans were localized distinctively in a continuous layer immediately apposed to the lens epithelium, which has been referred to as the lamina lucida. The amount of gold particles decreased from the internal (lenticular) side of the capsule, toward the center, followed by an increase of label intensity toward the external (humoral) side. The humoral surface is characterized by a highly anionic layer measuring 1.5--4 micro m. Immunofluorescence microscopy localized three main types of glycosaminoglycans (heparan-, chondroitin- and dermatan sulfate) within this distinctive layer. Quantitative electron microscopy demonstrated reduced amounts of glycosaminoglycans at the lenticular and humoral side of senile (cataractous) lens capsules. The distinctive spatial distribution of glycosaminoglycans in human lens capsules is discussed in terms of age-related structural and functional changes.
Collapse
Affiliation(s)
- J Winkler
- Department of Experimental Ophthalmology, Medical University of Lübeck, Lübeck, Germany.
| | | | | | | |
Collapse
|
38
|
Garg HG, Thompson BT, Hales CA. Structural determinants of antiproliferative activity of heparin on pulmonary artery smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2000; 279:L779-89. [PMID: 11053011 DOI: 10.1152/ajplung.2000.279.5.l779] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In addition to its anticoagulant properties, heparin (HP), a complex polysaccharide covalently linked to a protein core, inhibits proliferation of several cell types including pulmonary artery smooth muscle cells (PASMCs). Commercial lots of HP exhibit varying degrees of antiproliferative activity on PASMCs that may due to structural differences in the lots. Fractionation of a potent antiproliferative HP preparation into high and low molecular weight components does not alter the antiproliferative effect on PASMCs, suggesting that the size of HP is not the major determinant of this biological activity. The protein core of HP obtained by cleaving the carbohydrate-protein linkage has no growth inhibition on PASMCs, demonstrating that the antiproliferative activity resides in the glycosaminoglycan component. Basic sugar residues of glucosamine can be replaced with another basic sugar, i.e., galactosamine, without affecting growth inhibition of PASMCs. N-sulfonate groups on these sugar residues of HP are not essential for growth inhibition. However, O-sulfonate groups on both sugar residues are essential for the antiproliferative activity on PASMCs. In whole HP, in contrast to an earlier finding based on a synthetic pentasaccharide of HP, 3-O-sulfonation is not critical for the antiproliferative activity against PASMCs. The amounts and distribution of sulfonate groups on both sugar residues of the glycosaminoglycan chain are the major determinant of antiproliferative activity.
Collapse
Affiliation(s)
- H G Garg
- Pulmonary/Critical Care Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | |
Collapse
|
39
|
Szuchet S, Watanabe K, Yamaguchi Y. Differentiation/regeneration of oligodendrocytes entails the assembly of a cell-associated matrix. Int J Dev Neurosci 2000; 18:705-20. [PMID: 10978849 DOI: 10.1016/s0736-5748(00)00034-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Oligodendrocytes assemble and maintain CNS myelin. We have shown that adhesion of ovine oligodendrocytes to the substratum, GRASP - a novel, horse serum heparin-binding glycoprotein - initiates their myelinogenic phenotype. Synthesis and vectorial transport to the plasma membrane of heparan sulfate proteoglycans is one of the many events that ensue upon adhesion. Proteoglycans play key roles in defining the line of communication between cells and their microenvironment. The nature of their association with cells varies. Often, proteoglycans are part of a complex extracellular network that either surrounds cells or is restricted to smaller areas of their surface. Such extracellular matrices form an integral part of the machinery that regulates cell function. As part of an effort to delineate the events and identify the molecules involved in the adhesion-induced-regeneration and possibly in differentiation of OLGs, we have undertaken to define the full repertoire of OLG proteoglycans. Oligodendrocytes express surface-associated proteoglycans and also secrete them to the medium. However, we observed a clear distinction between secreted and surface-associated proteoglycans in terms of types, temporal regulation and spacial distribution. Oligodendrocytes secrete chondroitin sulfate proteoglycans and keratan sulfate proteoglycans but have only heparan sulfate proteoglycans associated with their surface. Secreted proteoglycans are temporally modulated but adhesion-independent, whereas surface-associated proteoglycans are adhesion-induced. Herein, we present the biochemical characterization of oligodendrocyte proteoglycans. We report that a significant fraction of the surface-associated heparan sulfate proteoglycans are assembled into a cell-associated matrix. This finding is important. First, it reveals a closer parallel than hitherto documented with events that signal Schwann cell myelination. Second, it implicates HSPGs in the establishment of OLG differentiated phenotype. Third, it brings OLGs in tune with other cell types where the ECM (broadly defined) is critical for the orchestration of cues that generate tissue-specific gene expression and phenotypes.
Collapse
Affiliation(s)
- S Szuchet
- Department of Neurology and The Brain Research Institute, University of Chicago, 5841 South Maryland Avenue, Chicago, IL 60637, USA.
| | | | | |
Collapse
|
40
|
Costes S, Streuli CH, Barcellos-Hoff MH. Quantitative image analysis of laminin immunoreactivity in skin basement membrane irradiated with 1 GeV/nucleon iron particles. Radiat Res 2000; 154:389-97. [PMID: 11023602 DOI: 10.1667/0033-7587(2000)154[0389:qiaoli]2.0.co;2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We previously reported that laminin immunoreactivity in mouse mammary epithelium is altered shortly after whole-body irradiation with 0.8 Gy from 600 MeV/nucleon iron ions but is unaffected after exposure to sparsely ionizing radiation. This observation led us to propose that the effect could be due to protein damage from the high ionization density of the ion tracks. If so, we predicted that it would be evident soon after radiation exposure in basement membranes of other tissues and would depend on ion fluence. To test this hypothesis, we used immunofluorescence, confocal laser scanning microscopy, and image segmentation techniques to quantify changes in the basement membrane of mouse skin epidermis. At 1 h after exposure to 1 GeV/nucleon iron ions with doses from 0.03 to 1.6 Gy, neither the visual appearance nor the mean pixel intensity of laminin in the basement membrane of mouse dorsal skin epidermis was altered compared to sham-irradiated tissue. This result does not support the hypothesis that particle traversal directly affects laminin protein integrity. However, the mean pixel intensity of laminin immunoreactivity was significantly decreased in epidermal basement membrane at 48 and 96 h after exposure to 0.8 Gy 1 GeV/nucleon iron ions. We confirmed this effect with two additional antibodies raised against affinity-purified laminin 1 and the E3 fragment of the long-arm of laminin 1. In contrast, collagen type IV, another component of the basement membrane, was unaffected. Our studies demonstrate quantitatively that densely ionizing radiation elicits changes in skin microenvironments distinct from those induced by sparsely ionizing radiation. Such effects may might contribute to the carcinogenic potential of densely ionizing radiation by altering cellular signaling cascades mediated by cell-extracellular matrix interactions.
Collapse
Affiliation(s)
- S Costes
- Nuclear Engineering Department, Lawrence Berkeley National Laboratory, University of California, Berkeley, 94720, USA
| | | | | |
Collapse
|
41
|
Friedrich MV, Schneider M, Timpl R, Baumgartner S. Perlecan domain V of Drosophila melanogaster. Sequence, recombinant analysis and tissue expression. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:3149-59. [PMID: 10824099 DOI: 10.1046/j.1432-1327.2000.01337.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The C-terminal domain V of the basement membrane proteoglycan perlecan was previously shown to play a major role in extracellular matrix and cell interactions. A homologous sequence of 708 amino-acid residues from Drosophila has now been shown to be 33% identical to mouse perlecan domain V. It consists of three laminin G-type (LG) and epidermal growth factor-like (EG) modules but lacks the EG3 module and a link region found in mammalian perlecans. Recombinant production of Drosophila perlecan domain V in mammalian cells yielded a 100-kDa protein which was folded into a linear array of three globular LG domains. Unlike the mouse counterpart, domain V from Drosophila was not modified by glycosaminoglycans and endogenous proteolysis, due to the absence of the link region. It showed moderate affinities for heparin and sulfatides but did not bind to chick alpha-dystroglycan or to various mammalian basement membrane proteins. A single RGD sequence in LG3 of Drosophila domain V was also incapable of mediating cell adhesion. Production of a proteoglycan form of perlecan (approximately 450 kDa) in one Drosophila cell line could be demonstrated by immunoblotting with antibodies against Drosophila domain V. A strong expression was also found by in situ hybridization and immunohistology at various stages of embryonic development and expression was localized to several basement membrane zones. This indicates, as for mammalian species, a distinct role of perlecan during Drosophila development.
Collapse
|
42
|
Mongiat M, Taylor K, Otto J, Aho S, Uitto J, Whitelock JM, Iozzo RV. The protein core of the proteoglycan perlecan binds specifically to fibroblast growth factor-7. J Biol Chem 2000; 275:7095-100. [PMID: 10702276 DOI: 10.1074/jbc.275.10.7095] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Perlecan is a multifaceted heparan sulfate proteoglycan that is expressed not only as an intrinsic constituent of basement membranes but also as a cell-surface and pericellular proteoglycan. Perlecan functions as a ligand reservoir for various growth factors that become stabilized against misfolding or proteolysis and acts as a co-receptor for basic fibroblast growth factor by augmenting high affinity binding and receptor activation. These biological properties are mediated by the heparan sulfate moiety. Rather little is known about the protein core's mediation of functions. We have recently discovered that fibroblast growth factor-7 (FGF7) binds to perlecan protein core and that exogenous perlecan efficiently reconstitutes FGF7 mitogenic activity in perlecan-deficient cells. In this report we examined the specific binding of FGF7 to various domains and subdomains of perlecan protein core. Using several experimental approaches including overlay protein assays, radioligand binding experiments, and the yeast two-hybrid system, we demonstrate that FGF7 binds specifically to the N-terminal half of domain III and to a lesser extent to domain V, with affinity constants in the range of 60 nM. Thus, perlecan protein core should be considered a novel biological ligand for FGF7, an interaction that could influence cancer growth and tissue remodeling.
Collapse
Affiliation(s)
- M Mongiat
- Department of Pathology, Anatomy and Cell Biology, and Kimmel Cancer Center, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Renal basement membrane components. Basement membranes are specialized extracellular matrices found throughout the body. They surround all epithelia, endothelia, peripheral nerves, muscle cells, and fat cells. They play particularly important roles in the kidney, as demonstrated by the fact that defects in renal basement membranes are associated with kidney malfunction. The major components of all basement membranes are laminin, collagen IV, entactin/nidogen, and sulfated proteoglycans. Each of these describes a family of related proteins that assemble with each other in the extracellular space to form the basement membrane. Over the last few years, new basement membrane components that are expressed in the kidney have been discovered. Here, the major components and their localization in mature and developing renal basement membranes are described. In addition, the phenotypes of basement membrane component gene mutations, both naturally occurring and experimental, are discussed, as is the aberrant deposition of basement membrane proteins in the extracellular matrix in several renal diseases.
Collapse
Affiliation(s)
- J H Miner
- Department of Medicine, Renal Division, Washington University School of Medicine, St.Louis, MO 63110, USA.
| |
Collapse
|
44
|
Costell M, Gustafsson E, Aszódi A, Mörgelin M, Bloch W, Hunziker E, Addicks K, Timpl R, Fässler R. Perlecan maintains the integrity of cartilage and some basement membranes. J Cell Biol 1999; 147:1109-22. [PMID: 10579729 PMCID: PMC2169352 DOI: 10.1083/jcb.147.5.1109] [Citation(s) in RCA: 479] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Perlecan is a heparan sulfate proteoglycan that is expressed in all basement membranes (BMs), in cartilage, and several other mesenchymal tissues during development. Perlecan binds growth factors and interacts with various extracellular matrix proteins and cell adhesion molecules. Homozygous mice with a null mutation in the perlecan gene exhibit normal formation of BMs. However, BMs deteriorate in regions with increased mechanical stress such as the contracting myocardium and the expanding brain vesicles showing that perlecan is crucial for maintaining BM integrity. As a consequence, small clefts are formed in the cardiac muscle leading to blood leakage into the pericardial cavity and an arrest of heart function. The defects in the BM separating the brain from the adjacent mesenchyme caused invasion of brain tissue into the overlaying ectoderm leading to abnormal expansion of neuroepithelium, neuronal ectopias, and exencephaly. Finally, homozygotes developed a severe defect in cartilage, a tissue that lacks BMs. The chondrodysplasia is characterized by a reduction of the fibrillar collagen network, shortened collagen fibers, and elevated expression of cartilage extracellular matrix genes, suggesting that perlecan protects cartilage extracellular matrix from degradation.
Collapse
Affiliation(s)
- Mercedes Costell
- Department of Experimental Pathology, Lund University, S-221 85 Lund, Sweden
- Max Planck Institute for Biochemistry, 82152 Martinsried, Germany
- Department of Biochemistry and Molecular Biology, University of Valencia, 46071 Valencia, Spain
| | - Erika Gustafsson
- Department of Experimental Pathology, Lund University, S-221 85 Lund, Sweden
| | - Attila Aszódi
- Department of Experimental Pathology, Lund University, S-221 85 Lund, Sweden
| | - Matthias Mörgelin
- Department of Experimental Pathology, Lund University, S-221 85 Lund, Sweden
| | - Wilhelm Bloch
- Institute for Anatomy, University of Cologne, 50931 Cologne, Germany
| | - Ernst Hunziker
- M.E. Müller Institute for Biomechanics, University of Bern, 3010 Bern, Switzerland
| | - Klaus Addicks
- Institute for Anatomy, University of Cologne, 50931 Cologne, Germany
| | - Rupert Timpl
- Max Planck Institute for Biochemistry, 82152 Martinsried, Germany
| | - Reinhard Fässler
- Department of Experimental Pathology, Lund University, S-221 85 Lund, Sweden
| |
Collapse
|
45
|
Friedrich MV, Göhring W, Mörgelin M, Brancaccio A, David G, Timpl R. Structural basis of glycosaminoglycan modification and of heterotypic interactions of perlecan domain V. J Mol Biol 1999; 294:259-70. [PMID: 10556044 DOI: 10.1006/jmbi.1999.3259] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The C-terminal perlecan domain V of about 90 kDa consists of laminin-type G domain modules (LG) (25 kDa) and epidermal growth factor-like modules (EG) (4 kDa) in the tandem arrangement LG1-EG1-EG2-LG2-EG3-EG4-LG3. Several shorter fragments have been prepared by recombinant production in mammalian cells and used to map the single glycosaminoglycan (GAG) substitution site and the binding of several carbohydrate and protein ligands. This identified a Ser3511 residue located in a short link region between EG4 and LG3 as being involved in GAG attachment. Electron microscopy provided evidence that the same substitution exists in tissue forms of perlecan. Heparan sulphate attached to this site was shown to bind to the alpha1LG4 module of laminin-1, indicating a role in basement membrane assembly and cell-matrix interactions. This site is also close to an Asn-Asp bond which is readily cleaved by an endogenous protease that depends on the presence of Asp and the LG2 module. A weak heparin binding site was shown to include the EG2 module, which contains five basic residues. Binding to sulphatides and the alpha-dystroglycan receptor was much stronger and required at least two LG modules. However, single LG modules appear to be sufficient for the interaction with the laminin-nidogen complex, while EG3-4 and some flanking regions are apparently involved in fibulin-2 binding. These observations indicate that a complex modular structure is required for domain V in order to provide a rich repertoire of potential biological functions.
Collapse
Affiliation(s)
- M V Friedrich
- Max-Planck-Institut für Biochemie, Martinsried, D-82152, Germany
| | | | | | | | | | | |
Collapse
|
46
|
Sasaki T, Göhring W, Miosge N, Abrams WR, Rosenbloom J, Timpl R. Tropoelastin binding to fibulins, nidogen-2 and other extracellular matrix proteins. FEBS Lett 1999; 460:280-4. [PMID: 10544250 DOI: 10.1016/s0014-5793(99)01362-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Elastic fibers in vessel walls and other tissues consist of cross-linked tropoelastin in association with several microfibrillar proteins. In order to understand the molecular basis of these structures, we examined the binding of recombinant human tropoelastin to other extracellular matrix ligands in solid phase binding and surface plasmon resonance assays. These studies demonstrated a particularly high affinity (K(d) about 1 nM) of tropoelastin for microfibrillar fibulin-2 and the recently described nidogen-2 isoform. More moderate affinities were observed for fibulin-1, laminin-1 and perlecan, while several other ligands such as collagens, nidogen-1, fibronectin and BM-40 showed little or no binding. In immunogold staining of mouse aortic media, elastic fibers were heavily decorated with tropoelastin, fibulin-2 and nidogen-2, while the reaction with fibulin-1 was lower. The colocalization of these proteins emphasizes the potential for in vivo interactions.
Collapse
Affiliation(s)
- T Sasaki
- Max-Planck-Institut für Biochemie, Am Klopferspitz 18A, D-82152, Martinsried, Germany
| | | | | | | | | | | |
Collapse
|
47
|
Miosge N, Sasaki T, Timpl R. Angiogenesis inhibitor endostatin is a distinct component of elastic fibers in vessel walls. FASEB J 1999; 13:1743-50. [PMID: 10506577 DOI: 10.1096/fasebj.13.13.1743] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Theendothelial cell inhibitor endostatin (22 kDa) is part of the carboxyl-terminal globular domain of collagen XVIII and shows a widespread tissue distribution. Immunohistology of adult mouse tissues demonstrated a preferred localization in many vessel walls and some other basement membrane zones. A strong immunogold staining was observed across elastic fibers in the multiple elastic membranes of aorta and other large arteries. Staining was less strong along sparse elastic fibers of veins and almost none was observed in the walls of arterioles and capillaries. Strong evidence was also obtained for some intracellular and basement membrane associations. Immunogold double staining of elastic fibers showed a close colocalization of endostatin with fibulin-2, fibulin-1, and nidogen-2, but not with perlecan. Reasonable amounts of endostatin could be extracted from aorta and skin by EDTA, followed by detergents, with aorta being the richest source of the inhibitor identified so far. Solubilizations with collagenase and elastase were approximately fivefold less efficient. Immunoblots of aortic extracts detected major endostatin components of 22-25 kDa whereas skin extracts also contained some larger components. Solid-phase assays demonstrated distinct binding of recombinant mouse endostatin to the fibulins and nidogen-2, consistent with their tissue colocalization. Together, the data indicate several different ways for endostatin to be associated with the extracellular matrix, and its release may determine biological activation. This also defines a novel function for some elastic tissues.
Collapse
Affiliation(s)
- N Miosge
- Zentrum Anatomie, Abteilung Histologie, Universität, Göttingen, D-37075 Göttingen, Germany
| | | | | |
Collapse
|
48
|
Raats CJ, Luca ME, Bakker MA, Van Der Wal A, Heeringa P, Van Goor H, Van Den Born J, De Heer E, Berden JH. Reduction in glomerular heparan sulfate correlates with complement deposition and albuminuria in active Heymann nephritis. J Am Soc Nephrol 1999; 10:1689-99. [PMID: 10446936 DOI: 10.1681/asn.v1081689] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
In a time-study of active Heymann nephritis, the expression of agrin, the main heparan sulfate proteoglycan in the glomerular basement membrane, was analyzed in relation to deposition of IgG and complement in the glomerular capillary wall and the development of albuminuria. Binding of IgG autoantibodies to the glomerular capillary wall could be detected from 2 wk onward, followed by activation of complement after 6 wk. Progressive albuminuria developed from 6 wk onward to a level of 274+/-68 mg/18 h at week 12. The staining intensity for the agrin core protein decreased slightly, and the staining intensity for the heparan sulfate stubs that were still attached to the core protein after heparitinase digestion remained normal. From week 6 onward, however, a progressive decrease was seen in the staining of two monoclonal antibodies (mAb) directed against different epitopes on the heparan sulfate polysaccharide side chain of agrin (to 35 and 30% of the control level, respectively, at week 12, both mAb P = 0.016). Moreover, albuminuria was inversely correlated with heparan sulfate staining as revealed by these antibodies (r(s) = -0.82 and r(s) = -0.75, respectively, both mAb P < 0.0001). This decrease in heparan sulfate staining was due to a progressive reduction of glomerular heparan sulfate content to 46 and 32% of control level at week 10 and week 12 of the disease, respectively, as measured biochemically. It is speculated that the observed decrease in glomerular heparan sulfate in active Heymann nephritis is due to complement-mediated cleavage of heparan sulfate, resulting in an increased permeability of the glomerular basement membrane to macromolecules.
Collapse
Affiliation(s)
- C J Raats
- Division of Nephrology, University Hospital, St. Radboud, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Skeletal muscle fibers are surrounded by an extracellular matrix. The extracellular matrix is composed of glycoproteins, collagen, and proteoglycans. Proteoglycans have been suggested to play an important functional role in tissue differentiation; however, an understanding of how the extracellular matrix affects skeletal muscle development and function is largely unknown. Proteoglycans can regulate collagen fibrillogenesis, inhibit cell growth, and modulate the response to growth factors. Our studies have focused on the proteoglycan decorin, which interacts with transforming growth factor-beta and regulates collagen fibrillogenesis and cellular growth properties in the avian genetic muscle weakness Low Score Normal. Low Score Normal pectoral muscle development is characterized by a late embryonic increase in the expression of decorin followed by a subsequent increase in collagen crosslinking and modified collagen fibril organization. This paper reviews the interaction of extracellular matrix molecules, cell-extracellular matrix interactions, and modulation of growth factor activity. How proteoglycans may interface with each of these key events during skeletal muscle myogenesis is discussed.
Collapse
Affiliation(s)
- S G Velleman
- The Ohio State University, Department of Animal Sciences, Wooster 44691, USA.
| |
Collapse
|
50
|
Sriramarao P, DiScipio RG. Deposition of complement C3 and factor H in tissue traumatized by burn injury. IMMUNOPHARMACOLOGY 1999; 42:195-202. [PMID: 10408380 DOI: 10.1016/s0162-3109(99)00024-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Activation of complement is known to accompany burn injury. To study deposition of complement proteins within tissue traumatized by burn we employed the technique of intravital microscopy using a murine dorsal skinfold chamber model. C3, factor H, factor B, HSA, and transferrin were labeled fluorescently and injected into the tail vein of mice which had been subjected to a small third degree burn within the skin fold. Only C3 and factor H deposited within blood vessels of the traumatized tissue. Binding was specific because it occurred only in and proximal to burn sites, and neither C3 nor factor H was observed to accumulate in blood vessels of healthy tissue. Furthermore, fluorescently labelled HSA, factor B, and transferrin all failed to deposit at or around burn loci. The deposition of C3 and factor H occurred within 10 min of injury and was intravascular occurring in major blood vessels, capillaries, and post-capillary venules, with little evidence of accumulation in the interstitium. Since both C3 fragments and factor H are recognized as adhesion molecules by granulocyte receptors, these deposited proteins could promote leukocyte accumulation, thereby contributing to an initiation of an inflammatory cascade at a site of burn injury.
Collapse
Affiliation(s)
- P Sriramarao
- Laboratory of Immunology and Vascular Biology, La Jolla Institute for Experimental Medicine, CA 92037, USA
| | | |
Collapse
|